

procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.

Test standard/s

88069 Tettnang / GERMANY

FCC - Title 47 CFR Part 15FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio
frequency devicesRSS - 247 Issue 2Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and

Licence - Exempt Local Area Network (LE-LAN) Devices

For further applied test standards please refer to section 3 of this test report.

Test Item					
Kind of test item:	RFID UHF compact unit				
Model name:	DTE904				
FCC ID:	UN6-DTRUHFA01				
IC:	6799A-DTRUHFA01				
Frequency:	DTS band 902 MHz to 928 MHz				
Technology tested:	RFID				
Antenna:	Integrated antenna				
Power supply:	24.0 V DC by external power supply				
Temperature range:	-20°C to +60°C				

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Andreas Luckenbill	
Head of Department	
Radio Communications	

Test performed:

Michael Dorongovski Lab Manager Radio Communications

1 Table of contents

1	Table of contents						
2	Genera	l information	3				
	2.2	Notes and disclaimer Application details Fest laboratories sub-contracted	3				
3	Test sta	andard/s, references and accreditations	4				
4	Reporti	ng statements of conformity – decision rule	. 5				
5	Test en	vironment	. 6				
6	Test ite	m	. 6				
		General description Additional information					
7	Sequer	ce of testing	. 7				
	7.2 \$	Sequence of testing radiated spurious 9 kHz to 30 MHz Sequence of testing radiated spurious 30 MHz to 1 GHz Sequence of testing radiated spurious 1 GHz to 10 GHz	8				
8	Descrip	tion of the test setup	10				
	8.2	Shielded semi anechoic chamber Shielded fully anechoic chamber Conducted measurements system	13				
9	Measu	rement uncertainty	15				
10	Su	mmary of measurement results	16				
	10.1	Additional comments	17				
11	Ме	asurement results	18				
	11.1 11.2 11.3	Antenna gain Carrier Frequency Separation Number of Hopping Channels	19				
	11.4	Average Time of Occupancy (dwell time)					
	11.5 11.6 11.7	Spectrum bandwidth of a FHSS system Maximum Output Power Detailed spurious emissions @ the band edge – conducted and radiated	26				
	11.8 11.9	Spurious Emissions Conducted Spurious Emissions Radiated < 30 MHz	30 31				
_	11.10	Spurious Emissions Radiated > 30 MHz					
12		ossary					
13		cument history					
14		creditation Certificate – D-PL-12076-01-04					
15	5 Accreditation Certificate – D-PL-12076-01-05 46						

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-0597/20-03-02-A and dated 2021-03-17.

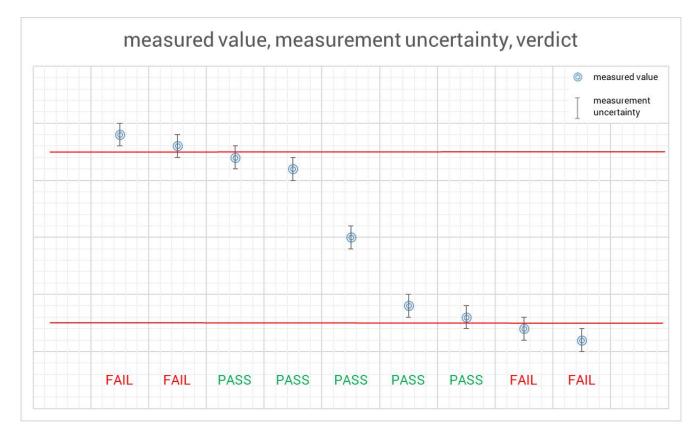
2.2 Application details

Date of receipt of order:	2020-07-16
Date of receipt of test item:	2020-06-02
Start of test:	2020-06-02
End of test:	2020-07-20
Person(s) present during the test:	-/-

2.3 Test laboratories sub-contracted

None

3 Test standard/s, references and accreditations


Test standard	Date	Description			
FCC - Title 47 CFR Part 15		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices			
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices			
RSS - Gen Issue 5 incl. Amendment 1	March 2019	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus			
Guidance	Version	Description			
KDB 558074 D01 ANSI C63.4-2014 ANSI C63.10-2013	v05r02 -/- -/-	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices			
Accreditation	Description	n			
D-PL-12076-01-04		ecommunication and EMC Canada s://www.dakks.de/as/ast/d/D-PL-12076-01-04e.pdf			
D-PL-12076-01-05		Telecommunication FCC requirements https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf			

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

5 Test environment

Temperature	:	T _{nom} T _{max} T _{min}	+22 °C during room temperature tests No tests under extreme environmental conditions required. No tests under extreme environmental conditions required.
Relative humidity content	:		55 %
Barometric pressure	:		1021 hpa
		V _{nom}	24.0 V DC by external power supply
Power supply	:	V_{max}	No tests under extreme environmental conditions required.
		V_{min}	No tests under extreme environmental conditions required.

6 Test item

6.1 General description

Kind of test item :	RFID UHF compact unit		
Model name :	DTE904		
HMN :	-/-		
PMN :	DTE90x (TR10)		
HVIN :	DTE904		
FVIN :	-/-		
S/N serial number :	Rad. MAC address: 00:02:01:41:60:FF		
S/N Senai humber	Cond. MAC address: 00:02:01:41:7F:13		
Hardware status :	version 2		
Software status :	E3.3.99		
Firmware status :	-/-		
Frequency band :	DTS band 902 MHz to 928 MHz		
Type of radio transmission :	FHSS		
Use of frequency spectrum :			
Type of modulation :	PR-ASK		
Number of channels :	50		
Antenna :	Integrated antenna		
Power supply :	24.0 V DC by external power supply		
Temperature range :	-20°C to +60°C		

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report:

1-0597/20-03-01_AnnexA 1-0597/20-03-01_AnnexD

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.3 Sequence of testing radiated spurious 1 GHz to 10 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

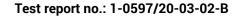
Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

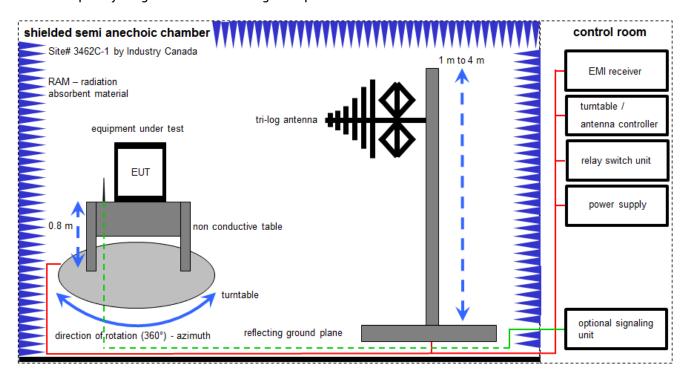
8 Description of the test setup


Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated


- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

CTC | advanced

Measurement distance: tri-log antenna 10 meter; EMC32 software version: 10.30.0

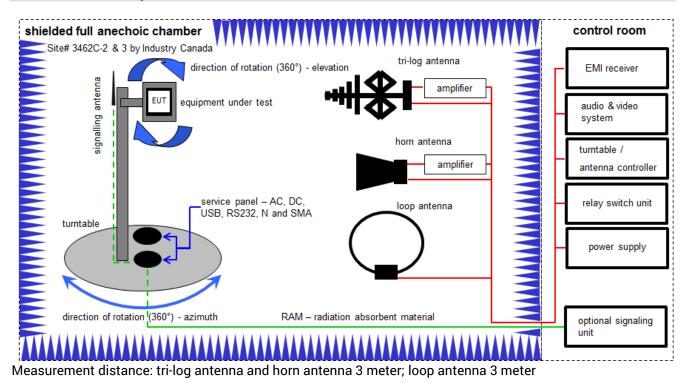
FS = UR + CL + AF

8.1

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS [dBµV/m] = 12.35 [dBµV/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dBµV/m] (35.69 µV/m)

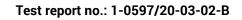

Equipment table:

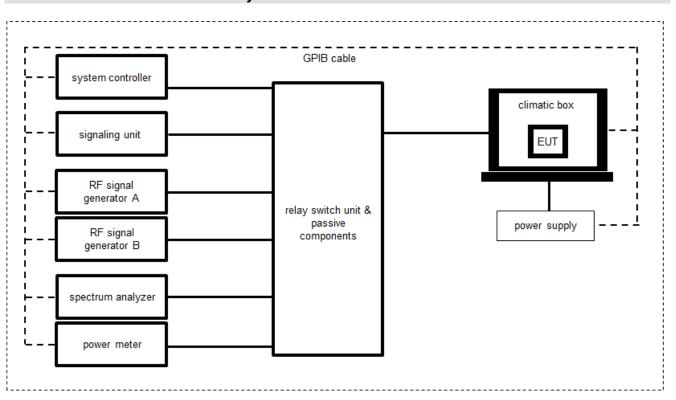
No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	Meßkabine 1	HF-Absorberhalle	MWB AG 300023	-/-	300000551	ne	-/-	-/-
3	А	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	vlKl!	17.01.2020	16.01.2022
4	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
5	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
6	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-

7	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	295	300003787	vlKI!	19.02.2019	18.02.2021
8	А	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	21.05.2019	20.11.2020
9	А	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04466	300000580	ne	-/-	-/-

8.2 Shielded fully anechoic chamber

FS = UR + CA + AF (FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)


<u>Example calculation</u>: FS [dBµV/m] = 40.0 [dBµV/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dBµV/m] (71.61 µV/m)


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	В	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vlKl!	13.06.2019	12.06.2021
2	A, B	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	А	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3697	300001605	vlKl!	27.02.2019	26.02.2021
4	А, В	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
5	А, В	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	11.12.2019	10.12.2020
6	Α	Highpass Filter	WHK1.1/15G-10SS	Wainwright	3	300003255	ev	-/-	-/-
7	Α	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
8	А	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
9	А, В	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
10	А, В	NEXIO EMV- Software	BAT EMC V3.19.1.9	EMCO	-/-	300004682	ne	-/-	-/-
11	A, B	PC	ExOne	F+W	-/-	300004703	ne	-/-	-/-
12	А	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011572	300005241	ev	-/-	-/-
13	А, В	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	vlKI!	12.12.2017	11.12.2020

CTC || advanced

member of RWTÜV group

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	PC Laboratory 19"	Exone i3	Fröhlich + Walter	35230157A037 0	300004646	ne	-/-	-/-
2	Α	Spectrum Analyzer	FSV30	Rohde & Schwarz	103170	300004855	vlKI!	11.12.2018	10.12.2020
3	А	USB-GPIB-Interface	82357B	Agilent Technologies	MY54323070	300004852	ne	-/-	-/-
4	Α	Power Supply DC	HMP2020	Rohde & Schwarz	102123	300005235	vlKI!	11.12.2018	10.12.2020
5	А	Relay Switch Matrix	RSM-1	CTC advanced GmbH	0001	400001355	ev	07.01.2020	06.01.2021
6	А	Tester Software RadioStar (C.BER2 for BT Conformance)	Version 1.0.0.X	CTC advanced GmbH	0001	400001380	ne	-/-	-/-

8.3 Conducted measurements system

CTC I advanced

9 Measurement uncertainty

Measurement uncertainty							
Test case	Uncertainty						
Antenna gain	± 3 dB						
Carrier frequency separation	± 21.5 kHz						
Number of hopping channels	-/-						
Spectrum bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative						
Maximum output power	± 1 dB						
Detailed conducted spurious emissions @ the band edge	± 1 dB						
Band edge compliance radiated	± 3 dB						
Spurious emissions conducted	± 3 dB						
Spurious emissions radiated below 30 MHz	± 3 dB						
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB						
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB						
Spurious emissions radiated above 12.75 GHz	± 4.5 dB						

10 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

CTC I advanced

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS - 247, Issue 2	Passed	2021-03-18	-/-

Test specification clause	Test case	Temperature conditions	Power source voltages	Mode	с	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4 (d)	Antenna gain	Nominal	Nominal	PR-ASK	×				-/-
§15.247(a)(1) RSS - 247 / 5.1 (b)	Carrier frequency separation	Nominal	Nominal	PR-ASK					-/-
§15.247(a)(1) RSS - 247 / 5.1 (d)	Number of hopping channels	Nominal	Nominal	PR-ASK	×				-/-
§15.247(a)(1) (iii) RSS - 247 / 5.1 (d)	Time of occupancy (dwell time)	Nominal	Nominal	PR-ASK					-/-
§15.247(a)(1) RSS - 247 / 5.1 (a)	Spectrum bandwidth of a FHSS system bandwidth	Nominal	Nominal	PR-ASK	×				-/-
§15.247(b)(1) RSS - 247 / 5.4 (b)	Maximum output power	Nominal	Nominal	PR-ASK					-/-
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge - conducted	Nominal	Nominal	PR-ASK	×				-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance radiated	Nominal	Nominal	PR-ASK					-/-
§15.247(d) RSS - 247 / 5.5	Spurious emissions conducted	Nominal	Nominal	PR-ASK	×				-/-
§15.209(a) RSS - Gen	Spurious emissions radiated below 30 MHz	Nominal	Nominal	PR-ASK					-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated 30 MHz to 1 GHz	Nominal	Nominal	PR-ASK					-/-

§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated above 1 GHz	Nominal	Nominal	PR-ASK			-/-
§15.107(a) §15.207	Conducted emissions below 30 MHz (AC conducted)	Nominal	Nominal	-/-			-/-

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

10.1 Additional comments

Reference documents:	1-0597_20-03-02_log1_conducted.pdf Bedienung der Applikation zur Steuerung der DTE904.pdf
Special test descriptions:	The "config_FCC.xml" file was used for all tests.
Configuration descriptions:	All radiated tests were performed without a tag. Additional tests between 1 and 10 GHz were performed with tag in a 20 cm distance to the EUT, as this is defined as the intended use distance of the EUT to a tag by the customer.
Test mode:	Special software is used. EUT is transmitting pseudo random data by itself

11 Measurement results

11.1 Antenna gain

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module.

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	300 kHz		
Video bandwidth	1 MHz		
Span	500 kHz		
Trace mode	Max hold		
	1-0597_20-03-02_log1_conducted.pdf		
External result file	FCC Part 15.247 Maximum Peak Conducted Output		
	Power ~ Generic 0G9 hopp		
Test setup	See chapter 8.1 A (radiated)		
Test setup	See chapter 8.3 A (conducted)		
Measurement uncertainty	See chapter 9		

Limits:

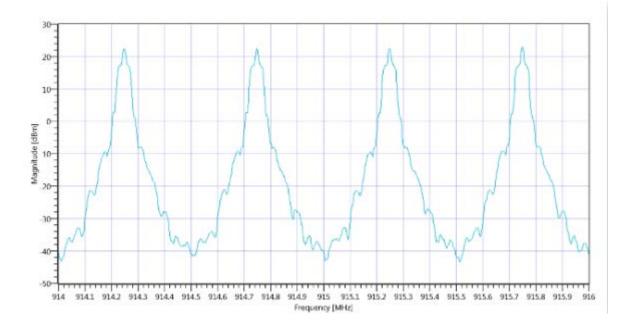
FCC	IC
Antenna gain	
with directional gains that do not exceed 6 dBi. E transmitting antennas of directional gain greater than	aph (b) of this section is based on the use of antennas xcept as shown in paragraph (c) of this section, if a 6 dBi are used, the conducted output power from the d values in paragraphs (b)(1), (b)(2), and (b)(3) of this lirectional gain of the antenna exceeds 6 dBi.

Results:

	Low channel	Middle channel	High channel
Conducted power [dBm]	24.0	23.6	22.7
Radiated power [dBm]	20.5	23.1	19.9
Gain [dBi] Calculated	-3.5	-0.5	-2.8

11.2 Carrier Frequency Separation

Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	10 kHz	
Video bandwidth	30 kHz	
Span	See plots	
Trace mode	Max hold	
Test setup	See chapter 8.3 A	
Measurement uncertainty	See chapter 9	


<u>Limits:</u>

FCC	IC	
Carrier frequency separation		
	e hopping system whichever is greater. The two-thirds of the for the ISM band 2400 – 2483.5 MHz.	

<u>Result:</u> The channel separation is 500 kHz.

Plot:

Plot 1:

11.3 Number of Hopping Channels

Measurement parameters			
	1-0597_20-03-02_log1_conducted.pdf		
External result file	FCC Part 15.247 Number of Hopping channels FHSS		
	~ Generic 0G9 hopp		
Used equipment:	See chapter 8.3 A		
Measurement uncertainty:	See chapter 9		

Limits:

FCC	IC	
Number of hopping channels		
At least 25 non overlapping hopping channels. If the 20 dB system shall use at leas	bandwidth of the hopping channel is less than 250 kHz, the st 50 hopping channels.	

Result: 50 channels, see logfile

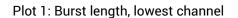
11.4 Average Time of Occupancy (dwell time)

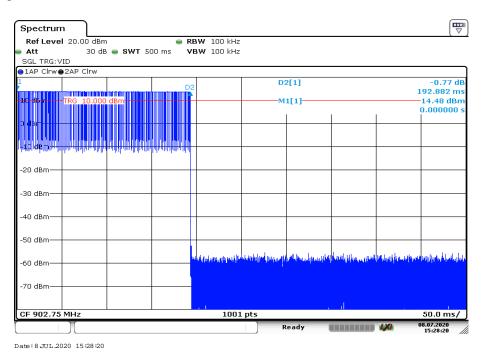
Measurement:

The measurement is performed in zero span mode to show that none of the 50 used channels is allocated more than 0.4 seconds within a 20 seconds interval (50 channels times 0.4s).

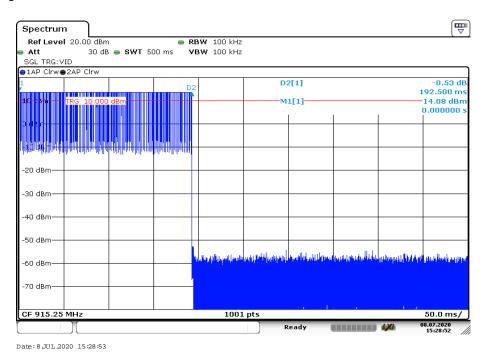
Used equipment:	See chapter 8.3 A
Measurement uncertainty:	See chapter 9

<u>Limits:</u>

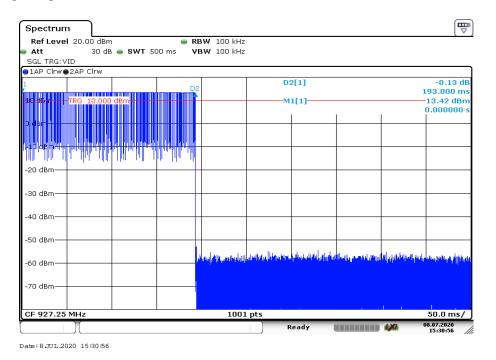

FCC	IC	
Average time of occupancy		
channel is less than 250 kHz, the system shall use at occupancy on any frequency shall not be greater tha bandwidth of the hopping channel is 250 kHz or greater	928 MHz band: If the 20 dB bandwidth of the hopping least 50 hopping frequencies and the average time of an 0.4 seconds within 20 second period; if the 20 dB er, the system shall use at least 25 hopping frequencies shall not be greater than 0.4 seconds within 10 second	


<u>Result:</u> The time slot length is = 193 ms Number of hops / channel @ 20s = 2

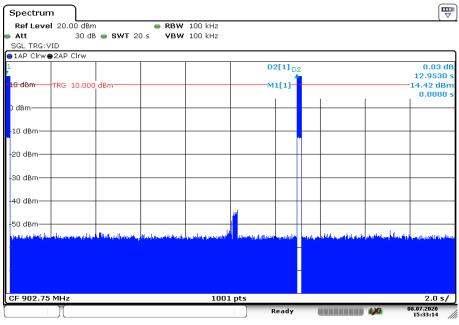
 \rightarrow The average time of occupancy = 386 ms



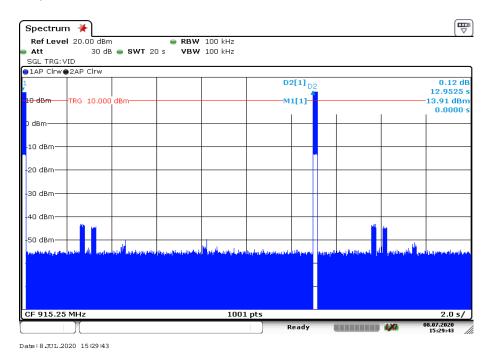
Plots:



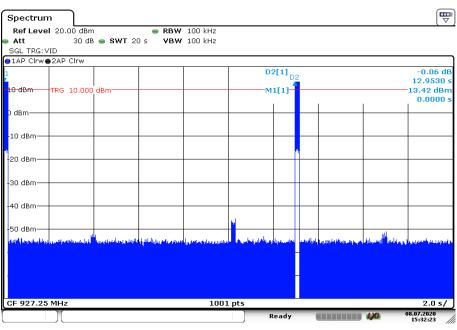
Plot 2: Burst length, middle channel



Plot 3: Burst length, highest channel



Plot 4: Number of hops in 20 seconds, lowest channel


Date:8JUL.2020 15:33:14

Plot 5: Number of hops in 20 seconds, middle channel

Plot 6: Number of hops in 20 seconds, highest channel

Date:8JUL.2020 15:32:23

11.5 Spectrum bandwidth of a FHSS system

Description:

Measurement of the 20dB bandwidth and 99% bandwidth of the modulated signal.

Measurement:

Measurement parameters		
External result file	1-0597_20-03-02_log1_conducted.pdf	
	FCC Part 15.247 Bandwidths ~ Generic 0G9 hopp	
Used equipment:	See chapter 8.3 A	
Measurement uncertainty:	See chapter 9	

Limits:

FCC IC		
Spectrum bandwidth of a FHSS system		
The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.		

Result:

Test Conditions		20dB BANDWIDTH [kHz]		
lest Co	naitions	Low channel Middle channel High channel		High channel
T _{nom}	V _{nom}	48	48	52

Test Conditions		99% BANDWIDTH [kHz]		
1651 60	numons	Low channel Middle channel High channel		High channel
T _{nom}	V _{nom}	61	61	72

CTC I advanced

11.6 Maximum Output Power

Measurement:

Measurement parameter		
	1-0597_20-03-02_log1_conducted.pdf	
External result file	FCC Part 15.247 Maximum Peak Conducted Output	
	Power ~ Generic 0G9 hopp	
Used equipment:	See chapter 8.3 A	
Measurement uncertainty:	See chapter 9	

<u>Limits:</u>

FCC	IC	
Maximum Output Power Conducted		
For frequency hopping systems operating in the 902–928 MHz band: 1 watt (30 dBm) for systems employing at least 50 hopping channels; and, 0.25 watts (24 dBm) for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.		

Result:

Test Conditions		Maximum Output Power Conducted [dBm]		
		Low channel Middle channel High chan		High channel
T _{nom}	V _{nom}	24.0	23.6	22.7

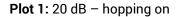
11.7 Detailed spurious emissions @ the band edge - conducted and radiated

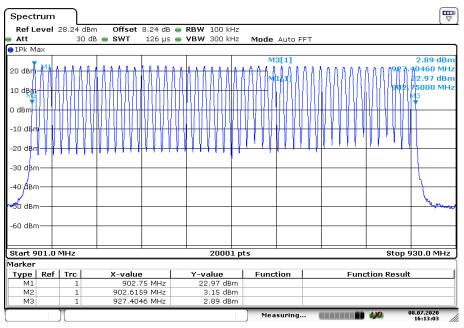
Description:

Measurement of the conducted band edge compliance. EUT is measured at the lower and upper band edge in single channel and hopping mode.

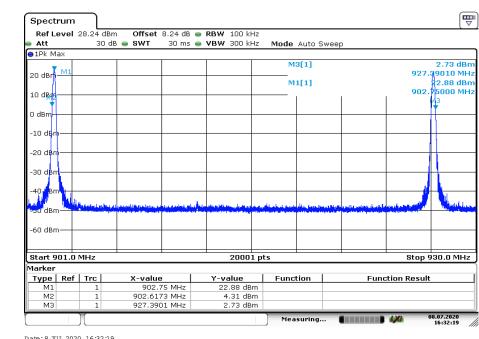
Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	100 kHz	
Video bandwidth	300 kHz / 500 kHz	
Span	Lower Band Edge: 902 MHz Upper Band Edge: 928 MHz	
Trace mode	Max hold	
Test setup	See chapter 8.3 A	
Measurement uncertainty	See chapter 9	

Limits:


FCC	IC	
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below		
that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.		


Results conducted:

Scenario	Spurious band edge conducted [dB]	
Modulation	lowest channel	highest channel
Lower band edge – hopping on	> 20 dB	> 20 dB
Upper band edge – hopping on	> 20 dB	> 20 dB
Lower band edge – hopping off	> 20 dB	> 20 dB
Upper band edge – hopping off	> 20 dB	> 20 dB



Plots:

Date:8.JUL.2020 16:13:03

Plot 2: 20 dB - hopping off

Date:8.JUL.2020 16:32:19

Results radiated:

No restricted band in the range \pm 2 channel bandwidths of the Band-edges of the specified emission band! (608 MHz - 614 MHz and 960 MHz - 1240 MHz).

Section 15.205 Restricted bands of operation.

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

11.8 Spurious Emissions Conducted

Description:

Measurement of the conducted spurious emissions in transmit mode. The EUT is set to single channel mode. The measurement is repeated for low, mid and high channel.

Measurement:

Measurement parameter					
External result file	1-0597_20-03-02_log1_conducted.pdf FCC Part 15.247 TX Spurious Conduced 20 dBc ~ Generic 0G9 hopp				
Used equipment:	See chapter 8.3 A				
Measurement uncertainty:	See chapter 9				

<u>Limits:</u>

FCC	IC
TX spurious emis	ssions conducted
radiator is operating, the radio frequency power that is product that in the 100 kHz bandwidth within the band that contains	hich the spread spectrum or digitally modulated intentional uced by the intentional radiator shall be at least 20 dB below the highest level of the desired power, based on either an RF e general limits specified in Section 15.209(a) is not required

Result:

	Emission Limitation								
Frequency		Amplitude of	Limit max.	actual attenuation	Results				
[MHz]		emission	allowed emission	below frequency of					
		[dBm]	power	operation [dB]					
902.75		22.9	30 dBm		Operating frequency				
No critic	al emissions	detected.	-20 dBc						
915.25 22.6		22.6	30 dBm		Operating frequency				
No critical emissions detected.		-20 dBc							
927.25		22.4	30 dBm		Operating frequency				
No critic	al emissions	detected.	-20 dBc						

11.9 Spurious Emissions Radiated < 30 MHz

Description:

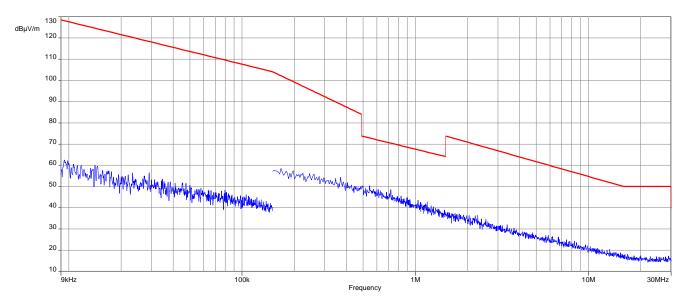
Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit channels are lowest; middle and highest channel. The limits are re-calculated to a measurement distance of 3 m according the ANSI C63.10.

Measurement:

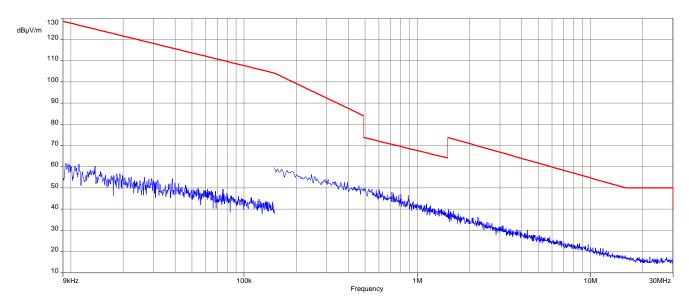
Measurement parameter						
Detector:	Peak / Quasi Peak					
Sweep time:	Auto					
Resolution bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz					
Video bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz					
Span:	9 kHz to 30 MHz					
Trace-Mode:	Max Hold					
Used equipment:	See chapter 8.2 B					
Measurement uncertainty:	See chapter 9					

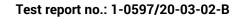
<u>Limits:</u>

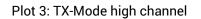
FCC			IC			
	TX spurious emissio	ns radiated < 30 MHz	Z			
Frequency (MHz)	Field streng	th (dBμV/m)	Measurement distance			
0.009 - 0.490	2400/	F(kHz)	300			
0.490 - 1.705	24000/F(kHz)		24000/F(kHz)		30	
1.705 - 30.0	3	0	30			

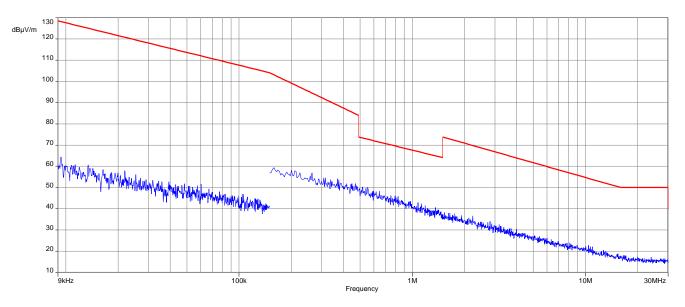

Result:

SPURIOUS EMISSIONS LEVEL [dBµV/m]									
Lowest channel Middle channel Highest channel							nel		
Frequency Level Frequency Level Frequency							Detector	Level [dBµV/m]	
	All emissions were more than 10 dB below the limit.								




Plots:




Plot 1: TX-Mode low channel

Plot 2: TX-Mode mid channel

11.10 Spurious Emissions Radiated > 30 MHz

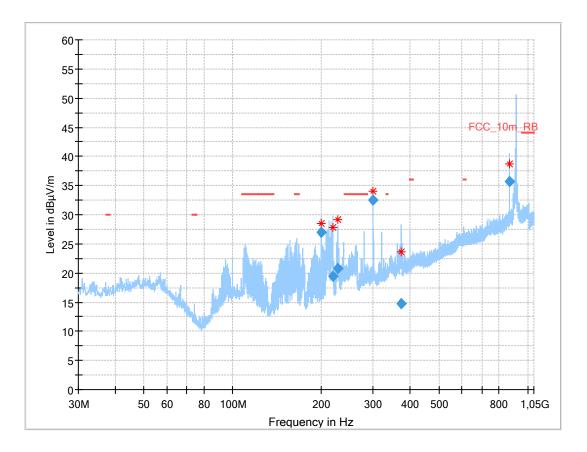
11.10.1 Spurious emissions radiated 30 MHz to 1 GHz

	Measurement parameters					
Detector	Peak / Quasi Peak					
Sweep time	Auto					
Resolution bandwidth	3 x VBW					
Video bandwidth	120 kHz					
Span	30 MHz to 1 GHz					
Trace mode	Max hold					
Measured modulation	PR-ASK					
Test setup	See chapter 8.1 A					
Measurement uncertainty	See chapter 9					

<u>Limits:</u>

FCC	IC

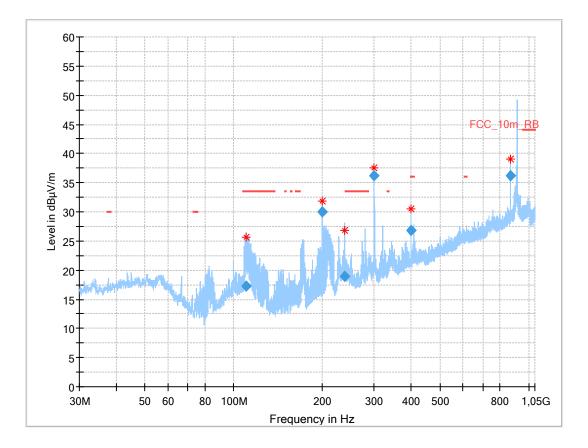
Band-edge Compliance of conducted and radiated emissions


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance
30 - 88	30.0	10
88 – 216	33.5	10
216 - 960	36.0	10
Above 960	54.0	3

Plots:

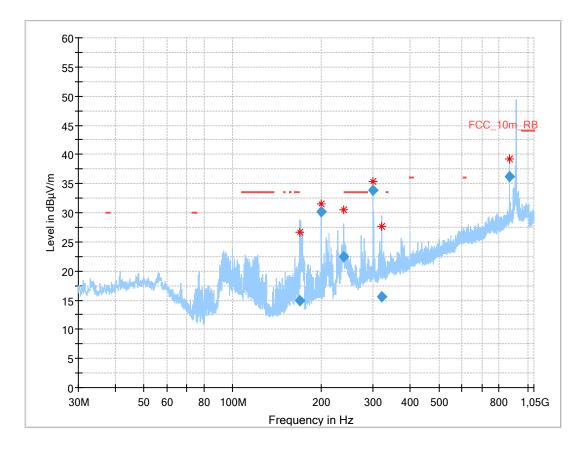
Plot 1: 30 MHz - 1 GHz, horizontal & vertical polarization (lowest channel)



Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
200.003	27.04	33.5	6.5	1000	120.0	100.0	V	315	11
218.216	19.51	36.0	16.5	1000	120.0	136.0	V	-27	12
227.732	20.71	36.0	15.3	1000	120.0	144.0	V	18	12
299.999	32.46	36.0	3.5	1000	120.0	376.0	H	135	14
372.320	14.71	36.0	21.3	1000	120.0	380.0	v	48	16
866.896	35.66	36.0	0.3	1000	120.0	103.0	Н	22	23

Plot 2: 30 MHz – 1 GHz, horizontal & vertical polarization (middle channel)



Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
110.519	17.31	33.5	16.2	1000	120.0	140.0	V	6	12
200.003	29.92	33.5	3.6	1000	120.0	103.0	V	135	11
237.218	18.92	36.0	17.1	1000	120.0	104.0	V	10	13
300.009	36.24	36.0	-0.2	1000	120.0	100.0	V	105	14
399.988	26.76	36.0	9.2	1000	120.0	98.0	V	163	17
865.710	36.20	36.0	-0.2	1000	120.0	104.0	Н	32	23

Plot 3: 30 MHz – 1 GHz, horizontal & vertical polarization (highest channel)

Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
168.655	14.92	33.5	18.6	1000	120.0	194.0	V	37	10
199.993	30.15	33.5	3.4	1000	120.0	103.0	V	339	11
237.256	22.46	36.0	13.5	1000	120.0	104.0	V	207	13
299.993	33.92	36.0	2.1	1000	120.0	103.0	V	45	14
319.956	15.52	36.0	20.5	1000	120.0	103.0	v	198	15
865.699	36.25	36.0	-0.3	1000	120.0	112.0	Н	29	23

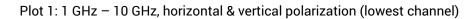
11.10.2 Spurious emissions radiated above 1 GHz

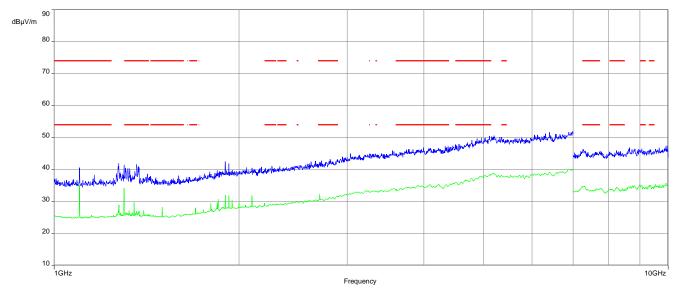
Measurement parameters				
Detector	Peak / RMS			
Sweep time	Auto			
Resolution bandwidth	1 MHz			
Video bandwidth	3 x RBW			
Span	1 GHz to 10 GHz			
Trace mode	Max hold			
Measured modulation	PR-ASK			
Test setup	See chapter 8.2 A (1 GHz – 10 GHz)			
Measurement uncertainty	See chapter 9			

<u>Limits:</u>

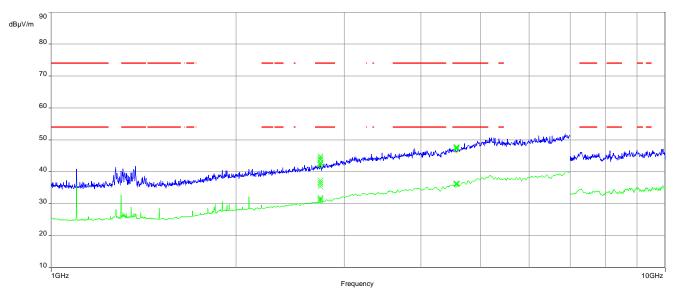
FCC		IC				
	TX spurious em	issions radiated				
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).						
	§15.209					
Frequency (MHz) Field streng		th (dBµV/m)	Measurement distance			
Above 960 54.0 (A		verage)	3			
Above 960 74.0 (Peak)	3			

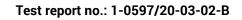
Results: Test setup without tag

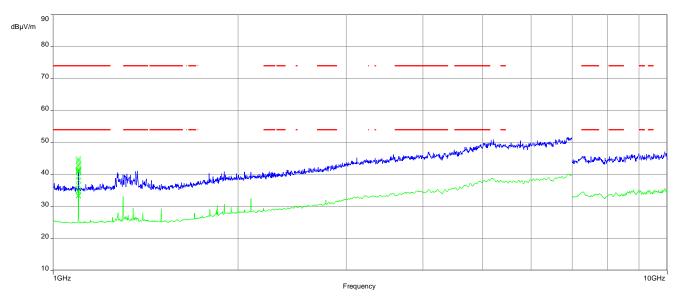

TX spurious emissions radiated [dBµV/m]								
Lowest channel			Middle channel			Highest channel		
902.75 MHz		914.75 MHz			927.25 MHz			
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]
1100	Peak	44.8	1100	Peak	44.8	1100	Peak	44.8
1100	AVG	41.0	1100	AVG	41.0		AVG	41.0
	Peak		2744	Peak	44.9		Peak	
	AVG		2744	AVG	37.3		AVG	
	Peak		4574	Peak	47.7		Peak	
	AVG		4074	AVG	36.3		AVG	


Results: Test setup with tag in a 20 cm distance to the EUT

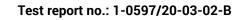
TX spurious emissions radiated [dBµV/m]								
Lowest channel		Middle channel			Highest channel			
902.75 MHz		914.75 MHz		927.25 MHz				
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]
1100	Peak	44.8	1100	Peak	44.8	1100	Peak	44.8
1100	AVG	41.0	1100	AVG	41.0		AVG	41.0
2708	Peak	50.2	2744	Peak	50.9	2781	Peak	51.2
2700	AVG	46.8	2744	AVG	47.7	2701	AVG	47.8
4514	Peak	53.9	4574	Peak	55.5	4636	Peak	54.6
4014	AVG	49.4	4374	AVG	51.8	4030	AVG	50.3


Plots: Test setup without tag

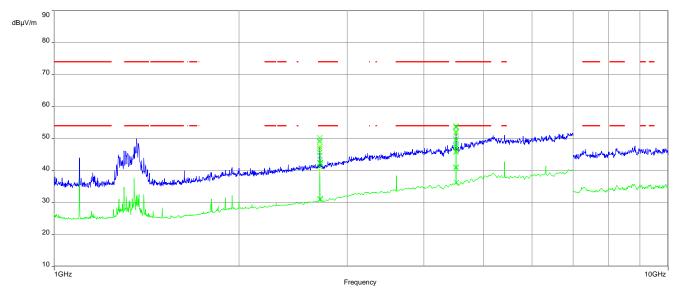



NOTE: Blue = peak trace / Green = AVG trace

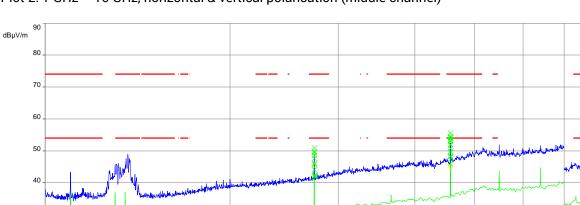
Plot 2: 1 GHz – 10 GHz, horizontal & vertical polarization (middle channel)



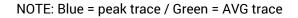
Plot 3: 1 GHz - 10 GHz, horizontal & vertical polarization (highest channel)


NOTE: Blue = peak trace / Green = AVG trace

CTC I advanced

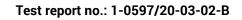


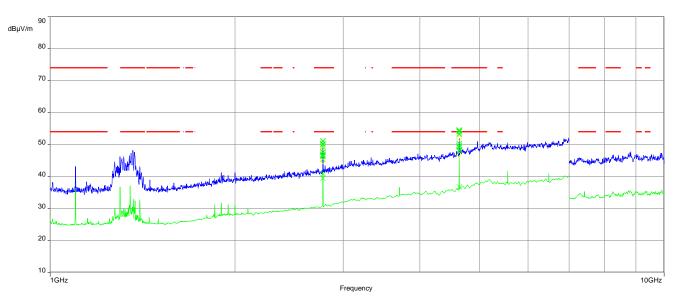
Plots: Test setup with tag in a 20 cm distance to the EUT


Plot 1: 1 GHz - 10 GHz, horizontal & vertical polarisation (lowest channel)

NOTE: Blue = peak trace / Green = AVG trace

Plot 2: 1 GHz – 10 GHz, horizontal & vertical polarisation (middle channel)


Frequency


30

20

10 _____ 1GHz

10GHz

Plot 3: 1 GHz - 10 GHz, horizontal & vertical polarisation (highest channel)

NOTE: Blue = peak trace / Green = AVG trace

CTC I advanced

12 Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
С	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
00	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
OOB	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz

13 Document history

Version	Applied changes	Date of release
-/-	Initial release	2020-12-14
А	Model name, PMN and HVIN changed	2021-03-17
В	HVIN changed	2021-03-18

14 Accreditation Certificate – D-PL-12076-01-04

first page	last page			
Extrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation Exercised Section 8 Subsection 1 AkkStelleG in connection with Section 1 The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken Is competent under the terms of DIN EN ISO/IEC 17025:2018 to carry out tests in the following fields: Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian Standards	Deutsche Akkreditierungsstelle GmbH Office Berlin Spittelmarkt 10 10117 Berlin Office Frankfurt am Main Office Braunschweig Bundesallee 100 98116 Braunschweig			
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 07 pages. Registration number of the certificate: D-PL-12076-01-04 Frankfurt am Main, 09.06.3020 The certificate shall only be obtained the following for the state of the same and Dovision The certificate spectra of the states at the time of the date of issue. The current status of the same of accreditive bodies of Dovision date definition under state of the same of the same of the date of issue. The current status of the same of the date of issue. The current status of the same of the date of date of issue. The current status of the same of the date of dovision of Dovision date date of issue. The current status of the same of the date of date of issue. The current status of the same of the date of dovision of Dovision date date of issue. The current status of the same of the date of dovision of Dovision date date of issue. The current status of the same of the date of dovision of Dovision date date of date of date. The current status of the same of the date of dovision of Dovision date date date date date date date date	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkrediterungsstelle GmbH (DAAKS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAAKS. The accreditation was granted pursuant to the Act on the Accreditation Body (AAKStelleG) of 33 July 2009 [Federal Law Gazette [1, 2:52] and the Regulation (EC) No 755/2008 of the European Tangen Parliament and of the Council of 9 July 2009 setting out the requirements for accreditation market surveillance realing to the marketing of products (Difical Journal of the European Inco. 228 of 9 July 2009, p. 30]. DAAKS is a signatory to the Multilateral Agreements for Autual Recognition of the European Inco. 228 of 9 July CAC, The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: Law www.upcage.accreditation.org LAC: www.upcage.accreditation.org LAC: www.upcage.accreditation.org			

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-04e.pdf

15 Accreditation Certificate – D-PL-12076-01-05

first page	last page
<image/> <image/> <image/> <text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text>	Office Berlin Spitzlemant 10 10117 Berlin Office Frankfurt am Main Europ-Allee S2 00327 Frankfurt am Main Office Braunschweig Bundesallee 100 3010 Braunschweig 3010 Braunschweig
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-PL-12076-01.1t Comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 05 pages. Registration number of the certificate: D-PL-12076-01-05 Frankfurt am Main, 09.06.2020 The certificate together with its onnes reflects the status at the time of the date of asset. The current status of the scope of accreditions can be junct in the database of accredited bodies dablas The certificate can be junct in the database of accredited bodies dablas Inserts works.	The accreditation was granted pursuant to the Act on the Accreditation Body (AddStelleG) of 31.19/2009 (Federal LaW Gazette J. a.2523) and the Regulation (E(X) to 6752008 of the fuctopean Parliament and of the Council of 9.10/2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Lino) ta 238 of 9.10/2008, p.30). DAMAS is a signatory to the Multilateral Agreements for Mutual Receptition of the European co-operation for Accreditation (E(A), International Accreditation formul (AP) and International Laboratory Accreditation Cooperation (L(AC)). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.upogena.ccreditation.org LAC: www.lac.org LAC: www.lac.org

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf