

TEST REPORT

BNetzA-CAB-02/21-102

Test report no.: 1-9604/19-01-04-A

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075

Internet: http://www.ctcadvanced.com
e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.

Applicant

Rosemount Tank Radar AB

Layoutvägen 1 P O Box 150

435 33 Mölnlycke / SWEDEN Phone: +46 31 3370 0000 Contact: Terese Ekebrand

e-mail: <u>Terese.Ekebrand@Emerson.com</u>

Phone: -/-

Manufacturer

Rosemount Tank Radar AB

P O Box 150 Layoutvägen 1 435 33 Mölnlycke / SWEDEN

Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 – Radio frequency devices

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: 77-81 GHz tank level probing radar Model name: Rosemount 1408 Level Transmitter

FCC ID: K8C1408L

Frequency: 77 – 81 GHz
Technology tested: FMCW radar
Antenna: Lens antenna

Power supply: 24 V (min. 18 to max. 30 V DC)

Temperature range: -40° to +80°

Lab Manager

Radio Communications

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:	
p.o.		
Karsten Geraldy	Thomas Vogler	

Lab Manager

Radio Communications

Table of contents

1	Table o	of contents	.2
2	Genera	ll information	.3
	2.1 2.2 2.3	Notes and disclaimerApplication details	.3
3	Test st	andard/s, references and accreditations	_4
4	Test er	nvironment	. 5
5	Test ite	em	.5
	5.1 5.2	General description	
6	Seque	nce of testing	.6
	6.1 6.2 6.3 6.4 6.5	Sequence of testing radiated spurious 9 kHz to 30 MHz Sequence of testing radiated spurious 30 MHz to 1 GHz Sequence of testing radiated spurious 1 GHz to 18 GHz Sequence of testing radiated spurious above 18 GHz Sequence of testing radiated spurious above 50 GHz with external mixers	
7	Descri	ption of the test setup	11
	7.1 7.2 7.3	Radiated measurements fully anechoic chamber	13
8	Measu	rement uncertainty	14
9	Summ	ary of measurement results	15
10	Tes	t results	16
	10.1 10.2	Unwanted emissions limit (transmitter)	
11	Glo	ssary	24
12	Doc	cument history	25
13	Acc	reditation Certificate – D-PL-12076-01-03Fehler! Textmarke nicht definie	rt
14	Acc	reditation Certificate – D-PL-12076-01-04Fehler! Textmarke nicht definie	rt
15	Acc	reditation Certificate – D-PL-12076-01-05	25

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-9604/19-01-04 and dated 2020-04-30.

2.2 Application details

Date of receipt of order: 2019-11-27
Date of receipt of test item: 2020-03-02
Start of test: 2020-03-03
End of test: 2020-03-10
Person(s) present during the test: Mr. Jan Westerling

2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 3 of 25

3 Test standard/s, references and accreditations

Test standard	Date	Description
47 CFR Part 15	2017-10	Title 47 of the Code of Federal Regulations; Chapter I; Part 15 – Radio frequency devices
890966 D01 v01r01	2014-09	Measurement Procedure for Level Probing Radars

Reference	Version	Description
		American national standard for methods of measurement of radio-
ANSI C63.4-2014	-/-	noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013 -/-		American national standard of procedures for compliance testing of unlicensed wireless devices

Accreditation	Description		
D-PL-12076-01-04	Telecommunication and EMC Canada https://www.dakks.de/as/ast/d/D-PL-12076-01-04.pdf	INC. MRA	Deutsche Akkreditierungsstelle D-PL-12076-01-04
D-PL-12076-01-05	Telecommunication FCC requirements https://www.dakks.de/as/ast/d/D-PL-12076-01-05.pdf	lac mvA	Deutsche Akkreditierungsstelle D-PI-12076-01-05

© CTC advanced GmbH Page 4 of 25

4 Test environment

Temperature	:	T _{nom} T _{max} T _{min}	+20 °C during room temperature tests +50 °C during high temperature tests -20 °C during low temperature tests			
Relative humidity content	:		45 %			
Barometric pressure	:		1020 hpa			
		V_{nom}	24 V DC			
Power supply	:	V_{max}	30 V DC			
		V_{min}	18 V DC			

5 Test item

5.1 General description

Kind of test item	:	77-81 GHz tank level probing radar
Model name	:	Rosemount 1408 Level Transmitter
S/N serial number		14
Hardware status		DP3A
Software status		N/A
Firmware status		1.A1
Frequency band	:	77 - 81 GHz
Type of modulation		FMCW
Number of channels		1
Antenna		Lens antenna
Power supply	:	24 V (18 – 30 V DC)
Temperature range	:	-40° to +80°

5.2 Additional information

The TLPR works with a maximum output power < 5 dBm with an antenna gain of 24 dBi.

The maximum EIRP therefore is < 29 dBm.

The receiver interferer level is -47.5 dBm as calculated by the manufacturer.

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-9604/19-01-01_AnnexA

1-9604/19-01-01_AnnexB

1-9604/19-01-01_AnnexE

© CTC advanced GmbH Page 5 of 25

6 Sequence of testing

6.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 6 of 25

^{*)}Note: The sequence will be repeated three times with different EUT orientations.

6.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 7 of 25

6.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 8 of 25

6.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 9 of 25

6.5 Sequence of testing radiated spurious above 50 GHz with external mixers

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate for far field (e.g. 0.25 m).
- The EUT is set into operation.

Premeasurement

- The test antenna with external mixer is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.
- Caution is taken to reduce the possible overloading of the external mixer.

Final measurement

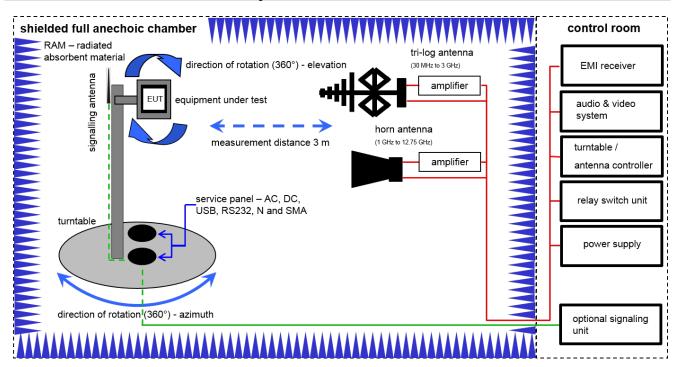
- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- As external mixers may generate false images care is taken to ensure that any emission measured by the spectrum analyzer does indeed originate in the EUT. Signal identification feature of spectrum analyzer is used to eliminate false mixer images (i.e., it is not the fundamental emission or a harmonic falling precisely at the measured frequency).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 10 of 25

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

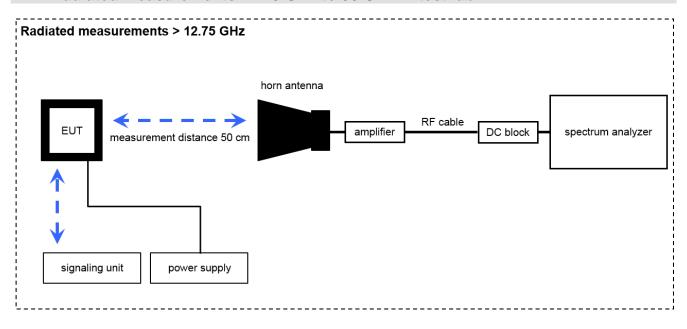
In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).


Agenda: Kind of Calibration

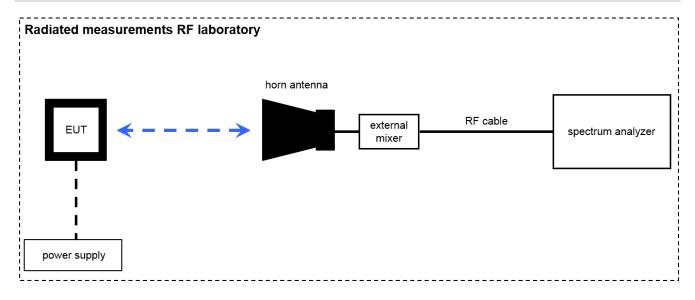
k ne	calibration / calibrated not required (k, ev, izw, zw not required)	EK zw	limited calibration cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 11 of 25

7.1 Radiated measurements fully anechoic chamber


Equipment table (Chamber C):

No.	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	vIKI!	12.12.2017	11.12.2020
2	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vIKI!	13.06.2019	12.06.2021
3	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
4	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3697	300001605	vIKI!	27.12.2019	26.02.2021
5	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
6	Variable isolating transformer	MPL IEC625 Bus Variable isolating transformer	Erfi	91350	300001155	ne	-/-	-/-
7	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	11.12.2019	10.12.2020
8	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
9	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
10	Broadband Amplifier 5-13 GHz	CBLU5135235	CERNEX	22010	300004491	ev	-/-	-/-
11	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
12	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO		300004682	ne	-/-	-/-
13	PC	ExOne	F+W		300004703	ne	-/-	-/-
14	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011572	300005241	ev	-/-	-/-
15	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	01029	300005379	vIKI!	07.04.2017	06.04.2020


© CTC advanced GmbH Page 12 of 25

7.2 Radiated measurements 12.75 GHz to 50 GHz in test lab

7.3 Radiated measurements > 50 GHz in test lab

© CTC advanced GmbH Page 13 of 25

Equipment table (radiated measurements in test lab):

No.	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Std. Gain Horn Antenna 49.9-75.8 GHz	2524-20	Flann	*	300001983	ne	-/-	-/-
2	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda	01096	300000486	vlKI!	21.01.2020	20.01.2022
3	Std. Gain Horn Antenna 26.5-40.0 GHz	V637	Narda	82-16	300000510	vIKI!	23.01.2020	22.01.2022
4	Std. Gain Horn Antenna 33.0-50.1 GHz	2324-20	Flann	57	400000683	ne	-/-	-/-
5	Std. Gain Horn Antenna 73.8-112 GHz	2724-20	Flann	*	300001988	ne	-/-	-/-
6	Std. Gain Horn Antenna 114-173 GHz	2924-20	Flann	*	300001999	ne	-/-	-/-
7	Harmonic Mixer 3- Port, 75-110 GHz	FS-Z110	R&S	101411	300004959	k	08.05.2019	07.05.2020
8	Harmonic Mixer 3- Port, 110-170 GHz	FS-Z170	Radiometer Physics GmbH	100014	300004156	k	09.05.2019	08.05.2020
9	DC Power Supply, 60V, 10A	6038A	HP	2933A08295	300001519	vIKI!	12.12.2017	11.12.2020
10	Signal- and Spectrum Analyzer 2 Hz - 85 GHz	FSW85	Rohde & Schwarz	101333	300005568	k	29.05.2019	28.05.2020
11	Harmonic Mixer 3- Port, 50-75 GHz	FS-Z75	Rohde & Schwarz	101578	300005788	k	29.05.2019	28.05.2020
12	Broadband LNA 18- 50 GHz	CBL18503070PN	CERNEX	25240	300004948	ev	09.03.2020	08.03.2022

8 Measurement uncertainty

Measurement uncertainty					
Test case Uncertainty					
Spectrum bandwidth	span/1000				
Conducted output power	± 3 dB				
Spurious emissions radiated below 30 MHz	± 3 dB				
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB				
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB				
Spurious emissions radiated above 12.75 GHz	± 4.5 dB				
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB				

© CTC advanced GmbH Page 14 of 25

9 Summary of measurement results

⊠	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC identifier	C identifier Description		date	Remark
RF-Testing	47 CFR Part 15	see below	2023-01-25	-/-

Test Specification Clause	Test Case	Temperature Conditions	Power Source Voltages	С	NC	NA	NP	Results
§15.209	Radiated emissions limits, general requirements	Nominal	Nominal	\boxtimes				complies
§15.109	Radiated emissions limits	Nominal	Nominal	\boxtimes				complies
§15.107/207	Conducted limits	Nominal	Nominal					complies
_								

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

© CTC advanced GmbH Page 15 of 25

10 Test results

10.1 Unwanted emissions limit (transmitter)

Description:

§15.209

(a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table below.

Measurement parameters:

Resolution bandwidth: 100 kHz / 1 MHz

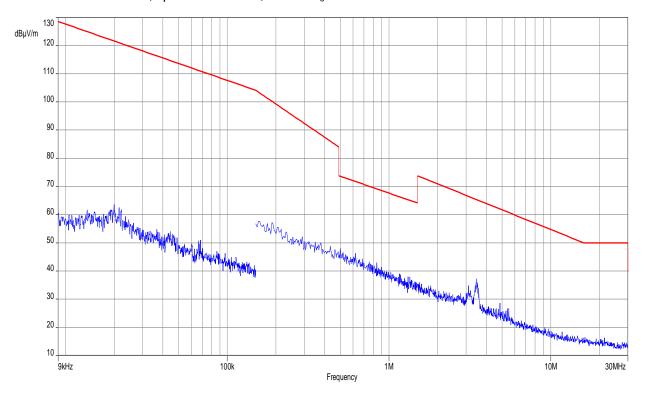
Video bandwidth: ≥ resolution bandwidth

Detector: Quasi Peak / Average (RMS)

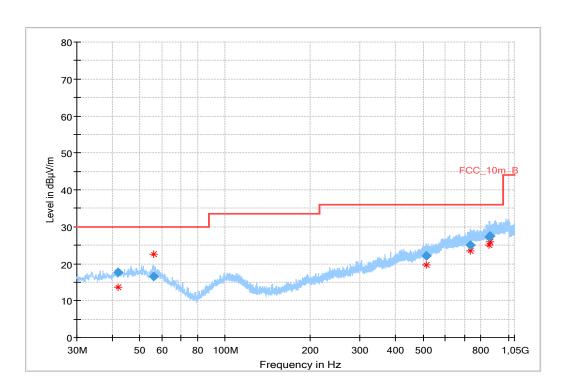
Trace: Max hold

Limits:

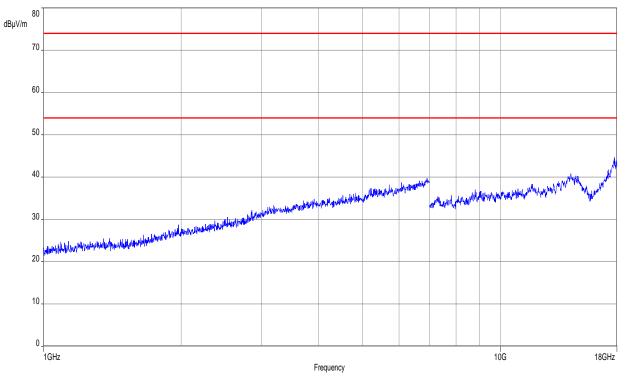
FCC §15.209					
Fic	Field strength of the harmonics and spurious.				
Frequency (MHz)	Frequency (MHz) Field strength (µV/m) Measurement distance (m)				
0.009 - 0.490	2400/F(kHz)	300			
0.490 – 1.705	24000/F(kHz)	30			
1.705 – 30	30 (29.5 dBμV/m)	30			
30 – 88	100 (40 dBμV/m)	3			
88 – 216	150 (43.5 dBμV/m)	3			
216 – 960	200 (46 dBμV/m)	3			
>960	500 (54 dBμV/m)	3			

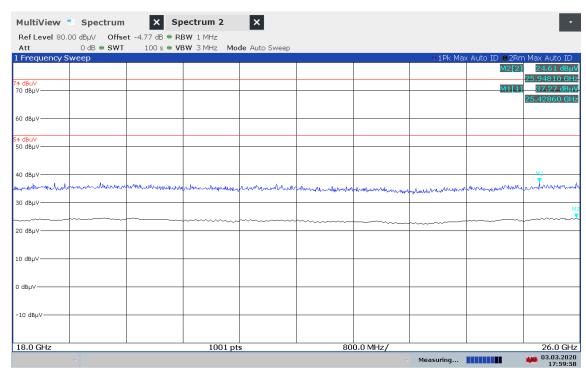

Results:

	Spurious emission level (dBm)							
	Spurious emission level (ubili)							
	-/-		-/-			-/-		
Frequency	BW	Level	Frequency	BW	Level	Frequency	BW	Level
[GHz]	[kHz]	[dBm]	[GHz]	[kHz]	[dBm]	[GHz]	[kHz]	[dBm]
	see plots							
				-				


© CTC advanced GmbH Page 16 of 25

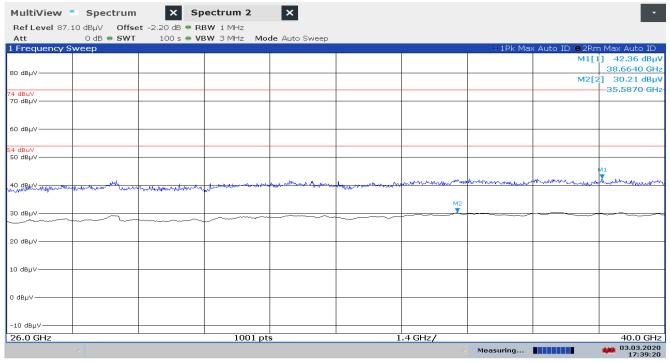
Plot 1: 9 kHz - 30 MHz, special test mode, $f_{low}/f_{mid}/f_{high}$


Plot 2: 30 MHz - 1000 MHz, special test mode, flow/fmid/fhigh


© CTC advanced GmbH Page 17 of 25

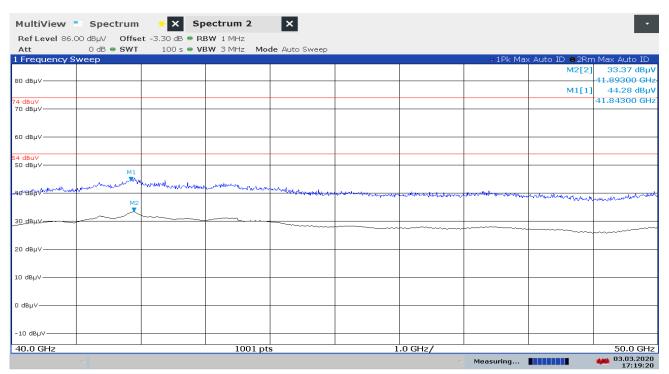
Plot 3: 1 GHz - 18 GHz, PEAK measurement, special test mode, $f_{low}/f_{mid}/f_{high}$

Plot 4: 18 GHz - 26 GHz, PEAK/RMS-measurement, flow/fmid/fhigh



17:59:59 03.03.2020

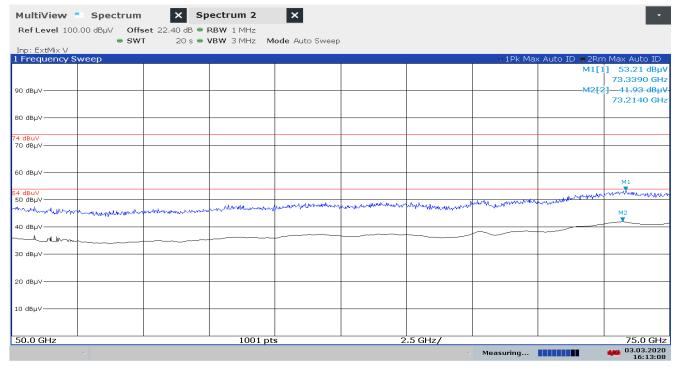
© CTC advanced GmbH Page 18 of 25



Plot 5: 26 GHz - 40 GHz, PEAK/RMS-measurement, flow/fmid/fhigh

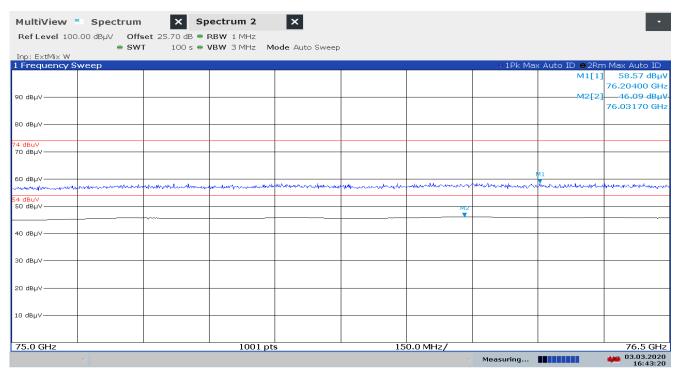
17:39:20 03.03.2020

Plot 6: 40 GHz - 50 GHz, PEAK/RMS-measurement, flow/fmid/fhigh



17:19:20 03.03.2020

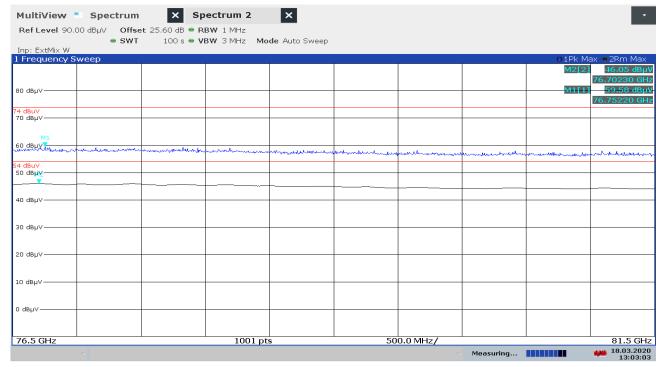
© CTC advanced GmbH Page 19 of 25



Plot 7: 50 GHz - 75 GHz, PEAK/RMS-measurement, $f_{low}/f_{mid}/f_{high}$

16:13:08 03.03.2020

Plot 8: 75 GHz - 76.5 GHz, PEAK/RMS-measurement, flow/fmid/fhigh



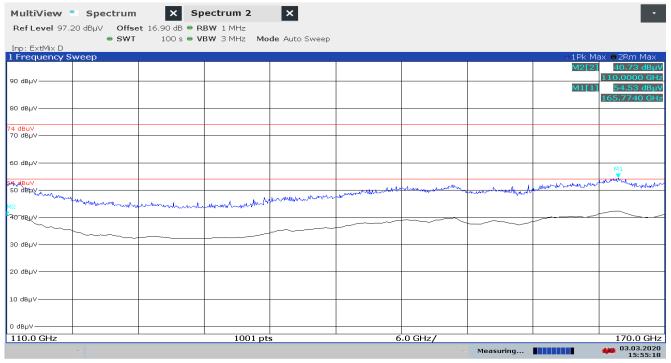
16:43:21 03.03.2020

© CTC advanced GmbH Page 20 of 25

Plot 9: 76.5 GHz - 81.5 GHz, PEAK/RMS-measurement, $f_{low}/f_{mid}/f_{high}$

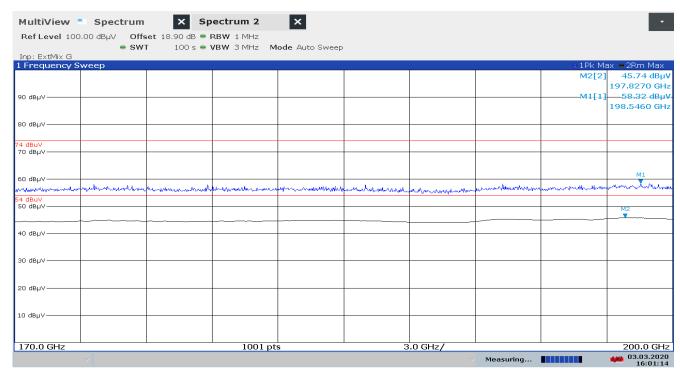
13:03:03 18.03.2020

Plot 10: 81.5 GHz - 110 GHz, PEAK/RMS-measurement, flow/fmid/fhigh



15:43:53 03.03.2020

© CTC advanced GmbH Page 21 of 25



Plot 11: 110 GHz - 170 GHz, PEAK/RMS-measurement, $f_{low}/f_{mid}/f_{high}$

15:55:19 03.03.2020

Plot 12: 170 GHz - 200 GHz, PEAK/RMS-measurement, flow/fmid/fhigh

16:01:14 03.03.2020

© CTC advanced GmbH Page 22 of 25

10.2 Unwanted emission limits (receiver)

Description:

§15.109

(a) Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values shown in table below.

Measurement:

Measurement parameter		
Detector:	Quasi Peak / Average (RMS)	
Sweep time:	Auto	
Resolution bandwidth:	100 kHz / 1 MHz	
Video bandwidth:	> RBW	
Trace-Mode:	Max-Hold	

Limits:

FCC §15.109					
Fi	Field strength of the harmonics and spurious.				
Frequency (MHz) Field strength (µV/m) Measurement distance					
30 – 88	100 (40 dBμV/m)	3			
88 – 216	150 (43.5 dBµV/m)	3			
216 – 960	200 (46 dBμV/m)	3			
>960	500 (54 dBµV/m)	3			

Results:

See 10.1 Test results

Unwanted emissions limit (transmitter).

© CTC advanced GmbH Page 23 of 25

11 Glossary

EUT	Equipment under test			
DUT	Device under test			
UUT	Unit under test			
GUE	GNSS User Equipment			
ETSI	European Telecommunications Standards Institute			
EN				
	FCC Federal Communications Commission			
FCC ID Company Identifier at FCC				
IC Industry Canada				
PMN Product marketing name				
HMN	Host marketing name			
HVIN	Hardware version identification number			
FVIN	Firmware version identification number			
EMC	Electromagnetic Compatibility			
HW	Hardware			
SW	Software			
Inv. No.	Inventory number			
S/N or SN	Serial number			
С	Compliant			
NC	Not compliant			
NA	Not applicable			
NP Not performed				
PP Positive peak				
QP	Quasi peak			
AVG Average				
ОС	Operating channel			
OCW	Operating channel bandwidth			
OBW	Occupied bandwidth			
ООВ	Out of band			
DFS	Dynamic frequency selection			
CAC	Channel availability check			
OP	Occupancy period			
NOP	Non occupancy period			
DC	Duty cycle			
PER Packet error rate				
CW Clean wave				
MC Modulated carrier				
WLAN Wireless local area network				
RLAN Radio local area network				
DSSS Dynamic sequence spread spectrum				
OFDM Orthogonal frequency division multiplexing				
FHSS Frequency hopping spread spectrum				
GNSS	ů ,			
C/N₀	Carrier to noise-density ratio, expressed in dB-Hz			

© CTC advanced GmbH Page 24 of 25

12 Document history

Version	Applied changes	Date of release
-/-	Draft	2020-04-30
	Initial release	2020-04-30
А	FCC ID changed	2023-01-25

13 Accreditation Certificate - D-PL-12076-01-05

first page	last page
Dakks Deutsche Akkreditierungsstelle Deutsche Akkreditierungsstelle GmbH	Deutsche Akkreditierungsstelle GmbH
Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation	Office Berlin Office Frankfurt am Main Office Braunschweig Spittelmarkt 10 Europa-Allee 52 Bundesallee 100 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig
The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025-2005 to carry out tests in the following fields: Telecommunication (FCC Requirements)	
	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkrediterungsstelle GmbH (DAMSS). Exempted is the unchanged form of separate dissemination of the cover sheet by the confirminy assessment body mentioned overlead. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attended by DAMS. The accreditation was granted pursuant to the Act on the Accreditation Body (AAMSSelleG) of 31 July 2009 (Federal Law Gazette I e. 2625) and the Regulation (EC) No 765/2008 of the European Ratiament and of the Council of 3 July 2008 setting out the requirements for accreditation and market; surveillance relating
The accreditation certificate shall only apply in connection with the notice of accreditation of 11.01.2019 with the accreditation number D-PL-12076-01 and is valid until 21.04.2021. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 5 pages.	to the marketing of products (Official Journal of the European Union 1, 218 of 9 July 2008, p. 30). DARKS is a signatory to the Multilateral Agreements for Murual Recognition of the European co-operation for Accreditation (EA), international Laboratory Accreditation (EA) and international Laboratory Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.usrc.org. ILAC: www.lat.org. IAF: www.lat.org.
Registration number of the certificate: D-PL-12076-01-05 Frankfurt am Main, 11.01.2019 pat late: Uses commentation flead of Division	

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-05.pdf