

TEST REPORT

Report Number: 105146268MPK-001 Project Number: G105146268 Report Issue Date: October 29, 2022

Testing performed on Lyxt Drivecam Event Recorder Model Number: DC-7000-002

FCC ID: UO3-UN1CXC IC: 6778A-UN1CXC

to

FCC Part 15 Subpart C (15.247) ISED RSS-247 Issue 2

For

Lytx, INC.

Test Performed by:

Intertek 1365 Adams Court Menlo Park, CA 94025 USA **Test Authorized by:**

Lyxt, Inc 9785 Towne Centre Drive San Diego, CA 92121 USA

Prepared by:	Jane alypin	Date: October 29, 2	
	Juan Alapizco Vega		
	0		
Reviewed by:	mis	Date:	October 29, 2022
	Minh Lv		

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. This report must not be used to claim product endorsement by A2LA, NIST nor any other agency of the U.S. Government.

Report No. 105146268MPK-001			
Equipment Under Test: Drivecam Event Recorder			
Model Number:	DC-7000-002		
Applicant:	Lyxt, Inc.		
Contact:	Stephanie Rydell		
Address:	9785 Towne Centre Drive San Diego, CA 92121		
Country: USA			
Tel. Number: (858) 380-3012			
Email: Stephanie.rydell@lyxt.com			
Applicable Regulation: FCC Part 15 Subpart C (15.247) ISED RSS-247 Issue 2			
Date of Test: August 16, 2022 to October 11, 2022			

We attest to the accuracy of this report:	me
Juan Alapizco Vega	Minh Ly
EMC Engineer	EMC Team Lead

TABLE OF CONTENTS

1.0	Sumi	mary of Tests	4
2.0	Gene	eral Information	5
	2.1	Product Description	5
	2.2	Related Submittal(s) Grants	6
	2.3	Test Facility	6
	2.4	Test Methodology	6
	2.5	Measurement Uncertainty	6
3.0	Syste	em Test Configuration	7
	3.1	Support Equipment	7
	3.2	Block Diagram of Test Setup	7
	3.3	Justification	10
	3.4	Software Exercise Program	10
	3.5	Mode of Operation during Test	10
	3.6	Modifications Required for Compliance	10
	3.7	Additions, Deviations and Exclusions from Standards	10
4.0	Meas	surement Results	11
	4.1	6-dB Bandwidth and 99% Occupied Bandwidth	11
	4.2	Maximum Peak Conducted Output Power at Antenna Terminals	19
	4.3	Maximum Power Spectral Density	23
	4.4	Out of Band Antenna Conducted Emission	27
	4.5	Transmitter Radiated Emissions	31
	4.6	AC Line Conducted Emission	52
5.0	List o	of Test Equipment	54
6.0	Docu	ment History	55

1.0 Summary of Tests

Test	Reference FCC	Reference Industry Canada	Result
RF Output Power	15.247(b)(3)	RSS-247, 5.4.d)	Complies
6 dB Bandwidth	15.247(a)(2)	RSS-247, 5.2.a)	Complies
Power Density	15.247(e)	RSS-247, 5.2.b)	Complies
Out of Band Antenna Conducted Emission	15.247(d)	RSS-247, 5.5	Complies
Transmitter Radiated Emissions	15.247(d), 15.209, 15.205	RSS-247, 5.5	Complies
AC Line Conducted Emission	15.207	RSS-GEN	Not Applicable
Antenna Requirement	15.203	RSS-GEN	Complies (Internal Antenna)

EUT receive date: August 15, 2022

EUT receive condition: The pre-production version of the EUT was received in good condition

with no apparent damage. As declared by the Applicant, it is identical

to the production units.

Test start date: August 16, 2022
Test completion date: October 11, 2022

The test results in this report pertain only to the item tested.

2.0 General Information

2.1 Product Description

Lyxt, Inc. supplied the following description of the EUT:

Dashcam device, with DVR recording and MV-AI triggering

For more information, see user's manual provided by the manufacturer.

This test report covers only the 2.4GHz BLE radio.

Information about the BLE radio is presented below:

Applicant	Lyxt, Inc.	
Model No.	DC-7000-002	
FCC Identifier	UO3-UN1CXC	
IC Identifier	6778A-UN1CXC	
Type of transmission	Digital Transmission System (DTS)	
Rated RF Output	5.02 dBm	
Antenna(s) & Gain	Internal Antenna, Gain: 2.8 dBi	
Frequency Range	2402 – 2480 MHz	
Type of modulation/data rate	GFSK/1Mbit/s	
Number of Channel(s)	40	
Applicant Name & Address	Lyxt, Inc. 9785 Towne Centre Drive San Diego, CA 92121	

2.2 Related Submittal(s) Grants

None.

2.3 Test Facility

The test site used to collect the radiated data is site 1 (10-m semi-anechoic chamber). This test facility and site measurement data have been fully placed on file with the FCC, IC and A2LA accredited.

2.4 Test Methodology

Antenna conducted measurements were performed according to the FCC documents "Guidance for Performing Compliance Measurement on Digital Transmission Systems (DTS) Operating under §15.247" (KDB 558074 D01 DTS Meas Guidance v05r02), and RSS-247 Issue 2, RSS-GEN Issue 5.

Radiated emissions and AC mains conducted emissions measurements were performed according to the procedures in ANSI C63.10: 2013. Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "Data Sheet" of this report.

2.5 Measurement Uncertainty

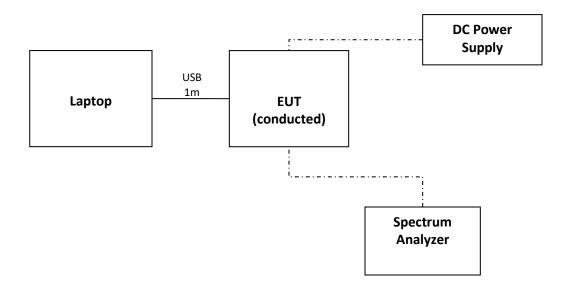
Compliance with the limits was based on the results of the measurements and doesn't take into account the measurement uncertainty.

Estimated Measurement Uncertainty

253	Expanded Uncertainty (k=2)			
Measurement	0.15 MHz – 1 GHz	1 GHz – 2.5 GHz	> 2.5 GHz	
RF Power and Power Density – antenna conducted	-	0.7 dB	-	
Unwanted emissions – antenna conducted	1.1 dB	1.3 dB	1.9 dB	
Bandwidth – antenna conducted	-	30 Hz	-	

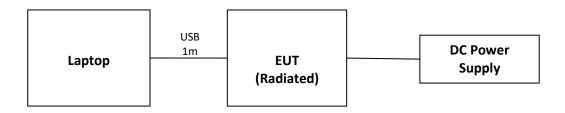
	Expanded Uncertainty (k=2)			
Measurement	0.15 MHz –	30 – 200 MHz	200 MHz –	1 GHz – 18
	30MHz	30 200 WIII2	1 GHz	GHz
Radiated emissions	-	4.7	4.6	5.1 dB
AC mains conducted emissions	2.1 dB	-	-	-

3.0 System Test Configuration


3.1 Support Equipment

Support Equipment					
Description Manufacturer Model					
Laptop	Dell	Latitude 5590			

3.2 Block Diagram of Test Setup


Equipment Under Test					
Description Manufacturer Model Serial Number/ID					
Drivecam Event Recorder (radiated)	Lyxt, Inc.	DC-7000-002	QM40002328		
Drivecam Event Recorder (conducted)	Lyxt, Inc.	DC-7000-002	QM40007220		

Antenna was removed and co-axial connector was installed for Conducted Measurements.

Antenna was removed and co-axial connector was installed for Conducted Measurements.

S = Shielded	F = With Ferrite
U = Unshielded	m = Length in Meters

EUT Photos

3.3 Justification

For radiated emission measurements the EUT is placed on a non-conductive table. The EUT was configured to continuously transmit. The highest clock frequency used in the EUT is 5.825 GHz.

3.4 Software Exercise Program

The EUT exercise program used during radiated and conducted testing was provided by Lyxt, Inc.

3.5 Mode of Operation during Test

Mode of operation during testing, the distress button was preprogramed to switch between channels. During the transmitter tests, the transmitter was setup to transmit maximum communication and RF power levels.

EUT was placed into transmit mode at the lowest (2402MHz) middle (2442MHz), and highest (2480MHz) channels.

3.6 Modifications Required for Compliance

No modifications were made by the manufacturer or Intertek to the EUT in order to bring the EUT into compliance.

3.7 Additions, Deviations and Exclusions from Standards

No additions, deviations or exclusions from the standard were made.

4.0 Measurement Results

4.1 6-dB Bandwidth and 99% Occupied Bandwidth FCC Rule: 15.247(a)(2); RSS-247, 5.2.a) and RSS-GEN;

4.1.1 Requirement

The minimum 6-dB bandwidth shall be at least 500 kHz

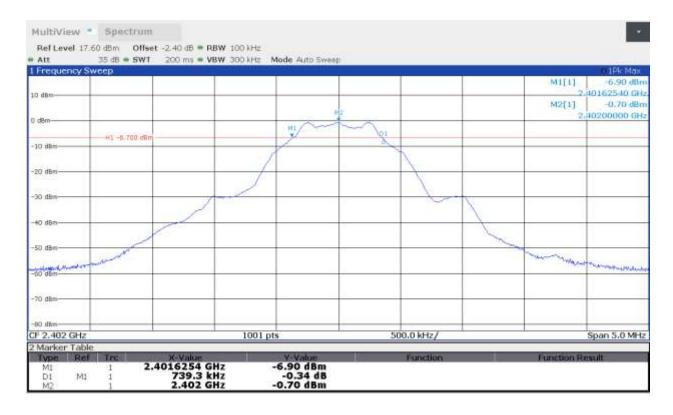
4.1.2 Procedure

A spectrum analyzer was connected to the antenna port of the transmitter.

For FCC 6dB Channel Bandwidth the Procedure described in the FCC Publication KDB 558074 D01 Meas Guidance v05r02 was used to determine the DTS occupied bandwidth. Section 11.8.1 Option 1 of ANSI 63.10 was used.

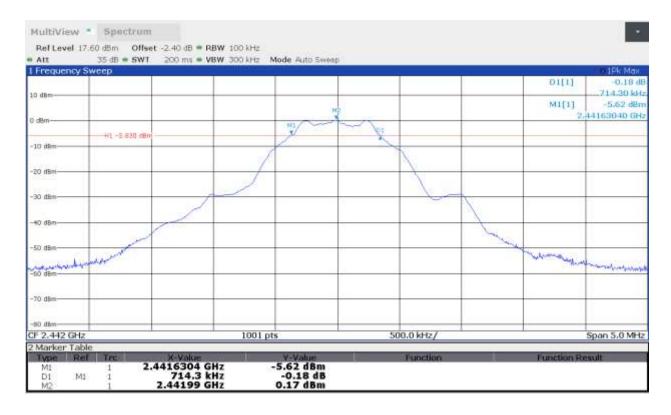
- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

For 99% power bandwidth measurement, the bandwidth was determined by using the built-in 99% occupied bandwidth function of the spectrum analyzer. The resolution bandwidth is set to 1% of the selected span as is without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth.

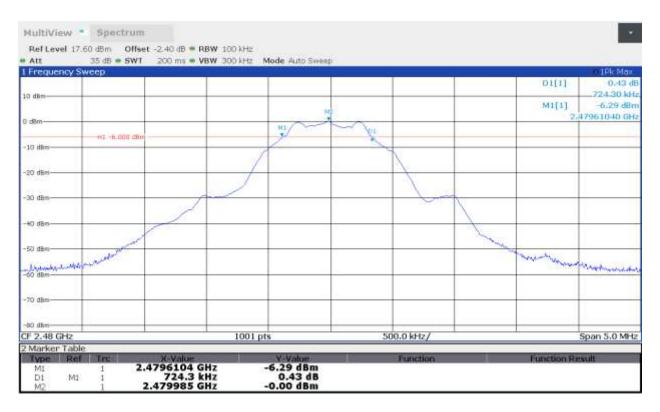

4.1.3 Test Result

Frequency (MHz)	6-dB bandwidth FCC 15.247 & RSS-GEN, kHz	Occupied bandwidth, RSS-GEN, MHz	Plot
2402	739.3	-	1.1
2402	-	1.059	1.4
2442	714.3	1	1.2
2442	1	1.0599	1.5
2490	724.3	-	1.3
2480	1	1.053	1.6

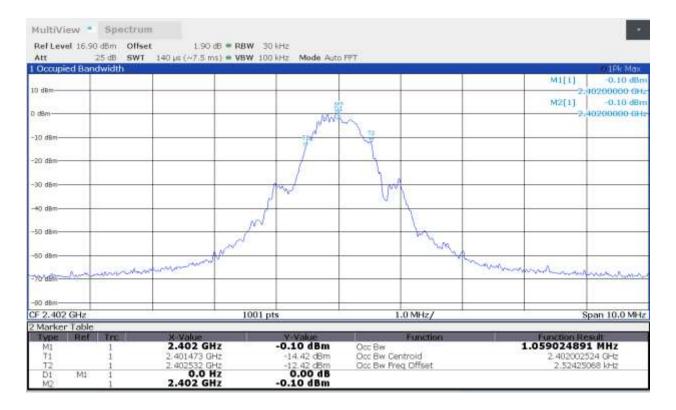
Tested By	Test Date	Results	
Juan Alapizco Vega	August 16- October 11, 2022	Complies	



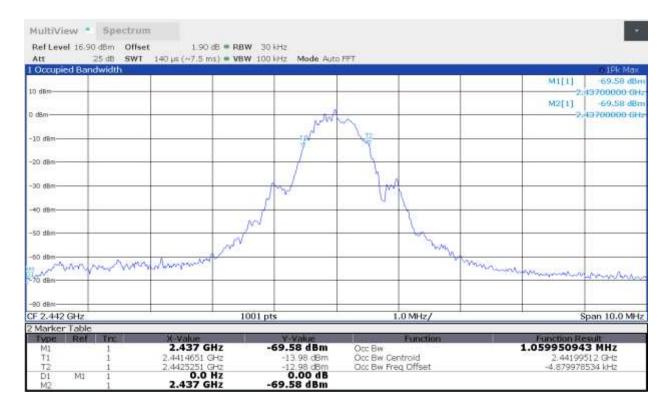
Plot 1. 1



Plot 1. 2



Plot 1. 3



Plot 1. 4

Plot 1.5

Plot 1.6

Results Complies

4.2 Maximum Peak Conducted Output Power at Antenna Terminals FCC Rule: 15.247(b)(3); RSS-247, 5.4.d);

4.2.1 Requirement

For antennas with gains of 6 dBi or less, maximum allowed transmitter output is 1 watt or 30 dBm. For antennas with gains greater than 6 dBi, transmitter output level must be decreased appropriately, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

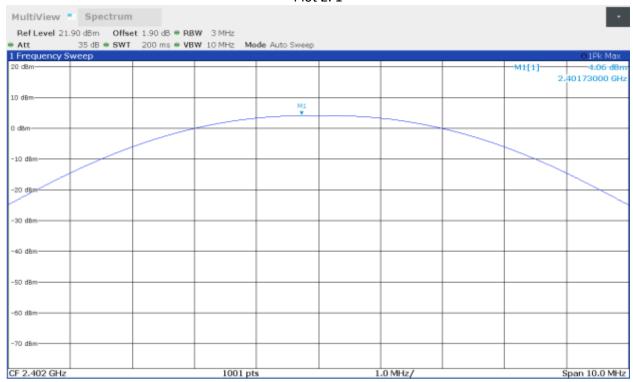
4.2.2 Procedure

The procedure described in FCC Publication KDB 558074 D01 Meas Guidance v05r02 was used. Specifically, section 11.9.1.1 RBW \geq DTS bandwidth in ANSI 63.10.

- 1. Set the RBW ≥ DTS Bandwidth
- 2. Set the VBW \geq 3 x RBW
- 3. Set the span \geq 3 x RBW
- 4. Detector = Peak
- 5. Sweep time = Auto couple
- 6. Trace mode = Max Hold
- 7. Allow trace to fully stabilize
- 8. Use peak marker function to determine the peak amplitude level.

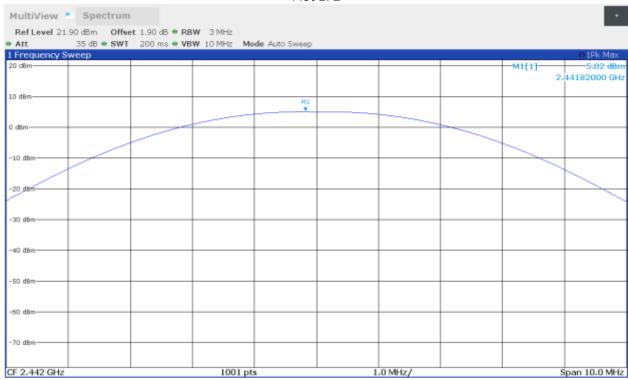
A spectrum analyzer was connected to the antenna port of the transmitter.

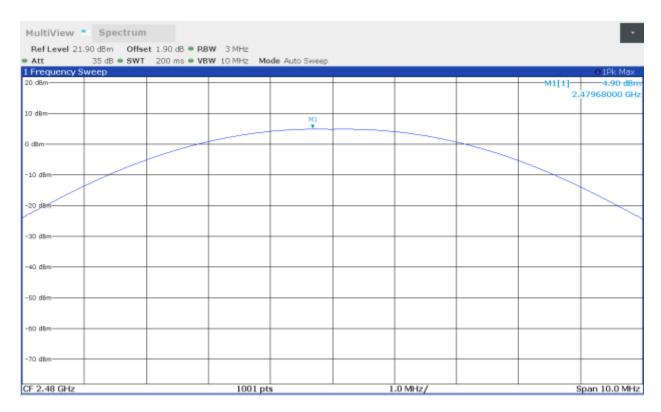
4.2.3 Test Result


Refer to the following plots 2.1 - 2.3 for the test details.

Frequency	Conducted Power (peak)		Plot
MHz	dBm	mW	
2402	4.06	2.546	2.1
2442	5.02	3.176	2.2
2480	4.90	3.090	2.3

Tested By	Test Date	Results
Juan Alapizco Vega	September 22, 2022	Complies





Plot 2. 3

Results	Complies	
---------	----------	--

4.3 Maximum Power Spectral Density FCC: 15.247 (e); RSS-247, 5.2.b);

4.3.1 Requirement

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna should not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

4.3.2 Procedure

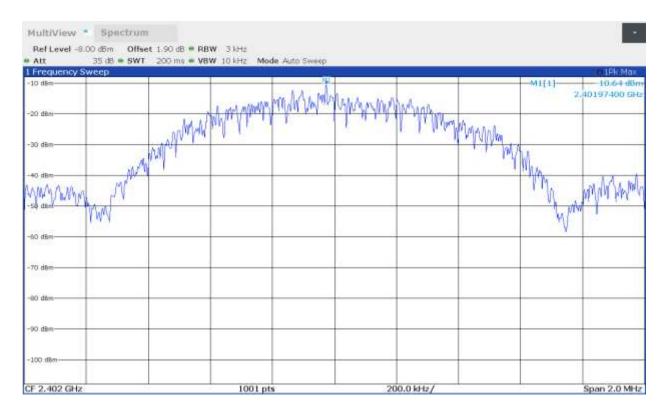
A spectrum analyzer was connected to the antenna port of the transmitter.

The procedure described in FCC Publication KDB 558074 D01 Meas Guidance v05r02, specifically section 11.10.2 Method PKPSD (peak PSD) of ANSI 63.10.

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

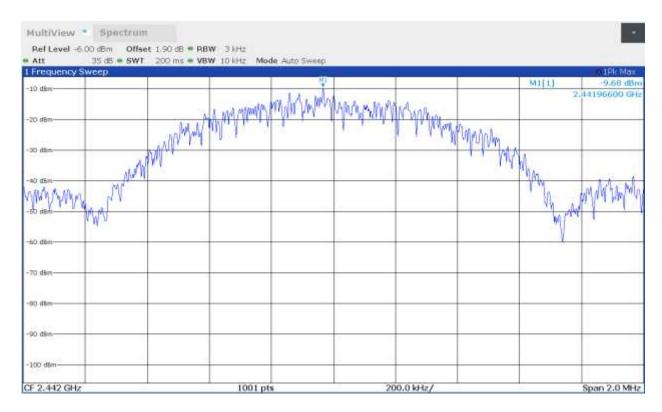
4.3.3 Test Result

Refer to the following plots for the test result

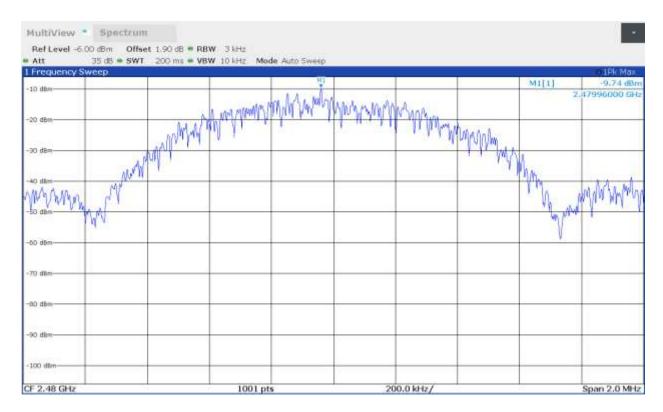

Frequency, MHz	Maximum Power Spectral Density, dBm	Maximum Power Spectral Density Limit, dBm	Margin, dB	Plot
2402	-10.64	8.0	-18.64	3.1
2440	-9.68	8.0	-17.68	3.2
2480	-9.74	8.0	-17.74	3.3

Tested By	Test Date	Results	
Juan Alapizco Vega	September 12, 2022	Complies	

EMC Report for Lyxt, Inc on Drivecam Event Recorder SF400 NA
File: 105146268MPK-001 Page 23 of 56



Plot 3. 1



Plot 3. 2

Plot 3. 3

Results	Complies	
resuits	Complies	

4.4 Out of Band Antenna Conducted Emission FCC: 15.247(d); RSS-247, 5.5;

4.4.1 Requirement

In any 100 kHz bandwidth outside the EUT pass-band, the RF power shall be below the maximum inband 100 kHz emissions by at least 20 dB (if peak power of in-band emission is measured) or 30 dB (if average power of in-band emission is measured).

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)

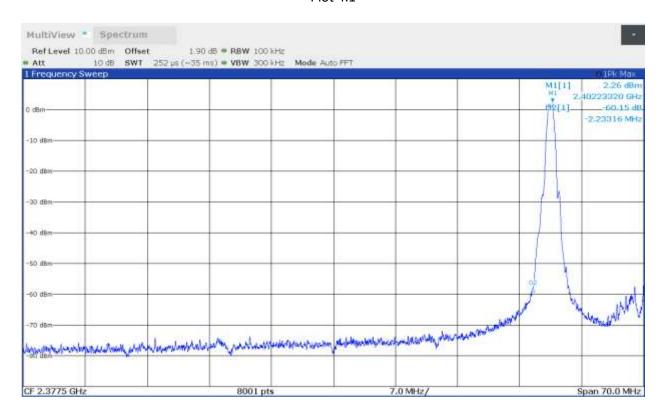
4.4.2 Procedure

The procedure described in FCC Publication KDB 558074 D01 Meas Guidance v05r02, specifically section 11.11 DTS Emissions in non-restricted frequency bands of ANSI 63.10.

A spectrum analyzer was connected to the antenna port of the transmitter.

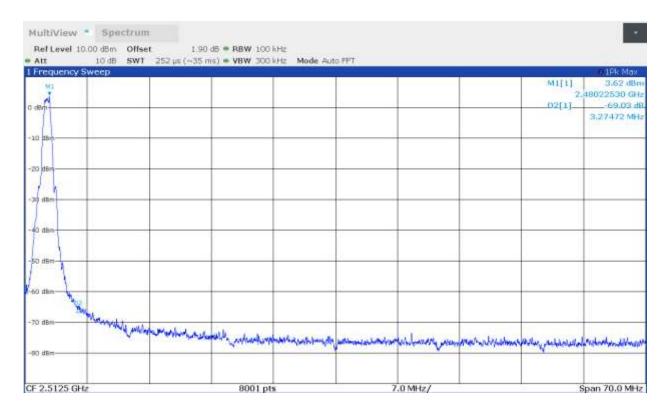
- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \geq 3 x RBW.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.

The unwanted emissions were measured from 30 MHz to 25 GHz. Plots below are corrected for cable loss and then compared to the limits.

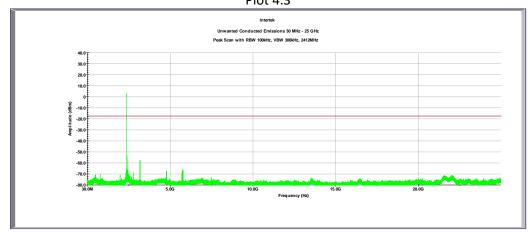

4.4.3 Test Result

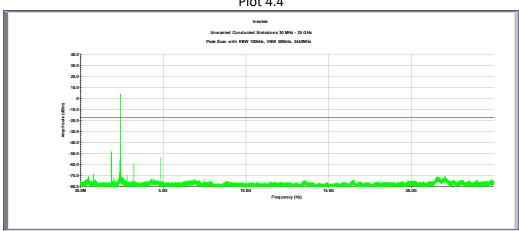
Refer to the following plots 4.1-4.5 for unwanted conducted emissions. The plot shows -20dB attenuation limit line.

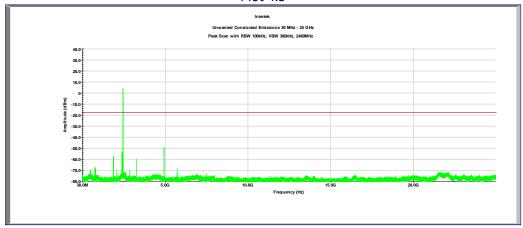
Tested By	Test Date	Results	
Juan Alapizco Vega	September 12, 2022	Complies	



Tx @ Low Channel, 2402 MHz Band Edge Plot 4.1


Tx @ High Channel, 2480 MHz Band Edge Plot 4.2


Dogulto	C	
Results	Complies	
Itesaits	Compiles	


Tx @ Low Channel, 2402 MHz 30MHz -26GHz Conducted Spurious Plot 4.3

Tx @ Mid Channel, 2442 MHz 30MHz -26GHz Conducted Spurious Plot 4.4

Tx @ High Channel, 2480 MHz 30MHz -26GHz Conducted Spurious Plot 4.5

Results Complies

4.5 **Transmitter Radiated Emissions** FCC Rules: 15.247(d), 15.209, 15.205; RSS-247, 5.5;

4.5.1 Requirement

Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

For out of band radiated emissions (except for frequencies in restricted bands), in any 100 kHz bandwidths outside the EUT pass-band, the RF power shall be at least 20dB (peak) or 30 dB (average) below that of the maximum in-band 100 kHz emissions.

4.5.2 Procedure

Radiated emission measurements were performed from 9 kHz to 26.5 GHz according to the procedure described in ANSI C63.10: 2013. Spectrum Analyzer Resolution Bandwidth is 200Hz or greater for frequencies 9kHz to 30MHz, 100 kHz or greater for frequencies 30 MHz to 1000 MHz, 1 MHz for frequencies above 1000 MHz. Above 1000 MHz Peak and Average measurements were performed.

The EUT is placed on a plastic turntable that is 80 cm in height for below 1000MHz and 1.5m in height for above 1GHz. If the EUT attaches to peripherals, they are connected and operational (as typical as possible). During testing, all cables were manipulated to produce worst-case emissions. The signal is maximized through rotation. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters.

Radiated emissions are taken at 3 meters for frequencies above 1 GHz and at 10 meters for frequencies below 1 GHz.

Measurements made from 1 GHz to 18GHz had a 2.4-2.5GHz notch filter in place. A preamp was used from 9kHz to 26.5GHz.

All measurements were made with a Peak Detector and compared to QP limits for 30MHz - 1GHz and Average limits for 1GHz – 26.5GHz.

Correlation measurements were performed below 30MHz between 10m ALSE and Open Field site according to FCC KDB 414788 D01 Radiated Test Site v01r01 section 2. All readings were within the acceptable tolerance.

Page 31 of 56

4.5.3 Field Strength Calculation

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG; if measurement is performed at a distance other than specified in the rule, a Distance Correction Factor (DCF) shall be added.

Where FS = Field Strength in $dB(\mu V/m)$

RA = Receiver Amplitude (including preamplifier) in $dB(\mu V)$; AF = Antenna Factor in dB(1/m)

CF = Cable Attenuation Factor in dB; AG = Amplifier Gain in dB

Assume a receiver reading of 52.0 dB(μ V) is obtained. The antennas factor of 7.4 dB(1/m) and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving field strength of 32 dB(μ V/m). This value in dB(μ V/m) was converted to its corresponding level in μ V/m.

 $RA = 52.0 dB(\mu V)$

AF = 7.4 dB(1/m)

CF = 1.6 dB

AG = 29.0 dB

 $FS = 52.0 + 7.4 + 1.6 - 29.0 = 32 dB(\mu V/m)$.

Level in $\mu V/m = Common Antilogarithm [(32 dB<math>\mu V/m)/20] = 39.8 \mu V/m$.

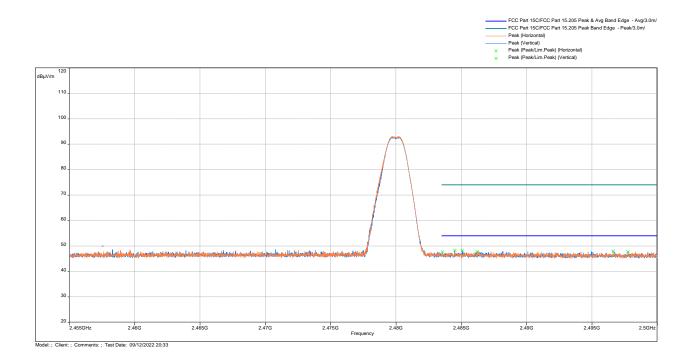
4.5.4 Test Results

All testing in this section were performed by radiated measurements.

Tested By Test Date		Results
Juan Alapizco Vega	August 18, 2022 to October 11, 2022	Complies

Test Results: 15.209/15.205 Radiated Restricted Band Emissions

Out-of-Band Radiated spurious emissions at the Band-edge @3m distance 2310–2390 MHz, Peak Scan with Peak Limit and Average Limit



Freq.	Peak@3m	Ave Limit	Margin	Height	Azimuth	Polarity	Correction
MHz	dB(uV/m)	dB(μV/m)	dB	m	deg		dB
2390.00	44.55	54	-9.45	1.33	298	Vertical	31.33

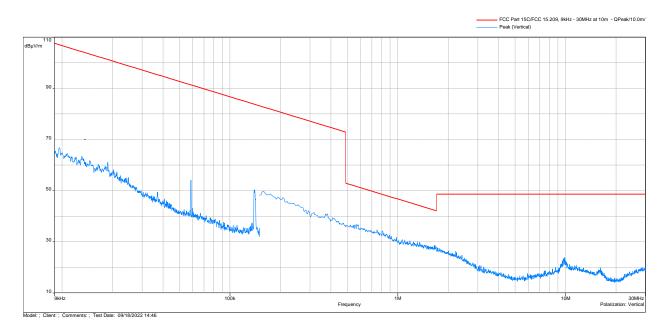
Note: Correction = AF + CF - Preap

Out-of-Band Radiated spurious emissions at the Band-edge @3m distance 2483.5–2500 MHz, Peak Scan with Peak Limit and Average Limit

Freq.	Peak@3m	Ave Limit	Margin	Height	Azimuth	Polarity	Correction
MHz	dB(uV/m)	dB(μV/m)	dB	m	deg		dB
2483.50	45.67	54	-8.33	3.72	26175	Vertical	21.78

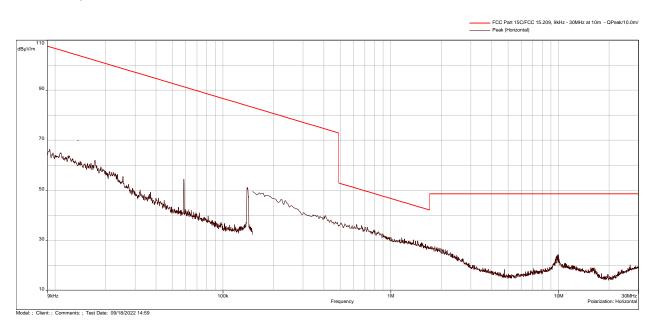
Note: $\overline{\text{Correction} = \text{AF} + \text{CF} - \text{Preamp} + \text{DCF}}$ where DCF =2.1dB (see annex A)

Results	Complies

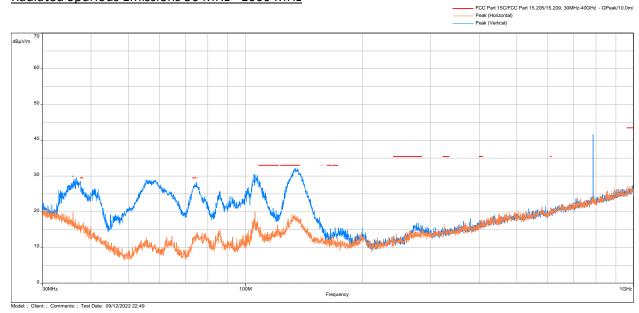

Out-of-Band Radiated Spurious Emissions

Test Results: 15.209 Radiated Spurious Emissions Low Channel, Tx at 2402MHz

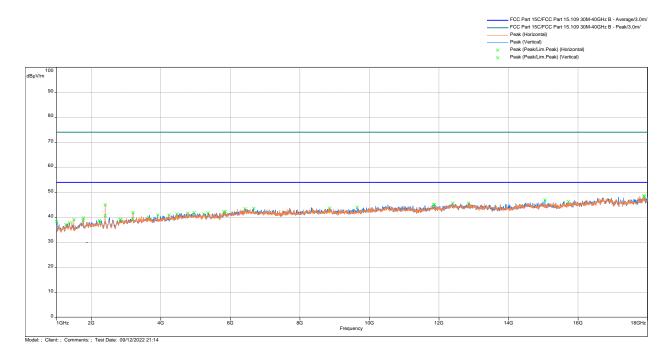
Radiated Spurious Emissions 9kHz - 30 MHz Parallel Antenna Polarization

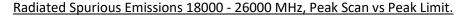


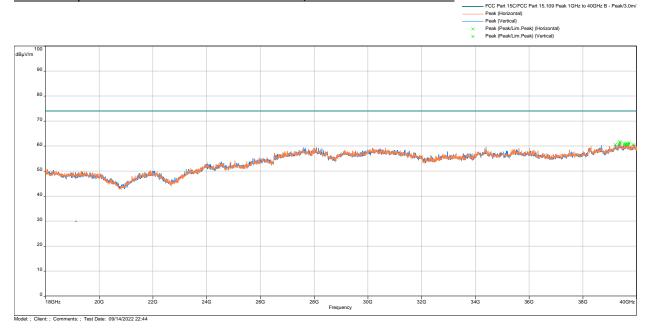
Radiated Spurious Emissions 9kHz - 30 MHz Perpendicular Antenna Polarization



Radiated Spurious Emissions 9kHz - 30 MHz Horizontal Antenna Polarization


Radiated Spurious Emissions 30 MHz - 1000 MHz




Note: The emissions close to the limit are those from the digital components of the EUT not the Radio.

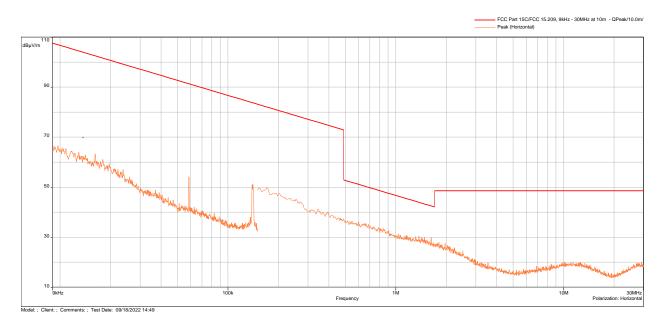
Radiated Spurious Emissions 1000 - 18000 MHz, Peak Scan vs Peak Limit and Average Limit.

EMC Report for Lyxt, Inc on Drivecam Event Recorder SF400 NA File: 105146268MPK-001

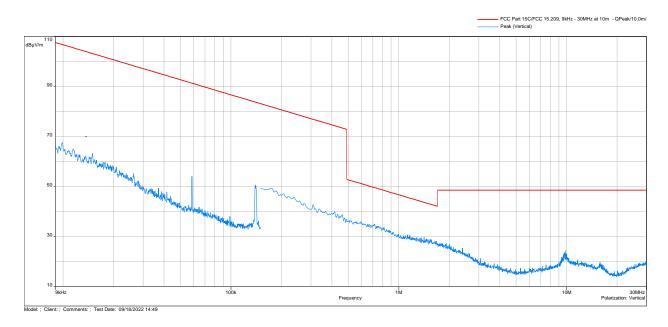
Radiated Spurious Emissions 18000 - 26000 MHz, AVG Scan vs AVG Limit.

Test Results: 15.209 Radiated Spurious Emissions Low Channel, Tx at 2402MHz

Frequency (MHz)	QPeak@ 10m (dBμV/m)	Lim. QPeak @10m (dBµV/m)	Margin (dB)	Height (m)	Angle (°)	Comment	Correction (dB)
37.11333	27.74	29.5	-1.76	1	249.5	Vertical	-11.2
55.38167	29	29.5	-0.5	1	294.5	Vertical	-20.01
74.65233	28.26	29.5	-1.24	2	2	Vertical	-18.74
105.175	30.59	33	-2.41	1	0	Vertical	-15.16
105.8863	30.26	33	-2.74	2	329.25	Vertical	-15.01
134.5013	32.19	33	-0.81	1	328.75	Vertical	-12.79

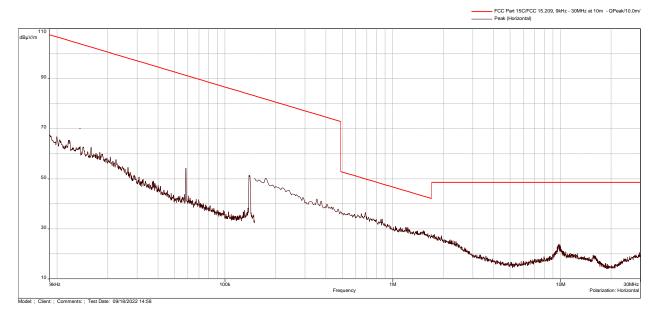

Note: Correction = AF + CF - Preamp

Results	Complies

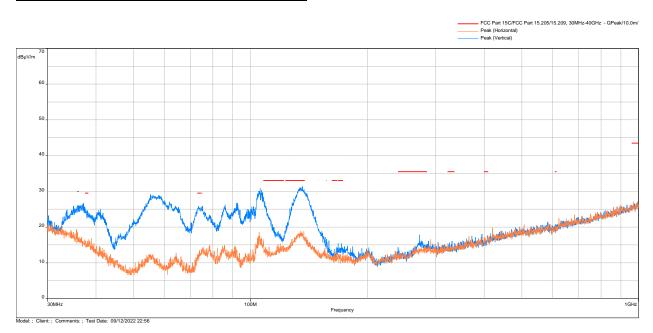


Test Results: 15.209 Radiated Spurious Emissions Mid Channel, Tx at 2440 MHz

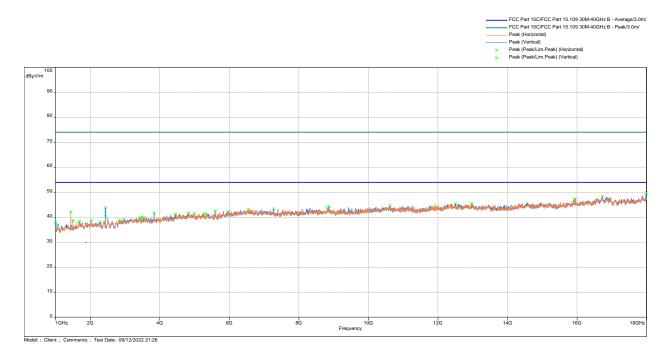
Radiated Spurious Emissions 9kHz - 30 MHz Parallel Antenna Polarization

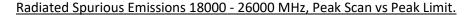


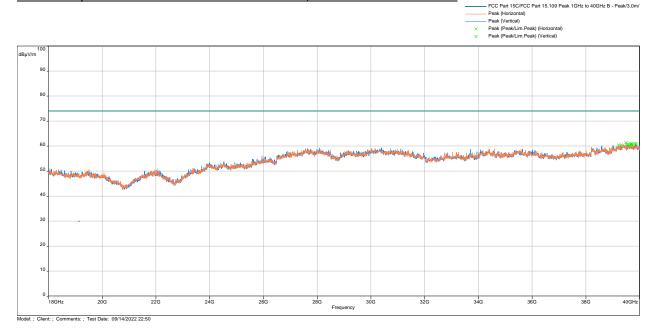
Radiated Spurious Emissions 9kHz - 30 MHz Perpendicular Antenna Polarization



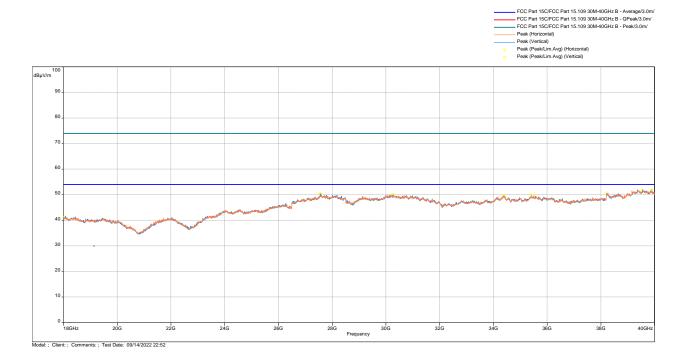
Radiated Spurious Emissions 9kHz - 30 MHz Horizontal Antenna Polarization




Radiated Spurious Emissions 30 MHz - 1000 MHz



Radiated Spurious Emissions 1000 - 18000 MHz, Peak Scan vs Peak Limit and Average Limit.

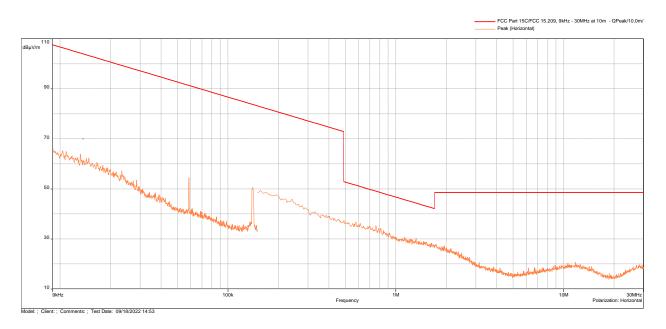


EMC Report for Lyxt, Inc on Drivecam Event Recorder SF400 NA File: 105146268MPK-001

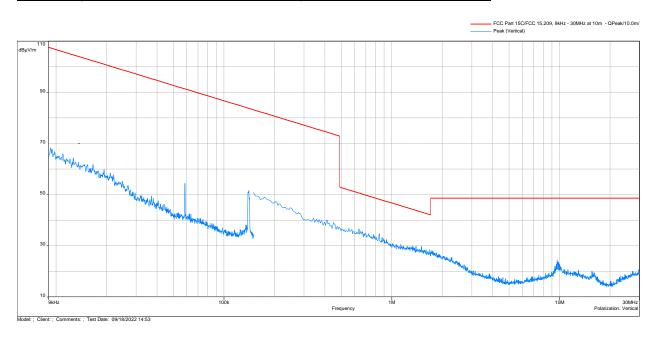
Radiated Spurious Emissions 18000 - 26000 MHz, AVG Scan vs AVG Limit.

Test Results: 15.209 Radiated Spurious Emissions Mid Channel, Tx at 2440 MHz

Frequency (MHz)	QPeak@ 10m (dBμV/m)	Lim. QPeak @10m (dBµV/m)	Margin (dB)	Height (m)	Angle (°)	Comment	Correction (dB)
37.11333	26.76	29.5	-2.74	1	249.5	Vertical	-11.2
55.28467	29.09	29.5	-0.41	4	58.5	Vertical	-20.01
105.2397	30.08	33	-2.92	1	232.75	Vertical	-15.15
105.951	30.79	33	-2.21	1	311	Vertical	-15
106.7593	30.32	33	-2.68	1	285.25	Vertical	-14.83
136.3443	31.41	33	-1.59	1	311	Vertical	-12.92

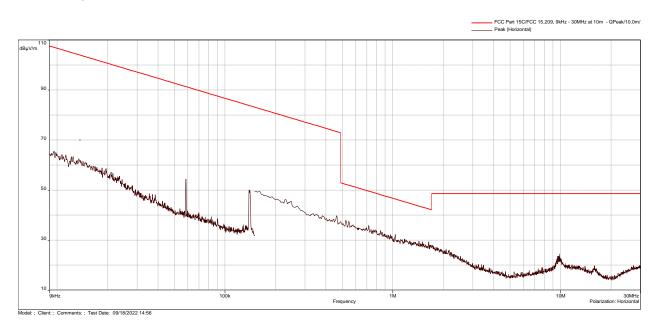

Note: Correction = AF + CF – Preamp

Results	Complies
	·

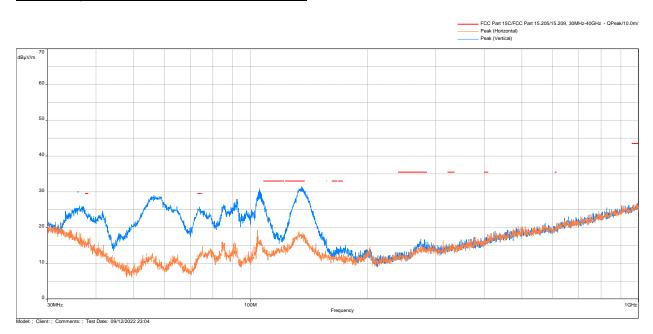


Test Results: 15.209 Radiated Spurious Emissions High Channel, Tx at 2480MHz

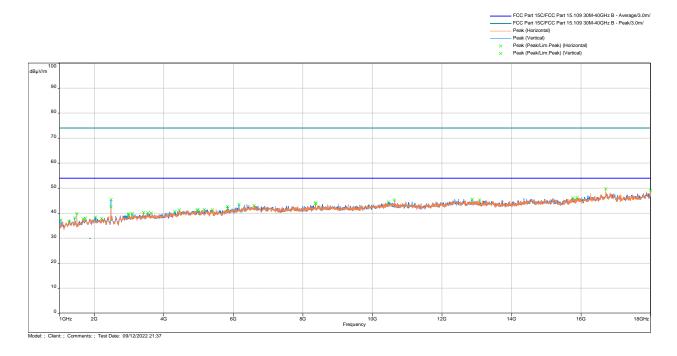
Radiated Spurious Emissions 9kHz - 30 MHz Parallel Antenna Polarization

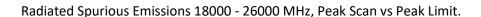


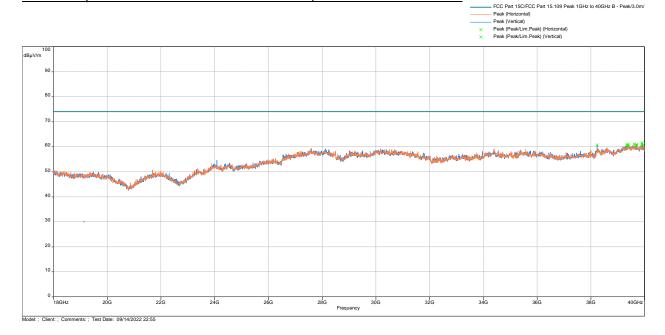
Radiated Spurious Emissions 9kHz - 30 MHz Perpendicular Antenna Polarization



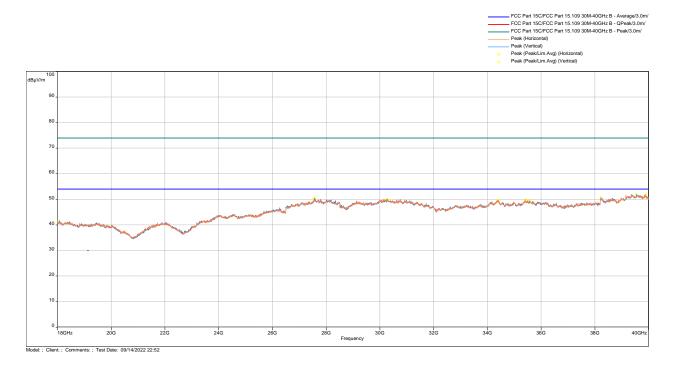
Radiated Spurious Emissions 9kHz - 30 MHz Horizontal Antenna Polarization




Radiated Spurious Emissions 30 MHz - 1000 MHz



Radiated Spurious Emissions 1000 - 18000 MHz, Peak Scan vs Peak Limit and Average Limit.

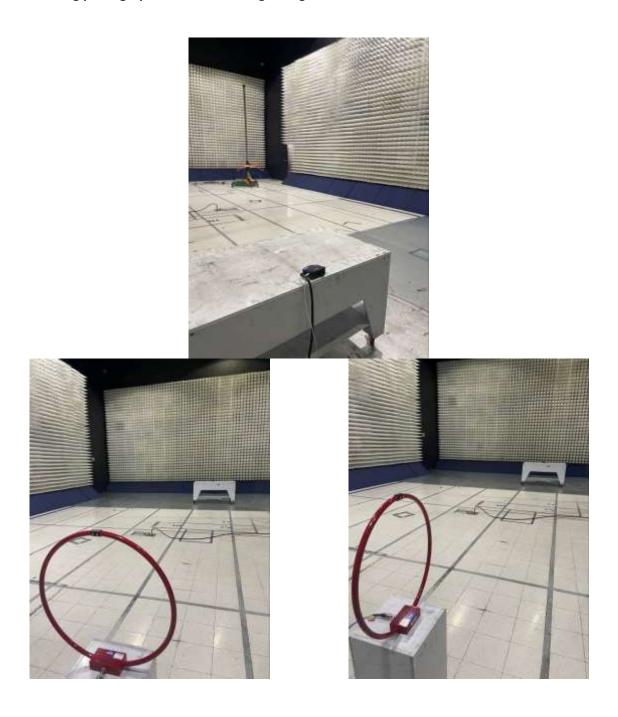


Radiated Spurious Emissions 18000 - 26000 MHz, AVG Scan vs AVG Limit.

Test Results: 15.209 Radiated Spurious Emissions High Channel, Tx at 2480MHz

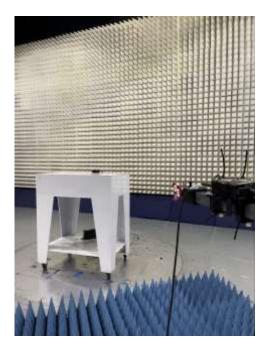
Frequency (MHz)	QPeak@ 10m (dBμV/m)	Lim. QPeak @10m (dBµV/m)	Margin (dB)	Height (m)	Angle (°)	Comment	Correction (dB)
56.44867	29.03	29.5	-0.47	4	128.75	Vertical	-20
85.16067	26.43	29.5	-3.07	2	312.5	Vertical	-19.46
104.8517	30.05	33	-2.95	2	277.25	Vertical	-15.24
105.4337	30.91	33	-2.09	0.99	294.25	Vertical	-15.11
105.6923	30.45	33	-2.55	0.99	352	Vertical	-15.05
106.1773	29.93	33	-3.07	0.99	294.25	Vertical	-14.95
135.439	31.52	33	-1.48	0.99	310.25	Vertical	-12.83

Note: Correction = AF + CF - Preamp


Results

Page 49 of 56

4.5.5 Test Setup Configuration


The following photographs show the testing configurations used.



4.5.5 Test Setup Photographs (continued)

4.6 AC Line Conducted Emission

FCC: 15.207; RSS-GEN;

4.6.1 Requirement

Frequency Band	Class B Lim	it dB(μV)	Class A Limit dB(μV)		
MHz	Quasi-Peak	Average	Quasi-Peak	Average	
0.15-0.50	66 to 56 *	56 to 46 *	79	66	
0.50-5.00	56	46	73	60	
5.00-30.00	60	50	73	60	

Note: *Decreases linearly with the logarithm of the frequency. At the transition frequency the lower limit applies.

4.6.2 Procedure

Measurements are carried out using quasi-peak and average detector receivers in accordance with CISPR 16. An AMN is required to provide a defined impedance at high frequencies across the power feed at the point of measurement of terminal voltage and also to provide isolation of the circuit under test from the ambient noise on the power lines. An AMN as defined in CISPR 16 shall be used.

The EUT is located so that the distance between the boundary of the EUT and the closest surface of the AMN is 0.8m.

Where a flexible mains cord is provided by the manufacturer, this shall be 1m long or if in excess of 1m, the excess cable is folded back and forth as far as possible so as to form a bundle not exceeding 0.4m in length.

The EUT is arranged and connected with cables terminated in accordance with the product specification.

Conducted disturbance is measured between the phase lead and the reference ground, and between the neutral lead and the reference ground. Both measured values are reported.

The EUT, where intended for tabletop use, is placed on a table whose top is 0.8m above the ground plane. A vertical, metal reference plane is placed 0.4m from the EUT. The vertical metal reference-plane is at least 2m by 2m. The EUT shall be kept at least 0.8m from any other metal surface or other ground plane not being part of the EUT. The table is constructed of non-conductive materials. Its dimensions are 1m by 1.5m, but may be extended for larger EUT.

Floor standing EUT are placed on a horizontal metal ground plane and isolated from the ground plane by resting on an insulating material. The metal ground plane extends at least 0.5m beyond the boundaries of the EUT and has minimum dimensions of 2m by 2m.

Equipment setup for conducted disturbance tests followed the guidelines of ANSI C63.10-2013.

4.6.3 Test Result

15.207: Conducted Emissions

Results Not applicable

EMC Report for Lyxt, Inc on Drivecam Event Recorder SF400 NA File: 105146268MPK-001

5.0 List of Test Equipment

Measurement equipment used for compliance testing utilized the equipment on the following list:

measurement equipment used for compliance testing utilized the equipment on the following list.						
Equipment	Manufacturer	Model/Type	Asset #	Cal Int	Cal Due	
9kHz-30MHz Loop Antenna	ETS Lindgren	6512	01573	12	11/09/2022	
30MHz-2GHz Bi-Log	SunAR RF Motion	JB1	01577	12	02/10/2023	
1-18GHz 2 meter RF Cable	TRU Corp.	TRU Core 300	01330	12	08/25/2023	
1-40GHz RF Cable (SMA	MEGAPHASE	EMC1-K1K1-20	01889	12	03/11/2023	
1-40GHz DRG Horn (small)	ETS-Lindgren	3116	01894	12	06/20/2023	
1-18GHz Horn Antenna	ETS Lindgren	3117-PA	01325	12	10/26/2022	
9kHz-1GHz Pre-amplifier	Sonoma Instrument	310N	01713	12	02/17/2023	
1-40GHz RF Cable	Mega PHASE	TM40-K1K1-59	01655	12	01/11/2023	
1GHz to 40GHz RF Cable	MEGAPHASE	EMC1-K1K1-236	01484	12	06/27/2023	
1-18GHz Horn Antenna	EMCO	3115	001595	12	#	
		MCNS-50-				
18-40GHz Preamp	uComp Nordic	18004000335p	01799	12	03/24/2023	
EMI Test Receiver 40GHz	Rohde & Schwarz	ESU40	00961	12	03/10/2023	
EMI Test Receiver	Rohde & Schwarz	ESR7	01607	12	11/19/2022	
10m Chamber	Panashield	10 Meter Chamber	00984	12	#	

^{# =} Calibration not required.

Software used for emission compliance testing utilized the following:

Name	Manufacturer	Version	Template/Profile
BAT-EMC	Nexio	3.20.0.14	ESU and ESR Intertek Emissions Template
Tile	Quantum Change	3.4.K.22	Conducted Spurious_30M-26GHz
RS Commander	Rohde Schwarz	1.6.4	Not Applicable (Screen grabber)

6.0 Document History

Revision/ Job Number	Writer Initials	Reviewers Initials	Date	Change
1.0 / G105146268	JAV	ML	October 17, 2022	Original document

END OF REPORT