

Global United Technology Services Co., Ltd.

Report No.: GTS202006000079-01

Test Report

Hearth & Home Technologies **FCC Applicant:**

Address: 800 W. Jefferson Street, Lake, Minnesota 55041, United States

IC Applicant: HEARTH & HOME TECHNOLOGIES

800 W. Jefferson Street Lake City MN 55041 United States Of Address:

America

Manufacturer: Hearth & Home Technologies

800 W. Jefferson Street, Lake, Minnesota 55041, United States Address:

Computime Electronics (Shenzhen) CO.,LTD **Factory:**

Computime Technology Pk, Dan Zhu Tou Cun Buji, Longgang Address:

Region Shenzhen China

Equipment Under Test (EUT)

IntelliFire Touch Technology -Electronic Control Module(IFT-**Product Name:**

ECM)

2564-130 Model No.:

Trade Mark: Intellifire

FCC ID: ULE2564-130

IC: 6732A-2564130

FCC CFR Title 47 Part 15 Subpart C Section 15.249 Applicable standards:

> RSS-Gen Issue 5 **RSS-210 Issue 10**

June 05, 2020 Date of sample receipt:

Date of Test: June 05-11, 2020

Date of report issued: June 12, 2020

PASS * Test Result:

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo **Laboratory Manager**

2 Version

Version No.	Date	Description
00	June 12, 2020	Original

Prepared By:	Tigor. Chen	Date:	June 12, 2020
Check By:	Project Engineer	Date:	June 12, 2020
	Reviewer		

3 Contents

	4
1 COVER PAGE	1
2 VERSION2	2
3 CONTENTS	3
4 TEST SUMMARY	4
4.1 MEASUREMENT UNCERTAINTY	4
5 GENERAL INFORMATION	5
5.1 GENERAL DESCRIPTION OF EUT	5
5.2 TEST MODE	
5.3 DESCRIPTION OF SUPPORT UNITS	
5.4 DEVIATION FROM STANDARDS	
5.5 ABNORMALITIES FROM STANDARD CONDITIONS	
5.6 TEST FACILITY	_
5.7 TEST LOCATION	
6 TEST INSTRUMENTS LIST	7
7 TEST RESULTS AND MEASUREMENT DATA	9
7.1 ANTENNA REQUIREMENT	9
7.2 CONDUCTED EMISSIONS	10
7.3 RADIATED EMISSION METHOD	
7.3.1 Field Strength of The Fundamental Signal and spurious emissions	
7.3.2 Spurious emissions	
7.4 20dB Occupy Bandwidth and 99% Occupied Bandwidth	29
8 TEST SETUP PHOTO	31
9 EUT CONSTRUCTIONAL DETAILS	31

4 Test Summary

Test Item	Section	Result
Antenna requirement	15.203 RSS-Gen Section 6.8	Pass
AC Power Line Conducted Emission	15.207	Pass
AC Power Line Conducted Emission	RSS-Gen Section 8.8	Pass
Field strength of the fundamental signal	15.249 (a)	Pass
Field strength of the fundamental signal	RSS-210 B10(a)	Pd55
Spurious emissions	15.249 (a) (d)/15.209	Pass
Spurious erriissions	RSS-Gen Clause 8.9&8.10	rass
Band edge	15.249 (d)/15.205	Pass
Band edge	RSS-Gen Clause 8.9&8.10	Pass
20dB Occupied Bandwidth and 99%	15.215 (c)	Pass
Occupied Bandwidth	RSS-Gen 6.7	F a 5 5

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.10: 2013 and ANSI C63.4: 2014.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes			
Radiated Emission	30MHz-200MHz	3.8039dB	(1)			
Radiated Emission	200MHz-1GHz	3.9679dB	(1)			
Radiated Emission	1GHz-18GHz	4.29dB	(1)			
Radiated Emission	18GHz-40GHz	3.30dB	(1)			
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)			
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of 9	95%.			

5 General Information

5.1 General Description of EUT

Product Name:	IntelliFire Touch Technology -Electronic Control Module(IFT-ECM)
Model No.:	2564-130
Serial No.:	YYWWHFMNNNN
Hardware Version:	HHTG021_ECM_V6/HHTF021_RF_V3.0
Software Version:	V1.2.0
Test sample(s) ID:	GTS202006000079-1
Sample(s) Status:	Engineer sample
Operation Frequency:	912.2~918MHz
Channel numbers:	30
Channel separation:	200kHz
Modulation type:	FSK
Antenna Type:	Internal antenna
Antenna gain:	0dBi(declare by manufacturer)
Power supply:	DC 3.3V

RF module(2564-120) is a transceiver, it is not a general module and can not work independently, it is need to be combined with ECM(2564-130) to operating. RFM will be configured by ECM, including RF channel, transmit and receive modes

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency		
1	912.2 MHz	11	914.2 MHz	21	916.2 MHz		
2	912.4 MHz	12	914.4 MHz	22	916.4 MHz		
3	912.6 MHz	13	914.6 MHz	23	916.6 MHz		
4	912.8 MHz	14	914.8 MHz	24	916.8 MHz		
5	913.0 MHz	15	915.0 MHz	25	917.0 MHz		
6	913.2 MHz	16	915.2 MHz	26	917.2 MHz		
7	913.4 MHz	17	915.4 MHz	27	917.4 MHz		
8	913.6 MHz	18	915.6 MHz	28	917.6 MHz		
9	913.8 MHz	19	915.8 MHz	29	917.8 MHz		
10	914.0 MHz	20	916.0 MHz	30	918.0 MHz		

5.2 Test mode

Transmitting mode	Keep the EU1	Keep the EUT in continuously transmitting mode.		
Per-test mode.				
We have verified the construction and function in typical operation, The EUT was placed on three different polar directions; i.e. X axis, Y axis, Z axis. which was shown in this test report and defined as follows:				
Axis X Y Z				
Field Strength(dBuV/m) 88.36		89.05	87.22	

5.3 Description of Support Units

Manufacturer	Description	Model	Serial Number
Computime	REMOTE 2.0 FIREPLACE SYSTEM	HHTG021	N/A
Computime	AC/DC Adapter	YLS0121A-T059150	N/A

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• IC —Registration No.: 9079A

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0.

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.8 Additional Instructions

EUT Software Settings:

Mode	Special test firmware pre built in by manufacturer

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6 Test Instruments list

Radi	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 26 2019	June. 25 2020	
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 26 2019	June. 25 2020	
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 26 2019	June. 25 2020	
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 26 2019	June. 25 2020	
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
8	Coaxial Cable	GTS	N/A	GTS213	June. 26 2019	June. 25 2020	
9	Coaxial Cable	GTS	N/A	GTS211	June. 26 2019	June. 25 2020	
10	Coaxial cable	GTS	N/A	GTS210	June. 26 2019	June. 25 2020	
11	Coaxial Cable	GTS	N/A	GTS212	June. 26 2019	June. 25 2020	
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 26 2019	June. 25 2020	
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 26 2019	June. 25 2020	
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 26 2019	June. 25 2020	
15	Band filter	Amindeon	82346	GTS219	June. 26 2019	June. 25 2020	
16	Power Meter	Anritsu	ML2495A	GTS540	June. 26 2019	June. 25 2020	
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 26 2019	June. 25 2020	
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 26 2019	June. 25 2020	
19	Splitter	Agilent	11636B	GTS237	June. 26 2019	June. 25 2020	
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 26 2019	June. 25 2020	
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 19 2019	Oct. 18 2020	
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 19 2019	Oct. 18 2020	
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 19 2019	Oct. 18 2020	
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 26 2019	June. 25 2020	

Cond	Conducted Emission						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020	
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 26 2019	June. 25 2020	
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 26 2019	June. 25 2020	
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A	
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
7	Thermo meter	KTJ	TA328	GTS233	June. 26 2019	June. 25 2020	
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 26 2019	June. 25 2020	
9	ISN	SCHWARZBECK	NTFM 8158	GTD565	June. 26 2019	June. 25 2020	

RF C	onducted Test:					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 26 2019	June. 25 2020
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 26 2019	June. 25 2020
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 26 2019	June. 25 2020
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 26 2019	June. 25 2020
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 26 2019	June. 25 2020
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 26 2019	June. 25 2020
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 26 2019	June. 25 2020

Gen	eral used equipment:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 26 2019	June. 25 2020
2	Barometer	ChangChun	DYM3	GTS255	June. 26 2019	June. 25 2020

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement:

FCC part 15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

RSS-Gen 6.8:

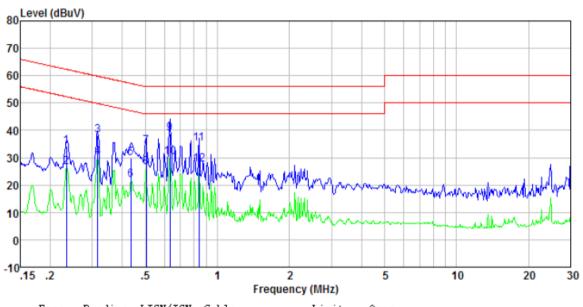
The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

EUT Antenna:

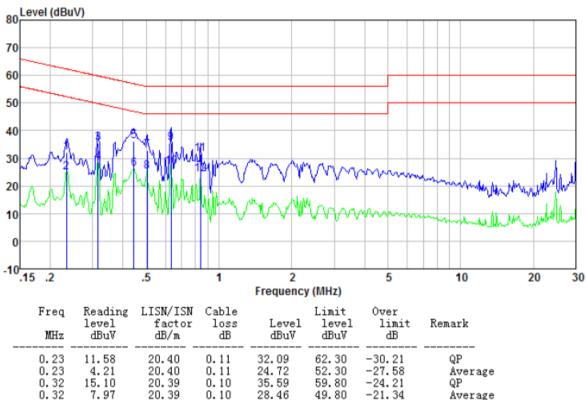
The antenna is integral antenna, the best case gain of the antenna is 0dBi, reference to the appendix II for details

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



7.2 Conducted Emissions

 Oondacted Ennissions	•					
Test Requirement:	FCC Part15	C Section 1	5.207			
	RSS-Gen S	ection 8.8				
Test Method:	ANSI C63.1	0:2013 and F	RSS-Gen			
Test Frequency Range:	150KHz to	30MHz				
Class / Severity:	Class B					
Receiver setup:	RBW=9KHz	z, VBW=30Kł	Iz, Sweep t	me=auto		
Limit:			1-)	Limit	(dBuV)	
	Frequen	cy range (MH	1Z) Q	uasi-peak	Ave	erage
	C).15-0.5		66 to 56*	56 1	to 46*
		0.5-5		56		46
		5-30		60	:	50
	* Decreases	s with the log	arithm of the	frequency.		_
Test setup:		Reference	Plane			
	Remark: E.U.T: Equipment	/Insulation plane Under Test ance Stabilization Net	EMI Receiv	Filter — AC p	ower	
Test procedure:	line impe 50ohm/5 2. The perip LISN thaterminati photogra 3. Both side interfered positions	edance stabili OuH coupling oheral device t provides a son. (Please raphs). es of A.C. line nce. In order	zation network impedance impedance is are also continued to the best of the material and all of the material and all of the material impedance in th	ected to the rork (L.I.S.N.). for the meas connected to the coupling implock diagram and for maximum emission conducted	This provide uring equipment main powedance with of the test some conducters in the relables must	es a ment. ver through a n 500hm etup and d lative be changed
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	4.040
Toot looks meets:				0270	1 1000	1 012mbar
Test Instruments:		ction 6.0 for d				
Test mode:		JUOI 5.2 IOF 0	letalis			
Test results:	Pass					


Measurement data:

Freq	Reading level dBuV	LISN/ISN factor dB/m	Cable loss dB	Level dBuV	Limit level dBuV	Over limit dB	Remark
0.23	13.54	20.40	0.11	34.05	62.30	-28.25	QP
0.23	5.86	20.40	0.11	26.37	52.30	-25.93	Average
0.32	17.78	20.39	0.10	38.27	59.80	-21.53	QP
0.32	9.55	20.39	0.10	30.04	49.80	-19.76	Average
0.44	9.30	20.34	0.11	29.75	57.15	-27.40	QP
0.44	1.58	20.34	0.11	22.03	47.15	-25.12	Average
0.50	13.83	20.31	0.11	34.25	56.00	-21.75	QP
0.50	6.06	20.31	0.11	26.48	46.00	-19.52	Average
0.63	18.52	20.28	0.12	38.92	56.00	-17.08	QP
0.63	9.73	20.28	0.12	30.13	46.00	-15.87	Average
0.84	14.78	20.23	0.14	35.15	56.00	-20.85	QP
0.84	7.04	20.23	0.14	27.41	46.00	-18.59	Average

Test mode:	transmitting mode	Phase Polarity:	Neutral
------------	-------------------	-----------------	---------

0.23	11.58	20.40	0.11	32.09	62.30	-30.21	QP
0.23	4.21	20.40	0.11	24.72	52.30	-27.58	Average
0.32	15.10	20.39	0.10	35.59	59.80	-24.21	QP
0.32	7.97	20.39	0.10	28.46	49.80	-21.34	Average
0.44	15.86	20.33	0.11	36.30	56.98	-20.68	QP
0.44	5.75	20.33	0.11	26.19	46.98	-20.79	Average
0.50	12.45	20.31	0.11	32.87	56.00	-23.13	QP
0.50	4.76	20.31	0.11	25.18	46.00	-20.82	Average
0.63	14.98	20.28	0.12	35.38	56.00	-20.62	QP
0.63	6.32	20.28	0.12	26.72	46.00	-19.28	Average
0.84	11.18	20.23	0.14	31.55	56.00	-24.45	QP
0.84	3.76	20.23	0.14	24.13	46.00	-21.87	Average

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Radiated Emission Method

 Naulateu Lillission We	1						
Test Requirement:	FCC Part15 C Section	on 15	.209				
	RSS-210 B10(a)& R	SS-2	10 B10(b)	& RSS-	Gen Cla	ause 8.9	9&8.10
Test Method:	ANSI C63.10:2013 a	and R	SS-Gen				
Test Frequency Range:	9kHz to 10GHz						
Test site:	Measurement Distar	nce: 3	ßm				-
Receiver setup:	Frequency	D	etector	RB\	N	VBW	Value
	9KHz-150KHz	Qu	asi-peak	2001	Hz 6	600Hz	Quasi-peak
	150KHz-30MHz	Qu	asi-peak	9KF	lz 3	30KHz	Quasi-peak
	30MHz-1GHz	Qu	asi-peak	120K	Hz 3	300KHz	Quasi-peak
	Above 1GHz		Peak	1MF		3MHz	Peak
	7.0000 101.12		Peak	1MF		10Hz	Average
Limit:	Frequency		Limit	(dBuV/			Remark
(Field strength of the	902-928MHz	Z		94.0		A	verage Value
fundamental signal)		1		114.0	00		Peak Value
Limit: (Spurious Emissions)	Frequency		Limit (u		Valu	ue	Measurement Distance
	0.009MHz-0.490M		2400/F(KHz)	QF		300m
	0.490MHz-1.705M	1Hz	24000/F	(KHz)	QF	>	30m
	1.705MHz-30MH		30		QF		30m
	30MHz-88MHz		100)	QF		
	88MHz-216MHz		150)	QF		
	216MHz-960MH		200		QF		3m
	960MHz-1GHz		500		QF		
	Above 1GHz	-	500		Avera		
			500		Pea		
Limit: (band edge)	Emissions radiated of harmonics, shall be fundamental or to the whichever is the less	atteni e gen	uated by a eral radia	at least & ted emi	50 dB b	elow the	e level of the
Test setup:	Below 30MHz						
	Tum Table EUT		< 3m > Test m Table	Antenna lm			
	Below 1GHz						

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Report No.: GTS202006000079-01 Test Antenna EUT-Turn Table < 80cm Turn Tables Receiver-Preamplifier. Above 1GHz Test Antenna+ < 1m ... 4m > FUT. Tum Table <150cm> Receiver-Preamplifier+ Test Procedure: 1. The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test environment: 25 °C Humid.: 52% Press.: 1 012mbar Temp.:

Test Instruments:

Test mode:

Refer to section 6.0 for details

Refer to section 5.2 for details

	Report No.: GTS202006000079-01
Test results:	Pass

Measurement data:

■ 9 kHz ~ 30 MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

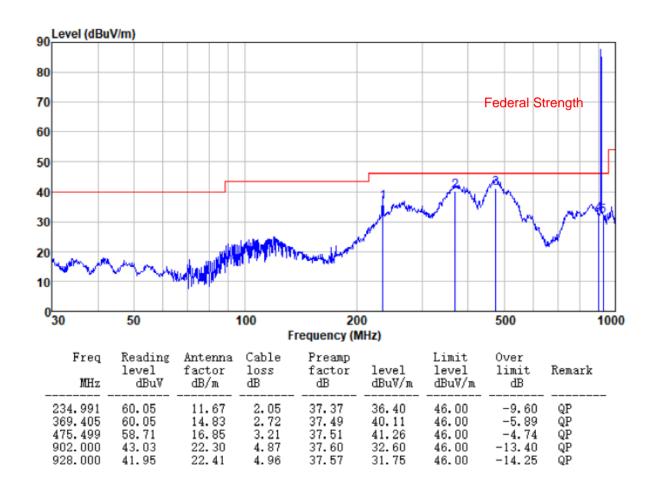
7.3.1 Field Strength of The Fundamental Signal and spurious emissions

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
912.20	93.52	22.35	4.90	37.59	83.18	114.00	-30.82	Vertical
912.20	98.39	23.35	5.90	38.59	89.05	114.00	-24.95	Horizontal
915.00	92.01	22.35	4.91	37.59	81.68	114.00	-32.32	Vertical
915.00	98.02	22.35	4.91	37.59	87.69	114.00	-26.31	Horizontal
918.00	93.81	22.37	4.91	37.58	83.51	114.00	-30.49	Vertical
918.00	98.01	22.37	4.91	37.58	87.71	114.00	-26.29	Horizontal

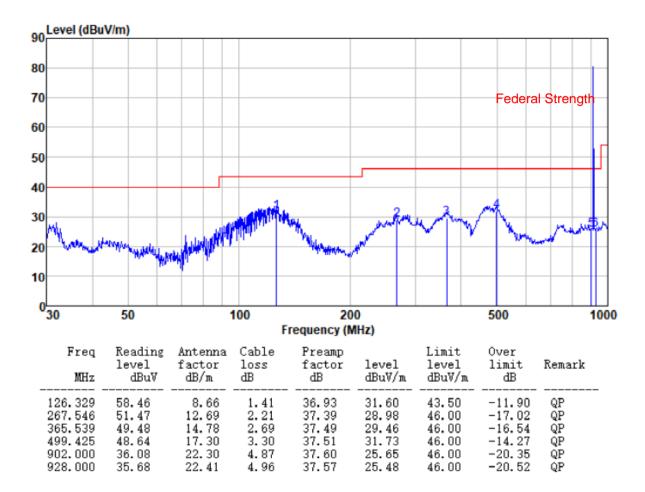
Average value:

		1						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
912.20	85.36	22.35	4.90	37.59	75.02	94.00	-18.98	Vertical
912.20	89.94	23.35	5.90	38.59	80.60	94.00	-13.40	Horizontal
915.00	83.97	22.35	4.91	37.59	73.64	94.00	-20.36	Vertical
915.00	89.88	22.35	4.91	37.59	79.55	94.00	-14.45	Horizontal
918.00	84.13	22.37	4.91	37.58	73.83	94.00	-20.17	Vertical
918.00	89.87	22.37	4.91	37.58	79.57	94.00	-14.43	Horizontal

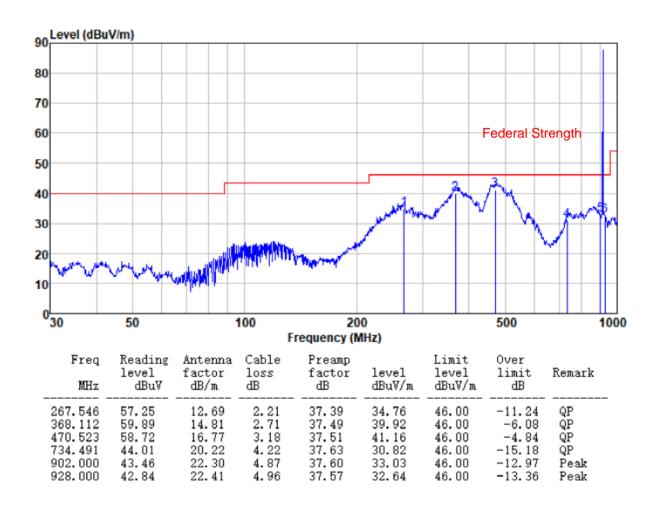

7.3.2 Spurious emissions

■ Below 30MHz

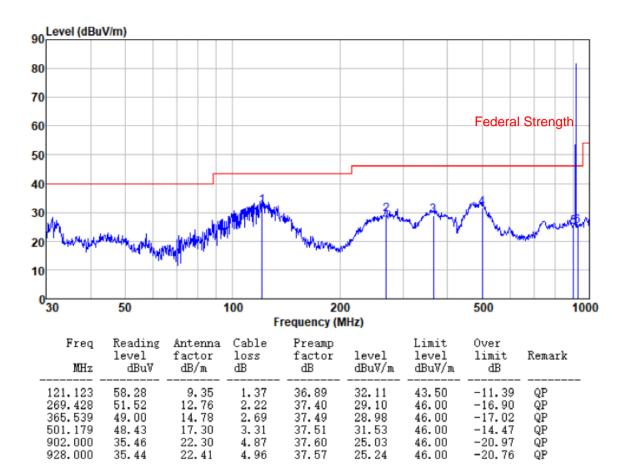
The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o), the test result no need to reported.


■ Below 1GHz

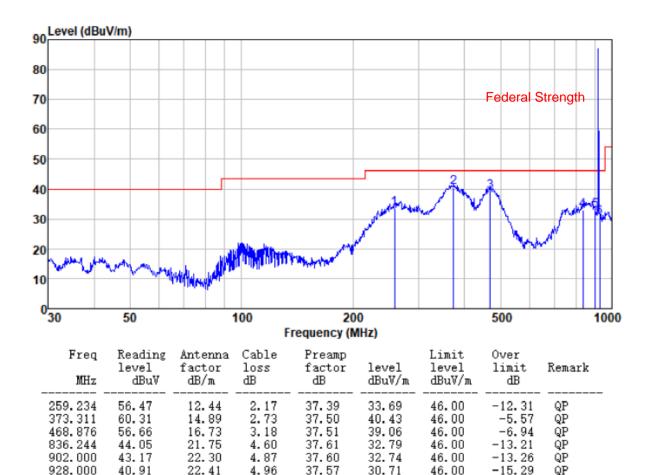
Test mode: transmitting mode (912.2MHz) Antenna Polarity: Horizontal
--

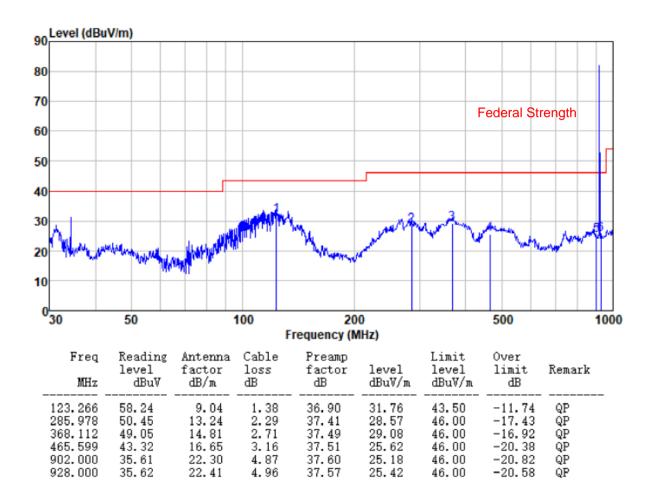


Test mode: transmitting mode (912.2MHz) Antenna Polarity: Vertical
--

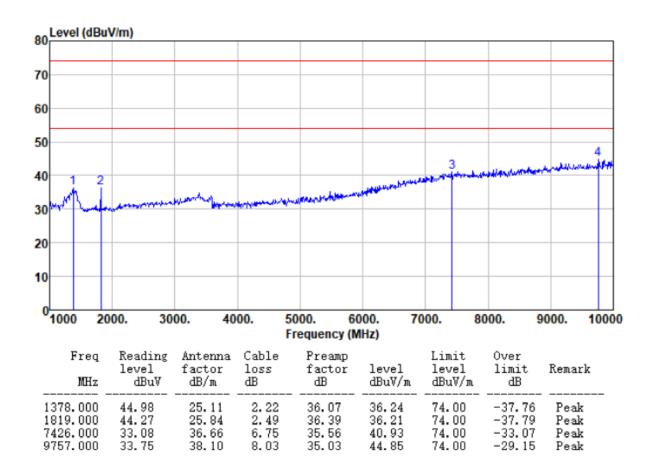


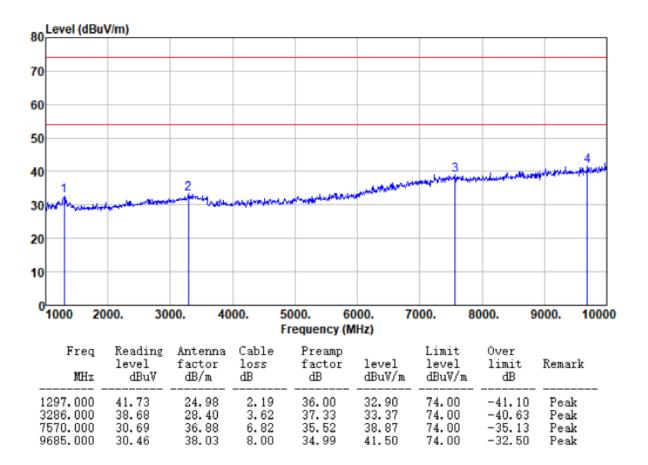
Test mode:	transmitting mode (915MHz)	Antenna Polarity:	Horizontal
rest mode.	transmitting mode (915MHz)	Antenna Polanty.	Honzoniai



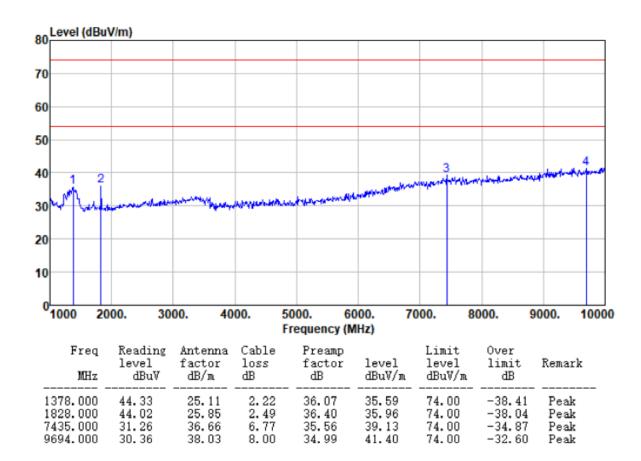


Test mode: transmitting mode (918MHz) Antenna Polarity: Horizontal
--

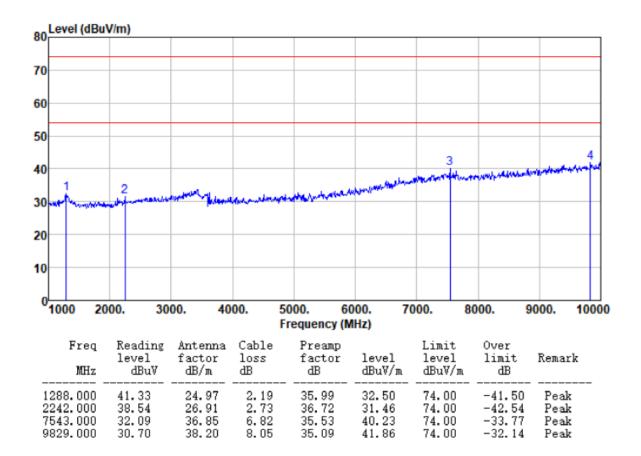

Test mode: transmitting mode (918MHz) Antenna Polarity: Vertical
--

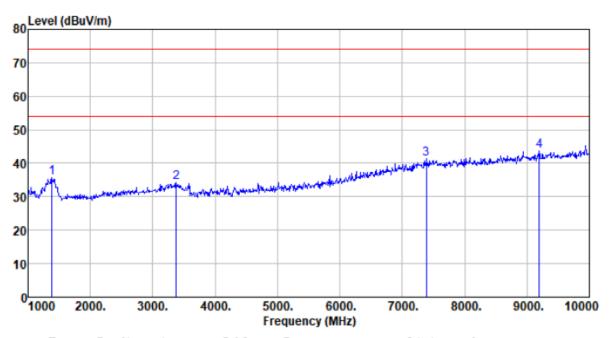

Above 1GHz

Test mode:	transmitting mode (912.2MHz)	Antenna Polarity:	Horizontal
------------	------------------------------	-------------------	------------

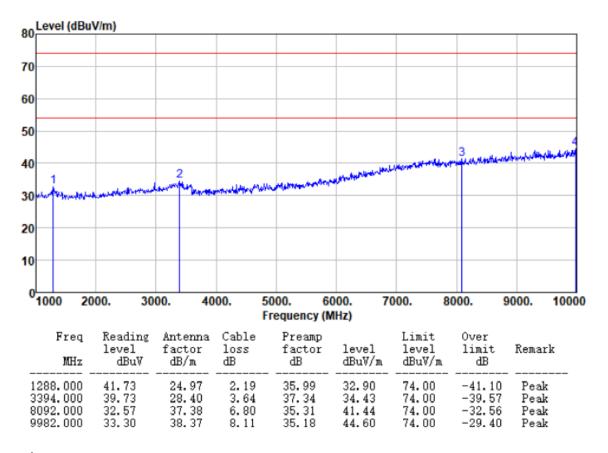


Test mode: transmitting mode (912.2MHz) Antenna Polarity: Vertical
--


Test mode:	transmitting mode (915MHz)	Antenna Polarity:	Horizontal
restillode.	transmitting mode (3 rown iz)	Antenna Folanty.	Tionzoniai

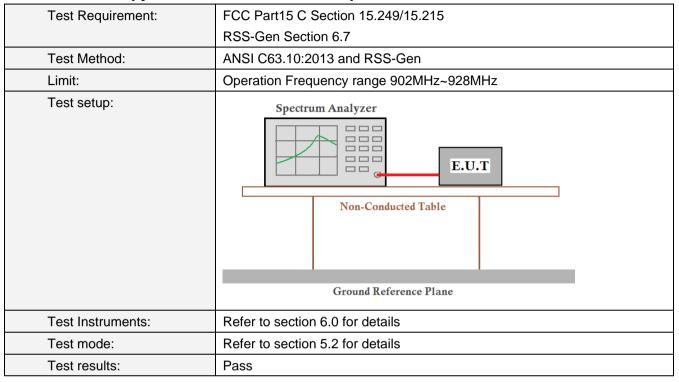

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode:	transmitting mode (915MHz)	Antenna Polarity:	Vertical
	• • • • • • • • • • • • • • • • • • • •	-	



Freq	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBuV/m	Limit level dBuV/m	Over limit dB	Remark
1387.000	44.39	25. 13	2. 23	36.08	35.67	74.00	-38.33	Peak
3376.000	39.69	28. 40	3. 64	37.34	34.39	74.00	-39.61	Peak
7390.000	33.74	36. 57	6. 71	35.58	41.44	74.00	-32.56	Peak
9199.000	32.88	37. 63	7. 71	34.65	43.57	74.00	-30.43	Peak

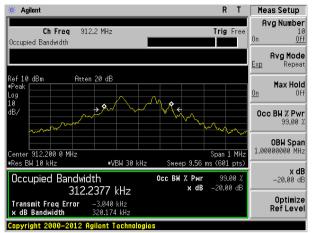
|--|



Remark:

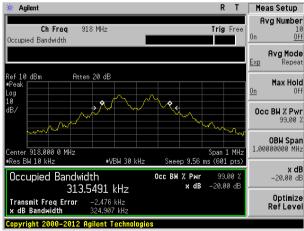
- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

7.4 20dB Occupy Bandwidth and 99% Occupied Bandwidth


Measurement Data

Operation Frequency	20dB bandwidth(kHz)	99% Occupied bandwidth(kHz)	Result
912.2MHz	320.174	312.2377	Pass
915MHz	324.484	314.6662	
918MHz	324.907	313.5491	

Test plot as follows:


Report No.: GTS202006000079-01

912.2MHz

915MHz

918MHz

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details

-----End-----