

Out-of-Band Spurious Emissions at the Band Edge - 802.11a, 5825 MHz

Test Results: 15.209/15.205 Restricted Band Emissions

Out-of-Band Spurious Emissions at the Band Edge - 802.11n 20MHz, 5745 MHz

Out-of-Band Spurious Emissions at the Band Edge - 802.11n 20MHz, 5825 MHz

Test Results: 15.209/15.205 Restricted Band Emissions

Out-of-Band Spurious Emissions at the Band Edge - 802.11n 40MHz, 5755 MHz

Out-of-Band Spurious Emissions at the Band Edge - 802.11n 40MHz, 5795 MHz

Out-of-Band Spurious Emissions at the Band Edge - 802.11ac 20MHz, 5745 MHz

Out-of-Band Spurious Emissions at the Band Edge - 802.11ac 20MHz, 5825 MHz

Test Results: 15.209/15.205 Restricted Band Emissions

Out-of-Band Spurious Emissions at the Band Edge - 802.11ac 40MHz, 5755 MHz

Out-of-Band Spurious Emissions at the Band Edge - 802.11ac 40MHz, 5795 MHz

Out-of-Band Spurious Emissions at the Band Edge - 802.11ac 80MHz, 5775 MHz

15.209/15.205 Radiated Spurious Emissions, Tx at 802.11a 5180MHz, Peak

Frequency Amplitude Limit Margin Pass / Fail? Detector (MHz) (dBuV/m) (dBuV/m) (dB) 49.03 5150 Peak 54 -4.97 Pass

15.209/15.205 Radiated Spurious Emissions, Tx at 802.11a 5320MHz, Peak

Frequency	Detector	Amplitude	Limit	Margin	Dace / Fail2
(MHz)	Detector	(dBuV/m)	(dBuV/m)	(dB)	Pass / Falls
5350	Peak	50.38	54	-3.62	Pass

15.209/15.205 Radiated Spurious Emissions, Tx at 802.11a 5500MHz, Peak

Frequency	Detector	Amplitude	Limit	Margin	Dace / Fail2
(MHz)	Detector	(dBuV/m)	(dBuV/m)	(dB)	Pass / Falls
5460	Peak	48.05	54	-5.95	Pass

Frequency	Detector	Amplitude	Limit	Margin	
(MHz)	Detector	(dBuV/m)	(dBuV/m)	(dB)	Pass / Fall?
5150	Peak	49.71	54	-4.29	Pass

15.209/15.205 Radiated Spurious Emissions, Tx at 802.11n 20MHz 5320MHz, Peak

Frequency	Detector	Amplitude	Limit	Margin	Dace / Fail2
(MHz)	Detector	(dBuV/m)	(dBuV/m)	(dB)	Pass / Falls
5350	Peak	46.62	54	-7.38	Pass

Radiated Band Edge at the Restricted Bands

15.209/15.205 Radiated Spurious Emissions, Tx at 802.11n 20MHz 5500MHz, Peak

Frequency	Detector	Amplitude	Limit	Margin	Dass / Eail2
(MHz)	Detector	(dBuV/m)	(dBuV/m)	(dB)	PdSS / Fdll?
5460	Peak	47.14	54	-6.86	Pass

15.209/15.205 Radiated Spurious Emissions, Tx at 802.11n 40MHz 5190MHz, Peak

Frequency	Detector	Amplitude	Limit	Margin		
(MHz)	(MHz) Detector		(dBuV/m)	(dB)	(dB) Pass / Fail?	
5150	Peak	54.75	74	-19.25	Pass	

15.209/15.205 Radiated Spurious Emissions, Tx at 802.11n 40MHz 5190MHz, Average

Frequency	Detector	Amplitude	Limit	Margin	
(MHz)	Detector	(dBuV/m)	(dBuV/m)	(dB)	Pass / Fall?
5150	Average	48.63	54	-5.37	Pass

								 	 Peak (Horizontal) Peak (Vertical) Peak (Peak/Lim.Peak) (Horizon Peak (Peak/Lim.Peak) (Vertice 	intal) al)
120 dBµV/m										
110										
100										
90					alla.					
80										
		-								
70					_					
60										
50							-	мін. Шальки		
50	Jumment Milenterson	والموطر فمسراها ملاده ومرخاط الخرال وأروده	and the second state of the second				- 0	and the second s	ulan developation de	والمتحاصية المليم والالارتيار وتستقر ومعا
40										
30					_					
20	5.1GHz 5.1	15G 5.:	2G 5.2	5G	5.3 requ	3G iency	5.3	5G 5.	IG 5.4	5G 5.5GHz
Model: ; Clien	:; Comments:; Test Date: 08/23	/2022 22:36								

15.209/15.205 Radiated Spurious Emissions, Tx at 802.11n 40MHz 5310MHz, Peak

Frequency	Detector	Amplitude	Limit	Margin	Dace / Fail2
(MHz)	Detector	(dBuV/m)	(dBuV/m)	(dB)	Pdss / Fdll?
5350	Peak	52.03	74	-21.97	Pass

15.209/15.205 Radiated Spurious Emissions, Tx at 802.11n 40MHz 5310MHz, Average

Frequency	Detector	Amplitude	Limit	Margin	Dace / Fail2	
(MHz)	Detector	(dBuV/m)	(dBuV/m)	(dB)	Pass / Fall?	
5350	Average	44.53	54	-9.47	Pass	

15.209/15.205 Radiated Spurious Emissions, Tx at 802.11n 40MHz 5510MHz, Peak

Frequency	Detector	Amplitude	Limit	Margin	Pass / Fail2	
(MHz)	Detector	(dBuV/m)	(dBuV/m)	(dB)		
5460	Peak	52.74	74	-11.26	Pass	

15.209/15.205 Radiated Spurious Emissions, Tx at 802.11n 40MHz 5510MHz, Average

Frequency Amplitude Limit Margin Pass / Fail? Detector (MHz) (dBuV/m) (dBuV/m) (dB) 5460 46.35 Average 54 -7.65 Pass

110				

Frequency	Detector	Amplitude	Limit	Margin	Dass / Fail2	
(MHz)	Detector	(dBuV/m)	(dBuV/m)	(dB)	PdSS / Fdilf	
5150	Peak	46.98	54	-7.02	Pass	

15.209/15.205 Radiated Spurious Emissions, Tx at 802.11ac 20MHz 5320MHz, Peak

Frequency	Detector	Amplitude	Limit	Margin	Dace / Fail2
(MHz)	Detector	(dBuV/m)	(dBuV/m)	(dB)	Pdss / Fdilf
5350	Peak	46.62	54	-7.38	Pass

Radiated Band Edge at the Restricted Bands

15.209/15.205 Radiated Spurious Emissions, Tx at 802.11ac 20MHz 5500MHz,

Frequency	Detector	Amplitude	Limit	Margin	Dace / Fail2
(MHz)	Detector	(dBuV/m)	(dBuV/m)	(dB)	Pass / Falls

5460	Peak	47.14	54	-6.86	Pass

15.209/15.205 Radiated Spurious Emissions, Tx at 802.11ac 40MHz 5190MHz, Peak

Amplitude Limit Frequency Margin Pass / Fail? Detector (dBuV/m) (dBuV/m) (MHz) (dB) 5150 Peak 51.31 74 -22.69 Pass

15.209/15.205 Radiated Spurious Emissions, Tx at 802.11ac 40MHz 5190MHz, Average

Frequency	Detector	Amplitude	Limit	Margin	Dace / Fail2	
(MHz)	Detector	(dBuV/m)	(dBuV/m)	(dB)	Pass / Fall?	
5150	Average	43.19	54	-10.81	Pass	

15.209/15.205 Radiated Spurious Emissions, Tx at 802.11ac 40MHz 5310MHz, Peak

Frequency	Detector	Amplitude	Limit	Margin		
(MHz)	Detector	(dBuV/m)	(dBuV/m)	(dB)	Pass / Fall?	
5350	Peak	49.96	74	-24.04	Pass	

15.209/15.205 Radiated Spurious Emissions, Tx at 802.11ac 40MHz 5310MHz, Average

Frequency	Detector	Amplitude	Limit	Margin		
(MHz)	Detector	(dBuV/m)	(dBuV/m)	(dB)	Pass / Falls	
5350	Average	41.64	54	-12.36	Pass	

15.209/15.205 Radiated Spurious Emissions, Tx at 802.11ac 40MHz 5510MHz, Peak

Frequency	Detector	Amplitude	Limit	Margin	Dass / Fail2	
(MHz)	Detector	(dBuV/m)	(dBuV/m)	(dB)	Pass / Fall?	
5460	Peak	59.49	74	-14.51	Pass	

15.209/15.205 Radiated Spurious Emissions, Tx at 802.11ac 40MHz 5510MHz, Average

Frequency	Detector	Amplitude	Limit	Margin	Dace / Fail2	
(MHz)	Detector	(dBuV/m)	(dBuV/m)	(dB)	Pass / Fall?	
5460	Average	51.44	54	-2.56	Pass	

15.209/15.205 Radiated Spurious Emissions, Tx at 802.11ac 80MHz 5210MHz, Peak

Frequency	Detector	Amplitude	Limit	Margin	Dass / Fail2	
(MHz)	Detector	(dBuV/m)	(dBuV/m)	(dB)	Pass / Falls	
5150	Peak	54.87	74	-19.13	Pass	

15.209/15.205 Radiated Spurious Emissions, Tx at 802.11ac 80MHz 5210MHz, Average

Frequency	Detector	Amplitude	Limit	Margin		
(MHz)	Detector	(dBuV/m)	(dBuV/m)	(dB)	Pass / Fall?	
5150	Average	42.2	54	-11.8	Pass	

								×	 Peak (Horizontal) Peak (Vertical) Peak (Peak/Lim.Peak) (Horizon Peak (Peak/Lim.Peak) (Verticon Peak (Manual suspects) (Verticon 	intal) al) ical)
dBµV/m	120									
	110.									
	100 -									
					Auman Marine in					
	90.				The second second second	ANNAL HEREIT				
	80				1					
	70						ļ			
	60_			Muduudawawy			(data sata) Opticality	Andre and A. Land		
	50	and a second state of the	A DESCRIPTION OF THE OWNER OF THE	a Manas -			at a date.	and the state of the later of the state of t	ali, e pidles, prints distriferen (i	مطويا أطبعه بدأنها فتحود بالبركتين
	40									
	30									
	20									
	3	5.1GHz 5.1	5G 5.:	2G 5.2	5G 5.3 Frequ	IG ency	5.3	i5G 5.	iG 5.4	5G 5.5GHz
Model:; C	lient:	; Comments: ; Test Date: 08/24	/2022 00:51							

15.209/15.205 Radiated Spurious Emissions, Tx at 802.11ac 80MHz 5290MHz, Peak

Frequency	Detector	Amplitude Limit		Margin	Dass / Fail2
(MHz)	Detector	(dBuV/m)	(dBuV/m)	(dB)	PdSS / Fdll?
5350	Peak	50.81	74	-23.19	Pass

15.209/15.205 Radiated Spurious Emissions, Tx at 802.11ac 80MHz 5290MHz, Average

Frequency	Detector	Amplitude Limit		Margin		
(MHz)	Detector	(dBuV/m)	(dBuV/m)	(dB)	Pass / Fall?	
5350	Average	40.46	54	-13.54	Pass	

15.209/15.205 Radiated Spurious Emissions, Tx at 802.11ac 80MHz 5530MHz, Peak

Frequency	Detector	Amplitude	mplitude Limit		Dass / Fail2	
(MHz)	Detector	(dBuV/m)	(dBuV/m)	(dB)	Pass / Fall?	
5460	Peak	59.49	74	-14.51	Pass	

15.209/15.205 Radiated Spurious Emissions, Tx at 802.11ac 80MHz 5530MHz, Average

Frequency	Detector	Amplitude Limit		Margin		
(MHz)	Detector	(dBuV/m)	(dBuV/m)	(dB)	Pass / Falls	
5460	Average	45.56	54	-8.44	Pass	

Test Results: 15.209 Radiated Spurious Emissions, Tx at 802.11n

Radiated Spurious Emissions 9 kHz to 30 MHz, Peak Scan vs QP Limit

Test Results: 15.209 Radiated Spurious Emissions, Tx at 802.11n 20MHz 5180MHz

Radiated Spurious Emissions 30 MHz to 1000 MHz, Peak Scan vs QP Limit

Radiated Spurious Emissions 1000 to 18000 MHz, Peak Scan vs Peak & Avg Limit

Radiated Spurious Emissions 18000 to 40000 MHz, Peak & Avg Scan vs Peak & Avg Limit

Frequency	FS@10m	Limit@ 10m	Margin	Height	Azimuth	Polarity	Correction
MHz	dBuV/m	dBuV/m	(dB)	(m)	(deg)		dB
38.69767	26.65	29.5	-2.85	3	143	Vertical	-12.41
88.32933	31.32	33	-1.68	2	136.75	Vertical	-19.27
105.8863	32.35	33	-0.65	2	136.75	Vertical	-14.99
106.6623	31.34	33	-1.66	2	136.75	Vertical	-14.83
107.5677	30.91	33	-2.09	2	136.75	Vertical	-14.64
131.6237	30.83	33	-2.17	0.98	131.5	Vertical	-12.52

Note: Correction = AF + CF - Preamp

Test Results: 15.209 Radiated Spurious Emissions, Tx at 802.11n 20MHz 5220MHz

Radiated Spurious Emissions 30 MHz to 1000 MHz, Peak Scan vs QP Limit

Radiated Spurious Emissions 1000 to 18000 MHz, Peak Scan vs Peak & Avg Limit

Radiated Spurious Emissions 18000 to 40000 MHz, Peak & Avg Scan vs Peak & Avg Limit

					rolarity	
dBuV/m	dBuV/m	(dB)	(m)	(deg)		dB
26.44	29.5	-3.06	3	127.75	Vertical	-11.97
25.73	29.5	-3.77	4	174.75	Vertical	-19.98
25.69	29.5	-3.81	2	95.75	Vertical	-19
29.43	33	-3.57	0.98	157.5	Vertical	-19.22
30.51	33	-2.49	2	162.75	Vertical	-12.61
32.92	35.5	-2.58	4	331.5	Vertical	-12.07
26.44	29.5	-3.06	3	127.75	Vertical	-11.97
	dBuV/m 26.44 25.73 25.69 29.43 30.51 32.92 26.44	dBuV/mdBuV/m26.4429.525.7329.525.6929.529.433330.513332.9235.526.4429.5	dBuV/mdBuV/m(dB)26.4429.5-3.0625.7329.5-3.7725.6929.5-3.8129.4333-3.5730.5133-2.4932.9235.5-2.5826.4429.5-3.06	dBuV/m(dB)(m)26.4429.5-3.06325.7329.5-3.77425.6929.5-3.81229.4333-3.570.9830.5133-2.49232.9235.5-2.58426.4429.5-3.063	dBuV/m(dB)(m)(deg)26.4429.5-3.063127.7525.7329.5-3.774174.7525.6929.5-3.81295.7529.4333-3.570.98157.530.5133-2.492162.7532.9235.5-2.584331.526.4429.5-3.063127.75	dBuV/m(dB)(m)(deg)26.4429.5-3.063127.75Vertical25.7329.5-3.774174.75Vertical25.6929.5-3.81295.75Vertical29.4333-3.570.98157.5Vertical30.5133-2.492162.75Vertical32.9235.5-2.584331.5Vertical26.4429.5-3.063127.75Vertical

Note: Correction = AF + CF - Preamp

Test Results: 15.209 Radiated Spurious Emissions, Tx at 802.11n 20MHz 5240MHz

Radiated Spurious Emissions 30 MHz to 1000 MHz, Peak Scan vs QP Limit

Radiated Spurious Emissions 1000 to 18000 MHz, Peak Scan vs Peak & Avg Limit

Radiated Spurious Emissions 18000 to 40000 MHz, Peak & Avg Scan vs Peak & Avg Limit

Frequency	FS@10m	Limit@ 10m	Margin	Height	Azimuth	Polarity	Correction
MHz	dBuV/m	dBuV/m	(dB)	(m)	(deg)		dB
38.21267	26.97	29.5	-2.53	0.99	101.25	Vertical	-12.02
43.03033	25.91	29.5	-3.59	0.99	344.75	Vertical	-15.53
54.47633	25.11	29.5	-4.39	4	206.75	Vertical	-19.97
65.24333	25.69	29.5	-3.81	2	65.5	Vertical	-19.06
88.976	28.58	33	-4.42	0.99	153.75	Vertical	-19.2
133.499	30.42	33	-2.58	2	81.5	Vertical	-12.7

Note: Correction = AF + CF - Preamp

Test Results: 15.209 Radiated Spurious Emissions, Tx at 802.11n 20MHz 5260MHz

Radiated Spurious Emissions 30 MHz to 1000 MHz, Peak Scan vs QP Limit

Radiated Spurious Emissions 1000 to 18000 MHz, Peak Scan vs Peak & Avg Limit

Radiated Spurious Emissions 18000 to 40000 MHz, Peak & Avg Scan vs Peak & Avg Limit

Frequency	FS@10m	Limit@ 10m	Margin	Height	Azimuth	Polarity	Correction
MHz	dBuV/m	dBuV/m	(dB)	(m)	(deg)		dB
38.79467	26.94	29.5	-2.56	0.99	125.25	Vertical	-12.48
66.084	25.86	29.5	-3.64	2	97	Vertical	-18.97
89.00833	29.13	33	-3.87	0.99	148.25	Vertical	-19.2
132.9817	30.58	33	-2.42	2	127	Vertical	-12.66
306.5147	34.06	35.5	-1.44	2	342.5	Vertical	-12.07
319.448	35.4	35.5	-0.1	2	342.5	Vertical	-11.6

Note: Correction = AF + CF - Preamp

Test Results: 15.209 Radiated Spurious Emissions, Tx at 802.11n 20MHz 5300MHz

Radiated Spurious Emissions 30 MHz to 1000 MHz, Peak Scan vs QP Limit

Radiated Spurious Emissions 1000 to 18000 MHz, Peak Scan vs Peak & Avg Limit

Radiated Spurious Emissions 18000 to 40000 MHz, Peak & Avg Scan vs Peak & Avg Limit

Frequency	FS@10m	Limit@ 10m	Margin	Height	Azimuth	Polarity	Correction
MHz	dBuV/m	dBuV/m	(dB)	(m)	(deg)		dB
38.79467	26.94	29.5	-2.56	0.99	125.25	Vertical	-12.48
66.084	25.86	29.5	-3.64	2	97	Vertical	-18.97
89.00833	29.13	33	-3.87	0.99	148.25	Vertical	-19.2
132.9817	30.58	33	-2.42	2	127	Vertical	-12.66
306.5147	34.06	35.5	-1.44	2	342.5	Vertical	-12.07
319.448	35.4	35.5	-0.1	2	342.5	Vertical	-11.6

Note: Correction = AF + CF - Preamp

Test Results: 15.209 Radiated Spurious Emissions, Tx at 802.11n 20MHz 5320MHz

Radiated Spurious Emissions 30 MHz to 1000 MHz, Peak Scan vs QP Limit

Radiated Spurious Emissions 1000 to 18000 MHz, Peak Scan vs Peak & Avg Limit

MHz	dBuV/m	dBuV/m	(dB)	(m)	(deg)		dB
38.69767	27.15	29.5	-2.35	0.99	101	Vertical	-12.41
51.08133	25.05	29.5	-4.45	0.99	166.25	Vertical	-19.53
66.11633	26.07	29.5	-3.43	2	106.25	Vertical	-18.97
88.55567	30.11	33	-2.89	0.99	111.25	Vertical	-19.25
107.2767	28.37	33	-4.63	0.99	59.75	Vertical	-14.7
133.111	30.74	33	-2.26	2	92.25	Vertical	-12.67

Note: Correction = AF + CF - Preamp

Test Results: 15.209 Radiated Spurious Emissions, Tx at 802.11n 20MHz 5500MHz

Radiated Spurious Emissions 30 MHz to 1000 MHz, Peak Scan vs QP Limit

Radiated Spurious Emissions 1000 to 18000 MHz, Peak Scan vs Peak & Avg Limit

Radiated Spurious Emissions 18000 to 40000 MHz, Peak & Avg Scan vs Peak & Avg Limit

Frequency	FS@10m	Limit@ 10m	Margin	Height	Azimuth	Polarity	Correction
MHz	dBuV/m	dBuV/m	(dB)	(m)	(deg)	-	dB
38.439	27.2	29.5	-2.3	0.99	141.5	Vertical	-12.2
66.375	26	29.5	-3.5	2	133.75	Vertical	-18.93
88.976	29.17	33	-3.83	0.99	139.25	Vertical	-19.2
95.92767	28.52	33	-4.48	4	277.5	Vertical	-17.66
105.1103	28.88	33	-4.12	4	277.5	Vertical	-15.15
132.7877	31.12	33	-1.88	3	102	Vertical	-12.64

Note: Correction = AF + CF - Preamp

Test Results: 15.209 Radiated Spurious Emissions, Tx at 802.11n 20MHz 5580MHz

Radiated Spurious Emissions 30 MHz to 1000 MHz, Peak Scan vs QP Limit

Radiated Spurious Emissions 1000 to 18000 MHz, Peak Scan vs Peak & Avg Limit

Radiated Spurious Emissions 18000 to 40000 MHz, Peak & Avg Scan vs Peak & Avg Limit

Frequency	FS@10m	Limit@ 10m	Margin	Height	Azimuth	Polarity	Correction
MHz	dBuV/m	dBuV/m	(dB)	(m)	(deg)		dB
38.40667	27.05	29.5	-2.45	3	147.75	Vertical	-12.17
72.61533	25.51	29.5	-3.99	0.99	219	Vertical	-18.63
76.59233	26.67	29.5	-2.83	0.99	219	Vertical	-18.85
88.685	29.18	33	-3.82	0.99	102	Vertical	-19.23
107.2767	29.1	33	-3.9	0.99	99.5	Vertical	-14.7
132.7553	30.46	33	-2.54	2	139.5	Vertical	-12.63

Note: Correction = AF + CF - Preamp

Test Results: 15.209 Radiated Spurious Emissions, Tx at 802.11n 20MHz 5700MHz

Radiated Spurious Emissions 30 MHz to 1000 MHz, Peak Scan vs QP Limit

Radiated Spurious Emissions 1000 to 18000 MHz, Peak Scan vs Peak & Avg Limit

Radiated Spurious Emissions 18000 to 40000 MHz, Peak & Avg Scan vs Peak & Avg Limit

Frequency	FS@10m	Limit@ 10m	Margin	Height	Azimuth	Polarity	Correction
MHz	dBuV/m	dBuV/m	(dB)	(m)	(deg)		dB
572.715	30.04	35.5	-5.46	2.98	14.75	Horizontal	-5.99
38.66533	27.03	29.5	-2.47	3	153	Vertical	-12.38
77.53	24.73	29.5	-4.77	0.99	82	Vertical	-18.94
88.71733	28.55	33	-4.45	0.99	119.5	Vertical	-19.23
107.4707	27.93	33	-5.07	0.99	51	Vertical	-14.66
133.2403	30.25	33	-2.75	2	141.5	Vertical	-12.68

Note: Correction = AF + CF - Preamp

Test Results: 15.209 Radiated Spurious Emissions, Tx at 802.11n 20MHz 5745MHz

Radiated Spurious Emissions 30 MHz to 1000 MHz, Peak Scan vs QP Limit

Radiated Spurious Emissions 1000 to 18000 MHz, Peak Scan vs Peak & Avg Limit

EMC Report for Lytx, Inc on Drivecam Event Recorder File: 105146268MPK-006

Radiated Spurious Emissions 18000 to 40000 MHz, Peak & Avg Scan vs Peak & Avg Limit

Frequency	FS@10m	Limit@ 10m	Margin	Height	Azimuth	Polarity	Correction
MHz	dBuV/m	dBuV/m	(dB)	(m)	(deg)		dB
38.342	27.11	29.5	-2.39	3	144.5	Vertical	-12.12
66.73067	26.68	29.5	-2.82	2	84	Vertical	-18.89
77.75633	24.25	29.5	-5.25	2	84	Vertical	-18.96
88.62033	29.19	33	-3.81	0.99	101.25	Vertical	-19.24
107.7293	27.84	33	-5.16	0.99	48.5	Vertical	-14.6
132.335	30.72	33	-2.28	0.99	120	Vertical	-12.59

Note: Correction = AF + CF - Preamp

Test Results: 15.209 Radiated Spurious Emissions, Tx at 802.11n 20MHz 5785MHz

Radiated Spurious Emissions 30 MHz to 1000 MHz, Peak Scan vs QP Limit

Radiated Spurious Emissions 1000 to 18000 MHz, Peak Scan vs Peak & Avg Limit

Radiated Spurious Emissions 18000 to 40000 MHz, Peak & Avg Scan vs Peak & Avg Limit

Frequency	FS@10m	Limit@ 10m	Margin	Height	Azimuth	Polarity	Correction
MHz	dBuV/m	dBuV/m	(dB)	(m)	(deg)		dB
780.1333	32.87	35.5	-2.63	4	306.5	Horizontal	-2.45
38.439	27.11	29.5	-2.39	3	147.25	Vertical	-12.2
66.084	25.97	29.5	-3.53	2	116.75	Vertical	-18.97
88.62033	29.57	33	-3.43	0.98	132.5	Vertical	-19.24
107.2443	28.29	33	-4.71	0.98	113.5	Vertical	-14.7
132.044	30.56	33	-2.44	2	120.5	Vertical	-12.56

Note: Correction = AF + CF - Preamp

Test Results: 15.209 Radiated Spurious Emissions, Tx at 802.11n 20MHz 5825MHz

Radiated Spurious Emissions 30 MHz to 1000 MHz, Peak Scan vs QP Limit

Radiated Spurious Emissions 1000 to 18000 MHz, Peak Scan vs Peak & Avg Limit

Radiated Spurious Emissions 18000 to 40000 MHz, Peak & Avg Scan vs Peak & Avg Limit

Frequency	FS@10m	Limit@ 10m	Margin	Height	Azimuth	Polarity	Correction
MHz	dBuV/m	dBuV/m	(dB)	(m)	(deg)		dB
778.937	31.7	35.5	-3.8	4	287.25	Horizontal	-2.46
38.536	27.14	29.5	-2.36	0.99	144.5	Vertical	-12.28
66.24567	26.3	29.5	-3.2	2	105.25	Vertical	-18.95
88.55567	29.4	33	-3.6	0.99	102	Vertical	-19.25
132.141	30.41	33	-2.59	2	96	Vertical	-12.57
782.914	32.11	35.5	-3.39	4	215.5	Vertical	-2.36

Note: Correction = AF + CF - Preamp

4.3.7 Test setup

The following photographs show the testing configurations used.

4.4 Dynamic Frequency Selection (DFS)

4.4.1 Requirement

Applicability of DFS Requirements Prior to Use of a Channel

	Operational Mode					
Requirement	Master	Client Without Radar Detection	Client With Radar Detection			
Non-Occupancy Period	Yes	Not Required	Yes			
DFS Detection Threshold	Yes	Not Required	Yes			
Channel Availability Check Time	Yes	Not Required	Not Required			
U-NII Detection Bandwidth	Yes	Not Required	Yes			

Applicability of DFS requirements during normal operation

	Operational Mode			
Requirement	Master Device or Client with Radar Detection	Client With Radar Detection		
DFS Detection Threshold	Yes	Not Required		
Channel Closing Transmission Time	Yes	Yes		
Channel Move Time	Yes	Yes		
U-NII Detection Bandwidth	Yes	Not Required		

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection				
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required				
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link				
All other tests	Any single BW mode	Not required				
Note: Frequencies selected for statistical performance check should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center						

frequency.

4.4.1.1 DFS Detection Thresholds for Master or Client Devices with DFS Detection

Maximum Transmit Power	Values (See Notes 1, 2, and 3)					
EIRP ≥ 200 milliwatt	-64 dBm					
EIRP < 200 milliwatt and power spectral density < 10 dBm/MHz	-62 dBm					
EIRP < 200 milliwatt that do not meet the power spectral density requirement	-64 dBm					
Note 1: This is the level at the input of the receiver	assuming a 0 dBi receive antenna.					
Note 2: Throughout these test procedures an addit	ional 1 dB has been added to the amplitude of the test					
transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal						
is at or above the detection threshold level to trigger a DFS response.						
Note3: EIRP is based on the highest antenna gain. F	or MIMO devices refer to KDB Publication 662911 D01					

Parameter	Value
Non-Occupancy Period	Minimum 30 minutes
Channel Availability Check Time	60 Seconds
Channel Move Time	10 seconds (see note 1)
Channel Closing Transmission Time	200 ms + an aggregate of 60 ms over remaining 10 Second period. (see note 1 and 2)
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission power bandwidth. (see note 3)

Note 1: *Channel Move Time* and the *Channel Closing Transmission Time* should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The *Channel Closing Transmission Time* is comprised of 200 milliseconds starting at the beginning of the *Channel Move Time* plus any additional intermittent control signals required to facilitate a *Channel* move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the *U-NII Detection Bandwidth* detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

4.4.1.2 Test Waveform

Radar Type	Pulse Width (μsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
0	1	1428	18	See Note 1	See Note 1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	$\operatorname{Roundup} \left\{ \begin{pmatrix} 1\\ 360 \end{pmatrix}, \\ \begin{pmatrix} 19 \cdot 10^6\\ PRI_{\mu see} \end{pmatrix} \right\}$	60.00%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregat	e (Radar T	Types 1-4)	80%	120	
Note 1: Sh	ort Pulse	Radar Type 0 should be used fo	or the detection bandw	idth test, channel m	ove time, and

channel closing time tests.

Radar Type	Pulse Width (μsec)	Chrip Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Burst	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5-20	1000- 2000	1-3	8-20	80%	30

Radar Type	Pulse Width (μsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

4.4.2 Procedure

DFS Waveform Calibration

Calibration Procedure

For the DFS signal, horn antenna was attached to a signal generator (RS SMU200A). On the Receive side another horn antenna was attached to a spectrum analyzer with a preamp inline. The spectrum analyzer's resolution bandwidth was set to 3 MHz and the video bandwidth was set to 3 MHz with peak detection. The field was corrected to account for cable loss, antenna gain and preamp. The DFS signal was calibrated to a field strength of -63 dBm. Test wave form 0 was utilized. The calibration setup is diagrammed below along with a setup picture.

Radar Type 0 Calibration 5310MHz

Date: 5.0CT.2022 21:35:28

Radar Type 0 Calibration 5510MHz

Date: 5.0CT.2022 21:32:08

DFS Setup & Procedure

Test Procedure

A radiated test method was used and the test setup was made as depicted in the diagram below. DFS testing was setup as a client with injection into the master.

The diagram below depicts the setup of the EUT along with associated support equipment.

Item	Description	Model	Serial
2	Netgear	Nighthawk RAX200 FCC ID: PY318400434	69F31177A0646

Test Procedure Continued

The Master and Client (EUT) were placed in a semi-anechoic chamber. The simulated radar waveform was transmitted from a horn antenna towards the Master. The signal level of the simulated radar waveform was set 1 dB higher than calibrated level to -62 dBm and was applied to the Master. The horn antenna was connected to the spectrum analyzer and positioned towards the client with a level higher than emissions from the Master.

A Rhode & Schwarz Vector Signal Generator with Pulse Sequencer Software was used to generate the DFS radar signals. A Rhode & Schwarz Spectrum Analyzer was used to monitor the transmissions of the Client. The trigger of the spectrum analyzer was aligned with the end of the radar waveform burst from the signal generator.

Channel closing transmission time and channel move time were measured by applying a radar signal to the Master device. The EUT transmissions were observed while Type 0 Radar waveforms were applied. The time between the end of the applied radar waveform and the final transmission on the channel is the channel move time. The channel closing transmission time comprises only those fragments of the channel move time during which the EUT transmits.

The EUT (client without DFS detection) was configured to communicate with a Master wirelessly. The test file/data was streamed from the Master to the Client. The channel load is recorded and presented in test results below.

4.4.3 Test Results

Channel Move Time Test Summary						
Description Rac		Frequency Measured MHz Value		Limit Requirements	Results	
Channel Move	0	5310	841.82 ms	10s	Pass	
Time	0	5510	852.75 ms	10s	Pass	
	Chan	nel Closing Transr	nission Time Test Sum	mary		
Description	Radar Type	Frequency MHz Value		Limit Requirements	Results	
Closing	0	5310	24.03 ms	260ms	Pass	
Transmission Time		5510	24.03 ms	260ms	Pass	
Channel Unoccupancy Time Test Summary						
Description	Radar Type	Frequency MHz	Measured Value	Limit Requirements	Results	
Unoccupancy	0	5310	No Transmission Found	Minimum 30 minutes	Pass	
Time		5510	No Transmission Found	Minimum 30 minutes	Pass	

Channel Move Time (CMT), @ 5310 MHz, 802.11n 40MHz

Date: 5.0CT.2022 22:39:10

Channel Move Time (CMT), @ 5510 MHz, 802.11n 40MHz

Date: 5.0CT.2022 23:22:12

Channel Closing Transmission Time (CCTT), @ 5310 MHz, 802.11n 40MHz

Date: 5.0CT.2022 22:58:25

Channel Closing Transmission Time (CCTT), @ 5510 MHz, 802.11n 40MHz

Date: 5.0CT.2022 23:41:58

Channel Unoccupancy Time @ 5310 MHz, 802.11n 40MHz

Ref -42.8 dBm	*Att 0 dB	*VBW 3 MHz SWT 1800 s	0.0	0 μs
Offset -47.8 dB			Marker 1 [T1]	
-50			-115.43	2 dBn
			0.00000) s
k				
-60				
-70				
-80				
- 0.0				
- 50				
-100				
-110				
2 Mary marker of a first station and	المعر بقدما المر ساوز عار سوم والاطرار و	and the strange was been and	ale martines in summaria	human
-120				-
-120				
-130				
-140				

Date: 7.0CT.2022 19:47:42

Channel Unoccupancy Time @ 5510 MHz, 802.11n 40MHz

Date: 7.0CT.2022 21:03:47

Channel Loading @ 5310MHz, 802.11n 40MHz

Date: 7.0CT.2022 18:59:28

Channel Loading @ 5510MHz, 802.11n 40MHz

Date: 7.0CT.2022 18:45:36

4.4.4 Test setup

4.5 AC Line Conducted Emission FCC: 15.207; RSS-GEN

4.5.1 Requirement

Frequency Band MHz	FCC Part 15.207 Limits		
	Quasi-Peak	Average	
0.15-0.50	66 to 56 *	56 to 46 *	
0.50-5.00	56	46	
5.00-30.00	60	50	

Note: *Decreases linearly with the logarithm of the frequency At the transition frequency the lower limit applies.

4.5.2 Procedure

Measurements are carried out using quasi-peak and average detector receivers in accordance with CISPR 16. An AMN is required to provide a defined impedance at high frequencies across the power feed at the point of measurement of terminal voltage and also to provide isolation of the circuit under test from the ambient noise on the power lines. An AMN as defined in CISPR 16 shall be used.

The EUT is located so that the distance between the boundary of the EUT and the closest surface of the AMN is 0.8m.

Where a flexible mains cord is provided by the manufacturer, this shall be 1m long or if in excess of 1m, the excess cable is folded back and forth as far as possible so as to form a bundle not exceeding 0.4m in length.

The EUT is arranged and connected with cables terminated in accordance with the product specification.

Conducted disturbance is measured between the phase lead and the reference ground, and between the neutral lead and the reference ground. Both measured values are reported.

The EUT, where intended for tabletop use, is placed on a table whose top is 0.8m above the ground plane. A vertical, metal reference plane is placed 0.4m from the EUT. The vertical metal reference-plane is at least 2m by 2m. The EUT shall be kept at least 0.8m from any other metal surface or other ground plane not being part of the EUT. The table is constructed of non-conductive materials. Its dimensions are 1m by 1.5m, but may be extended for larger EUT.

Floor standing EUT are placed on a horizontal metal ground plane and isolated from the ground plane by resting on an insulating material. The metal ground plane extends at least 0.5m beyond the boundaries of the EUT and has minimum dimensions of 2m by 2m.

Equipment setup for conducted disturbance tests followed the guidelines of ANSI C63.10:2013.

4.5.3 Test Results

15.207: Not Applicable. EUT is DC powered.

5.0 List of Test Equipment

Measurement equipment used for emission compliance testing utilized the equipment on the following list:

Equipment	Manufacturer	er Model/Type		Cal Int	Cal Due
9kHz-30MHz Loop Antenna	ETS Lindgren	6512	01573	12	11/09/2022
30MHz-2GHz Bi-Log	SunAR RF Motion	JB1	01577	12	02/10/2023
1-18GHz 2 meter RF Cable	TRU Corp.	TRU Core 300	01330	12	08/25/2023
1-40GHz RF Cable (SMA	MEGAPHASE	EMC1-K1K1-20	01889	12	03/11/2023
1-40GHz DRG Horn (small)	ETS-Lindgren	3116	01894	12	06/20/2023
1-18GHz Horn Antenna	ETS Lindgren	3117-PA	01325	12	10/26/2022
9kHz-1GHz Pre-amplifier	Sonoma Instrument	310N	01713	12	02/17/2023
Vector Signal Generator	Rohde & Schwarz	SMU200A	00880	12	12/14/2022
1-40GHz RF Cable Mega PHASE		TM40-K1K1-59	01655	12	01/11/2023
1GHz to 40GHz RF Cable	MEGAPHASE	EMC1-K1K1-236	01484	12	06/27/2023
1-18GHz Horn Antenna EMCO		3115	001595	12	#
		MCNS-50-	01700	12	02/24/2022
18-40GHz Preamp uComp Nordic		18004000335p	01799	12	03/24/2023
USB Wideband Power Keysight		U2021XA	01578	12	05/03/2023
EMI Test Receiver 40GHz	EMI Test Receiver 40GHz Rohde & Schwarz		00961	12	03/10/2023
EMI Test Receiver	Rohde & Schwarz	ESR7	01607	12	11/19/2022
10m chamber Panashield		10 Meter Chamber	00984	12	#

= Calibration not required.

Software used for emission compliance testing utilized the following:

Name	Manufacturer	Version	Template/Profile
Tilo	Quantum Change	3.4.K.22	Conducted Restricted Band Edge_Avg
The			Conducted Restricted Band Edge_Peak
BAT-EMC	Nexio	3.20.0.23	Lytx Wifi.bpp
RS Commander	Rohde Schwarz	1.6.4	Not Applicable (Screen grabber)

6.0 Document History

Revision/ Job Number	Writer Initials	Reviewer Initials	Date	Change
1.0 / G105146268	JAV	ML	October 29, 2022	Original document
1.1 / G105146268	AC	AS	April 10, 2023	Modified channel list on pages 6, 11 & 12 to reflect actual channels used in the End Product.