

FCC PART 15.247 TEST REPORT

On Behalf of

Interactive Technologies, Inc 15655 S. Mahaffie Street Olathe, KS 66062 United States

FCC ID: ULP-EFR24CM Model: EFR24CM

April 25, 2024

This Report Concerns:		Equipment Type: EFR32MG21 Compute Module		
Test Engineer:	Charlie He /	Charlie He		
Report Number:	: <u>QCT24BR-1285E-01</u>			
Test Date:	March 28 ~ April 20, 2024			
Reviewed By:	<u>Gordon Tan/</u>	Gurdin. Ton		
Approved By:	Kendy Wang	1 kur us		
Prepared By:	East of 1/F., I Shuiku Road			

Report No.: QCT24BR-1285E

Page 1 of

Table of Contents

1. GEI	JERAL INFORMATION	4
A.1.	Product Description for Equipment under Test (EUT)	4
1.2	System Test Configuration	5
1.3	Test Facility	6
1.4	Measurement Uncertainty	6
2. SUI	IMARY OF TEST RESULTS	7
3. LIS	F OF TEST AND MEASUREMENT INSTRUMENTS	8
3.1	the state of the	
3.2	RF Conducted test	
4. AN	ENNA REQUIREMENT	
	NDUCTED PEAK OUTPUT POWER	
5.1	Applicable Standard	10
5.2	Límit	10
5.3	Test setup	
5.4	Test Data	
6. CH	ANNEL BANDWIDTH & 99% OCCUPIED BANDWIDTH	(A) (S) A
6.1	Applicable Standard	
6.2	Limit	
6.3	Test setup	
	Test Procedure	
6.4	Test Plocedule	
	Test Data	
6.5	Test Data	19 2
6.5	Test Data	
6.5 7. PO	Test Data VER SPECTRAL DENSITY Applicable Standard	
6.5 7. PO 7.1	Test Data VER SPECTRAL DENSITY Applicable Standard Limit	
6.5 7. PO 7.1 7.2	Test Data VER SPECTRAL DENSITY Applicable Standard	32 32 32
6.5 7. PO 7.1 7.2 7.3	Test Data	32 32 32 32 32
6.5 7. POV 7.1 7.2 7.3 7.4 7.5	Test Data	32 32 32 32 32 32
6.5 7. POV 7.1 7.2 7.3 7.4 7.5	Test Data	

Report Number	Description	Issued Date
QCT24BR-1285E-01	Initial Issue	2024 - 4-25
or children or children of the state	a a the state of t	o o te testing the
AND OCTOBER AND OCTOBER	ETTING OF THE FILM OF THE FILM OF OF THE	Ind a contestation
e la la contra c	Starting of the start of the st	a the the const
C C C C C C C C C C C C C C C C C C C		AC CONTRACTOR
THE CONTRACTOR OF THE	ATT IN CONTRACTOR OF CONTRACTO	STING OF TEST
	a the the as a the the as a the the as	of the first and of the first o
A C L L L L C C L L C		o of a the the the
	E BAR O CHE THE O CHE THE OF OCHE	the strand of the strand
State of the state		ochten festilles men och
		A O CHESTING
	HE THE CONTRACT OF THE STREET OF OF THE STREET OF OF	ST. HAR CONTRACTOR
States and States States	E A A A A A A A A A A A A A A A A A A A	o chi ta an a c
the second state of the se		INC C CTESTSTAD
	Charling of the state of the st	CESTING OF CTURE
S STELESTING S STELESTING	Contracting of the state of the	of the first of the of
	The solution of the second sec	
	HE STREE CONTRACTOR OF THE THE OF THE OF THE OF THE T	
or other still the of the still the	a the star of the star of the star	S S A A A A
ALL CONTRACTOR OF ALL AND A ALL AND	<u>e</u> <u>e</u> <u>transfin</u> e <u>e</u> <u>transfine</u> <u>transfine</u> <u>transfine</u> <u>e</u> <u>transfine</u> <u>transfine</u> <u>transfine</u> <u>transfine</u> <u>transfine</u> <u>transfine</u> <u>trans</u>	10 5 6 15 100 100 100 100 100 100 100 100 100

Revision History of This Test Report

Report No.: QCT24BR-1285E-01

1. GENERAL INFORMATION

1.1 Product Description for Equipment under Test (EUT)

EUT Description	EFR32MG21 Compute Module
Model No.	EFR24CM
Tested Model	EFR24CM
Sample(s) Status	Engineer sample
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	40 ° AU STUDIE CONTRACTOR STUDIES CONTRACTOR STUDIE
Channel separation:	2MHz & chi ghi no of chi ghi no of chi ghi a contraction
Modulation type:	GFSK of the state of the state of the state of the state of the
Antenna Type:	PCB antenna Wire antenna Dipole Antenna
Antenna gain ^{*1} :	PCB antenna: 1.44dBi Wire antenna: 0dBi Dipole Antenna: 8dBi
Power supply:	DC 12V 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Trade Mark:	NAC SELECTE STORE CONTRACTOR SECTOR S
Applicant	Interactive Technologies, Inc
Address	15655 S. Mahaffie Street Olathe, KS 66062 United States
Manufacturer	Designs Midwest Hong Kong Limited
Address	Room 2705, Block C, Tiley Central Plaza II, No.3 Haide Road, NanShan District, Shenzhen, Guangdong, China
Sample No.	Y24B1285E01YN

Note: *¹This information provided by Manufacturer, SZ QC Lab is not responsible for the accuracy of this information.

1.2 System Test Configuration

1.2.1 Channel List

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402 MHz	× 110 ×	2422 MHz	21	2442 MHz	31	2462 MHz
62 8	2404 MHz	12	2424 MHz	22	2444 MHz	320	2464 MHz
r 3° 5°	2406 MHz	13 0	2426 MHz	o 23 🖉	2446 MHz	33	2466 MHz
5 M 40 08	2408 MHz	6 14 J	2428 MHz	24	2448 MHz	34	2468 MHz
10 5 M	2410 MHz	15	2430 MHz	25	2450 MHz	° 35° j	2470 MHz
6 6	2412 MHz	o 16 o	2432 MHz	26	2452 MHz	36	2472 MHz
o 7 &	2414 MHz	£ 17 °	2434 MHz	27 5	2454 MHz	37 0	2474 MHz
11° 8° 6'	2416 MHz	18 10	2436 MHz	6 28	2456 MHz	38	2476 MHz
ST 9.0	2418 MHz	o 19° x	2438 MHz	29 0	2458 MHz	39	2478 MHz
10,10	2420 MHz	20	2440 MHz	\$ 30	2460 MHz	40	2480 MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel Start	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

1.2.2 EUT Exercise Software

" sscom5.13.1 " software was used to test, The power level is default. The software and power level was provided by the applicant.

1.2.3 Support Equipment

0	Manufacturer	Description	Model	Serial Number
0	JINGE	Battery	12V/24V	
No. VC		Notebook	Inspiron 15 3511	C C THE KING C

1.2.4 Test mode

Transmitting mode: Keep the EUT in continuously transmitting

Report No.: QCT24BR-1285E-01

Page 5 of 71

1.3 Test Facility

Test Firm : Shenzhen QC Testing Laboratory Co., Ltd.

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19. The testing quality system of our laboratory meets with ISO/IEC-17025 requirements This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

CNAS - Registration No.: L8464

The EMC Laboratory has been accredited by CNAS, and in compliance with ISO/IEC 17025:2017 General Requirements for testing Laboratories.

A2LA Certificate Number: 6759.01

The EMC Laboratory has been accredited by A2LA, and in compliance with ISO/IEC 17025:2017 General Requirements for testing Laboratories.

FCC Registration Number: 561109

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission.

IC Registration Number: 29628

CAB identifier: CN0141

The EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada.

1.4 Measurement Uncertainty

Parameter	Uncertainty
Occupied Channel Bandwidth	±1.42 x10 ⁻⁴ %
RF output power, conducted	±1.06dB
Power Spectral Density, conducted	±1.06dB
Unwanted Emissions, conducted	2.51dB
AC Power Line Conducted Emission	±1.80dB
Radiated Spurious Emission test (9kHz-30MHz)	±2.66dB
Radiated Spurious Emission test (30MHz-1000MHz)	±4.04dB
Radiated Spurious Emission test (1000MHz-18000MHz)	6 6 ±4.70 dB
Radiated Spurious Emission test (18GHz-40GHz)	±4.80dB
Temperature Concernence	±0.8°C
Humidity of stars of the stars of the stars	±3.2%
DC and low frequency voltages	±0.1%
Jime ² M S S A A A S S S A A A A A A A A A A A	±5%
Duty cycle	5 ^M 6 ±5% 6

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

Report No.: QCT24BR-1285E-01

2. Summary of Test Results

Test Item	Section	Result	
Antenna Requirement	FCC part 15.203/15.247 (c)	Pass	
AC Power Line Conducted Emission	FCC part 15.207	STAR N/A	
Conducted Peak Output Power	FCC part 15.247 (b)(3)	Pass	
Channel Bandwidth & 99% Occupied Bandwidth	FCC part 15.247 (a)(2)	Pass	
Power Spectral Density	FCC part 15.247 (e)	Pass	
Band Edge	FCC part 15.247(d)	Pass	
Spurious Emissions	FCC part 15.205/15.209	Pass	

Note: 1. Pass: The EUT complies with the essential requirements in the standard.

2.Test according to ANSI C63.10:2013

3.. All indications of Pass/Fail in this report are opinions expressed by Shenzhen QC Testing Laboratory Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only.

3. List of Test and Measurement Instruments

3.1 Radiated Emission Test

ltem	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due
THE MAN	Spectrum Analyzer	ROHDE&SCHWARZ	FSV 40	101458	2023.04.01	2025.03.31
2.	Loop Antenna	EMCO	6502	2133	2022.07.23	2024.07.22
3.	Logarithmic compound broadband Antenna	SCKWARZBECK	VULB9168	VULB9168-1-588	2023.04.01	2025.03.31
54. m	EMI TEST RECEIVER	ROHDE & SCHWARZ	ESIB 7	2277573376	2023.04.01	2025.03.31
5.0	EMI Test Receiver	R&S	ESPI	101131	2023.04.01	2025.03.31
6.	Horn Antenna	SCHWARZBECK	BBHA9120D	02069	2023.04.01	2025.03.31
THE T	Horn Antenna	COM-MW	ZLB7-18-40G -950	12221225	2023.01.12	2025.01.09
8.	Amplifier Amplifier	R&S	BBV9721	9721-031	2023.04.01	2025.03.31
<u>9</u> .	Amplifier	HPX 5 MPX	BP-01G-18G	210902	2023.04.01	2025.03.31
10.	Pre-amplifier	COM-MW	DLAN-18000 -40000-02	10229104	2023.04.01	2025.03.31
×11.4	966 Chamber	ZhongYu Electron	9*6*6	STAN NO I OF THE	2022.07.25	2025.07.24

3.2 RF Conducted test

ltem	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due
1140 .C	Wideband Radio Communication Tester	Rohde & Schwarz	CW500	151583	2023.03.21	2024.03.20
2.51	Wideband Radio Communication Tester	Rohde & Schwarz	CW500	151583	2024.03.14	2025.03.13
3.	Spectrum Analyzer	ROHDE& SCHWARZ	FSV 40	101458	2023.04.12	2024.04.11
4.	Signal Generator	Agilent	N5182A	MY50141563	2023.03.21	2024.03.20
5.	Signal Generator	Agilent	N5182A	MY50141563	2024.03.14	2025.03.13
6.	RF Automatic Test System	MW S	MW100-RFCB/ MW100-PSB	MW2007004	2023.03.21	2024.03.20
7.00	RF Automatic Test System	MUCH MUCH STREET	MW100-RFCB/ MW100-PSB	MW2007004	2024.03.14	2025.03.13

Report No.: QCT24BR-1285E-01

Page 8 of 71

4. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

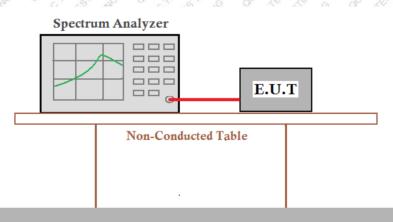
(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna: Reference to the Internal photo for details.

Report No.: QCT24BR-1285E-01

5. Conducted Peak Output Power

5.1 Applicable Standard


FCC Part15 C Section 15.247 (b)(3)

5.2 Limit

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power. The maximum conducted output power is the total transmit power delivered to all antennas and antenna elements, averaged across all symbols in the signalling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or transmitting at a reduced power level. If multiple modes of operation are implemented, the maximum conducted output power is the highest total transmit power occurring in any mode.

5.3 Test setup

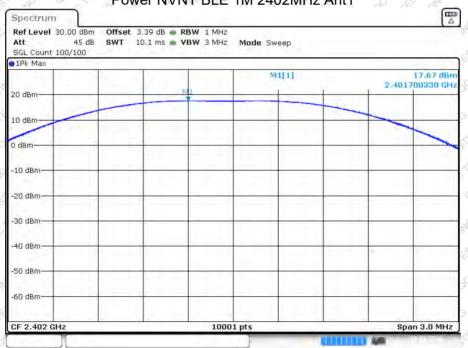
Ground Reference Plane

5.4 Test Data

Temperature	24.9 °C	Humidity	53 %
ATM Pressure	101.1kPa	🖉 Antenna Gain	See page 4
F Test by	Charlie He	Test result	PASS A AND A

Please refer to following table and plots.

Report No.: QCT24BR-1285E-01

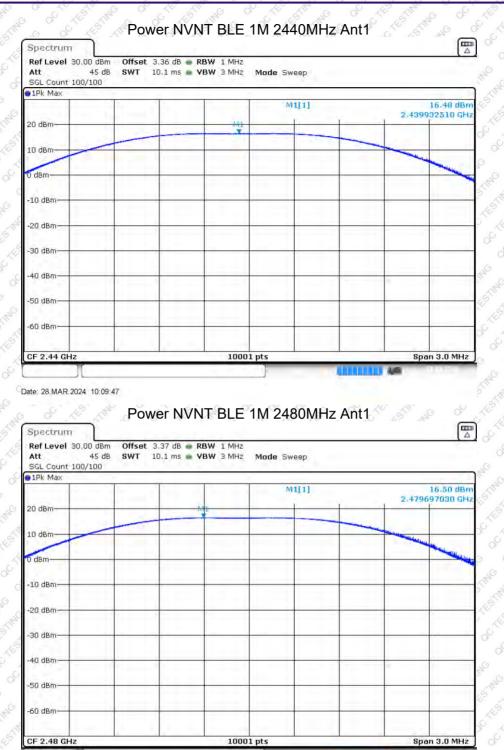

Page 10 of 71

Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
ST CHINA CO	Lowest	17.67	all stilling of	the stand of the
BLE 1M	Middle	16.48	of the the co	a the restingting of a
a the st	Highest	چُر آخر 16.5 م ⁽ الأ	3 OU THE STRATE	of the strady
	Lowest	18.01	INA COLLES	No of the the
BLE 2M	Middle A	16.75	LET IN COLUMN	Still In Contents
E AR O	Highest	16.66	a the still and of	CTRO STRONG CONT
Ser le la	Lowest	18.09 A 5th so 18.09	28 ⁻¹⁰ -0	Pass o
coded S8	Middle	6 2 16.79	A COLECTED IN	S S CHE STIME
	Highest S	16.73	STIME OF THEST	the contraction
STILL OF	Lowest	18.09	AST AND CO CAR	LETTING OF LE
coded S2	Middle	16.78	S CLES ESTIMATION OF	offer stime we of
and the start of	Highest	16.55	on the time of	or of the still the of

Output Power:

Note: When the antenna gain value is greater than 6dbi, so the Directional Gain= 8dBi>6dBi.

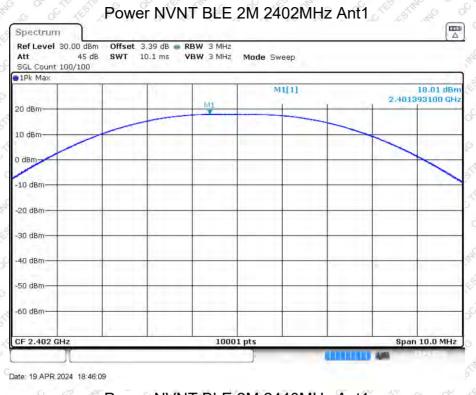
So Pout = Plimit-(GTX-6)]=(30-2)dBm =28dBm


Power NVNT BLE 1M 2402MHz Ant1

28 MAR 2024 10:04-25

Report No.: QCT24BR-1285E-01

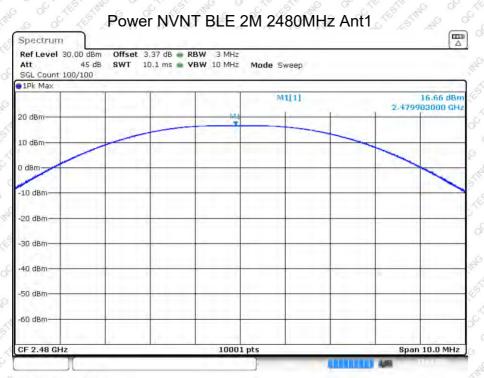
Page 11 of 71



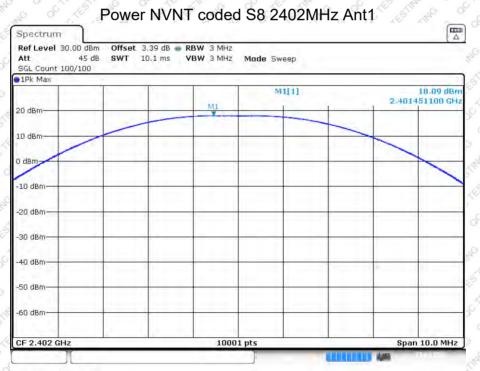
Date: 28.MAR.2024 10:13:02

Report No.: QCT24BR-1285E-01

Page 12 of 71

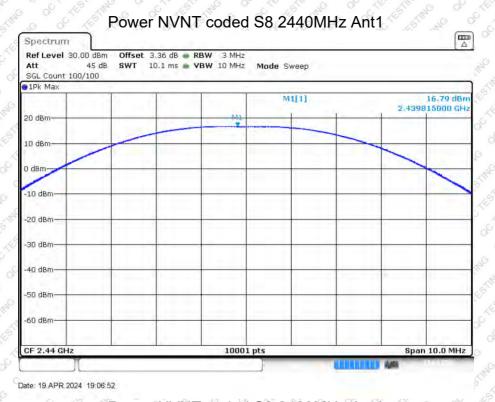


Date: 19.APR.2024 18:39:43


Report No.: QCT24BR-1285E-01

Page 13 of 71

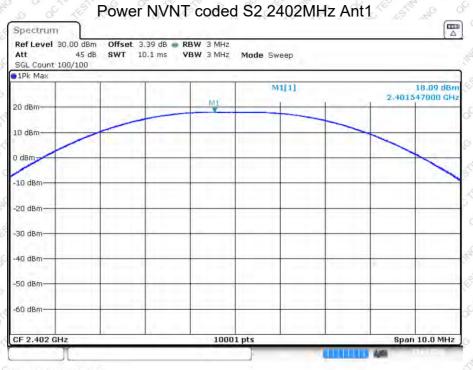
Date: 19.APR.2024 18:36:56



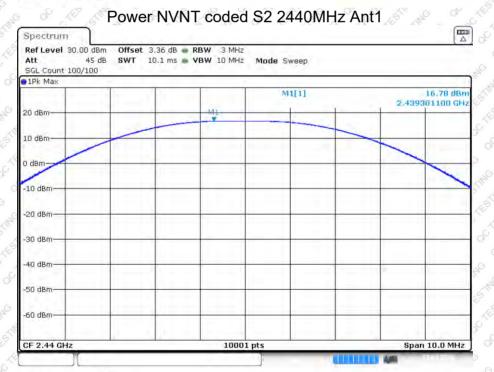
Date: 19.APR.2024 19:08:41

Report No.: QCT24BR-1285E-01

Page 14 of 71

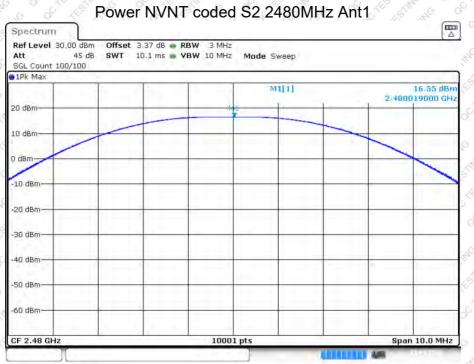

Power NVNT coded S8 2480MHz Ant1 Spectrum Ref Level 30.00 dBm Offset 3.37 dB . RBW 3.MHz 45 dB SWT 10.1 ms 📾 VBW 10 MHz Att Mode Sweep SGL Count 100/100 1Pk Max M1[1] 16.73 dBr 2.479854000 GH 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm 40 dBm -50 dBm -60 dBm Span 10.0 MHz CF 2.48 GHz 10001 pts

Date: 19.APR.2024 19:04:56


Report No.: QCT24BR-1285E-01

Page 15 of 71

Date: 19.APR.2024 19:20:58

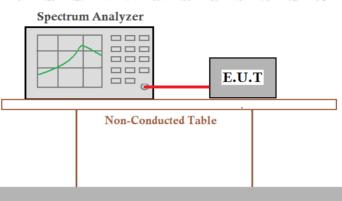


Date: 19.APR.2024 19:19:36

Report No.: QCT24BR-1285E-01

Page 16 of 71

Date: 19.APR.2024 19:15:28


Report No.: QCT24BR-1285E-01

6. Channel Bandwidth & 99% Occupied Bandwidth

- 6.1 Applicable Standard FCC Part15 C Section 15.247 (a)(2)
- 6.2 Limit

The minimum 6 dB bandwidth shall be 500 kHz

6.3 Test setup

Ground Reference Plane

6.4 Test Procedure

The following conditions shall be observed for measuring the occupied bandwidth and x dB bandwidth: • The transmitter shall be operated at its maximum carrier power measured under normal test

conditions.

• The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.

 The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / x dB bandwidth if the device is not transmitting continuously.

• The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / x dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

6.5 Test Data

00	Temperature	24.9 °C	Humidity	53 %
S	ATM Pressure	101.1kPa	Antenna Gain	See page 4
S	Test by	Charlie He	Test result	PASS

Please refer to following table and plots.

Report No.: QCT24BR-1285E-01

Page 18 of 71

@CT

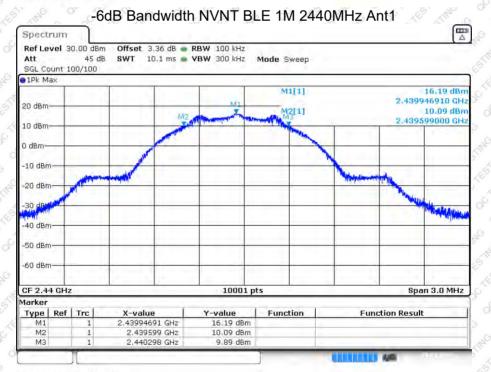
Shenzhen QC Testing Laboratory Co., Ltd.


DTS Bandwidth:

Test channel	DTS Bandwidth (MHz)	Limit (MHz)	Verdict
Lowest	0.684	0.5	PASS
Middle	0.698	0.5	PASS
Highest	0.706	0.5	PASS
Lowest	1.079	0.5	PASS
Middle	1.079	o 0.5 j	PASS
Highest	۵ <u>م</u> 1.084 ۵ ۵	0.5	PASS
Lowest	1.085	0.5	PASS
Middle	1.076	ି _ଏ କି 0.5 ୍ର	PASS
Highest	1.076	0.5	PASS
Lowest	1.085	0.5	PASS
Middle	ه 1.076	0.5	PASS
Highest	1.083	0.5 °	PASS
	Lowest Middle Highest Lowest Middle Highest Lowest Middle Highest Lowest Middle	Lowest 0.684 Middle 0.698 Highest 0.706 Lowest 1.079 Middle 1.079 Middle 1.079 Highest 1.084 Lowest 1.085 Middle 1.076 Highest 1.076 Middle 1.076 Middle 1.076 Middle 1.076 Highest 1.076	Lowest 0.684 0.5 Middle 0.698 0.5 Highest 0.706 0.5 Lowest 1.079 0.5 Middle 1.079 0.5 Middle 1.079 0.5 Highest 1.084 0.5 Lowest 1.085 0.5 Highest 1.076 0.5 Lowest 1.076 0.5 Middle 1.076 0.5 Highest 1.076 0.5 Middle 1.076 0.5 Middle 1.076 0.5 Middle 1.076 0.5 Middle 1.076 0.5

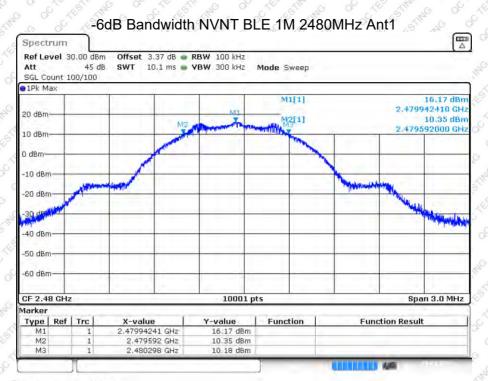
99% Occupied Bandwidth:

Mode Test channel 99		99% Occupied Bandwidth (MHz)	Verdict
STIM AND OF THE STIM AS	Lowest	్ స్ జ్ జ్ ౖ 1.041 బ్ జ్ ్ ్	PASS
BLE 1M	Middle	e e che che and a che che co	PASS
or the stand of the	Highest	5 5 5 1:042 5 5 5 M	PASS
a an the star of a	Lowest	2.066	PASS
BLE 2M	Middle	2.076	PASS
E SIM DE OU THE SIMP DE	Highest	2.083	PASS
Strathing of the first	Lowest	10 0 5 ¹⁰ 5 ¹⁰ 2.06 0 10 5 ¹⁰ 0 0	PASS
coded S8	Middle	2.068	PASS
NO OF THE THE OF O	Highest	2.085 0 10 10 10	PASS
the state still we	Lowest	6 A A A S 2.06 A	PASS
coded S2	Middle	2.063	PASS
C ALL AND C C ALL	Highest	2.079 S 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	PASS

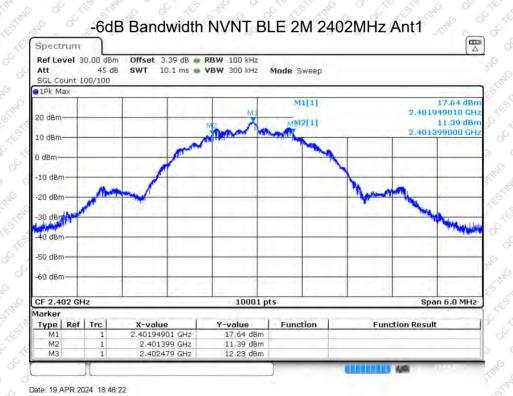

Report No.: QCT24BR-1285E-01

DTS Bandwidth:

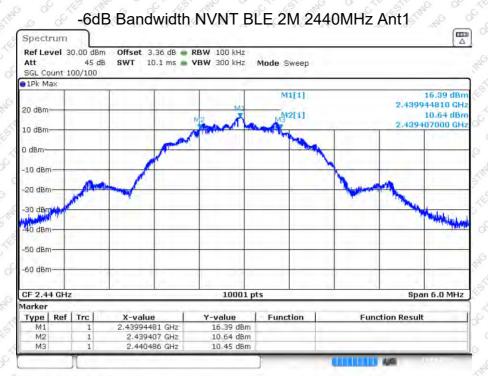
Date: 28.MAR.2024 10:04:38

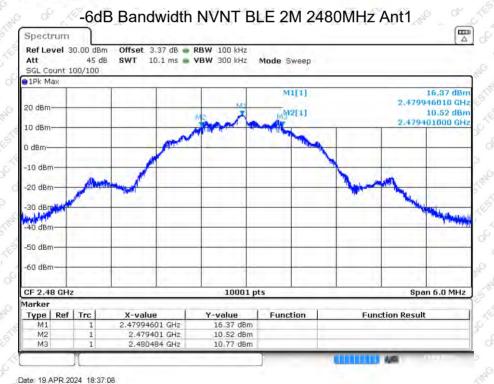

Date: 28 MAR 2024 10:10:00

O AN AN A O

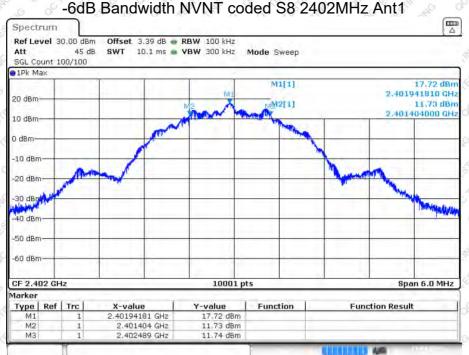

Report No .: QCT24BR-1285E-01

Page 20 of 71

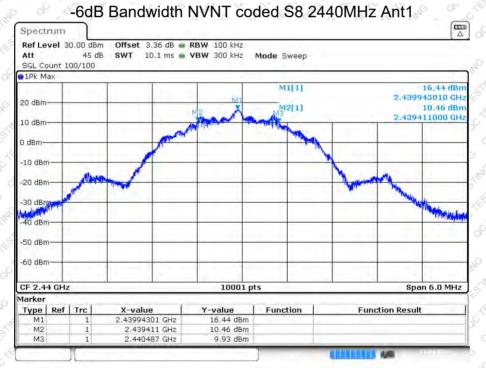

CDate: 28.MAR 2024 10:13:14


Report No.: QCT24BR-1285E-01

Page 21 of 71

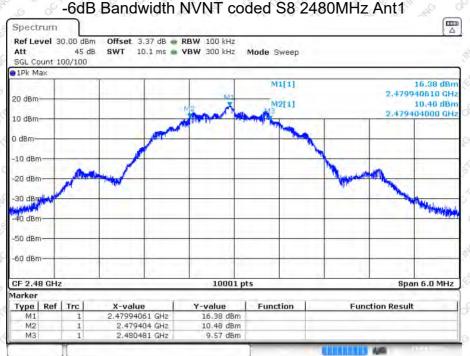

Date: 19.APR.2024 18:39:55

Report No.: QCT24BR-1285E-01


Page 22 of 71

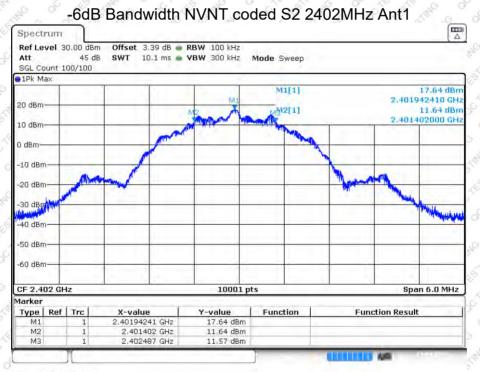
-6dB Bandwidth NVNT coded S8 2402MHz Ant1

Date: 19.APR.2024 19:08:54



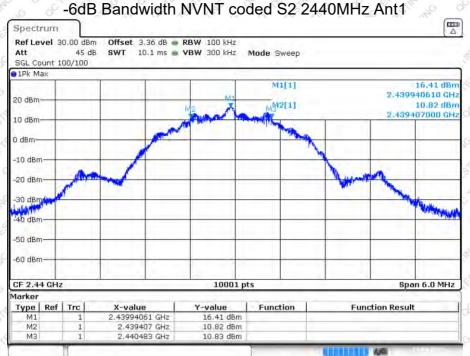
Date: 19.APR.2024 19:07:05

Report No .: QCT24BR-1285E-01

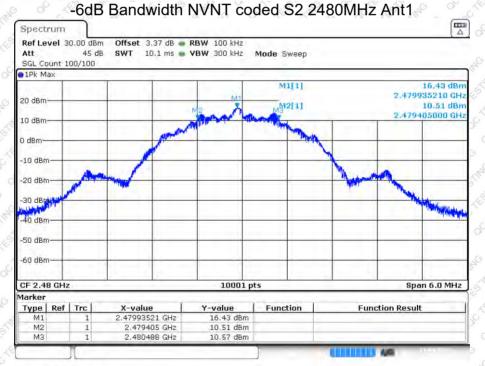

Page 23 of 71

-6dB Bandwidth NVNT coded S8 2480MHz Ant1

Date: 19.APR.2024 19:05:09

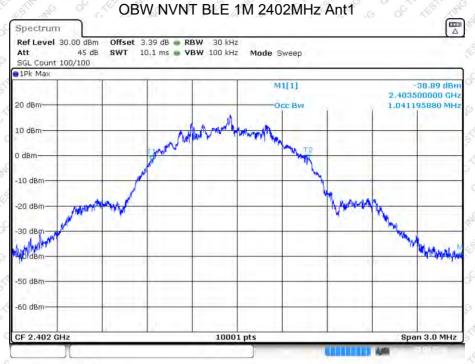


Date: 19 APR 2024 19:21:11

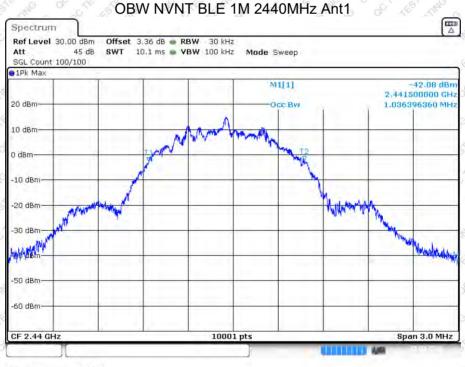

Report No .: QCT24BR-1285E-01

Page 24 of 71

Date: 19.APR.2024 19:19:49

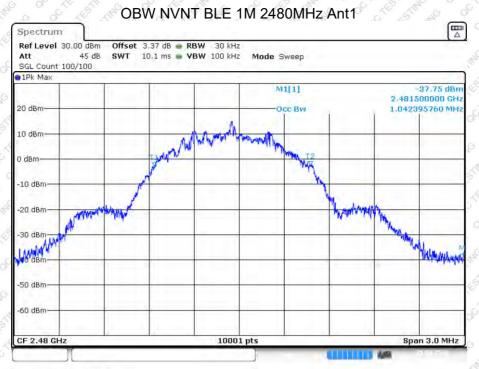

Date: 19.APR.2024 19:15:41

Report No .: QCT24BR-1285E-01

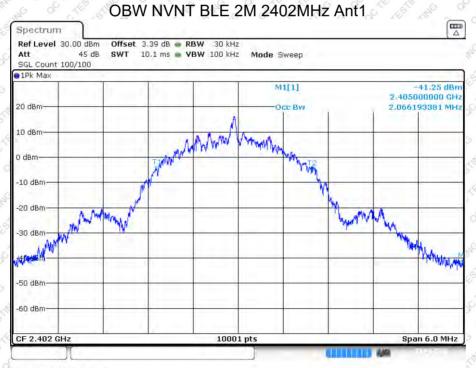

Page 25 of 71

99% Occupied Bandwidth:

Date: 28.MAR.2024 10:04:32

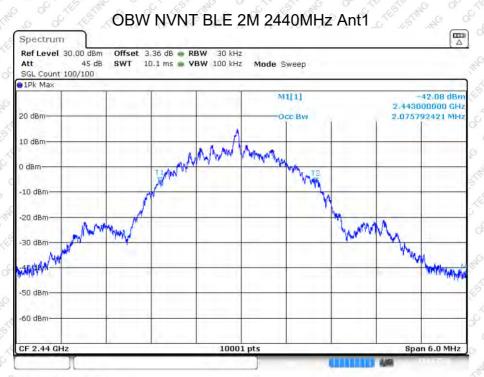


Date: 28.MAR.2024 10:09:54


Report No.: QCT24BR-1285E-01

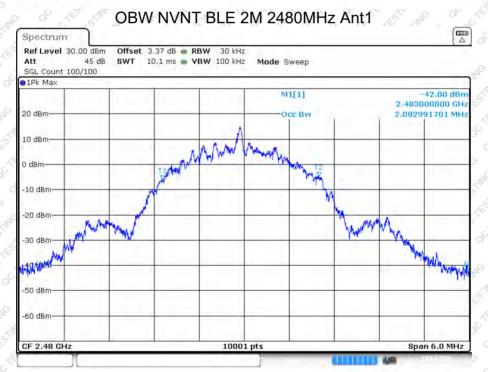
Page 26 of 71

Date: 28.MAR.2024 10:13:08

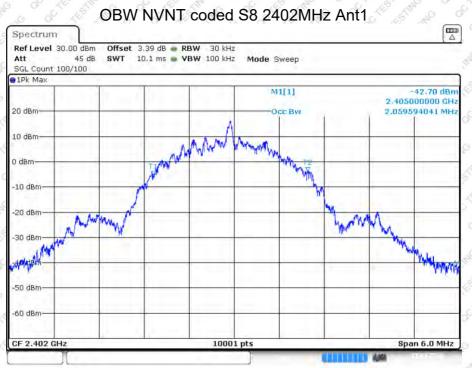


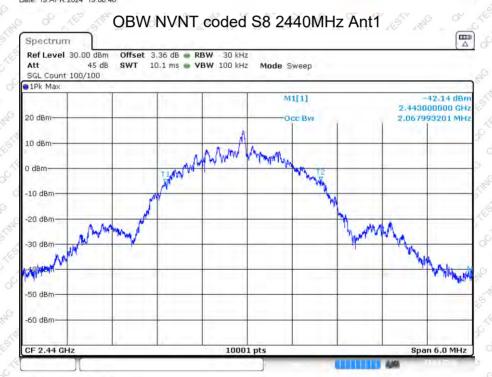
Date: 19.APR.2024 18:46:15

Report No.: QCT24BR-1285E-01


Page 27 of 71

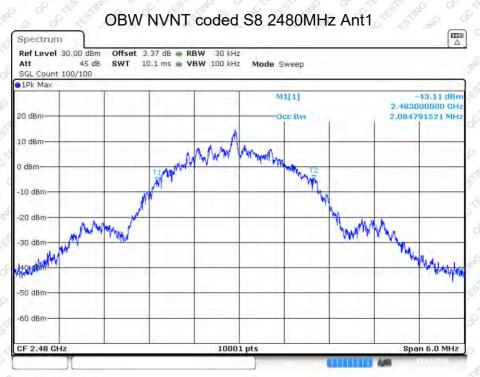
Date: 19.APR.2024 18:39:48


Date: 19.APR.2024 18:37:02

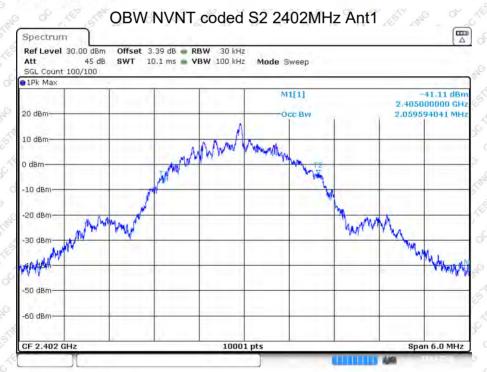

Report No.: QCT24BR-1285E-01

Page 28 of 71

Date: 19.APR.2024 19:08:48

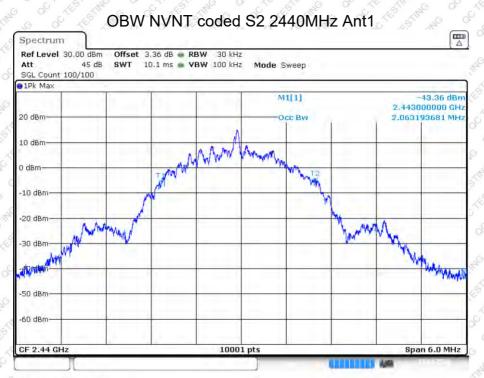


Date: 19.APR.2024 19:06:58

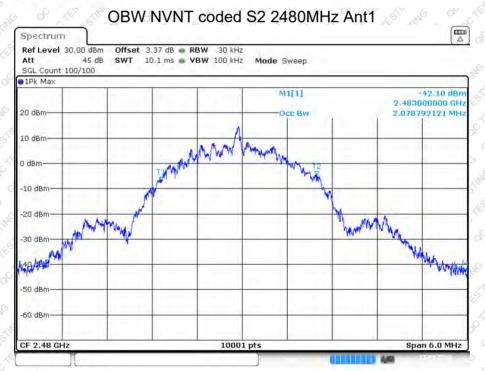

Report No.: QCT24BR-1285E-01

Page 29 of 71

Date: 19.APR.2024 19:05:03



Date: 19.APR.2024 19:21:04


Report No.: QCT24BR-1285E-01

Page 30 of 71

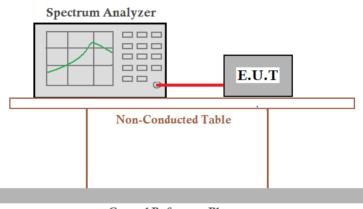
Date: 19.APR.2024 19:19:43

Date: 19.APR.2024 19:15:34

Report No.: QCT24BR-1285E-01

Page 31 of 71

7. Power Spectral Density


7.1 Applicable Standard

FCC Part15 C Section 15.247 (e)

7.2 Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density

7.3 Test setup

Ground Reference Plane

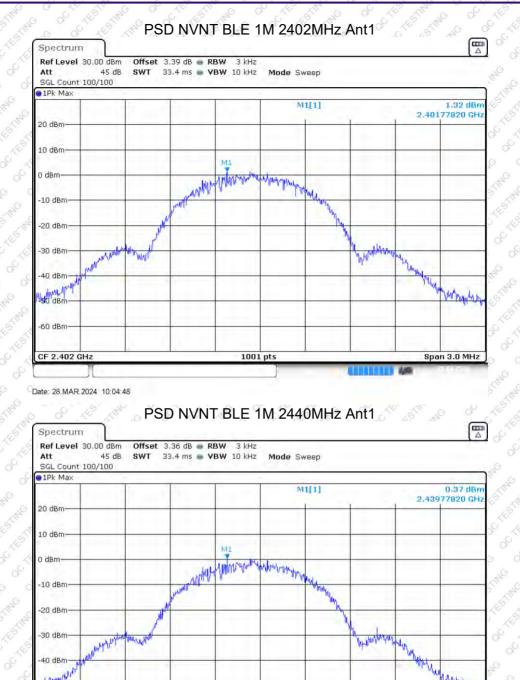
7.4 Test Procedure

Refer to KDB558074 D01 15.247 Meas Guidance v05r02

7.5 Test Data

0	Temperature	24.9 ℃	Humidity	53 %
-	ATM Pressure	101.1kPa	Antenna Gain	See page 4
3	Test by	Charlie He	Test result	PASS

Please refer to following table and plots.


Report No.: QCT24BR-1285E-01

Mode	Test channel	Power Spectral Density (dBm/3kHz)	Limit(dBm/3kHz)	Result
Mar of the	Lowest	1.32 ° 5 ¹¹ 5 ¹¹ 8	OC THE STIME MO	
BLE 1M	Middle	0.37 S S A	6.00	Pass
CTES STING	Highest	0.19	STILLING OF THE STILL	AND OU
of the time	Lowest	2.08 5 5 8 0 C	athe stime of the	STIMP 10
BLE 2M	Middle	0.78 S A A S	6.00	Pass
THE CONTRE	Highest	0.86	3 OC THE STING	e de
AST AND ON OF	Lowest	2.07	THE OF THE THE	.0 00
coded S8	Middle	6 A A C C C C C C C C C C C C C C C C C	6.00	Pass
	Highest	0.81 J	alle stilling of	ES STRAC
	Lowest	2.04 S 19 18 0	of the start of	
coded S2	Middle	2 6 .C	6.00	Pass
TESTI TIME OU	Highest	0.78 Strate & A	STIME OF THE THE	

Note: When the antenna gain value is greater than 6dbi, So the Directional Gain= 8dBi > 6dBi.

So PSDout = PSDlimit-(GTX-6)=(8-2)dBm =6dBm

Date: 28.MAR.2024 10:10:10

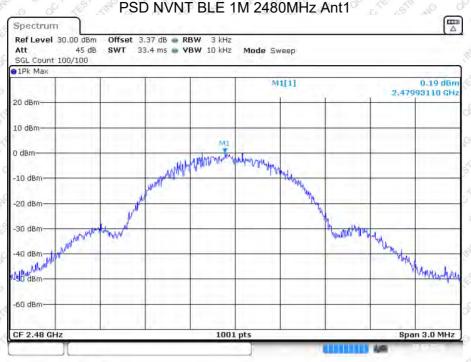
-40 dBm Ast Ban-

-60 dBm

CF 2.44 GHz

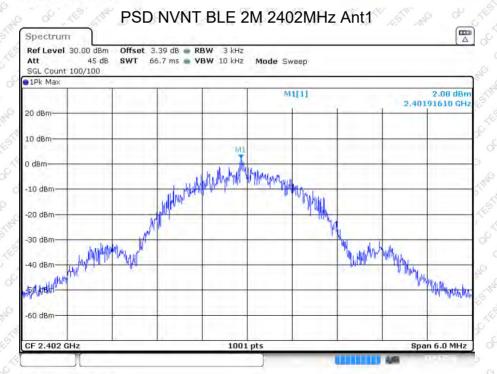
Report No.: QCT24BR-1285E-01

Page 34 of 71


Mitha

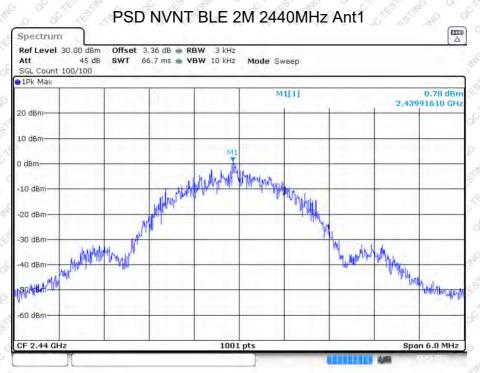
Span 3.0 MHz

Address: East of 1/F., Building E, Xinghong Science Park, No.111, Shuiku Road, Fenghuanggang, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-23008269 Fax: 0755-23726780 www.qctest.com.cn

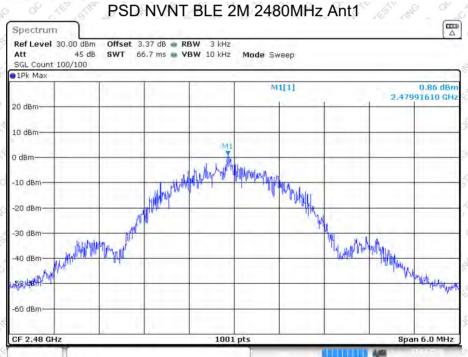

1001 pts

PSD NVNT BLE 1M 2480MHz Ant1

Date: 28.MAR.2024 10:13:24

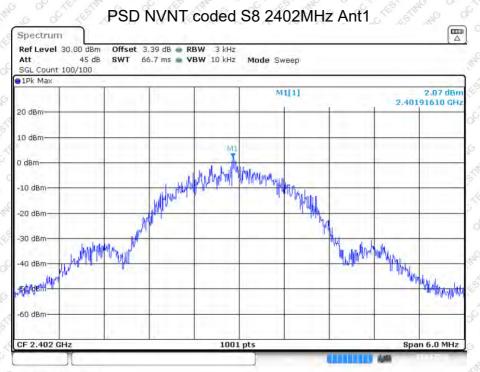


Date: 19.APR.2024 18:46:34

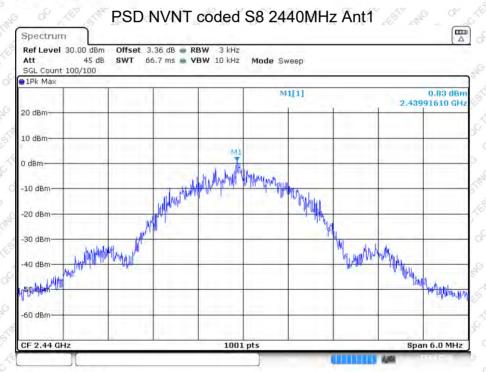

Report No.: QCT24BR-1285E-01

Page 35 of 71

Date: 19.APR.2024 18:40:06

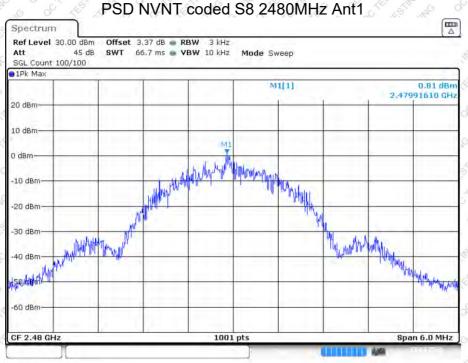


Date: 19.APR.2024 18:37:20

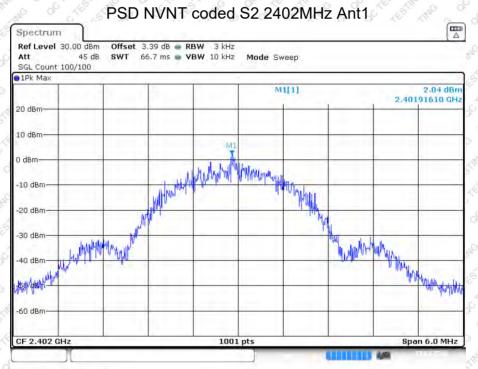

Report No.: QCT24BR-1285E-01

Page 36 of 71

Date: 19.APR.2024 19:09:07

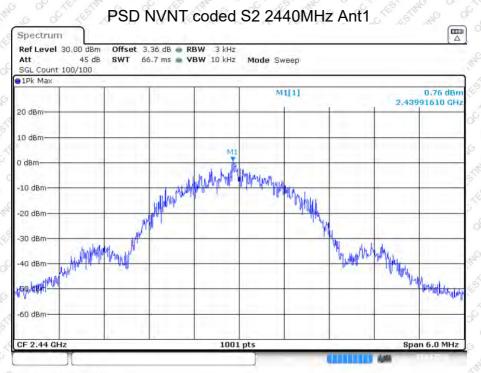


Date: 19.APR.2024 19:07:17

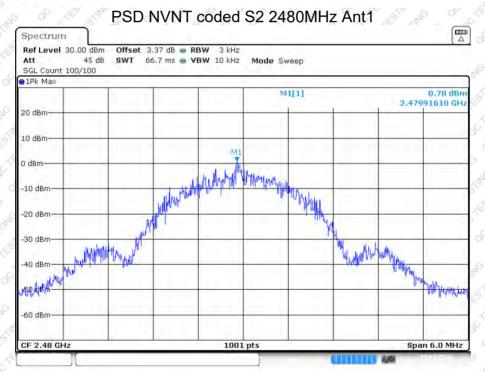

Report No.: QCT24BR-1285E-01

Page 37 of 71

Date: 19.APR.2024 19:05:22



Date: 19.APR.2024 19:21:23

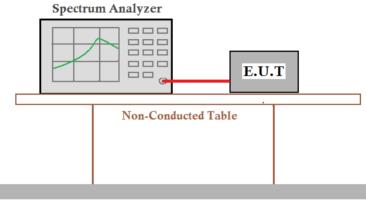

Report No.: QCT24BR-1285E-01

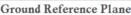
Page 38 of 71

Date: 19.APR.2024 19:20:02

Date: 19.APR.2024 19:15:53

Report No.: QCT24BR-1285E-01


Page 39 of 71


8. Spurious Emission in Non-restricted & restricted Bands

- 8.1 Conducted Emission Method
 - 8.1.1 Applicable Standard
 - FCC Part15 C Section 15.247 (d)
 - 8.1.2 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

8.1.3 Test setup

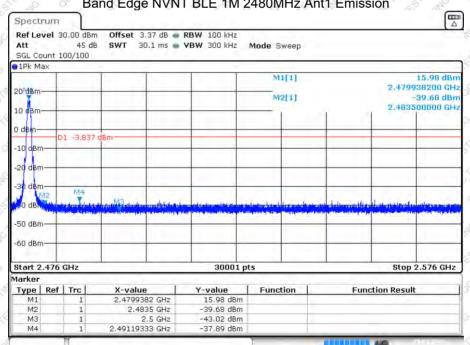
8.1.4 Test Procedure

 Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.

- Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- Repeat above procedures until all measured frequencies were complete.

ð.	1.5 Test Data	Nº C C C		O O L A O
	Temperature	24.9 °C	Humidity	53 %
1	ATM Pressure	101.1kPa	Antenna Gain	See page 4
ė	Test by	Charlie He	Test result	PASS

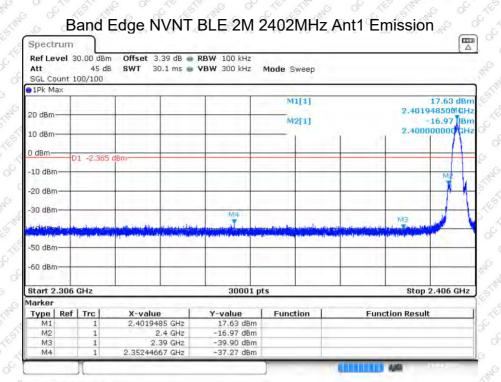
Please refer to following plots.


Report No.: QCT24BR-1285E-01

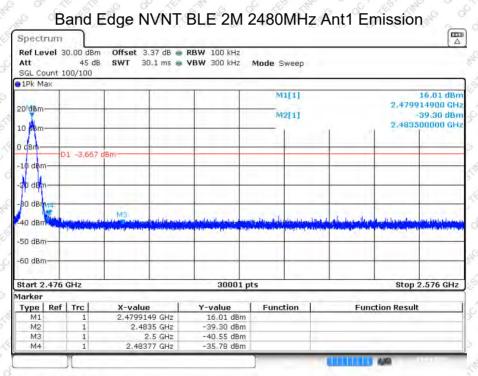
Page 40 of 71

Spect			-		onin.						
Ref Le Att SGL Co		45 dB	Offset 3,39 dt SWT 30,1 m		100 kHz 300 kHz	Mode S	iweep				
D1Pk M	_									_	
		_		_		M	1[1]		Long	17.35	
20 dBm	-			-		M	2[1]		2.401	945100	
10 dBm						14	2[1]		2,400	000000	
TO OBU-								4		1	
0 dBm-	-		10			_		-	-	-	-
-		1 -2,619	dBm								
-10 dBm								-	-		
-20 dBm	-	_					-	_		-	1
-30 dBm	-							M4	100	1012	1.
40 HR.	(released	-	a shu tutok and the and	A ALLAN BUILD	the smith the	the first week some	and the second second	and inchesting in the later	M3	and the second	_
anthindus	-	and the second second	a there is the should be an an	personal section of		un se se proprieta de la construcción de la		tine Mercel (Second line of	e ante a sin de la compe	In the second second	"
-50 dBm	+					_			-		_
-60 dBm										-	
or an											
Start 2	.306	GHz			30001	pts		_	Stop	2.406	GHz
larker	1					10. F.I. 1					-
Type	Ref	Trc	X-value		-value	Func	tion	Fun	ction Resu	lt	
M1		1	2.4019451 GH		17.35 dBm		_				_
M2	_	1	2.4 GH		-35.45 dBm						
M3 M4	_	1	2.39 GH 2.38152667 GH		-41.25 dBm -38.12 dBm						_

Date: 28.MAR 2024 10:05:02


Band Edge NVNT BLE 1M 2480MHz Ant1 Emission

Date: 28.MAR.2024 10:13:38


Report No.: QCT24BR-1285E-01

Page 41 of 71

Date: 19.APR.2024 18:46:48

Date: 19.APR.2024 18:37:32

Bute: 10.711 11.2024 10.01.02

Report No.: QCT24BR-1285E-01

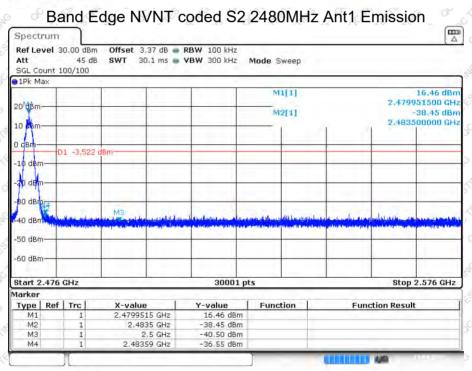
Page 42 of 71

Band Edge NVNT coded S8 2402MHz Ant1 Emission Spectrum Ref Level 30.00 dBm Offset 3.39 dB 🕳 RBW 100 kHz 45 dB SWT 30.1 ms 💼 VBW 300 kHz Att Mode Sweep SGL Count 100/100 ∎1Pk Max M1[1] 17.68 dB 2.401938500 GH 20 dBm M2[1] -17.58 B 2,400000000 10 dBm 0 dBm D1 -2.310 d -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm Start 2.306 GHz 30001 pts Stop 2.406 GHz Marker Function Type Ref Trc X-value Y-value **Function Result** 2.4019385 GHz 17.68 dBm M1 1 M2 2.4 GHz -17.58 dBm MB 2.39 GHz -39.81 dBm 2.36839667 GHz M4 1 -37.28 dBm

Date: 19.APR.2024 19:09:20

Band Edge NVNT coded S8 2480MHz Ant1 Emission Spectrum Offset 3.37 dB 💣 RBW 100 kHz Ref Level 30.00 dBm 45 dB SWT 30.1 ms 💩 VBW 300 kHz Att Mode Sweep SGL Count 100/100 1Pk Max M1[1] 16.41 dBr 2.479948200 GH 20 dèn M2[1] -39.90 dBr 2.483500000 GH 10 0 cBr D1 -3,595 d -10 dBr d dE BO dB MB. 40 dB -50 dBm -60 dBm 30001 pts Stop 2.576 GHz Start 2.476 GHz Markei Type | Ref | Trc X-value Y-value Function **Function Result** 2.4799482 GHz 16,41 dBm M2 2.4835 GHz -39.90 dBm 2.5 GHz -41.47 dBm МЗ M4 2.48500333 GHz -35.97 dBm

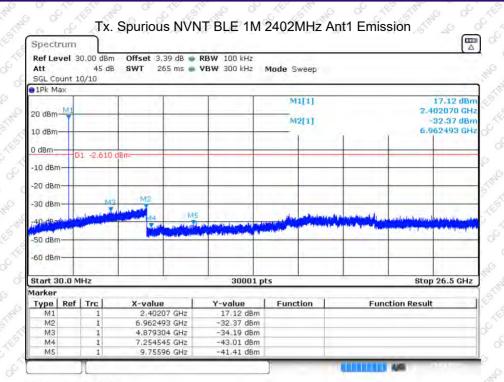
Date: 19.APR.2024 19:05:35


Report No .: QCT24BR-1285E-01

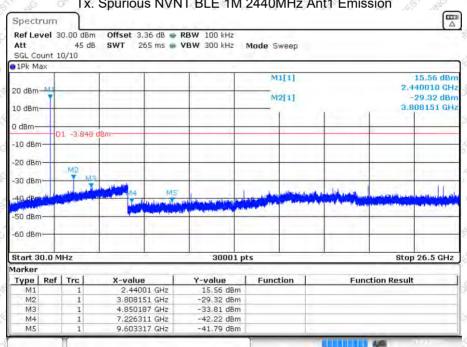
Page 43 of 71

Band Edge NVNT coded S2 2402MHz Ant1 Emission Spectrum Ref Level 30.00 dBm Offset 3.39 dB 🕳 RBW 100 kHz 45 dB SWT 30.1 ms 💼 VBW 300 kHz Att Mode Sweep SGL Count 100/100 1Pk Max M1[1] 17.73 dB 2.401955100 GH 20 dBm M2[1] -16.70 B 2,400000000 10 dBm 0 dBm-D1 -2.231 -10 dBm -20 dBm--30 dBm -50 dBm -60 dBm Start 2.306 GHz 30001 pts Stop 2.406 GHz Marker Y-value 17.73 dBm -16.70 dBm Function Type Ref Trc X-value **Function Result** 2.4019551 GHz M1 1 M2 2.4 GHz MB 2.39 GHz -42.09 dBm M4 2.31244 GHz -37.18 dBm 1

Date: 19.APR.2024 19:21:37

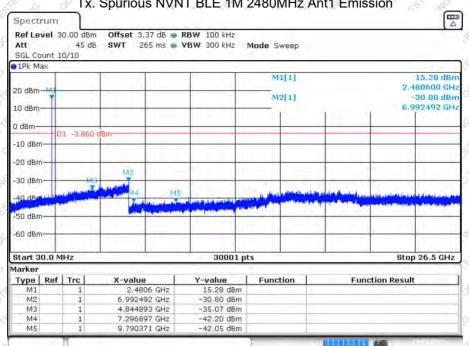


Date: 19.APR.2024 19:16:07


Report No .: QCT24BR-1285E-01

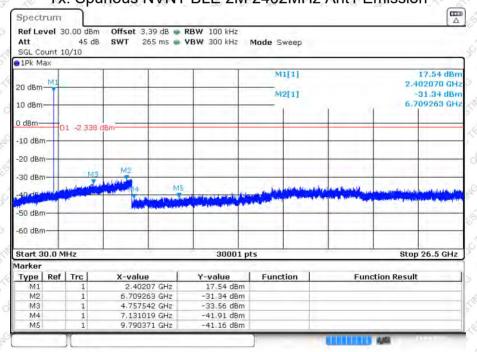
Page 44 of 71

Date: 28.MAR.2024 10:05:23


Tx. Spurious NVNT BLE 1M 2440MHz Ant1 Emission

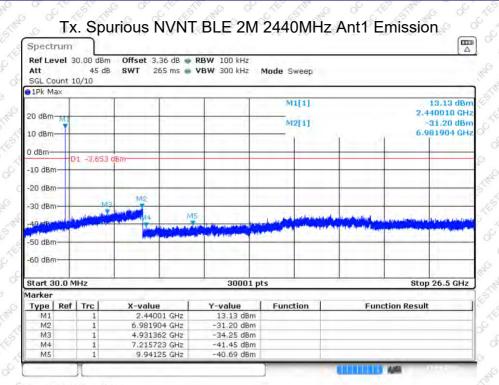
Date: 28.MAR.2024 10:10:31

Report No .: QCT24BR-1285E-01

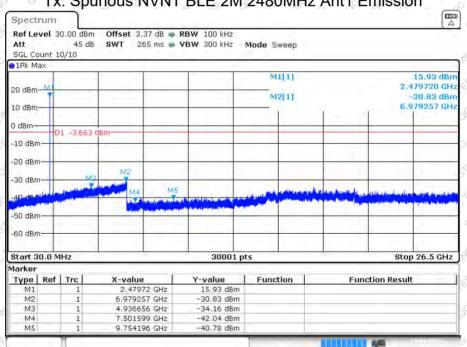

Page 45 of 71

Tx. Spurious NVNT BLE 1M 2480MHz Ant1 Emission

Date: 28.MAR.2024 10:13:59

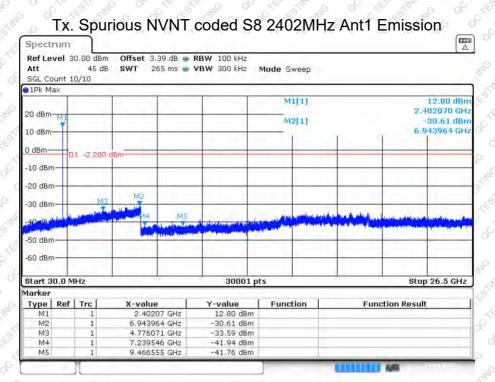

Tx. Spurious NVNT BLE 2M 2402MHz Ant1 Emission

Date: 19.APR.2024 18:47:09

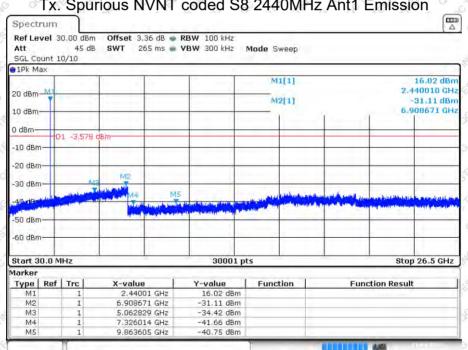

Report No .: QCT24BR-1285E-01

Page 46 of 71

Date: 19.APR.2024 18:40:27

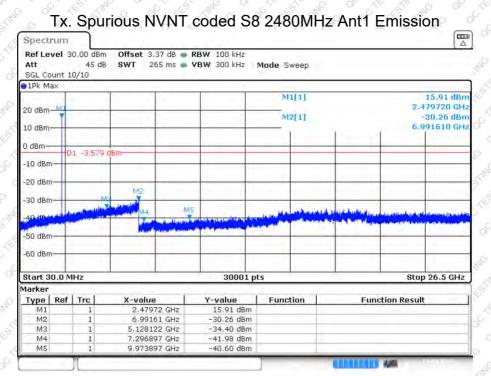

Tx. Spurious NVNT BLE 2M 2480MHz Ant1 Emission

Date: 19.APR.2024 18:37:53

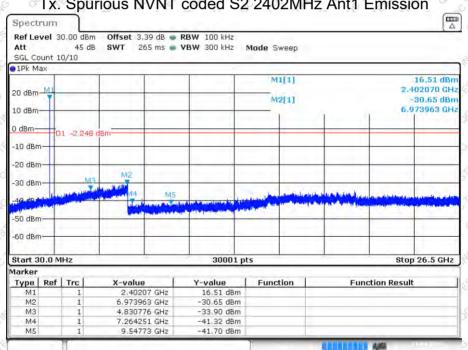

Report No .: QCT24BR-1285E-01

Page 47 of 71

Date: 19.APR.2024 19:09:41


Tx. Spurious NVNT coded S8 2440MHz Ant1 Emission

Date: 19.APR.2024 19:07:38

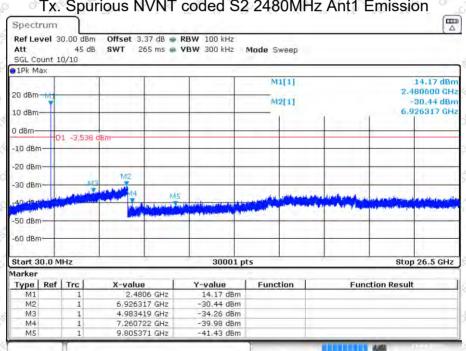

Report No .: QCT24BR-1285E-01

Page 48 of 71

Date: 19.APR.2024 19:05:57

Tx. Spurious NVNT coded S2 2402MHz Ant1 Emission

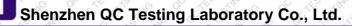
Date: 19.APR.2024 19:21:58


Report No .: QCT24BR-1285E-01

Page 49 of 71

Ref Le Att SGL Co		0.00 dBm 45 dB 0/10				Mode Sw	eep			
1Pk M	эх				-					
20 dBm 10 dBm						M1 M2				16.16 dBn H40010 GH: -31.25 dBn 53670 GH:
0 dBm—		1 -3.551	dBm			-		1=		
-10 dBm -20 dBm								-	1	
30 dBm		MB	M2 M4	M5			Madaaaad	Ale a break in		a participant Al
50 dBm				alija, konsta Nargenisere d						
-60 dBm	+									
Start 3	0.0 M	Hz	Ö. – – – –		30001 p	ts			Stop	26.5 GHz
1arker		5 N.	-							
Type	Ref	Trc	X-value		Y-value	Functi	on	Fun	ction Result	
M1		1	2.44001 G		16,16 dBm					
M2	_	1	6.95367 Gł		-31,25 dBm					
M3		1	4.734601 Gł		-34.34 dBm					
M4 M5		1	7.490128 Gł 9.617434 Gł		-41.26 dBm -41.50 dBm					

Date: 19.APR.2024 19:20:22



Tx. Spurious NVNT coded S2 2480MHz Ant1 Emission

Date: 19.APR.2024 19:16:28

Report No.: QCT24BR-1285E-01

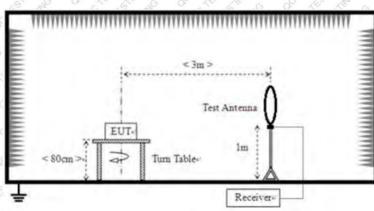
Page 50 of 71

8.2 Radiated Emission Method

8.2.1 Applicable Standard

FCC Part15 C Section 15.209 and 15.205

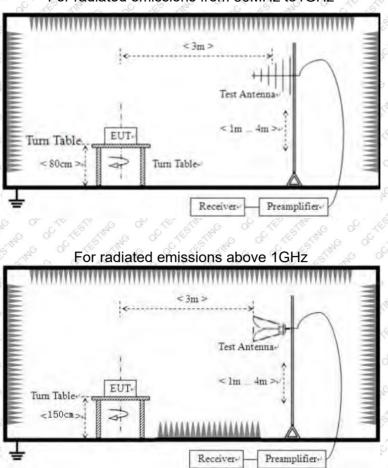
8.2.2 Limit


€C

Frequency	Limit (uV/m)	Value	Measurement Distance
0.009MHz-0.490MHz	2400/F(KHz)	QP QP	300m 🖉 🖉 🖉
0.490MHz-1.705MHz	24000/F(KHz)	QP of	2 30m 2 1
1.705MHz-30MHz	30	QP	30m 30m

Frequency	Field Strengths Limits (µV/m at 3 m)	Field Strengths Limits (dBµV/m at 3 m)	Remark	
30 - 88	100	40.0	Quasi-peak	
88 – 216	150	43.5	Quasi-peak	
216 - 960	200 10 5	46.0	Quasi-peak	
Above 960	500 500	54.0	Quasi-peak	
		54.0	Peak	
Above 1GHz	a of the star of	74.0	Average	

Note: dBµV/m =20log(µV/m)


8.2.3 Test setup

For radiated emissions from 9kHz to 30MHz

Report No.: QCT24BR-1285E-01

For radiated emissions from 30MHz to1GHz

8.2.4 EMI Test Receiver Setup

Frequency	RBW	VBW	IF B/W	Measurement
9KHz-150KHz	200Hz	600Hz	M & S & M	QP
150KHz-30MHz	9KHz	30KHz	1 0 10 A	QP
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP &
About Cha	1 MHz	3 MHz	and the of the o	Peak
Above 1 GHz	1 MHz	10 Hz	S ST B	Average

Remark: For the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission test in these three bands are based on measurements employing an average detector.

8.2.5 Test procedure

The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

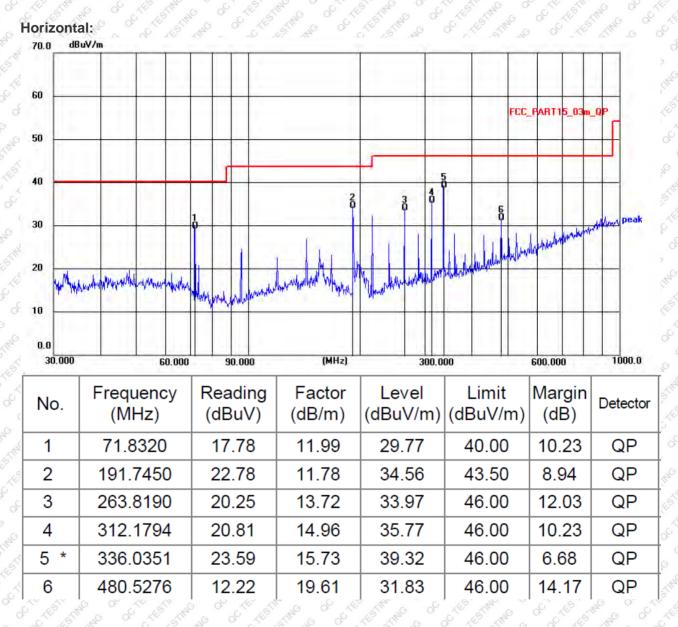
If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

8.2.6 Test Data

1	Temperature	24.9 °C	Humidity	53 %
4	ATM Pressure	101.1kPa	Antenna Gain	See page 4
0	Test by	Charlie He	Test result	PASS

Test voltage: DC 12V

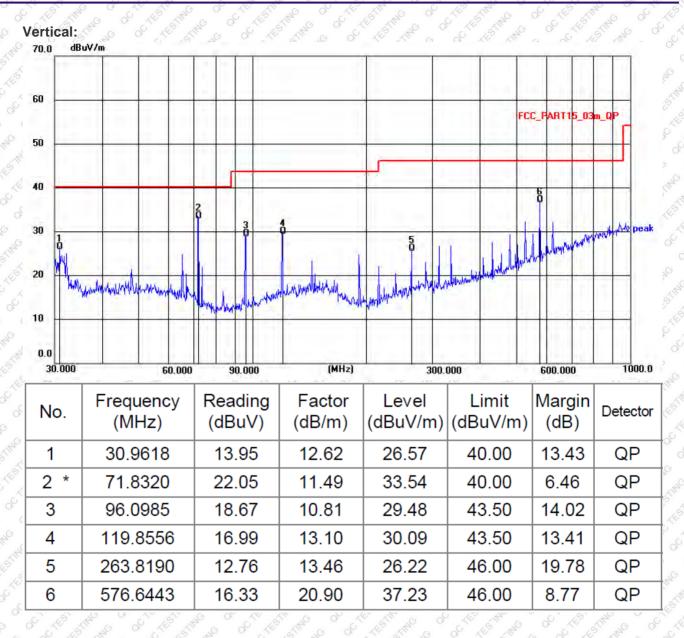
Remarks:


- 1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.
- 2. The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Report No.: QCT24BR-1285E-01

PCB antenna

Below 1GHz


Pre-scan all test modes, found worst case at BLE 1M 2402MHz, and so only show the test result of BLE 1M 2402MHz.

Report No.: QCT24BR-1285E-01

Page 54 of 71

Above 1GHz

Mode: BLE 1M

Test channel: Lowest channel

Frequency (MHz)	Read Level (dBµV)	polarization	Factor (dB/m)	Level (dBµV/m)	Limit Line (dBµV/m)	Margin (dB)	Detector
2310	(dBµV) 35.75	· · · · · · · · · · · · · · · · · · · ·	(ub/iii) 2.42	(ubµv/iii) 38.17	(dbµv/iii) 74	35.83	peak
2310	35.94	STITUTE CO	2.4	38.34	74	35.66	peak
2390	44.85	S CHE HAM NO	2.79	47.64	2 74 °	26.36	peak
2390	42.43	, even a	2.73	45.16	o 74	28.84	peak
4804	51.6	H Star	-5.98	45.62	74	28.38	peak
4804	50.76	ESTIMATIV OU	-6.12	44.64	74 0	29.36	o peak

Test channel: Middle channel

Frequency (MHz)	Read Level (dBµV)	polarization	Factor (dB/m)	Level (dBµV/m)	Limit Line (dBµV/m)	Margin (dB)	Detector
4880	50.03	A B S	-5.71	44.32	74 S	29.68	peak
4880	50.19	CAR N. MO. MO.	-5.84	44.35	<u>کَ</u> ۲4	29.65	peak

Test channel: Highest channel

Frequency (MHz)	Read Level (dBµV)	polarization	Factor (dB/m)	Level (dBµV/m)	Limit Line (dBµV/m)	Margin (dB)	Detector
2483.5	60.49	C AH AND	3.23	63.72	74	10.28	peak
2483.5	47.74	G H A	3.23	50.97	54	3.03	peak
2483.5	60.47	The Ve che	3.13	63.6	o 74 🖉	10.4	peak
2483.5	47.51	A CONTRACTOR	3.13	50.64	54 6	3.36	peak
2500	37.73	C. C. H. M.	3.3	41.03	£ 74	32.97	peak
2500	38.17	of Vite si	3.2	41.37	o 74 w	32.63	peak
4960	50.02	K GH S K	-5.45	44.57	74	29.43	peak
4960	49.8	Call and Call	-5.56	44.24	74 %	29.76	peak

Report No.: QCT24BR-1285E-01

Page 56 of 71

Mode: BLE 2M

Test channel: Lowest channel

Frequency (MHz)	Read Level (dBµV)	polarization	Factor (dB/m)	Level (dBµV/m)	Limit Line (dBµV/m)	Margin (dB)	Detector
2310	36.67	C HO M	2.42	39.09	J 74 M	34.91	peak
2310	36.44	No K	2.4	38.84	74	35.16	peak
2325.08	41.58	STILL H	2.46	44.04	74 ⁰	29.96	peak
2363.36	44.07	CT LET H M	2.61	46.68	74	27.32	peak
2362.92	41.72	C V STIN	2.61	44.33	~ ~74 m	29.67	peak
2390	46.48	S H (S)	2.79	49.27	74	24.73	peak
2390	43.52	Stine & Con	2.73	46.25	م ^م ر 74 م ⁽¹⁾	27.75	peak
4804	51.43	A HANG	-5.98	45.45	5 ¹¹⁰ 74 °C	28.55	peak
4804	53.35	C C V STIM	-6.12	47.23	74 TA	26.77	peak
Frequency (MHz)	Read Level (dBµV)	polarization	Factor (dB/m)	Level (dBµV/m)	Limit Line (dBµV/m)	Margin (dB)	Detecto
		polarization				•	Detecto
4880	51.89	° H S	o -5.71	46.18	74	27.82	peak
4880	50.58		-5.84	44.74	74	29.26	peak
est channel:	Highest chann	elsting of	THE END	o of the state	IND DO CTR	(ESTING O	Contestina
Frequency (MHz)	Read Level (dBµV)	polarization	Factor (dB/m)	Level (dBµV/m)	Limit Line (dBµV/m)	Margin (dB)	Detecto
2483.5	62.49	S H K	3.23	65.72	َ 74 ج	8.28	peak
2483.5	47.74	E LA H	3.23	50.97	54	3.03	AVG
2483.5	60.47		3.13	63.6	5 74	10.4	peak
2483.5	47.4	C V STAR	3.13	50.53	54	3.47	AVG
2500	38.73	~ ભે.જે	3.3	42.03	74	31.97	peak
2500	10 0 0	AM N SC	3.2	40.52	్ల 74 లో	33.48	peak
2500	37.32	S 20 Or	6 .0				
CY XY XY	37.32 50.4	A H	-5.45	44.95	5 ¹¹⁷ 74 °	29.05	peak

Report No.: QCT24BR-1285E-01

Page 57 of 71

Mode: coded S8

Frequency (MHz)Read Level (dBµV)polarizationFactor (dB/m)Level (dB/m)Limit Line (dBµV/m)Margin (dB)Detector231036.57H2.4238.997435.01peak231036.74V2.439.147434.86peak2324.9741.6H2.4844.087429.92peak2325.6339.5V2.4741.977432.03peak2363.6941.64H2.6744.317429.69peak2362.9241.72V2.6144.337429.67peak239044.63H2.7947.427426.58peak239039.72V2.7342.457431.55peak480451.88H-5.9845.97428.1peak480451.23V-6.1245.117428.89peak	l est channel:	Lowest channel	N 6 6 1	V IN CO	S R X	and the		6 19 2º
231036.74V2.439.147434.86peak2324.9741.6H2.4844.087429.92peak2325.6339.5V2.4741.977432.03peak2363.6941.64H2.6744.317429.69peak2363.839.21V2.6241.837432.17peak2362.9241.72V2.6144.337429.67peak239044.63H2.7947.427426.58peak239039.72V2.7342.457431.55peak480451.88H-5.9845.97428.1peak			polarization				•	Detector
2324.9741.6H2.4844.087429.92peak2325.6339.5V2.4741.977432.03peak2363.6941.64H2.6744.317429.69peak2363.839.21V2.6241.837432.17peak2362.9241.72V2.6144.337429.67peak239044.63H2.7947.427426.58peak239039.72V2.7342.457431.55peak480451.88H-5.9845.97428.1peak	2310	36.57	S He In	2.42	38.99	^م ر 74 م	35.01	peak
2325.63 39.5 V 2.47 41.97 74 32.03 peak 2363.69 41.64 H 2.67 44.31 74 29.69 peak 2363.8 39.21 V 2.62 41.83 74 32.17 peak 2362.92 41.72 V 2.61 44.33 74 29.67 peak 2390 44.63 H 2.79 47.42 74 26.58 peak 2390 39.72 V 2.73 42.45 74 31.55 peak 4804 51.88 H -5.98 45.9 74 28.1 peak	2310	36.74	S Vor A	2.4	39.14	74	34.86	peak
2363.69 41.64 H 2.67 44.31 74 29.69 peak 2363.8 39.21 V 2.62 41.83 74 32.17 peak 2362.92 41.72 V 2.61 44.33 74 29.67 peak 2390 44.63 H 2.79 47.42 74 26.58 peak 2390 39.72 V 2.73 42.45 74 31.55 peak 4804 51.88 H -5.98 45.9 74 28.1 peak	2324.97	41.6	STINGH O' C	2.48	44.08	74 ⁰	29.92	peak
2363.8 39.21 V 2.62 41.83 74 32.17 peak 2362.92 41.72 V 2.61 44.33 74 29.67 peak 2390 44.63 H 2.79 47.42 74 26.58 peak 2390 39.72 V 2.73 42.45 74 31.55 peak 4804 51.88 H -5.98 45.9 74 28.1 peak	2325.63	39.5	CARLES V RO	2.47	41.97	5 74	32.03	peak
2362.92 41.72 V 2.61 44.33 74 29.67 peak 2390 44.63 H 2.79 47.42 74 26.58 peak 2390 39.72 V 2.73 42.45 74 31.55 peak 4804 51.88 H -5.98 45.9 74 28.1 peak	2363.69	41.64	OCH STIN	2.67	44.31	~ 74	29.69	peak
2390 44.63 H 2.79 47.42 74 26.58 peak 2390 39.72 V 2.73 42.45 74 31.55 peak 4804 51.88 H -5.98 45.9 74 28.1 peak	2363.8	39.21	No V Le	2.62	41.83	74	32.17	peak
2390 39.72 V 2.73 42.45 74 31.55 peak 4804 51.88 H -5.98 45.9 74 28.1 peak	2362.92	41.72	STING & CON	2.61	44.33	^{مر} 74 در ¹⁰	29.67	peak
4804 51.88 H -5.98 45.9 74 28.1 peak	2390	44.63	THE HOLD	2.79	47.42	5 ¹¹⁷ 74 of	26.58	peak
	2390	39.72	O CLEVENT ME	2.73	42.45	74 ⁴⁰ 40	31.55	peak
4804 51.23 V -6.12 45.11 74 28.89 peak	4804	51.88	C OH C	-5.98	45.9	8 74	28.1	peak
	4804	51.23	Stand Contraction	-6.12	45.11	° ∂74 ∽ ∕	28.89	peak

Test channel: Middle channel

Frequency (MHz)	Read Level (dBµV)	polarization	Factor (dB/m)	Level (dBµV/m)	Limit Line (dBµV/m)	Margin (dB)	Detector
4880	50.26	Stime H of	-5.71	44.55	م ^م 74 م	29.45	peak
4880	50.53	AN NO C	-5.84	44.69	J 74 of	29.31	peak

Test channel: Highest channel

Frequency (MHz)	Read Level (dBµV)	polarization	Factor (dB/m)	Level (dBµV/m)	Limit Line (dBµV/m)	Margin (dB)	Detector
2483.5	59.36	A LA H. S	3.23	62.59	5 74	11.41	peak
2483.5	47.1	° AH SING	3.23	50.33	54	3.67	AVG
2483.5	56.74	S V C	3.13	59.87	74	14.13	peak
2483.5	47.05	Stine V Ser	3.13	50.18	ي 54	3.82	AVG
2500	37.52	A H O	3.3	40.82	5 ¹¹⁷ ,74 °	33.18	peak
2500	36.86	Contraction of the second seco	3.2	40.06	74 ×	33.94	peak
4960	49.53	ତ୍୍ ^ତ ମ _୍ ଜି	-5.45	44.08	6 74° s	29.92	peak
4960	49.43	STIME NO OC	-5.56	43.87	74	30.13	peak

Report No.: QCT24BR-1285E-01

Page 58 of 71

Mode: coded S2

Test channel: Lowest channel

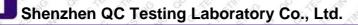
Frequency (MHz)	Read Level (dBµV)	polarization	Factor (dB/m)	Level (dBµV/m)	Limit Line (dBµV/m)	Margin (dB)	Detector
2310	36.04	S HE IN	2.42	38.46	<u>ي</u> 74 م	35.54	peak
2310	36.28	No Vo C	2.4	38.68	74	35.32	peak
2325.19	40.45	STILLE H. CO. CO	2.5	42.95	740	31.05	peak
2345.87	39.76		2.55	42.31	74	31.69	peak
2363.47	42.87	C H Star	2.67	45.54	74	28.46	peak
2363.14	38.61	N V LE	2.61	41.22	74	32.78	peak
2377.44	42.43	Sting to Con	2.73	45.16	م ^م 74 م ⁽¹⁾	28.84	peak
2378.43	39.71	A A A A A A A A A A A A A A A A A A A	2.68	42.39	51 74 0	31.61	peak
2390	46.83	O CIENCE	2.79	49.62	74 March 19	24.38	peak
2390	40.39	e v a	2.73	43.12	6 74	30.88	peak
4804	51.06	STHOM OF CO	-5.98	45.08	74	28.92	peak
4804	51.5	R N O	-6.12	45.38	74	28.62	peak

Test channel: Middle channel

Frequency (MHz)	Read Level (dBµV)	polarization	Factor (dB/m)	Level (dBµV/m)	Limit Line (dBµV/m)	Margin (dB)	Detector
4880	51.64	A HO C	-5.71	45.93	5 ¹¹⁷ 74 °	28.07	peak
4880	52.4	C V STILL	-5.84	46.56	10 74 M	27.44	peak

Test channel: Highest channel

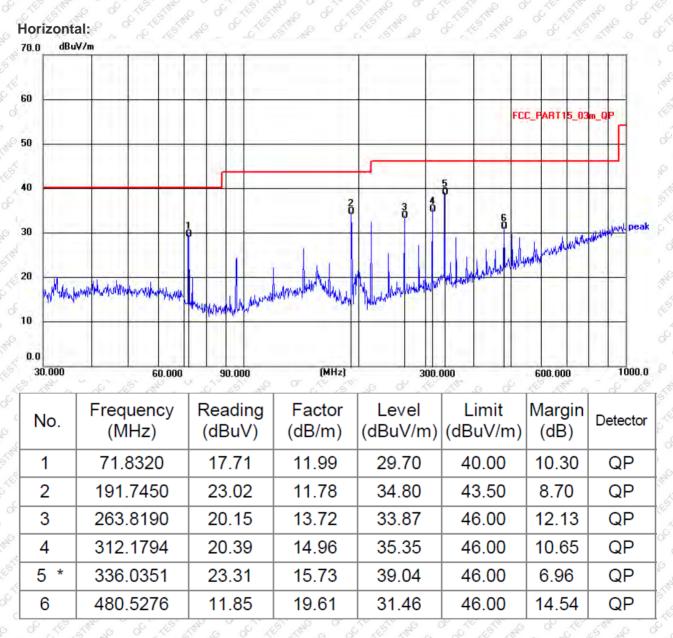
Frequency (MHz)	Read Level (dBµV)	polarization	Factor (dB/m)	Level (dBµV/m)	Limit Line (dBµV/m)	Margin (dB)	Detector
2483.5	58.51	C H Star	3.23	61.74	74	12.26	peak of
2483.5	47.88	8 H (C)	3.23	51.11	54	2.89	AVG
2483.5	56.42	STHE NO OF	3.13	59.55	్ 74 లో	14.45	peak
2483.5	47.25	AN March	3.13	50.38	54	3.62	AVG
2500	38.59	C L HSIN M	3.3	41.89	74 0	32.11	peak
2500	37.14		3.2	40.34	6 74° s	33.66	peak
4960	50.7	THE HOLE	-5.45	45.25	74	28.75	peak
4960	49.95	AP SIV S	-5.56	44.39	74	29.61	peak


Remarks:

1. Level =Receiver Read level + Factor

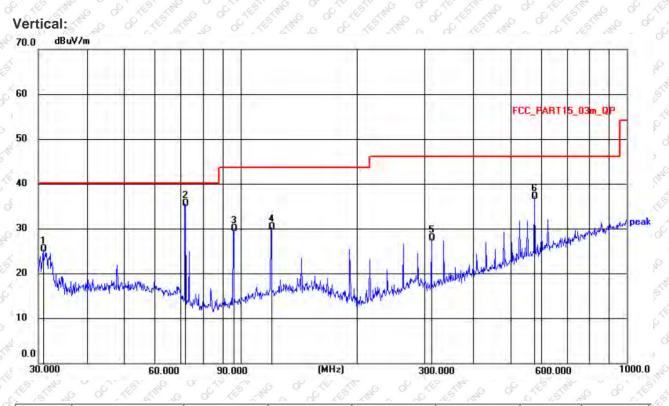
2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Report No.: QCT24BR-1285E-01


Page 59 of 71

Wire antenna

Below 1GHz


Pre-scan all test modes, found worst case at BLE 1M 2402MHz, and so only show the test result of BLE 1M 2402MHz.

Report No.: QCT24BR-1285E-01

Page 60 of 71

3 2	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	0
	1	30.8535	12.78	12.60	25.38	40.00	14.62	QP	N
	2 *	71.8320	24.16	11.49	35.65	40.00	4.35	QP	012 -
3	3	96.0986	19.24	10.81	30.05	43.50	13.45	QP	O.
0	4	119.8556	17.31	13.10	30.41	43.50	13.09	QP	2
	5	312.1794	13.24	14.67	27.91	46.00	18.09	QP	
) 	6	576.6443	16.35	20.90	37.25	46.00	8.75	QP	

Report No.: QCT24BR-1285E-01

Page 61 of 71

Above 1GHz

Mode: BLE 1M

Test channel: Lowest channel

Frequency (MHz)	Read Level (dBµV)	polarization	Factor (dB/m)	Level (dBµV/m)	Limit Line (dBµV/m)	Margin (dB)	Detector
2310	36.69	H H	2.42	39.11	्र 74 ्र	34.89	peak
2310	35.15	Salling No of	2.4	37.55	J. 74 S	36.45	peak
2325.41	36.91	S TO ALL ALL AND	2.46	39.37	A 74	34.63	peak
2390	41.67	, CHAR AN	2.79	44.46	o 74	29.54	peak
2390	40.94	CALC V CONT	2.73	43.67	74	30.33	peak
4804	50.68	E Harris	-5.98	44.7	^{(mac} , _m o74 o ^C)	29.3	o peak
4804	49.37	She Marke	-6.12	43.25	74	30.75	peak

Test channel: Middle channel

Frequency (MHz)	Read Level (dBµV)	polarization	Factor (dB/m)	Level (dBµV/m)	Limit Line (dBµV/m)	Margin (dB)	Detector
4880	49.88	Che Hand	-5.71	44.17	چ ^۲ 74	29.83	peak
4880	49.72	S S V & M	-5.84	43.88	J 74	30.12	peak

G OF AV			147 .ES	6. 19		a` .0 0	
Frequency (MHz)	Read Level (dBµV)	polarization	Factor (dB/m)	Level (dBµV/m)	Limit Line (dBµV/m)	Margin (dB)	Detector
2483.5	58.26	G H A	3.23	61.49	74	12.51	peak
2483.5	47.54	H CH	3.23	50.77	० 54 🖉	3.23	AVG
2483.5	57.12	Still No of	3.13	60.25	JA 6	13.75	peak
2483.5	47.21	CAR RANGE	3.13	50.34	£ 54 °	3.66	AVG
2500	39.86	OF HAR AN	3.3	43.16	o 74 w	30.84	peak
2500	36.95	No Varia	3.2	40.15	74	33.85	peak
4960	49.96	A H C	-5.45	44.51	74 0	29.49	peak
4960	50.19	and the second	-5.56	44.63	۲4 _ک	29.37	peak

Report No.: QCT24BR-1285E-01

Page 62 of 71

Mode: BLE 2M

Test channel: Lowest channel

Frequency (MHz)	Read Level (dBµV)	polarization	Factor (dB/m)	Level (dBµV/m)	Limit Line (dBµV/m)	Margin (dB)	Detector
2310	35.29	C HE IN	2.42	37.71	<u>ي</u> 74 م	36.29	peak
2310	35.83	Ver e	2.4	38.23	<u> </u>	35.77	peak
2324.64	40.35	A H H	2.48	42.83	74° c	31.17	peak
2325.3	39.87		2.46	42.33	5 74 0	31.67	peak
2363.03	42.75	C H Star	2.66	45.41	74	28.59	peak
2363.14	42.81	N V LE	2.61	45.42	74	28.58	peak
2378.43	40.98	Stine H Cor	2.73	43.71	∞ 74 د	30.29	peak
2377.99	40.89	A A A A A A A A A A A A A A A A A A A	2.68	43.57	5 ¹¹⁷ 74 00	30.43	peak
2390	45.54	Contraction of the second seco	2.79	48.33	14 74 March	25.67	peak
2390	46.74	e ev e	2.73	49.47	6 74	24.53	peak
4804	50.6	Star Hor	-5.98	44.62	° 74 °	29.38	peak
4804	49.06	R V C	-6.12	42.94	74	31.06	peak

Test channel: Middle channel

Frequency (MHz)	Read Level (dBµV)	polarization	Factor (dB/m)	Level (dBµV/m)	Limit Line (dBµV/m)	Margin (dB)	Detector
4880	49.33	A HO C	-5.71	43.62	5 ¹¹⁰ 74 °	30.38	peak
4880	49.13	Contraction of the second	-5.84	43.29	74 ⁴⁰	30.71	peak

Test channel: Highest channel

Frequency (MHz)	Read Level (dBµV)	polarization	Factor (dB/m)	Level (dBµV/m)	Limit Line (dBµV/m)	Margin (dB)	Detector
2483.5	63.95	O H ST	3.23	67.18	74	6.82	peak
2483.5	47.74	~ લે.હે	3.23	50.97	54	3.03	AVG
2483.5	63.67	STHE N SO	3.13	66.8	్ 74 లో	5 7.2	peak
2483.5	47.2	AN Nº CO	3.13	50.33	54	3.67	AVG
2500	42.2	C C HS MIN	3.3	45.5	1 ⁶⁰ 74 ⁶⁰ 0	28.5	peak
2500	38.57	e ev a f	3.2	41,77	6 74° s	32.23	peak
4960	50.2	ALL OF A	-5.45	44.75	74	29.25	peak
4960	49.11	A STV S	-5.56	43.55	74	30.45	peak

Report No.: QCT24BR-1285E-01

Page 63 of 71

Mode: coded S8

Test channel: Lowest channel

Frequency (MHz)	Read Level (dBµV)	polarization	Factor (dB/m)	Level (dBµV/m)	Limit Line (dBµV/m)	Margin (dB)	Detector
2310	35.64	C HO SIN	2.42	38.06	چې 74 <u>م</u>	35.94	peak
2310	35.73	Ver le	2.4	38.13	74	35.87	peak
2325.19	41.73	STILLE H. CO.	2.5	44.23	740	29.77	peak
2325.41	40.48	Star Barris	2.47	42.95	5 74	31.05	peak
2363.36	39.89	C H Still	2.66	42.55	74	31.45	peak
2362.92	39.88	NO V 10	2.61	42.49	74	31.51	peak
2377.88	41.15	STIME H OCT	2.73	43.88	م ^م 74 م ⁽¹⁾	30.12	peak
2377.77	41.05	CAR No C	2.68	43.73	51 74 00	30.27	peak
2390	42.14	O CALLER MAR	2.79	44.93	16° 74"	29.07	peak
2390	43.72	e v a	2.73	46.45	6 74	27.55	peak
4804	51.09	STHOMAGE CON	-5.98	45.11	74	28.89	peak
4804	50.29	R V C	-6.12	44.17	74	29.83	peak

Test channel: Middle channel

Frequency (MHz)	Read Level (dBµV)	polarization	Factor (dB/m)	Level (dBµV/m)	Limit Line (dBµV/m)	Margin (dB)	Detector
4880	48.89	A HO C	-5.71	43.18	5 ¹¹⁰ 74 °	30.82	peak
4880	50.42	C V Still M	-5.84	44.58	74 ⁴⁰	29.42	peak

Test channel: Highest channel

Frequency (MHz)	Read Level (dBµV)	polarization	Factor (dB/m)	Level (dBµV/m)	Limit Line (dBµV/m)	Margin (dB)	Detector
2483.5	60.27	° H S	3.23	63.5	74	10.5	peak
2483.5	47.74	~ે મેં જે	3.23	50.97	54	3.03	AVG
2483.5	60.71	STAR N SC	3.13	63.84	్ 74 లో	10.16	peak
2483.5	47.13	No Co	3.13	50.26	54 °C	3.74	AVG
2500	40.1	o cre Hermine	3.3	43.4	74 ^{°°} 8	30.6	peak
2500	38.97	e v é é	3.2	42.17	6 74° s	31.83	peak
4960	50.18	ALL OF CONTRACT	-5.45	44.73	74	29.27	peak 🤗
4960	51.06	A SV S	-5.56	45.5	74	28.5	peak

Report No.: QCT24BR-1285E-01

Page 64 of 71

Mode: coded S2

Test channel: Lowest channel

Frequency (MHz)	Read Level (dBµV)	polarization	Factor (dB/m)	Level (dBµV/m)	Limit Line (dBµV/m)	Margin (dB)	Detector
2310	36.25	S He St	2.42	38.67	<u>م</u> 74 م	35.33	peak
2310	36.19	No K	2.4	38.59	74	35.41	peak
2325.52	40.96	STILL H	2.5	43.46	74° °	30.54	peak
2325.19	40.23	CALLEN NO	2.46	42.69	5 74 0	31.31	peak
2363.58	39.45	C H Star	2.67	42.12	74	31.88	peak
2363.36	40.11	N V LE	2.61	42.72	74	31.28	peak
2377.77	41.18	Stine H of	2.73	43.91	ى% 74 ℃	30.09	peak
2377.66	40.38	THE MAG	2.68	43.06	511 74 00	30.94	peak
2390	43.3	Contraction of the second seco	2.79	46.09	74 74 March	27.91	peak
2390	43.15	e v f	2.73	45.88	° 74° ∠	28.12	peak
4804	51.38	STHOLE HOULE	-5.98	45.4	° 74	28.6	peak
4804	49.57	A A	-6.12	43.45	74	30.55	peak

Test channel: Middle channel

Frequency (MHz)	Read Level (dBµV)	polarization	Factor (dB/m)	Level (dBµV/m)	Limit Line (dBµV/m)	Margin (dB)	Detector
4880	50.37	A HO C	-5.71	44.66	5 ¹¹⁰ 74 °	29.34	peak
4880	49.87	C V Still M	-5.84	44.03	74 ⁴⁰	29.97	peak

Test channel: Highest channel

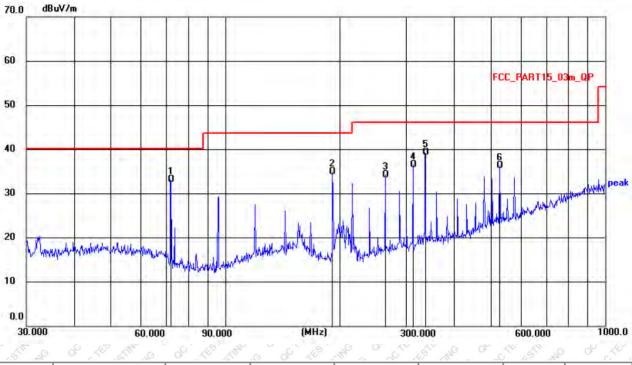
Frequency (MHz)	Read Level (dBµV)	polarization	Factor (dB/m)	Level (dBµV/m)	Limit Line (dBµV/m)	Margin (dB)	Detector
2483.5	60.86	° H S	3.23	64.09	74	9.91	or peak of
2483.5	47.53	ુ લે હ	3.23	50.76	54	3.24	AVG
2483.5	60.22	STHE NO SET	3.13	63.35	్ 74 లో	10.65	peak
2483.5	E 147 6	A No CO	3.13	50.13	54	3.87	AVG
2500	39.29	o cre Hermine	3.3	42.59	74 ^{°°} 8	31.41	peak
2500	39.14	e v é é	3.2	42.34	6 74° s	31.66	peak
4960	50.3	THE HOLE	-5.45	44.85	74	29.15	peak
4960	50.22	A STV S	-5.56	44.66	74	29.34	peak

Remarks:

1. Level =Receiver Read level + Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Report No.: QCT24BR-1285E-01

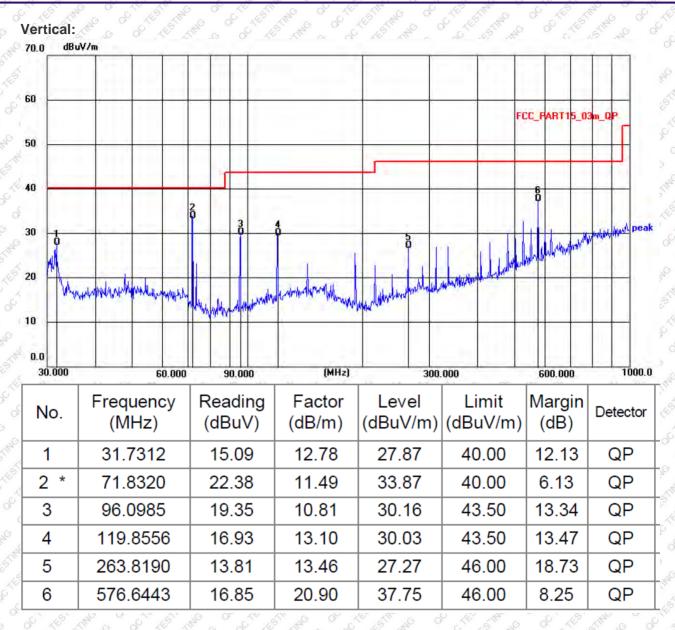

Page 65 of 71

Dipole Antenna

Below 1GHz

Pre-scan all test modes, found worst case at BLE 1M 2402MHz, and so only show the test result of BLE 1M 2402MHz.

Horizontal:



	1.1 2.1 -1						
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	71.8320	21.26	11.99	33.25	40.00	6.75	QP
2	191.7450	23.10	11.78	34.88	43.50	8.62	QP
3	263.8190	20.56	13.72	34.28	46.00	11.72	QP
4	312.1794	21.55	14.96	36.51	46.00	9.49	QP
5 *	336.0352	23.56	15.73	39.29	46.00	6.71	QP
6	528.2458	16.01	20.38	36.39	46.00	9.61	QP

Report No.: QCT24BR-1285E-01

Page 66 of 71

Report No.: QCT24BR-1285E-01

Above 1GHz

Mode: BLE 1M

Test channel: Lowest channel

Frequency (MHz)	Read Level (dBµV)	polarization	Factor (dB/m)	Level (dBµV/m)	Limit Line (dBµV/m)	Margin (dB)	Detector
2310	34.93	H H	2.42	37.35	ہے 74 ^ر	36.65	peak
2310	35.82	STIM VO O	2.4	38.22	5 ¹¹⁰ 74 6	35.78	peak
2390	41.87	S ALS HAMAN	2.79	44.66	× 74	29.34	peak
2390	45.64	, even in	2.73	48.37	74	25.63	peak
4804	50.31	H ST	-5.98	44.33	74	29.67	peak
4804	49.54	ESTIMATIN CO	-6.12	43.42	74 %	30.58	peak

Test channel: Middle channel

Frequency (MHz)	Read Level (dBµV)	polarization	Factor (dB/m)	Level (dBµV/m)	Limit Line (dBµV/m)	Margin (dB)	Detector
4880	48.83	E B S	-5.71	43.12	Jun 74 6	30.88	peak
4880	50.07	CAR V. M.	-5.84	44.23	A 74	29.77	peak

Test channel: Highest channel

Frequency (MHz)	Read Level (dBµV)	polarization	Factor (dB/m)	Level (dBµV/m)	Limit Line (dBµV/m)	Margin (dB)	Detector
2483.5	61.85	C AH AN	3.23	65.08	74	8.92	peak
2483.5	47.65	G H A	3.23	50.88	54	3.12	AVG
2483.5	62.21	The Ve che	3.13	65.34	o 74 🖉	8.66	peak
2483.5	47.03	Still No of	3.13	50.16	54 0	3.84	AVG
2500	41.07	C. C. Hunder	3.3	44.37	£ 74	29.63	peak
2500	38.44	of Vite sit	3.2	41.64	o 74	32.36	peak
4960	50.06	K GH S	-5.45	44.61	74	29.39	peak
4960	49.11	Strate Co	-5.56	43.55	× 74 °	30.45	peak

Report No.: QCT24BR-1285E-01

Page 68 of 71

Mode: BLE 2M

Test channel: Lowest channel

Frequency (MHz)	Read Level (dBµV)	polarization	Factor (dB/m)	Level (dBµV/m)	Limit Line (dBµV/m)	Margin (dB)	Detector
2310	36.18	OF HE SIM	2.42	38.6	<u>م</u> 74 ه	35.4	peak
2310	37.09	Ver de	2.4	39.49	74	34.51	peak
2390	46.66	STILLE H	2.79	49.45	74 ⁰	24.55	peak
2390	42.34	CARLEN NO	2.73	45.07	5 74	28.93	peak
4804	51.67	CH STAR	 -5.98 	45.69	6 194 Jac	28.31	peak
4804	53.53	NO V C	-6.12	47.41	74	26.59	peak

Test channel: Middle channel

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Frequency (MHz)	Read Level (dBµV)	polarization	Factor (dB/m)	Level (dBµV/m)	Limit Line (dBµV/m)	Margin (dB)	Detector
	4880	51.58	He He K	-5.71	45.87	<u> </u>	28.13	peak
N	4880	52.65	S V S	-5.84	46.81	74° ×	27.19	peak

Test channel: Highest channel

Frequency (MHz)	Read Level (dBµV)	polarization	Factor (dB/m)	Level (dBµV/m)	Limit Line (dBµV/m)	Margin (dB)	Detector
2483.5	58.42	E HILL C	3.23	61.65	74 6	12.35	peak
2483.5	47.74	A A A	3.23	50.97	54	3.03	AVG
2483.5	61.84	of V. Stine	3.13	64.97	o 74 m	9.03	peak
2483.5	o 47.09	S Ver the	3.13	50.22	54	3.78	AVG
2500	36.19	E H C	3.3	39.49	× 74	34.51	peak
2500	38.04		3.2	41.24	74	32.76	peak
4960	50.56	O AH ANA	-5.45	45.11	74	28.89	peak o
4960	50.77	S & A	-5.56	45.21	74	28.79	peak

Report No.: QCT24BR-1285E-01

### Mode: coded S8

S	Test channel:	Lowest channel	AM O O A	S' IN G	S. B. M		Stringer OF	at at a
, 19 19 1	Frequency (MHz)	Read Level (dBµV)	polarization	Factor (dB/m)	Level (dBµV/m)	Limit Line (dBµV/m)	Margin (dB)	Detector
ç	2310	35.47	of Her Star	2.42	37.89	of 74 m	36.11	peak
	2310	37.05	No K	2.4	39.45	74	34.55	peak
N	2390	45.3	STILLE H	2.79	48.09	740	25.91	peak
	2390	40.07	CALLEN NO	2.73	42.8	74	31.2	peak
6	4804	50.28	OCH STIN	o -5.98	44.3	74	29.7	peak o
	4804	50.4	N V LE	-6.12	44.28	74	29.72	peak

Test channel: Middle channel

~ ~ ~ ~	Frequency (MHz)	Read Level (dBµV)	polarization	Factor (dB/m)	Level (dBµV/m)	Limit Line (dBµV/m)	Margin (dB)	Detector
Ī	4880	50.24	B HO K	-5.71	44.53	74	29.47	peak
1º	4880	50.26	S V C	-5.84	44.42	74° ×	29.58	peak

Test channel: Highest channel

Frequency (MHz)	Read Level (dBµV)	polarization	Factor (dB/m)	Level (dBµV/m)	Limit Line (dBµV/m)	Margin (dB)	Detector
2483.5	59.1	A H	3.23	62.33	74 0	11.67	peak
2483.5	47.55	A H	3.23	50.78	54	3.22	AVG
2483.5	57.4	of V. Still	3.13	60.53	o 74 m	13.47	peak
2483.5	o 47.02	S Ver de	3.13	50.15	54	3.85	AVG
2500	38.56	E H C	3.3	41.86	~ 74°	32.14	peak
2500	36.23	ST LOV S	3.2	39.43	5 74	34.57	peak
4960	50.55	C H Stra	-5.45	45.1	74	28.9	peak o
4960	51.3	S & C	-5.56	45.74	74	28.26	peak

Report No.: QCT24BR-1285E-01

### Mode: coded S2

Test channel	Lowest channel

Frequency (MHz)	Read Level (dBµV)	polarization	Factor (dB/m)	Level (dBµV/m)	Limit Line (dBµV/m)	Margin (dB)	Detector
2310	36.41	OF HE STA	2.42	38.83	<u>ي</u> 74 م	35.17	peak
2310	36.53	No Vo A	2.4	38.93	<u> </u>	35.07	peak
2390	43.44	STILLE H. CO. CO	2.79	46.23	74 ⁰	27.77	peak
2390	39.56	CALLEN NO	2.73	42.29	5 74 0	31.71	peak
4804	49.25	OC H STING	5.98	43.27	74	30.73	peak o
4804	49.58	N N LE	-6.12	43.46	74	30.54	peak

Test channel: Middle channel

~ ~ ~	Frequency (MHz)	Read Level (dBµV)	polarization	Factor (dB/m)	Level (dBµV/m)	Limit Line (dBµV/m)	Margin (dB)	Detector
	4880	<u>م</u> 49.7	S HOLO	-5.71	43.99	⁷⁴	30.01	peak
110 3	o 4880 🖉	50.7	S V C	-5.84	44.86	74	29.14	peak

Test channel: Highest channel

Frequency (MHz)	Read Level (dBµV)	polarization	Factor (dB/m)	Level (dBµV/m)	Limit Line (dBµV/m)	Margin (dB)	Detector
2483.5	61.24	E H	3.23	64.47	74 %	9.53	peak
2483.5	47.72	A A A	3.23	50.95	54	3.05	AVG
2483.5	55.21	of V. Stine	3.13	58.34	o 74 m	15.66	peak
2483.5	ي 47 ^{رو} رو	S Ver the	3.13	50.13	54	3.87	AVG
2500	37.97	E H C	3.3	41.27	× 74	32.73	peak
2500	36.14	N. L. V. S.	3.2	39.34	5 74	34.66	peak
4960	50.5	C A S	-5.45	45.05	A74 M	28.95	peak of
4960	49.63	NO NO	-5.56	44.07	74	29.93	peak

Remarks:

1. Level =Receiver Read level + Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

--- THE END OF TEST REPORT -----

#### Report No.: QCT24BR-1285E-01