









# **TEST REPORT**

Test report no.: 1-3182/21-01-08

DAKKS

Deutsche
Akkreditierungsstelle
D-P-1-12076-01-05

BNetzA-CAB-02/21-102

# Testing laboratory

#### **CTC advanced GmbH**

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: http://www.ctcadvanced.com

Internet: <a href="http://www.ctcadvanced.com">http://www.ctcadvanced.com</a>
e-mail: <a href="mail@ctcadvanced.com">mail@ctcadvanced.com</a>

### **Accredited Testing Laboratory:**

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01.

# **Applicant**

### ifm electronic gmbh

Friedrichsstraße 1 45128 Essen / GERMANY Phone: +49 201 2422-0 Contact: Holger Wenzel

e-mail: Holger.Wenzel@ifm.com

#### Manufacturer

ifm electronic gmbh

Friedrichsstraße 1 45128 Essen / GERMANY

#### Test standard/s

CFR 47 Part 95, The 76-81 GHz Band Radar Service

Subpart M

CFR 47 Part 2, Frequency allocations and radio treaty matters; general rules and regulations

Subpart J

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Area Radar, 77 GHz

Type: R2D200, R2D201 and R2D210 (TR25)

FCC ID: UN6-R2D2

Frequency: 77.0 GHz – 81.0 GHz Antenna: Integrated antenna

Power supply: 10 V - 30 V DC by external power supply

Temperature range: -40°C to +85°C

Radio Communications & EMC

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

| Test report authorized:      | Test performed:             |  |
|------------------------------|-----------------------------|--|
|                              |                             |  |
|                              |                             |  |
|                              |                             |  |
| Thomas Vogler<br>Lab Manager | Meheza Walla<br>Lab Manager |  |

Radio Communications & EMC



# Table of contents

| 1  | Table      | of contents                                                                | 2  |
|----|------------|----------------------------------------------------------------------------|----|
| 2  | Gener      | al information                                                             | 3  |
|    | 2.1        | Notes and disclaimer                                                       | 3  |
|    | 2.2        | Application details                                                        | 3  |
|    | 2.3        | Test laboratories sub-contracted                                           | 3  |
| 3  | Test s     | tandard/s and references                                                   |    |
| 4  | Repor      | ting statements of conformity – decision rule                              |    |
| 5  | -          | nvironment                                                                 |    |
| 6  |            | tem                                                                        |    |
| 0  | rest i     |                                                                            |    |
|    | 6.1<br>6.2 | General description                                                        |    |
|    |            | Additional information                                                     |    |
| 7  | Descr      | iption of the test setup                                                   | 7  |
|    | 7.1        | Shielded semi anechoic chamber                                             | 8  |
|    | 7.2        | Shielded fully anechoic chamber                                            |    |
|    | 7.3        | Radiated measurements > 18 GHz                                             |    |
|    | 7.4        | Radiated measurements > 50/85 GHz                                          |    |
|    | 7.5        | AC power-line conducted emissions                                          | 13 |
| 8  | Seque      | ence of testing                                                            | 14 |
|    | 8.1        | Sequence of testing radiated spurious 9 kHz to 30 MHz                      | 14 |
|    | 8.2        | Sequence of testing radiated spurious 30 MHz to 1 GHz                      |    |
|    | 8.3        | Sequence of testing radiated spurious 1 GHz to 18 GHz                      |    |
|    | 8.4        | Sequence of testing radiated spurious above 18 GHz                         |    |
|    | 8.5        | Sequence of testing radiated spurious above 50/85 GHz with external mixers |    |
| 9  | Measu      | rement uncertainty                                                         | 19 |
| 10 | Far        | field consideration for measurements above 18 GHz                          | 19 |
| 11 | Sun        | nmary of measurement results                                               | 20 |
| 12 | Mea        | surement results                                                           | 21 |
|    | 12.1       | Radiated power                                                             | 21 |
|    | 12.2       | Modulation characteristics                                                 |    |
|    | 12.3       | Occupied bandwidth                                                         |    |
|    | 12.4       | Band edge compliance                                                       |    |
|    | 12.5       | Field strength of spurious emissions                                       | 27 |
|    | 12.6       | Spurious emissions conducted < 30 MHz (AC power line)                      |    |
|    | 12.7       | Frequency stability                                                        | 41 |
| 13 | Glo        | ssary                                                                      | 48 |
| 14 | Doc        | ument history                                                              | 49 |
| 15 | Acc        | reditation Certificate - D-PI -12076-01-05                                 | 40 |



### 2 General information

### 2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

# 2.2 Application details

Date of receipt of order: 2021-12-20
Date of receipt of test item: 2022-04-04
Start of test:\* 2022-04-12
End of test:\* 2022-05-31

Person(s) present during the test: -/-

# 2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 3 of 51

<sup>\*</sup>Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.



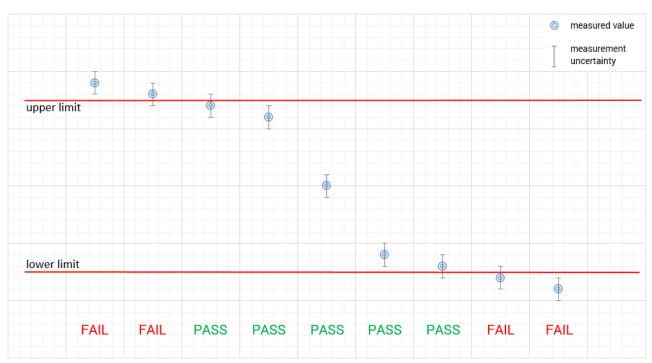
# 3 Test standard/s and references

| Test standard             | Date | Description                                                                   |
|---------------------------|------|-------------------------------------------------------------------------------|
|                           |      |                                                                               |
| CFR 47 Part 95, Subpart M | -/-  | The 76-81 GHz Band Radar Service                                              |
|                           |      |                                                                               |
| CFR 47 Part 2, Subpart J  | -/-  | Frequency allocations and radio treaty matters; general rules and regulations |
|                           |      |                                                                               |

| Guidance         | Version           | Description                                                                                                                                                         |  |  |  |  |
|------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                  |                   |                                                                                                                                                                     |  |  |  |  |
| ANSI C63.4-2014  | -/-               | American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz |  |  |  |  |
| ANSI C63.10-2013 | -/-               | American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices                                                                      |  |  |  |  |
| ANSI C63.26-2015 | -/-               | American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services                                                                   |  |  |  |  |
| KDB 653005 D01   | v01r01<br>2019-04 | Equipment Authorization Guidance for 76-81 GHz Radar Devices                                                                                                        |  |  |  |  |
|                  |                   |                                                                                                                                                                     |  |  |  |  |

| Accreditation    | Description                                                                               |                                                       |
|------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------|
|                  |                                                                                           |                                                       |
| D-PL-12076-01-05 | Telecommunication FCC requirements<br>https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf | DAKKS Deutsche Akkreditierungsstelle D-PL-12076-01-05 |

© CTC advanced GmbH Page 4 of 51




# 4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong.





### 5 Test environment

| Temperature               | i | T <sub>nom</sub><br>T <sub>max</sub><br>T <sub>min</sub> | +20 °C during room temperature tests<br>+85 °C during high temperature tests<br>-40 °C during low temperature tests |
|---------------------------|---|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Relative humidity content | : |                                                          | 55 %                                                                                                                |
| Barometric pressure       | : |                                                          | 998-1019 hPa                                                                                                        |
| Power supply              |   | V <sub>nom</sub><br>V <sub>max</sub><br>V <sub>min</sub> | 24.0 V DC by external power supply 30.0 V 10.0 V                                                                    |

© CTC advanced GmbH Page 5 of 51



### 6 Test item

# 6.1 General description

| Kind of test item  | : | Area Radar, 77 GHz                       |
|--------------------|---|------------------------------------------|
| Туре               | : | R2D200, R2D201 and R2D210 (TR25)         |
| S/N serial number  | : | 00000000039 (EUT1)<br>00000000040 (EUT2) |
| Hardware status    | : | see below                                |
| Software status    | : | see below                                |
| Frequency band     | : | 77.0 GHz – 81.0 GHz                      |
| Type of modulation | : | FMCW                                     |
| Antenna            | : | Integrated antenna                       |
| Power supply       | : | 10 to 30 V DC by external power supply   |
| Temperature range  | : | -40°C to +85°C                           |

### 6.2 Additional information

Operating modes as declared by the manufacturer: Normal Mode and High Speed Mode.

Channel power, positive peak power and the OBW were measured on all modulations at  $T_{nom}$  /  $V_{min-max}$  Tests under extreme test conditions were done according to ANSI 63.10 as worst case mode for given tests:

Frequency Stability: Normal Mode

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-3182/21-01-01\_AnnexA

1-3182/21-01-01\_AnnexB 1-3182/21-01-01\_AnnexD

This test report is valid for the following electrically identical models with the same radio frontend:

| Variant            | Hardware status | Software status<br>Frontend | Software status<br>Backend | Remarks                                                   |
|--------------------|-----------------|-----------------------------|----------------------------|-----------------------------------------------------------|
| R2D200<br>(tested) | M04235AA        | 1.0                         | 1.0.5                      | basic version                                             |
| R2D210             | M04243AA        | 1.0                         |                            | different backend software hardware identical to R2D200   |
| R2D201             | M04236AA        | 1.0                         |                            | different backend HW and SW (Communication via CAN J1939) |

See also 'Customer Declaration on Electrically Identical Models' at the end of this report

© CTC advanced GmbH Page 6 of 51

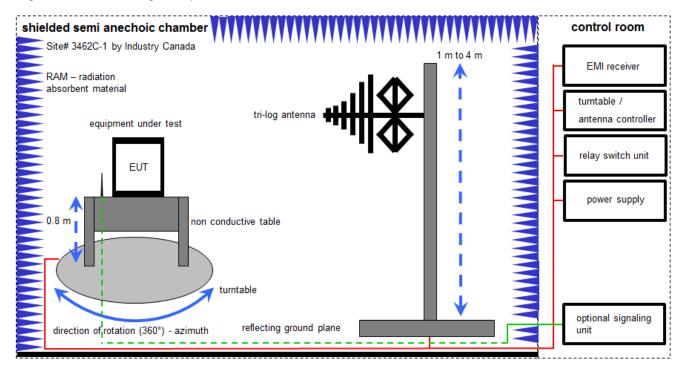


# 7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

### Agenda: Kind of Calibration


| k     | calibration / calibrated                   | EK  | limited calibration                                  |
|-------|--------------------------------------------|-----|------------------------------------------------------|
| ne    | not required (k, ev, izw, zw not required) | ZW  | cyclical maintenance (external cyclical maintenance) |
| ev    | periodic self verification                 | izw | internal cyclical maintenance                        |
| Ve    | long-term stability recognized             | g   | blocked for accredited testing                       |
| vlkl! | Attention: extended calibration interval   |     |                                                      |
| NK!   | Attention: not calibrated                  | *)  | next calibration ordered / currently in progress     |

© CTC advanced GmbH Page 7 of 51



### 7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.



Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

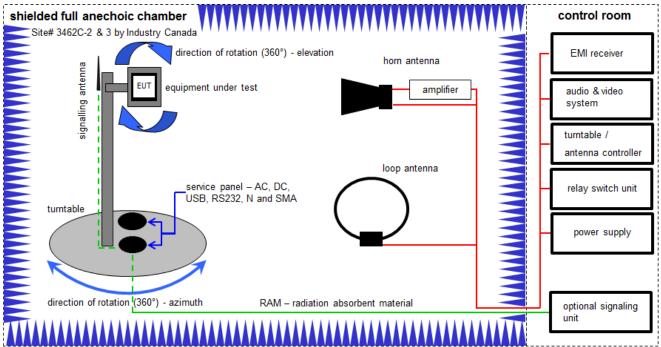
(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

#### Example calculation:

FS  $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 <math>\mu V/m$ )

© CTC advanced GmbH Page 8 of 51




# **Equipment table:**

| No. | Lab /<br>Item | Equipment                                          | Туре             | Manufacturer                     | Serial No. | INV. No.  | Kind of Calibration | Last<br>Calibration | Next<br>Calibration |
|-----|---------------|----------------------------------------------------|------------------|----------------------------------|------------|-----------|---------------------|---------------------|---------------------|
| 1   | n.a.          | Switch-Unit                                        | 3488A            | HP                               | 2719A14505 | 300000368 | ev                  | -/-                 | -/-                 |
| 2   | n. a.         | DC power supply,<br>60Vdc, 50A, 1200 W             | 6032A            | HP                               | 2920A04466 | 300000580 | ne                  | -/-                 | -/-                 |
| 3   | n. a.         | Meßkabine 1                                        | HF-Absorberhalle | MWB AG 300023                    |            | 300000551 | ne                  | -/-                 | -/-                 |
| 4   | n.a.          | EMI Test Receiver                                  | ESCI 3           | R&S                              | 100083     | 300003312 | k                   | 09.12.2021          | 21.12.2022          |
| 5   | n.a.          | Antenna Tower                                      | Model 2175       | ETS-Lindgren                     | 64762      | 300003745 | izw                 | -/-                 | -/-                 |
| 6   | n. a.         | Positioning<br>Controller                          | Model 2090       | ETS-Lindgren                     | 64672      | 300003746 | izw                 | -/-                 | -/-                 |
| 7   | n. a.         | Turntable Interface-<br>Box                        | Model 105637     | ETS-Lindgren                     | 44583      | 300003747 | izw                 | -/-                 | -/-                 |
| 8   | n. a.         | TRILOG Broadband<br>Test-Antenna<br>30 MHz - 3 GHz | VULB9163         | Schwarzbeck<br>Mess - Elektronik | 318        | 300003696 | vIKI!               | 30.09.2019          | 29.09.2023          |
| 9   | n.a.          | Switch-Unit                                        | 3488A            | HP                               | 2719A14505 | 300000368 | ev                  | -/-                 | -/-                 |
| 10  | n.a.          | EMI Test Receiver                                  | ESR3             | Rohde & Schwarz                  | 102587     | 300005771 | k                   | 10.12.2020          | 09.06.2022          |

© CTC advanced GmbH Page 9 of 51



# 7.2 Shielded fully anechoic chamber



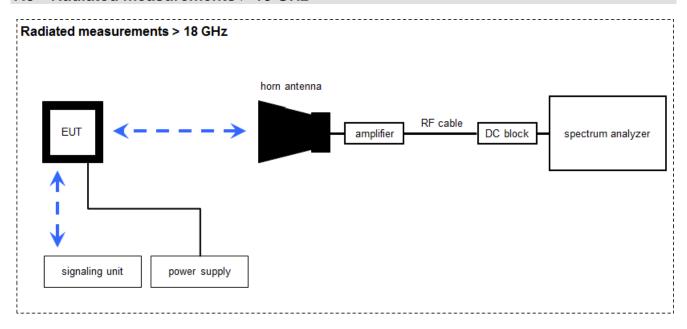
Measurement distance: horn antenna 3 meter; loop antenna 3 meter / 1 meter

FS = UR + CA + AF

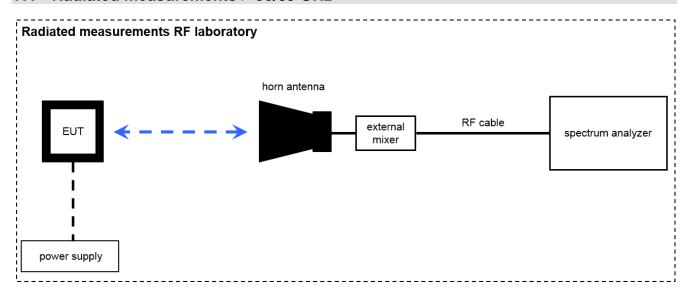
(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

# Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \ \mu V/m)$ 


### **Equipment table:**

| No. | Lab /<br>Item | Equipment                                            | Туре                                                | Manufacturer                     | Serial No. | INV. No.  | Kind of<br>Calibration | Last Calibration | Next<br>Calibration |
|-----|---------------|------------------------------------------------------|-----------------------------------------------------|----------------------------------|------------|-----------|------------------------|------------------|---------------------|
| 1   | n. a.         | DC power supply,<br>60Vdc, 50A, 1200 W               | 6032A                                               | HP                               | 2818A03450 | 300001040 | vIKI!                  | 09.12.2020       | 08.12.2023          |
| 2   | n. a.         | Active Loop Antenna<br>9 kHz to 30 MHz               | 6502                                                | EMCO                             | 2210       | 300001015 | vIKI!                  | 13.06.2019       | 12.06.2022          |
| 3   | n. a.         | Anechoic chamber                                     | FAC 3/5m                                            | MWB / TDK                        | 87400/02   | 300000996 | ev                     | -/-              | -/-                 |
| 4   | n. a.         | TRILOG Broadband<br>Test-Antenna<br>30 MHz - 3 GHz   | VULB9163                                            | Schwarzbeck<br>Mess - Elektronik | 318        | 300003696 | vIKI!                  | 30.09.2021       | 29.09.2023          |
| 5   | n. a.         | Double-Ridged<br>Waveguide Horn<br>Antenna 1-18.0GHz | 3115                                                | EMCO                             | 9709-5289  | 300000213 | vIKI!                  | 14.07.2020       | 13.07.2022          |
| 6   | n. a.         | Switch / Control Unit                                | 3488A                                               | HP                               | *          | 300000199 | ne                     | -/-              | -/-                 |
| 7   | n. a.         | Variable isolating transformer                       | MPL IEC625 Bus<br>Variable isolating<br>transformer | Erfi                             | 91350      | 300001155 | ne                     | -/-              | -/-                 |
| 8   | n. a.         | EMI Test Receiver<br>20Hz- 26,5GHz                   | ESU26                                               | R&S                              | 100037     | 300003555 | k                      | 09.12.2020       | 31.12.2022          |
| 9   | n. a.         | Highpass Filter                                      | WHKX7.0/18G-8SS                                     | Wainwright                       | 19         | 300003790 | ne                     | -/-              | -/-                 |
| 10  | n. a.         | Broadband Amplifier<br>0.5-18 GHz                    | CBLU5184540                                         | CERNEX                           | 22049      | 300004481 | ev                     | -/-              | -/-                 |
| 11  | n. a.         | Broadband Amplifier<br>5-13 GHz                      | CBLU5135235                                         | CERNEX                           | 22010      | 300004491 | ev                     | -/-              | -/-                 |
| 12  | n. a.         | 4U RF Switch<br>Platform                             | L4491A                                              | Agilent Technologies             | MY50000037 | 300004509 | ne                     | -/-              | -/-                 |
| 13  | n. a.         | NEXIO EMV-<br>Software                               | BAT EMC<br>V3.16.0.49                               | EMCO                             |            | 300004682 | ne                     | -/-              | -/-                 |
| 14  | n.a.          | PC                                                   | ExOne                                               | F+W                              |            | 300004703 | ne                     | -/-              | -/-                 |
| 15  | n. a.         | RF-Amplifier                                         | AMF-6F06001800-<br>30-10P-R                         | NARDA-MITEQ Inc                  | 2011572    | 300005241 | ev                     | -/-              | -/-                 |


© CTC advanced GmbH Page 10 of 51



# 7.3 Radiated measurements > 18 GHz



### 7.4 Radiated measurements > 50/85 GHz



OP = AV + D - G

(OP-rad. output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain)

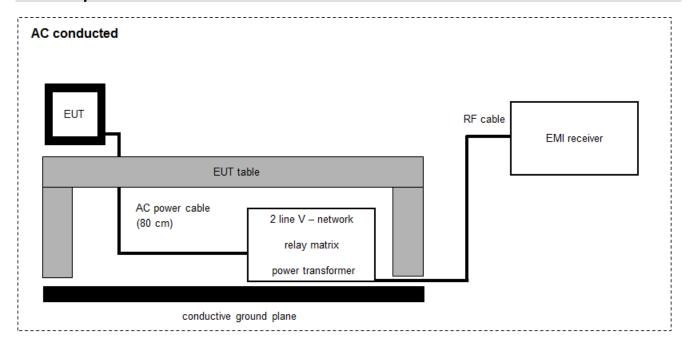
### Example calculation:

 $\overline{OP \text{ [dBm]}} = -54.0 \text{ [dBm]} + 64.0 \text{ [dB]} - 20.0 \text{ [dBi]} = -10 \text{ [dBm]} (100 \mu\text{W})$ 

Note: conversion loss of mixer is already included in analyzer value.

© CTC advanced GmbH Page 11 of 51




# **Equipment table:**

| No. | Lab /<br>Item | Equipment                                        | Туре              | Manufacturer               | Serial No.    | INV. No.  | Kind of Calibration | Last<br>Calibration | Next<br>Calibration |
|-----|---------------|--------------------------------------------------|-------------------|----------------------------|---------------|-----------|---------------------|---------------------|---------------------|
| 1   | n.a.          | Horn Antenna 18,0-<br>40,0 GHz                   | LHAF180           | Microw.Devel               | 39180-103-021 | 300001747 | vIKI!               | 17.01.2022          | 31.01.2024          |
| 2   | n. a.         | Std. Gain Horn<br>Antenna<br>18.0-26.5 GHz       | 638               | Narda                      |               | 300000486 | vIKI!               | 17.01.2022          | 31.01.2024          |
| 3   | n. a.         | Std. Gain Horn<br>Antenna<br>26.5-40.0 GHz       | V637              | Narda                      | 82-16         | 300000510 | vIKI!               | 17.01.2022          | 31.01.2024          |
| 4   | n.a.          | Std. Gain Horn<br>Antenna 40-60 GHz              | 2424-20           | Flann                      | 76            | 400001981 | ne                  | -/-                 | -/-                 |
| 5   | n. a.         | Std. Gain Horn<br>Antenna<br>49.9-75.8 GHz       | 2524-20           | Flann                      | *             | 300001983 | ne                  | -/-                 | -/-                 |
| 6   | n. a.         | Std. Gain Horn<br>Antenna 60-90 GHz              | COR 60_90         | Thomson CSF                |               | 300000814 | ev                  | -/-                 | -/-                 |
| 7   | n. a.         | Std. Gain Horn<br>Antenna<br>73.8-112 GHz        | 2724-20           | Flann                      | *             | 300001988 | ne                  | -/-                 | -/-                 |
| 8   | n.a.          | Std. Gain Horn<br>Antenna 92.3-140<br>GHz        | 2824-20           | Flann                      |               | 300001993 | ne                  | -/-                 | -/-                 |
| 9   | n. a.         | Std. Gain Horn<br>Antenna<br>114-173 GHz         | 2924-20           | Flann                      | *             | 300001999 | ne                  | -/-                 | -/-                 |
| 10  | n. a.         | Std. Gain Horn<br>Antenna<br>145-220 GHz         | 3024-20           | Flann                      | *             | 300002000 | ne                  | -/-                 | -/-                 |
| 11  | n. a.         | Std. Gain Horn<br>Antenna<br>217-330 GHz         | 32240-20          | Flann                      | 233278        | 300004960 | ne                  | -/-                 | -/-                 |
| 12  | n. a.         | Standard Gain Horn<br>325-500 GHz                | 570240-20 1785-2a | Flann                      | 273569        | 300006097 | ev                  | 25.05.2020          | 24.05.2022          |
| 13  | n. a.         | Broadband LNA<br>18-50 GHz                       | CBL18503070PN     | CERNEX                     | 25240         | 300004948 | ev                  | 09.03.2022          | 08.03.2024          |
| 14  | n. a.         | Harmonic Mixer 3-<br>Port, 50-75 GHz             | FS-Z75            | Rohde & Schwarz            | 101578        | 300005788 | k                   | 15.06.2021          | 14.06.2022          |
| 15  | n. a.         | Harmonic Mixer 3-<br>Port, 60-90 GHz             | FS-Z90            | R&S                        | 101555        | 300004691 | k                   | 22.07.2021          | 21.07.2022          |
| 16  | n. a.         | Harmonic Mixer 3-<br>Port, 75-110 GHz            | FS-Z110           | R&S                        | 101411        | 300004959 | k                   | 15.06.2021          | 14.06.2022          |
| 17  | n.a.          | Harmonic Mixer 3-<br>port, 90-140 GHz            | FS-Z140           | Rohde & Schwarz            | 101119        | 300005581 | k                   | 22.07.2021          | 21.07.2022          |
| 18  | n. a.         | Harmonic Mixer 3-<br>Port, 110-170 GHz           | FS-Z170           | Radiometer Physics<br>GmbH | 100014        | 300004156 | k                   | 11.06.2021          | 10.06.2022          |
| 19  | n. a.         | Harmonic Mixer 3-<br>Port, 140-220 GHz           | SAM-220           | Radiometer Physics<br>GmbH | 200001        | 300004157 | k                   | 22.07.2020          | 21.07.2022          |
| 20  | n. a.         | Harmonic Mixer 3-<br>Port, 220-325 GHz           | SAM-325           | Radiometer Physics<br>GmbH | 100002        | 300004158 | k                   | 22.07.2021          | 21.07.2022          |
| 21  | n. a.         | Spectrum Analyzer<br>2 Hz - 85 GHz               | FSW85             | R&S                        | 101333        | 300005568 | k                   | 30.06.2021          | 29.06.2022          |
| 22  | n.a.          | Power Supply                                     | E3632A            | Agilent Technologies       | MY40001320    | 400000396 | ev                  | -/-                 | -/-                 |
| 23  | n. a.         | Power meter - EPM series, dual channel           | E4419B            | Agilent Technologies       | GP39510924    | 300002627 | ev                  | 08.12.2020          | 07.12.2022          |
| 24  | n. a.         | Thermal Power<br>Sensor, DC-110G,<br>300nW-100mW | NRP-Z58           | R&S                        | 100913        | 300004808 | k                   | 04.01.2022          | 31.01.2024          |
| 25  | n. a.         | Temperature Test<br>Chamber                      | T-40/50           | CTS GmbH                   | 064023        | 300003540 | ev                  | 08.05.2020          | 07.05.2022          |

© CTC advanced GmbH Page 12 of 51



# 7.5 AC power-line conducted emissions



FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

### Example calculation:

 $FS [dB\mu V/m] = 37.62 [dB\mu V/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dB\mu V/m] (244.06 \( \mu V/m \))$ 

# **Equipment table:**

| No. | Lab /<br>Item | Equipment                                       | Туре    | Manufacturer | Serial No. | INV. No.  | Kind of<br>Calibration | Last Calibration | Next<br>Calibration |
|-----|---------------|-------------------------------------------------|---------|--------------|------------|-----------|------------------------|------------------|---------------------|
| 1   | -/-           | Two-line V-Network<br>(LISN) 9 kHz to 30<br>MHz | ESH3-Z5 | R&S          | 892475/017 | 300002209 | vIKI!                  | 14.12.2021       | 31.12.2023          |
| 2   | -/-           | RF-Filter-section                               | 85420E  | HP           | 3427A00162 | 300002214 | NK!                    | -/-              | -/-                 |
| 3   | -/-           | EMI Test Receiver                               | ESCI 3  | R&S          | 101240     | 300004427 | k                      | 07.12.2021       | 31.12.2022          |
| 4   | -/-           | Hochpass 150 kHz                                | EZ-25   | R&S          | 100010     | 300003798 | ev                     | -/-              | -/-                 |

© CTC advanced GmbH Page 13 of 51



# 8 Sequence of testing

# 8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

### Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

#### Premeasurement\*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

#### Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
   (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

\*)Note: The sequence will be repeated three times with different EUT orientations.

© CTC advanced GmbH Page 14 of 51



# 8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

### Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

#### **Premeasurement**

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

#### **Final measurement**

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 15 of 51



## 8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

#### Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

#### **Premeasurement**

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

#### **Final measurement**

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 16 of 51



# 8.4 Sequence of testing radiated spurious above 18 GHz

## Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

#### **Premeasurement**

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

#### Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 17 of 51



# 8.5 Sequence of testing radiated spurious above 50/85 GHz with external mixers

# Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate for far field (e.g. 0.25 m).
- The EUT is set into operation.

#### **Premeasurement**

- The test antenna with external mixer is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.
- Caution is taken to reduce the possible overloading of the external mixer.

### Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- As external mixers may generate false images care is taken to ensure that any emission measured by the spectrum analyzer does indeed originate in the EUT. Signal identification feature of spectrum analyzer is used to eliminate false mixer images (i.e., it is not the fundamental emission or a harmonic falling precisely at the measured frequency).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 18 of 51



# 9 Measurement uncertainty

| Test case                                                           | Uncertainty                                     |
|---------------------------------------------------------------------|-------------------------------------------------|
| Equivalent isotropically radiated power (e.i.r.p.)                  | Conducted value ± 1 dB<br>Radiated value ± 3 dB |
| Permitted range of operating frequencies                            | ± 100 kHz                                       |
| Conducted unwanted emissions in the spurious domain (up to 40 GHz)  | ± 1 dB                                          |
| Radiated unwanted emissions in the spurious domain (up to 40 GHz)   | ± 3 dB                                          |
| Conducted unwanted emissions in the spurious domain (40 to 50 GHz)  | ± 4 dB                                          |
| Radiated unwanted emissions in the spurious domain (40 to 50 GHz)   | ± 4 dB                                          |
| Conducted unwanted emissions in the spurious domain (50 to 300 GHz) | ± 5 dB                                          |
| Radiated unwanted emissions in the spurious domain (50 to 300 GHz)  | ± 5 dB                                          |
| DC and low frequency voltages                                       | ± 3 %                                           |
| Temperature                                                         | ± 1 °C                                          |
| Humidity                                                            | ± 3 %                                           |

# 10 Far field consideration for measurements above 18 GHz

# Far field distance calculation:

 $D_{ff} = 2 \times D^2/\lambda$ 

with

D<sub>ff</sub> Far field distance D Antenna dimension

λ wavelength

# **Spurious emission measurements:**

| Antenna frequency range in GHz | Highest measured frequency in GHz | D in cm | λ in cm | D <sub>ff</sub> in cm |
|--------------------------------|-----------------------------------|---------|---------|-----------------------|
| 18-26                          | 26                                | 3.4     | 1.15    | 20.04                 |
| 26-40                          | 40                                | 2.2     | 0.75    | 12.91                 |
| 40-50                          | 50                                | 2.77    | 0.60    | 25.58                 |
| 50-75                          | 75                                | 1.85    | 0.40    | 17.11                 |
| 75-110                         | 110                               | 1.24    | 0.27    | 11.28                 |
| 90-140                         | 140                               | 1.02    | 0.22    | 9.72                  |
| 110-170                        | 170                               | 0.85    | 0.18    | 8.19                  |
| 140-220                        | 220                               | 0.68    | 0.14    | 6.78                  |
| 220-325                        | 325                               | 0.43    | 0.09    | 4.01                  |
| 325-500                        | 500                               | 0.26    | 0.06    | 2.22                  |

© CTC advanced GmbH Page 19 of 51



# 11 Summary of measurement results

| No deviations from the technical specifications were ascertained                                                      |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------|--|--|--|
| There were deviations from the technical specifications ascertained                                                   |  |  |  |
| This test report is only a partial test report. The content and verdict of the performed test cases are listed below. |  |  |  |

| TC Identifier | Description              | Verdict   | Date       | Remark |
|---------------|--------------------------|-----------|------------|--------|
| RF-Testing    | 47 CFR Part 95 Subpart M | see below | 2022-08-17 | -/-    |

| Test specification clause                                        | Test case                                       | Temperature conditions    | Power source voltages     | С           | NC | NA          | NP | Results<br>(max.) |
|------------------------------------------------------------------|-------------------------------------------------|---------------------------|---------------------------|-------------|----|-------------|----|-------------------|
| §2.1046<br>§95.3367 (a) / (b)                                    | Radiated power                                  | Nominal                   | Nominal                   | $\boxtimes$ |    |             |    | -/-               |
| §2.1047                                                          | Modulation characteristics                      | -/-                       | -/-                       | $\boxtimes$ |    |             |    | -/-               |
| §2.1049                                                          | Occupied bandwidth<br>(99% bandwidth)           | Nominal                   | Nominal                   | $\boxtimes$ |    |             |    | -/-               |
| §2.1051                                                          | Spurious emissions at antenna terminals         | Nominal                   | Nominal                   |             |    | $\boxtimes$ |    | see note          |
| §2.1053<br>§95.3379 (a)(1)<br>§95.3379 (a)(2)<br>§95.3379 (a)(3) | Field strength of emissions (radiated spurious) | Nominal                   | Nominal                   | ×           |    |             |    | -/-               |
| §15.207 (a)<br>ICES-003                                          | Conducted emissions<br>< 30 MHz                 | Nominal                   | Nominal                   | $\boxtimes$ |    |             |    | -/-               |
| §2.1055<br>§95.3379 (b)                                          | Frequency stability                             | Nominal<br>and<br>Extreme | Nominal<br>and<br>Extreme | $\boxtimes$ |    |             |    | -/-               |

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

#### See FCC's Millimeter Wave Test Procedures:

I. A radiated method of measurements in order to demonstrate compliance with the various regulatory requirements has been chosen in consideration of test equipment availability and the limitations of many external harmonic mixers. A conducted method of measurement could be employed if EUT and mixer waveguides both are accessible and of the same type (WG number) and if waveguide sections and transitions can be found. Another potential problem is that the peak power output of devices operating under Sections 15.253 and 15.255 may exceed the +20 dBm input power limit of many commercially available mixers. For these reasons a radiated method is preferred.

© CTC advanced GmbH Page 20 of 51



# 12 Measurement results

# 12.1 Radiated power

# **Description:**

The fundamental radiated emission limits within the 76-81 GHz band are expressed in terms of Equivalent Isotropically Radiated Power (EIRP) and are as shown below.

# **Measurement:**

| Parameters            |                        |  |  |  |
|-----------------------|------------------------|--|--|--|
| Detector:             | RMS / Pos-Peak         |  |  |  |
| Sweep time:           | 100 s                  |  |  |  |
| Resolution bandwidth: | 1 MHz                  |  |  |  |
| Video bandwidth:      | 3 MHz                  |  |  |  |
| Trace-Mode:           | Clear Write / Max Hold |  |  |  |

<u>Limits:</u> FCC §95.3367 (a) (b)

| Frequency       | Measurement distance | EIRP                              |  |  |
|-----------------|----------------------|-----------------------------------|--|--|
| 76.0 - 81.0 GHz | 2.0 m                | 50 dBm (Average)<br>55 dBm (PEAK) |  |  |

# **Measurement results:**

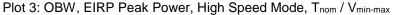
| Modulations / 1 | Test conditions           | Radiated Peak Power<br>(eirp)<br>[dBm] | Radiated Mean Power<br>(eirp)<br>Channel power [dBm] |  |
|-----------------|---------------------------|----------------------------------------|------------------------------------------------------|--|
| Normal Mode     | $T_{nom} / V_{min-max}$   | 18.51                                  | 15.13                                                |  |
| High Speed mode | $T_{nom}$ / $V_{min-max}$ | 22.95                                  | 15.05                                                |  |

Note: Voltage variation does not affect the radiated signal

© CTC advanced GmbH Page 21 of 51

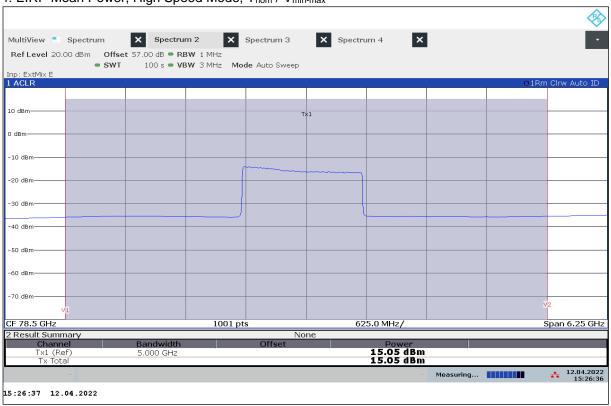


### Plot 1: OBW, EIRP Peak Power, Normal Mode, Tnom / Vmin-max




# Plot 2: EIRP Mean Power, Normal Mode, T<sub>nom</sub> / V<sub>min-max</sub>




© CTC advanced GmbH Page 22 of 51







# Plot 4: EIRP Mean Power, High Speed Mode, $T_{\text{nom}}\,/\,V_{\text{min-max}}$



© CTC advanced GmbH Page 23 of 51



# 12.2 Modulation characteristics

# **Description:**

§2.1047 (d) Other types of equipment. A curve or equivalent data which shows that the equipment will meet the modulation requirements of the rules under which the equipment is to be licensed.

# Comments from manufacturer on modulation characteristics according to KDB:

|                            | Mode 0 (normal)                                  | Mode 2 (High) |  |
|----------------------------|--------------------------------------------------|---------------|--|
| Modulation                 | FMCW                                             | FMCW          |  |
| Sweep Bandwidth            | 3800 MHz                                         | 1267 MHz      |  |
| Sweep rate                 | 66.666 MHz/µs                                    | 22.222 MHz/µs |  |
| Power                      | 100mW                                            | 100mW         |  |
| Duty Cycle*                | 9.6%                                             | 9.6%          |  |
| Cycle Time                 | 50 ms                                            | 50 ms         |  |
| Number of chirps per cycle | 84                                               | 84            |  |
| Pulse repetition time      | 153 – 204 μs                                     | 60 – 80 μs    |  |
| Calibration                | All calibration capabilities of the MMIC enabled |               |  |
| Antenna Beam Steering (Tx) | No beam steering                                 |               |  |

© CTC advanced GmbH Page 24 of 51



# 12.3 Occupied bandwidth

### **Description:**

§2.1049 The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission.

### **Measurement:**

| Parameters            |          |  |  |  |  |
|-----------------------|----------|--|--|--|--|
| Detector:             | Pos-Peak |  |  |  |  |
| Sweep time:           | 100 s    |  |  |  |  |
| Resolution bandwidth: | 1 MHz    |  |  |  |  |
| Video bandwidth:      | 3 MHz    |  |  |  |  |
| Trace-Mode:           | Max Hold |  |  |  |  |

<u>Limits:</u> FCC §95.3379 (b)

| Frequency range | f(lowest) > 76.0 GHz | f(highest) < 81.0 GHz |
|-----------------|----------------------|-----------------------|

### **Measurement results:**

| Modulations / Test conditions |                                         | Operating Frequency Range |                      |           |  |  |
|-------------------------------|-----------------------------------------|---------------------------|----------------------|-----------|--|--|
|                               |                                         | f∟ [GHz]                  | f <sub>H</sub> [GHz] | OBW [GHz] |  |  |
| Normal mode                   | T <sub>nom</sub> / V <sub>min-max</sub> | 77.165 790                | 80.854 510           | 3.69      |  |  |
| High Speed Mode               | T <sub>nom</sub> / V <sub>min-max</sub> | 77.837 800                | 79.076 120           | 1.24      |  |  |

Note: Voltage variation does not affect the radiated signal

For corresponding plots refer to chapter 12.1

© CTC advanced GmbH Page 25 of 51



# 12.4 Band edge compliance

# **Description:**

Investigation of the emission limits at the band edge.

# **Measurement:**

| Parameters            |           |  |  |  |
|-----------------------|-----------|--|--|--|
| Detector:             | RMS       |  |  |  |
| Sweep time:           | See plots |  |  |  |
| Resolution bandwidth: | 1 MHz     |  |  |  |
| Video bandwidth:      | 3 MHz     |  |  |  |
| Trace-Mode:           | Max Hold  |  |  |  |

# Limits:

# FCC §95.3379 (a) (2) (i) + (ii) / ANSI C63.10-2013 / 6.10

| Frequency Range [GHz] | Measurement distance | Power Density                     |
|-----------------------|----------------------|-----------------------------------|
| 40 – 200              | 3.0 m                | 600 pW/cm <sup>2</sup> → -1.7 dBm |

<u>Limits:</u> FCC §95.3379 (b)

| Frequency range | f(lowest) > 76.0 GHz | f(highest) < 81.0 GHz |  |
|-----------------|----------------------|-----------------------|--|
|-----------------|----------------------|-----------------------|--|

# **Measurement results:**

See plots below, 14-15.

© CTC advanced GmbH Page 26 of 51



# 12.5 Field strength of spurious emissions

### **Description:**

The power density of any emissions outside the 76-81 GHz band shall consist solely of spurious emissions and shall not exceed the following:

<u>Limits:</u> FCC §95.3379

FCC

CFR Part 95.3379 (a) (1) / CFR Part 95.3379 (a) (3)

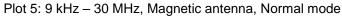
Radiated Spurious Emissions

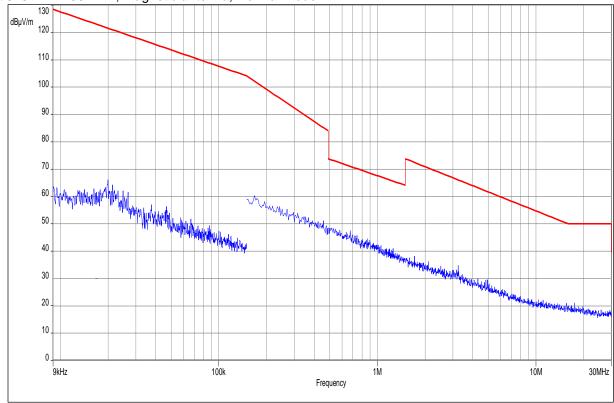
Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.

| Frequency [MHz] | Field Strength [dBµV/m] | Measurement distance |
|-----------------|-------------------------|----------------------|
| 0.009 - 0.490   | 2400/F[kHz]             | 300                  |
| 0.490 – 1.705   | 24000/F[kHz]            | 30                   |
| 1.705 – 30.0    | 30                      | 30                   |
| 30 88           | 30.0                    | 10                   |
| 88 – 216        | 33.5                    | 10                   |
| 216 – 960       | 36.0                    | 10                   |
| 960 – 40 000    | 54.0                    | 3                    |

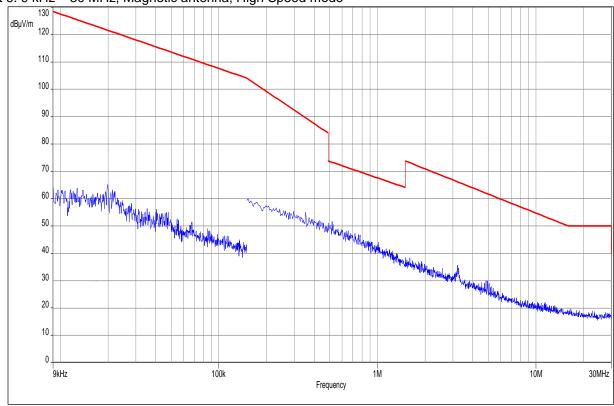
## **Limits:**

FCC §95.3379 (a) (2) (i) + (ii)


| Frequency Range [GHz] | Measurement distance | Power Density                                  |
|-----------------------|----------------------|------------------------------------------------|
| 40 – 200              | 3.0 m                | 600 pW/cm <sup>2</sup> → -1.7 dBm              |
| 200 – 231             | 3.0 m                | 1000 pW/cm <sup>2</sup> $\rightarrow$ +0.5 dBm |


### **Measurement results:**

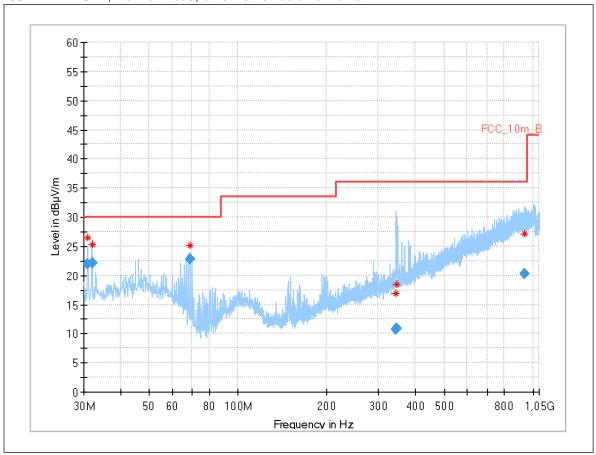
| Frequency in GHz | Detector | Bandwidth<br>[MHz] | Level | Distance [m] | Limit | Margin [dB] |
|------------------|----------|--------------------|-------|--------------|-------|-------------|
| See plots below  |          |                    |       |              |       |             |


© CTC advanced GmbH Page 27 of 51








# Plot 6: 9 kHz - 30 MHz, Magnetic antenna, High Speed mode

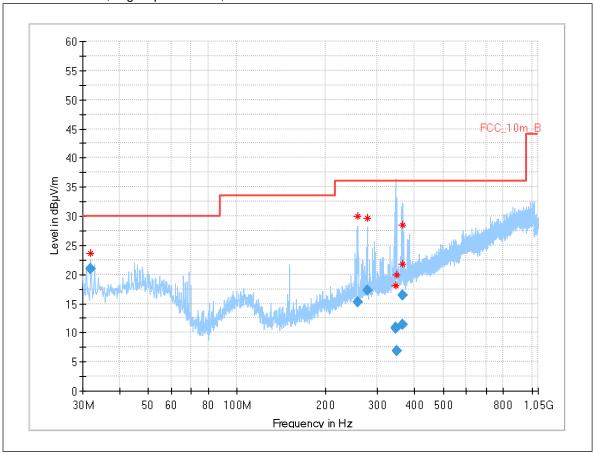


© CTC advanced GmbH Page 28 of 51



Plot 7: 30 MHz – 1 GHz, Normal Mode, antenna vertical / horizontal




Red stars are with peak detector and only informative. Blue diamonds are the right and quasi-peak values.

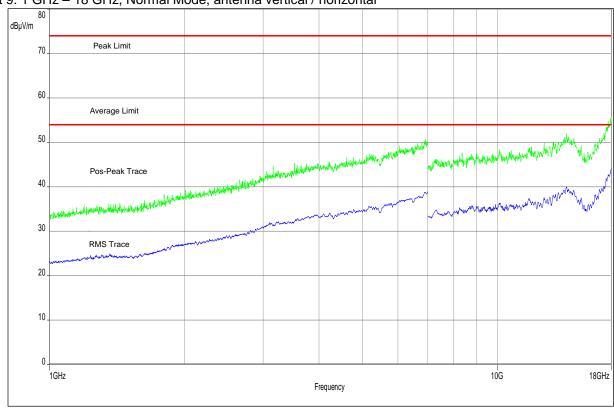
| Frequency<br>(MHz) | QuasiPeak<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Meas. Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Pol | Azimuth (deg) | Corr.<br>(dB/m) |
|--------------------|-----------------------|-------------------|----------------|--------------------|--------------------|----------------|-----|---------------|-----------------|
| 30.981             | 22.02                 | 30.0              | 8.0            | 1000               | 120.0              | 103.0          | V   | 226           | 13              |
| 32.012             | 22.04                 | 30.0              | 8.0            | 1000               | 120.0              | 106.0          | V   | 340           | 13              |
| 68.983             | 22.83                 | 30.0              | 7.2            | 1000               | 120.0              | 281.0          | V   | 270           | 10              |
| 344.109            | 10.81                 | 36.0              | 25.2           | 1000               | 120.0              | 175.0          | V   | 270           | 17              |
| 345.610            | 10.95                 | 36.0              | 25.1           | 1000               | 120.0              | 389.0          | V   | 0             | 17              |
| 934.781            | 20.31                 | 36.0              | 15.7           | 1000               | 120.0              | 248.0          | V   | -11           | 26              |

© CTC advanced GmbH Page 29 of 51

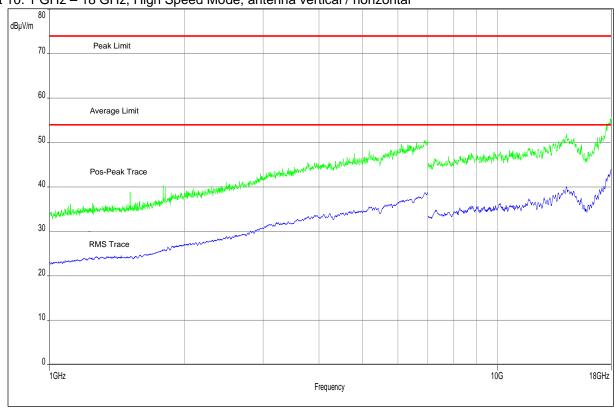


Plot 8: 30 MHz - 1 GHz, High Speed Mode, antenna vertical / horizontal




Red stars are with peak detector and only informative. Blue diamonds are the right and quasi-peak values.

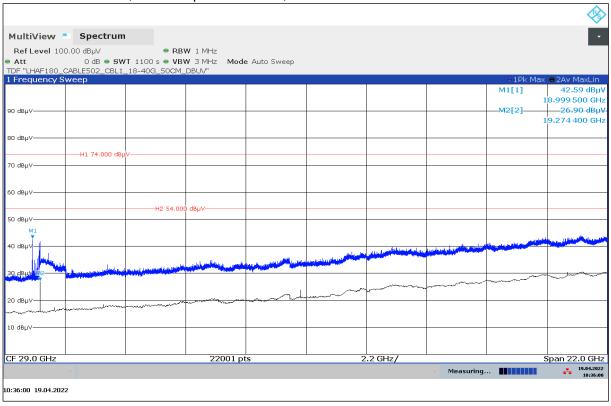
| Frequency<br>(MHz) | QuasiPeak<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Meas. Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Pol | Azimuth (deg) | Corr.<br>(dB/m) |
|--------------------|-----------------------|-------------------|----------------|--------------------|--------------------|----------------|-----|---------------|-----------------|
| 31.987             | 20.95                 | 30.0              | 9.1            | 1000               | 120.0              | 109.0          | V   | 188           | 13              |
| 255.881            | 15.31                 | 36.0              | 20.7           | 1000               | 120.0              | 309.0          | V   | 30            | 14              |
| 276.212            | 17.32                 | 36.0              | 18.7           | 1000               | 120.0              | 200.0          | V   | -45           | 15              |
| 344.282            | 10.83                 | 36.0              | 25.2           | 1000               | 120.0              | 187.0          | V   | 180           | 17              |
| 345.407            | 10.76                 | 36.0              | 25.2           | 1000               | 120.0              | 185.0          | V   | 215           | 17              |
| 347.729            | 6.95                  | 36.0              | 29.1           | 1000               | 120.0              | 200.0          | V   | -45           | 17              |
| 363.153            | 11.36                 | 36.0              | 24.6           | 1000               | 120.0              | 133.0          | V   | 180           | 17              |
| 363.497            | 16.38                 | 36.0              | 19.6           | 1000               | 120.0              | 103.0          | V   | 200           | 17              |


© CTC advanced GmbH Page 30 of 51

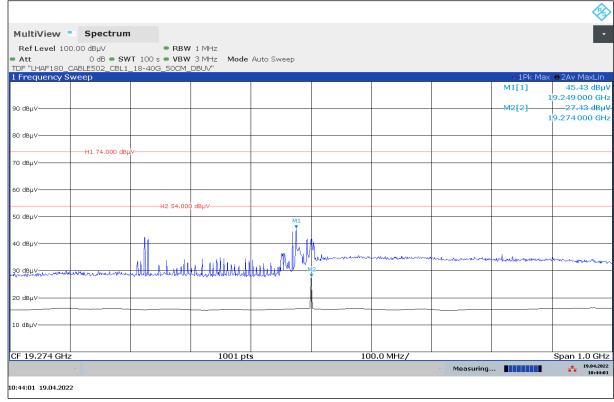


Plot 9: 1 GHz – 18 GHz, Normal Mode, antenna vertical / horizontal




Plot 10: 1 GHz - 18 GHz, High Speed Mode, antenna vertical / horizontal



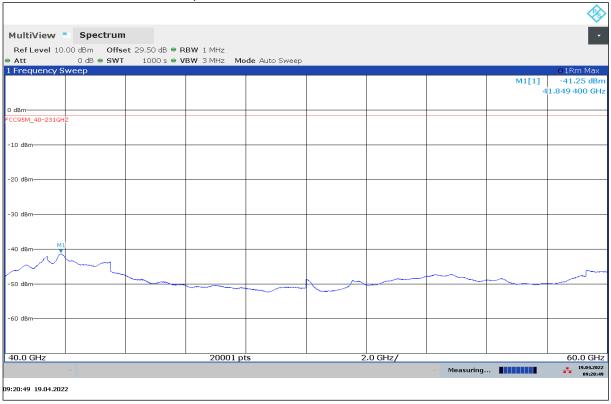

© CTC advanced GmbH Page 31 of 51



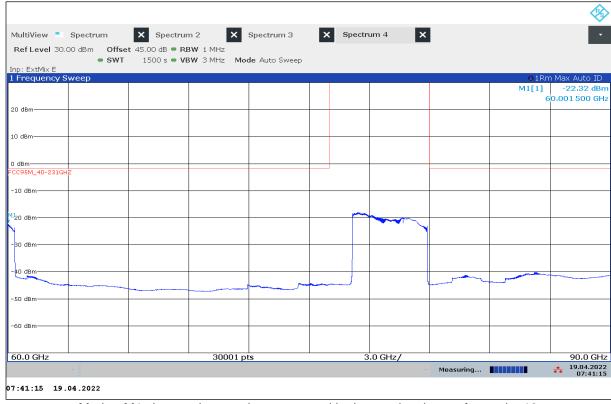
Plot 11: 18 GHz – 40 GHz, valid for specified modes, antenna vertical / horizontal



Plot 12: 19 GHz, valid for specified modes, antenna vertical / horizontal



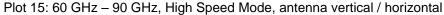

Peak Value: 45.43 dBμV/m (No limit) / Average 27.43 dBμV/m (Limit 54 dBμV/m)


© CTC advanced GmbH Page 32 of 51



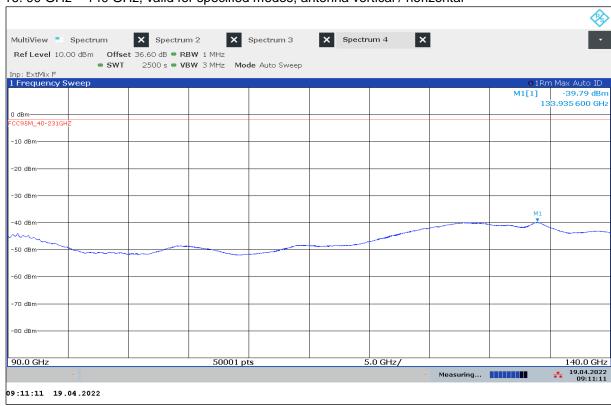
Plot 13: 40 GHz – 60 GHz, valid for specified modes, antenna vertical / horizontal




Plot 14: 60 GHz - 90 GHz, Normal Mode, antenna vertical / horizontal



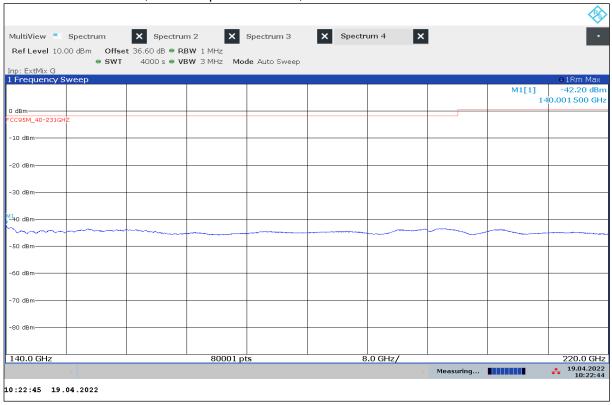

Marker M1 shows mixer product generated by harmonic mixer, refer to plot 13


© CTC advanced GmbH Page 33 of 51

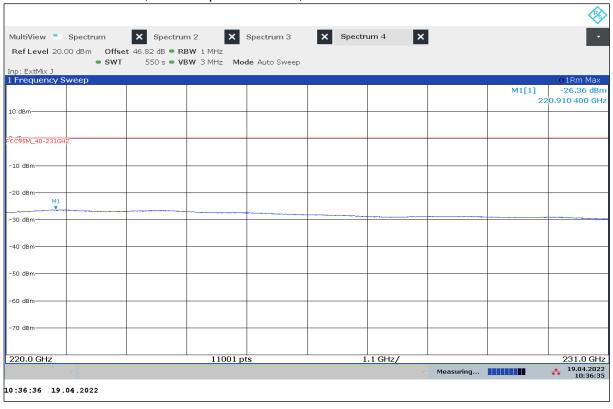







### Plot 16: 90 GHz - 140 GHz, valid for specified modes, antenna vertical / horizontal




© CTC advanced GmbH Page 34 of 51



Plot 17: 140 GHz – 220 GHz, valid for specified modes, antenna vertical / horizontal



Plot 18: 220 GHz - 231 GHz, valid for specified modes, antenna vertical / horizontal



© CTC advanced GmbH Page 35 of 51



# 12.6 Spurious emissions conducted < 30 MHz (AC power line)

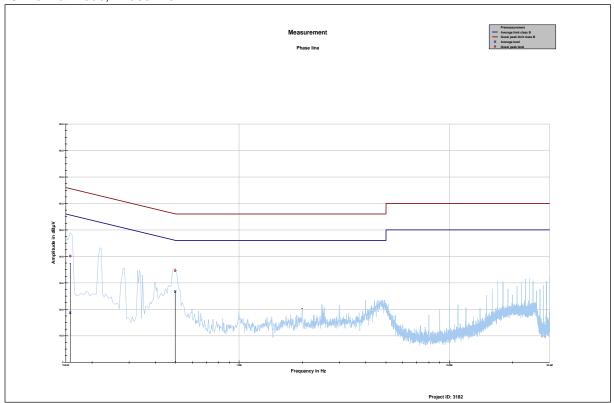
# **Description:**

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. Both power lines, phase and neutral line, are measured. Found peaks are re-measured with average and quasi peak detection to show compliance to the limits.

# **Measurement:**

| Measurement parameter |                                            |  |  |  |  |  |
|-----------------------|--------------------------------------------|--|--|--|--|--|
| Detector:             | Peak - Quasi Peak / Average                |  |  |  |  |  |
| Sweep time:           | Auto                                       |  |  |  |  |  |
| Resolution bandwidth: | F < 150 kHz: 1 kHz<br>F > 150 kHz: 100 kHz |  |  |  |  |  |
| Video bandwidth:      | F < 150 kHz: 200 Hz<br>F > 150 kHz: 9 kHz  |  |  |  |  |  |
| Span:                 | 9 kHz to 30 MHz                            |  |  |  |  |  |
| Trace-Mode:           | Max Hold                                   |  |  |  |  |  |

# **Limits:**


| FCC                     |                     | IC          |                                     |  |
|-------------------------|---------------------|-------------|-------------------------------------|--|
| CFR Part 15.107 / 15.20 | 7(a)                | RSS-Gen 8.8 |                                     |  |
|                         | Emissions < 30 MHz  | 2           |                                     |  |
| Frequency (MHz)         | Quasi-Peal          | k (dBµV/m)  | Average (dBµV/m)                    |  |
| 0.15 – 0.5              | 79 (Cl<br>66 to 56* |             | 66 (Class A)<br>56 to 46* (Class B) |  |
| 0.5 – 5                 | 73 (Cl<br>56 (Cl    |             | 63 (Class A)<br>46 (Class B)        |  |
| 5 – 30.0                | 73 (Cl<br>60 (Cl    |             | 63 (Class A)<br>50 (Class B)        |  |

<sup>\*</sup>Decreases with the logarithm of the frequency

© CTC advanced GmbH Page 36 of 51



Plot 19: Normal Mode, Phase line

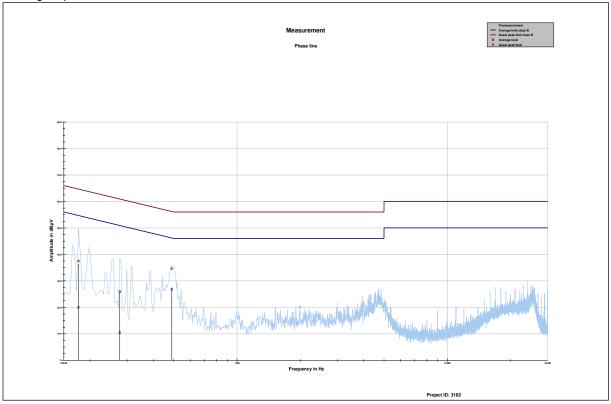


| Frequency | Quasi peak<br>level | Margin quasi<br>peak | Limit QP | Average level | Margin<br>Average | Limit AV |
|-----------|---------------------|----------------------|----------|---------------|-------------------|----------|
| MHz       | dΒμV                | dB                   | dΒμV     | dΒμV          | dB                | dΒμV     |
|           |                     |                      |          |               |                   |          |
| 0.157463  | 40.12               | 25.48                | 65.597   | 18.69         | 37.09             | 55.787   |
| 0.497006  | 34.58               | 21.47                | 56.050   | 26.76         | 19.32             | 46.086   |

© CTC advanced GmbH Page 37 of 51



Plot 20: Normal Mode, Neutral line

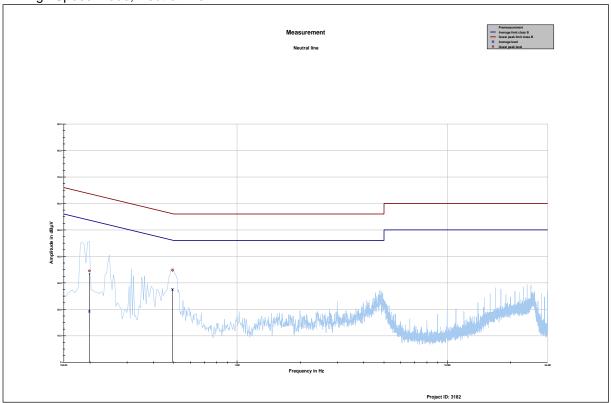



| Frequency | Quasi peak<br>level | Margin quasi<br>peak | Limit QP | Average level | Margin<br>Average | Limit AV |
|-----------|---------------------|----------------------|----------|---------------|-------------------|----------|
| MHz       | dΒμV                | dB                   | dΒμV     | dΒμV          | dB                | dΒμV     |
|           |                     |                      |          |               |                   |          |
| 0.150000  | 40.21               | 25.79                | 66.000   | 19.37         | 36.63             | 56.000   |
| 0.172387  | 37.89               | 26.95                | 64.845   | 19.64         | 35.72             | 55.360   |
| 0.493275  | 34.08               | 22.03                | 56.112   | 26.89         | 19.30             | 46.192   |

© CTC advanced GmbH Page 38 of 51



Plot 21: High Speed Mode, Phase line




| Frequency | Quasi peak<br>level | Margin quasi<br>peak | Limit QP | Average level | Margin<br>Average | Limit AV |
|-----------|---------------------|----------------------|----------|---------------|-------------------|----------|
| MHz       | dΒμV                | dB                   | dΒμV     | dΒμV          | dB                | dΒμV     |
|           |                     |                      |          |               |                   |          |
| 0.176119  | 37.46               | 27.21                | 64.667   | 19.96         | 35.30             | 55.254   |
| 0.276863  | 25.95               | 34.96                | 60.909   | 10.46         | 41.91             | 52.375   |
| 0.489544  | 34.62               | 21.56                | 56.176   | 26.95         | 19.35             | 46.299   |

© CTC advanced GmbH Page 39 of 51



Plot 22: High Speed Mode, Neutral line



| Frequency | Quasi peak<br>level | Margin quasi<br>peak | Limit QP | Average level | Margin<br>Average | Limit AV |
|-----------|---------------------|----------------------|----------|---------------|-------------------|----------|
| MHz       | dΒμV                | dB                   | dΒμV     | dΒμV          | dB                | dΒμV     |
|           |                     |                      |          |               |                   |          |
| 0.198506  | 34.53               | 29.14                | 63.673   | 19.20         | 35.41             | 54.614   |
| 0.493275  | 34.76               | 21.35                | 56.112   | 27.53         | 18.66             | 46.192   |

© CTC advanced GmbH Page 40 of 51



# 12.7 Frequency stability

### **Description:**

§95.3379 (b) Fundamental emissions must be contained within the frequency bands specified in this section during all conditions of operation. Equipment is presumed to operate over the temperature range –20 to +50 degrees Celsius with an input voltage variation of 85% to 115% of rated input voltage, unless justification is presented to demonstrate otherwise.

<u>Limits:</u> FCC §95.3379 (b)

| Frequency | / range | f(lowest) > 76.0 GHz | f(highest) < 81.0 GHz |  |
|-----------|---------|----------------------|-----------------------|--|
|-----------|---------|----------------------|-----------------------|--|

### **Measurement results:**

**Temperature variation** 

| Mode          | Temperature in °C             | f∟ in GHz  | f <sub>H</sub> in GHz | Bandwidth [GHz] |
|---------------|-------------------------------|------------|-----------------------|-----------------|
|               | -40 °C / V <sub>min-max</sub> | 77.166 270 | 80.853 790            | 3.69            |
|               | -30 °C / V <sub>min-max</sub> | 77.165 200 | 80.854 360            | 3.69            |
|               | -20 °C / V <sub>min-max</sub> | 77.165 580 | 80.857 560            | 3.69            |
|               | -10 °C / V <sub>min-max</sub> | 77.166 640 | 80.854 140            | 3.69            |
| Normal Mode   | 0 °C / V <sub>min-max</sub>   | 77.164 160 | 80.853 920            | 3.69            |
| (Worst case)  | 10 °C / V <sub>min-max</sub>  | 77.165 150 | 80.855 770            | 3.69            |
| (vvoisi case) | 20 °C / V <sub>min-max</sub>  | 77.165 790 | 80.854 510            | 3.69            |
|               | 30 °C / V <sub>min-max</sub>  | 77.164 260 | 80.852 060            | 3.69            |
|               | 40 °C / V <sub>min-max</sub>  | 77.164 630 | 80.848 290            | 3.68            |
|               | 50 °C / V <sub>min-max</sub>  | 77.161 820 | 80.853 540            | 3.69            |
|               | 85 °C / V <sub>min-max</sub>  | 77.163 670 | 80.852 690            | 3.69            |

Voltage variation

| Voltage variation of rated input voltage | f∟in GHz                                              | f <sub>H</sub> in GHz         |  |
|------------------------------------------|-------------------------------------------------------|-------------------------------|--|
| < 85 % of U                              | Voltage veriation does n                              | at affect the radiated signal |  |
| > 115 % of U                             | Voltage variation does not affect the radiated signal |                               |  |

© CTC advanced GmbH Page 41 of 51



Plot 23: Normal Mode, OBW, -40 °C / Vmin-max



### Plot 24: Normal Mode, OBW, -30 °C / Vmin-max



© CTC advanced GmbH Page 42 of 51



Plot 25: Normal Mode, OBW, -20 °C / Vmin-max



### Plot 26: Normal Mode, OBW, -10 °C / Vmin-max



© CTC advanced GmbH Page 43 of 51



Plot 27: Normal Mode, OBW, 0 °C / Vmin-max



### Plot 28: Normal Mode, OBW, 10 °C / Vmin-max



© CTC advanced GmbH Page 44 of 51



### Plot 29: Normal Mode, OBW, 20 °C / Vmin-max



### Plot 30: Normal Mode, OBW, 30 °C / Vmin-max

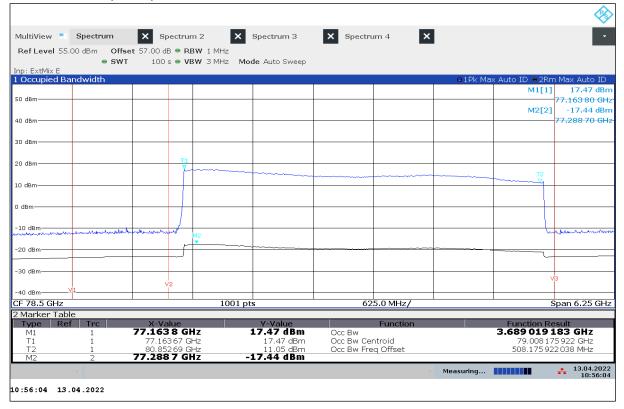


© CTC advanced GmbH Page 45 of 51



Plot 31: Normal Mode, OBW, 40 °C / Vmin-max




### Plot 32: Normal Mode, OBW, 50 °C / Vmin-max



© CTC advanced GmbH Page 46 of 51



# Plot 33: Normal Mode, OBW, 85 °C / Vmin-max



© CTC advanced GmbH Page 47 of 51



# 13 Glossary

| EUT       | Equipment under test                               |
|-----------|----------------------------------------------------|
| DUT       | Device under test                                  |
| UUT       | Unit under test                                    |
| GUE       | GNSS User Equipment                                |
| ETSI      | European Telecommunications Standards Institute    |
| EN        | European Standard                                  |
| FCC       | Federal Communications Commission                  |
| FCC ID    | Company Identifier at FCC                          |
| IC        | Industry Canada                                    |
| PMN       | Product marketing name                             |
| HMN       | Host marketing name                                |
| HVIN      | Hardware version identification number             |
| FVIN      | Firmware version identification number             |
| EMC       | Electromagnetic Compatibility                      |
| HW        | Hardware                                           |
| SW        | Software                                           |
| Inv. No.  | Inventory number                                   |
| S/N or SN | Serial number                                      |
| С         | Compliant                                          |
| NC        | Not compliant                                      |
| NA        | Not applicable                                     |
| NP        | Not performed                                      |
| PP        | Positive peak                                      |
| QP        | Quasi peak                                         |
| AVG       | Average                                            |
| ОС        | Operating channel                                  |
| OCW       | Operating channel bandwidth                        |
| OBW       | Occupied bandwidth                                 |
| ООВ       | Out of band                                        |
| DFS       | Dynamic frequency selection                        |
| CAC       | Channel availability check                         |
| OP        | Occupancy period                                   |
| NOP       | Non occupancy period                               |
| DC        | Duty cycle                                         |
| PER       | Packet error rate                                  |
| CW        | Clean wave                                         |
| MC        | Modulated carrier                                  |
| WLAN      | Wireless local area network                        |
| RLAN      | Radio local area network                           |
| DSSS      | Dynamic sequence spread spectrum                   |
| OFDM      | Orthogonal frequency division multiplexing         |
| FHSS      | Frequency hopping spread spectrum                  |
| GNSS      | Global Navigation Satellite System                 |
| C/N₀      | Carrier to noise-density ratio, expressed in dB-Hz |

© CTC advanced GmbH Page 48 of 51



# 14 Document history

| Version | Applied changes         | Date of release |
|---------|-------------------------|-----------------|
| -/-     | Initial release - DRAFT | 2022-08-17      |
|         | Initial release         | 2022-08-17      |

# 15 Accreditation Certificate - D-PL-12076-01-05

| first page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | last page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Deutsche Akkreditierungsstelle  Deutsche Akkreditierungsstelle GmbH  Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition  Accreditation  The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory  CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken  is competent under the terms of DIN EN ISO/IEC 17025:2018 to carry out tests in the following fields:  Telecommunication (FCC Requirements)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Deutsche Akkreditierungsstelle GmbH  Office Berlin Spittelmarkt 10 Europa-Allee 52 Bundesallee 100 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig  The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DAKS). Exempted is the unchanged form of separate disseminations of the cover shee by the confirmity assessment body mentioned overleaf.  No impression shall be made that the accreditation also extends to fields beyond the scope of                                                                                                                                                                                                                                                                                                                                                                                         |
| The accreditation certificate shall only apply in connection with the notice of accreditation of 09.05.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 05 pages.  Registration number of the certificate: D-PL-12076-01-05  Frankfurt am Main, 09.06.2020  The certificate ingether with its owner reflects the sistus at the time of the date of issue. The current status of the scape of accorditation can be found in the distalbase of accorditation for the following and the distalbase of accorditation can be found in the distalbase of accorditation for the following and the distalbase of accorditation can be found in the distalbase of accorditation for the following and the distalbase of accorditation follows. The current status of the scape of accorditation can be found in the distalbase of accorditation follows. The current status of the scape of accorditation can be found in the distalbase of accorditation follows. | accreditation attested by DAKAS.  The accreditation was granted pursuant to the Act on the Accreditation Body (A&AS:telleG) of 31 July 2009 (federal Law Gazette 1p. 2652) and the Regulation (IEC) No 765/2008 of the European Parliament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products Official Journal of the European Into 12.128 of 9 July 2008, 8:00, DAKS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA), International Accreditation Formul (EA) and International Laboratory Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations.  The up-to-date state of membership can be retrieved from the following websites:  EA: "www.european-accreditation.org ILAC: www.ilac.org IAF: www.ilac.org |

Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-05.pdf https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-05e.pdf

or

https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-05\_TCB\_USA.pdf

© CTC advanced GmbH Page 49 of 51



© CTC advanced GmbH Page 50 of 51



#### 16 **Annex A Customer Declaration on Electrically Identical Models**



ifm efector gmbh · Postfach 12 62 · 88061 Tettnang · Germany

ifm efector gmbh

ifm-Straße 1 88069 Tettnang Germany Phone +49 7542 518-0 Telefax +49 7542 518-1290 E-mail info@ifm.com Internet www.ifm.com

# Declaration on Electrically Identical Models

We, ifm efector gmbh, declare on our sole responsibility the following family of radar devices to be identical in hardware and software part concerning the transmitter of the device that effect the radio frequency emissions:

R2D200, R2D210, R2D201, working in the frequency band 77  $\dots$  81 GHz

The only differences between the models within this family are the backend hardware with its specific software for communication via different protocols, output drivers and error management:

- · R2D200 and R2D210 are identical in hardware, backend software is different for different radar raw data evaluation and communication via IO Link
- R2D201 with different backend hardware and different backend software for radar raw data evaluation and communication via CAN J1939

The radar frontend component which transmits the radio frequency is the same within the family cited above (same material number).

We attest that above differences are not relevant for any RF behaviour subject to regulatory items.

Place and date: Tettuang , 22.06. 2012

Michael Hamma (Technical Manager) Name:

Headquarters in Tettnang Germany · Commercial Register: HR B 730516 jurisdiction Ulm · Tax ID no. 61019 / 06173 · VAT ID no. DE 29 3030 896 Managing Directors: Peter Klein, Michael Paintner, Klaus Unger Deutsche Bank AG, Essen · bank code no. 360 700 50 · account no. 120 341 300 · BIC: DEUT DE DE XXX · IBAN: DE95 3607 0050 0120 3413 00

© CTC advanced GmbH Page 51 of 51