

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen, Guangdong, China 518057

 Telephone:
 +86 (0) 755 2601 2053

 Fax:
 +86 (0) 755 2671 0594

 Email:
 ee.shenzhen@sgs.com

Report No.: SZEM180600566801 Page: 1 of 53

TEST REPORT

Application No.: SZEM1806005668CR	
Applicant:	Innovation First, Inc.
Address of Applicant:	1519 INT. 30 W, Greenville, Texas, United States
Manufacturer:	Innovation First, Inc.
Address of Manufacturer:	1519 INT. 30 W, Greenville, Texas, United States
Equipment Under Test (EUT):
EUT Name:	VEX Pilot Brain 2.0
Model No.:	406-3368
FCC ID:	UKU-RAD10
Standard(s) :	47 CFR Part 15, Subpart C 15.247
Date of Receipt:	2018-06-28
Date of Test:	2018-06-29 to 2018-07-12
Date of Issue:	2018-07-13
Test Result:	Pass*

* In the configuration tested, the EUT complied with the standards specified above.

EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

Report No.: SZEM180600566801 Page: 2 of 53

	Revision Record							
Version Chapter Date Modifier Ren								
01		2018-07-13		Original				

Authorized for issue by:		
	Ceo. Ci	
	Leo Li /Project Engineer	
	Evic Fu	
	Eric Fu /Reviewer	

Report No.: SZEM180600566801 Page: 3 of 53

2 Test Summary

Radio Spectrum Technical Requirement							
Item Standard Method Requirement Result							
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass			

Radio Spectrum Matt	Radio Spectrum Matter Part						
Item	Standard	Method	Requirement	Result			
Minimum 6dB	47 CFR Part 15,	ANSI C63.10 (2013)	47 CFR Part 15, Subpart	Pass			
Bandwidth	Subpart C 15.247	Section 11.8.1	C 15.247a(2)				
Conducted Peak	47 CFR Part 15,	ANSI C63.10 (2013)	47 CFR Part 15, Subpart	Pass			
Output Power	Subpart C 15.247	Section 11.9.1	C 15.247(b)(3)				
Power Spectrum	47 CFR Part 15,	ANSI C63.10 (2013)	47 CFR Part 15, Subpart	Pass			
Density	Subpart C 15.247	Section 11.10.2	C 15.247(e)				
Conducted Band	47 CFR Part 15,	ANSI C63.10 (2013)	47 CFR Part 15, Subpart	Pass			
Edges Measurement	Subpart C 15.247	Section 11.13.3.2	C 15.247(d)				
Conducted Spurious	47 CFR Part 15,	ANSI C63.10 (2013)	47 CFR Part 15, Subpart	Pass			
Emissions	Subpart C 15.247	Section 11.11	C 15.247(d)				
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass			
Radiated Spurious	47 CFR Part 15,	ANSI C63.10 (2013)	47 CFR Part 15, Subpart	Pass			
Emissions	Subpart C 15.247	Section 6.4,6.5,6.6	C 15.205 & 15.209				

Report No.: SZEM180600566801 Page: 4 of 53

3 Contents

		P	age
1	COVE	R PAGE	1
0	TEOT	SUMMARY	^
2	15513		ა
3	CONT	ENTS	4
4	CENE	RAL INFORMATION	6
4			
		Description of Support Units	
		EST LOCATION	
		est location	
	-	DEVIATION FROM STANDARDS	
		BNORMALITIES FROM STANDARD CONDITIONS	
5		PMENT LIST	
5	LGOIF		9
6	RADIC) SPECTRUM TECHNICAL REQUIREMENT	12
	6.1 A	INTENNA REQUIREMENT	12
	6.1.1	Test Requirement:	12
	6.1.2	Conclusion	12
7	RADIO) SPECTRUM MATTER TEST RESULTS	13
	7.1 M	INIMUM 6DB BANDWIDTH	13
	7.1.1	E.U.T. Operation	
	7.1.2	Test Setup Diagram	
	7.1.3	Measurement Procedure and Data	13
	7.2 C	CONDUCTED PEAK OUTPUT POWER	
	7.2.1	E.U.T. Operation	
	7.2.2	Test Setup Diagram	
	7.2.3	Measurement Procedure and Data	
	7.3.1 7.3.2	E.U.T. Operation	
	7.3.2 7.3.3	Test Setup Diagram Measurement Procedure and Data	
		Conducted Band Edges Measurement	
	7.4.1	E.U.T. Operation	
	7.4.2	Test Setup Diagram	
	7.4.3	Measurement Procedure and Data	
	7.5 C	CONDUCTED SPURIOUS EMISSIONS	17
	7.5.1	E.U.T. Operation	17
	7.5.2	Test Setup Diagram	
	7.5.3	Measurement Procedure and Data	
		ADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	
	7.6.1	E.U.T. Operation	
	7.6.2	Test Setup Diagram	
	<i>7.6.3</i> 7.7 R	Measurement Procedure and Data	
	л. 7.7.1	E.U.T. Operation	
	7.7.2	Test Setup Diagram	
		, ,	-

Report No.: SZEM180600566801 Page: 5 of 53

	7.7.3	3 Measurement Procedure and Data	
8	PHC	TOGRAPHS	36
	8.1 8.2	RADIATED SPURIOUS EMISSIONS TEST SETUP EUT CONSTRUCTIONAL DETAILS (EUT PHOTOS)	
9	APP	ENDIX	39
	9.1	Appendix 15.247	

Report No.: SZEM180600566801 Page: 6 of 53

4 General Information

4.1 Details of E.U.T.

Power supply:	9V DC (1.5Vx6"AA" Size Batteries)
Test voltage:	DC 9V
Bluetooth Version:	V4.2 single mode
Operation Frequency	2402MHz to 2480MHz
Number of Channels	40
Modulation Type	GFSK
Channel Spacing	2MHz
Antenna Type	PCB Antenna
Antenna Gain	3.3dBi

Operation	Operation Frequency each of channel							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
1	2402	11	2422	21	2442	31	2462	
2	2404	12	2424	22	2444	32	2464	
3	2406	13	2426	23	2446	33	2466	
4	2408	14	2428	24	2448	34	2468	
5	2410	15	2430	25	2450	35	2470	
6	2412	16	2432	26	2452	36	2472	
7	2414	17	2434	27	2454	37	2474	
8	2416	18	2436	28	2456	38	2476	
9	2418	19	2438	29	2458	39	2478	
10	2420	20	2440	30	2460	40	2480	

Report No.: SZEM180600566801 Page: 7 of 53

4.2 Description of Support Units

The EUT has been tested as an independent unit.

4.3 Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Radio Frequency	± 7.25 x 10 ⁻⁸
2	Duty cycle	± 0.37%
3	Occupied Bandwidth	± 3%
4	RF conducted power	± 0.75dB
5	RF power density	± 2.84dB
6	Conducted Spurious emissions	± 0.75dB
7	DE Dedicted newsr	± 4.5dB (below 1GHz)
/	RF Radiated power	± 4.8dB (above 1GHz)
8	Dedicted Courieus emission test	± 4.5dB (Below 1GHz)
0	Radiated Spurious emission test	± 4.8dB (Above 1GHz)
9	Temperature test	± 1 ℃
10	Humidity test	± 3%
11	Supply voltages	± 1.5%
12	Time	± 3%

Report No.: SZEM180600566801 Page: 8 of 53

4.4 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC

Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

• VCCI

The 3m Fully-anechoic chamber for above 1GHz, 10m Semi-anechoic chamber for below 1GHz, Shielded Room for Mains Port Conducted Interference Measurement and Telecommunication Port Conducted Interference Measurement of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-20026, R-14188, C-12383 and T-11153 respectively.

FCC – Designation Number: CN1178

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1178. Test Firm Registration Number: 406779.

Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions

None

Report No.: SZEM180600566801 Page: 9 of 53

5 Equipment List

Minimum 6dB Bandwidth							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2017-09-27	2018-09-26		
Spectrum Analyzer	Rohde & Schwarz	FSU43	SEM004-08	2018-04-02	2019-04-01		
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.	N/A	N/A	N/A		
Coaxial Cable	SGS	N/A	SEM031-01	2017-07-12	2018-07-11		
Coaxial Cable	SGS	N/A	SEM031-01	2018-07-12	2019-07-11		
Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A		
Signal Generator	KEYSIGHT	N5173B	SEM006-05	2017-09-27	2018-09-26		
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2017-09-27	2018-09-26		

Conducted Peak Output Power							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2017-09-27	2018-09-26		
Spectrum Analyzer	Rohde & Schwarz	FSU43	SEM004-08	2018-04-02	2019-04-01		
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.	N/A	N/A	N/A		
Coaxial Cable	SGS	N/A	SEM031-01	2017-07-12	2018-07-11		
Coaxial Cable	SGS	N/A	SEM031-01	2018-07-12	2019-07-11		
Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A		
Signal Generator	KEYSIGHT	N5173B	SEM006-05	2017-09-27	2018-09-26		
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2017-09-27	2018-09-26		

Power Spectrum Density					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2017-09-27	2018-09-26
Spectrum Analyzer	Rohde & Schwarz	FSU43	SEM004-08	2018-04-02	2019-04-01
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.	N/A	N/A	N/A
Coaxial Cable	SGS	N/A	SEM031-01	2017-07-12	2018-07-11
Coaxial Cable	SGS	N/A	SEM031-01	2018-07-12	2019-07-11
Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A
Signal Generator	KEYSIGHT	N5173B	SEM006-05	2017-09-27	2018-09-26
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2017-09-27	2018-09-26

Conducted Band Edges Measurement					
Equipment	uipment Manufacturer Model No Inventory No Cal D				
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2017-09-27	2018-09-26
Spectrum Analyzer	Rohde & Schwarz	FSU43	SEM004-08	2018-04-02	2019-04-01
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.	N/A	N/A	N/A

Report No.: SZEM180600566801 Page: 10 of 53

Coaxial Cable	SGS	N/A	SEM031-01	2017-07-12	2018-07-11
Coaxial Cable	SGS	N/A	SEM031-01	2018-07-12	2019-07-11
Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A
Signal Generator	KEYSIGHT	N5173B	SEM006-05	2017-09-27	2018-09-26
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2017-09-27	2018-09-26

Conducted Spurious Emissions					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2017-09-27	2018-09-26
Spectrum Analyzer	Rohde & Schwarz	FSU43	SEM004-08	2018-04-02	2019-04-01
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.	N/A	N/A	N/A
Coaxial Cable	SGS	N/A	SEM031-01	2017-07-12	2018-07-11
Coaxial Cable	SGS	N/A	SEM031-01	2018-07-12	2019-07-11
Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A
Signal Generator	KEYSIGHT	N5173B	SEM006-05	2017-09-27	2018-09-26
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2017-09-27	2018-09-26

Radiated Emissions wh	ich fall in the restricte	ed bands			
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2018-03-13	2021-03-12
Measurement Software	AUDIX	e3 V8.2014-6- 27	N/A	N/A	N/A
Coaxial Cable	SGS	N/A	SEM031-01	2017-07-12	2018-07-11
Coaxial Cable	SGS	N/A	SEM031-01	2018-07-12	2019-07-11
Spectrum Analyzer	Rohde & Schwarz	FSU43	SEM004-08	2018-04-02	2019-04-01
BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-01	2017-06-27	2020-06-26
Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2018-04-13	2021-04-12
Horn Antenna (15GHz-40GHz)	Schwarzbeck	BBHA 9170	SEM003-15	2017-10-17	2020-10-16
Pre-amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2017-09-27	2018-09-26
Low Noise Amplifier (100MHz-18GHz)	Black Diamond Series	BDLNA-0118- 352810	SEM005-05	2017-09-27	2018-09-27
Pre-amplifier(18-26GHz)	Rohde & Schwarz	CH14-H052	SEM005-17	2018-04-02	2019-04-01
Pre-amplifier (26GHz-40GHz)	Compliance Directions Systems Inc.	PAP-2640-50	SEM005-08	2018-04-02	2019-04-01
DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2017-09-27	2018-09-26
Active Loop Antenna	ETS-Lindgren	6502	SEM003-08	2017-08-22	2020-08-21
Band filter	N/A	N/A	SEM023-01	N/A	N/A

Report No.: SZEM180600566801 Page: 11 of 53

Radiated Spurious Emissions					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2018-03-13	2021-03-12
Measurement Software	AUDIX	e3 V8.2014-6- 27	N/A	N/A	N/A
Coaxial Cable	SGS	N/A	SEM031-01	2017-07-12	2018-07-11
Coaxial Cable	SGS	N/A	SEM031-01	2018-07-12	2019-07-11
Spectrum Analyzer	Rohde & Schwarz	FSU43	SEM004-08	2018-04-02	2019-04-01
BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-01	2017-06-27	2020-06-26
Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2018-04-13	2021-04-12
Horn Antenna (15GHz-40GHz)	Schwarzbeck	BBHA 9170	SEM003-15	2017-10-17	2020-10-16
Pre-amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2017-09-27	2018-09-26
Low Noise Amplifier (100MHz-18GHz)	Black Diamond Series	BDLNA-0118- 352810	SEM005-05	2017-09-27	2018-09-27
Pre-amplifier(18-26GHz)	Rohde & Schwarz	CH14-H052	SEM005-17	2018-04-02	2019-04-01
Pre-amplifier (26GHz-40GHz)	Compliance Directions Systems Inc.	PAP-2640-50	SEM005-08	2018-04-02	2019-04-01
DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2017-09-27	2018-09-26
Active Loop Antenna	ETS-Lindgren	6502	SEM003-08	2017-08-22	2020-08-21
Band filter	N/A	N/A	SEM023-01	N/A	N/A

General used equipmen	t				
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Humidity/ Temperature Indicator	Shanghai Meteorological Industry Factory	ZJ1-2B	SEM002-03	2017-09-29	2018-09-28
Humidity/ Temperature Indicator	Shanghai Meteorological Industry Factory	ZJ1-2B	SEM002-04	2017-09-29	2018-09-28
Humidity/ Temperature Indicator	Mingle	N/A	SEM002-08	2017-09-29	2018-09-28
Barometer	Changchun Meteorological Industry Factory	DYM3	SEM002-01	2018-04-08	2019-04-07

Report No.: SZEM180600566801 Page: 12 of 53

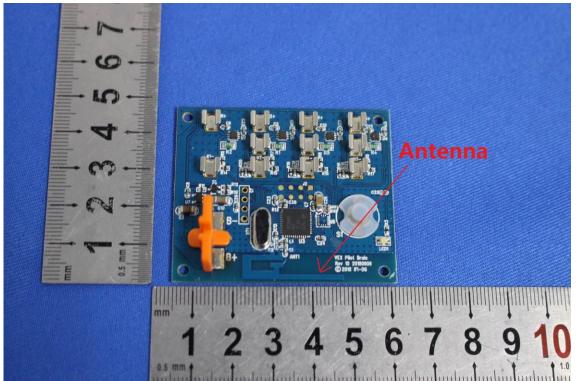
6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203 & 15.247(c)

6.1.2 Conclusion


Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

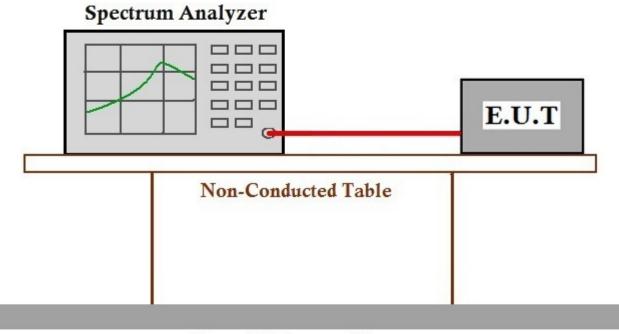
EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 3.3dBi.

Report No.: SZEM180600566801 Page: 13 of 53

7 Radio Spectrum Matter Test Results

7.1 Minimum 6dB Bandwidth


Test Requirement	47 CFR Part 15, Subpart C 15.247a(2)
Test Method:	ANSI C63.10 (2013) Section 11.8.1
Limit:	≥500 kHz

7.1.1 E.U.T. Operation

Operating Environment:

Temperature:23 °CHumidity:51.1 % RHAtmospheric Pressure:1010mbarTest modeb:TX mode_Keep the EUT in continuously transmitting mode with GFSK
modulationmodulationmodulation

7.1.2 Test Setup Diagram

Ground Reference Plane

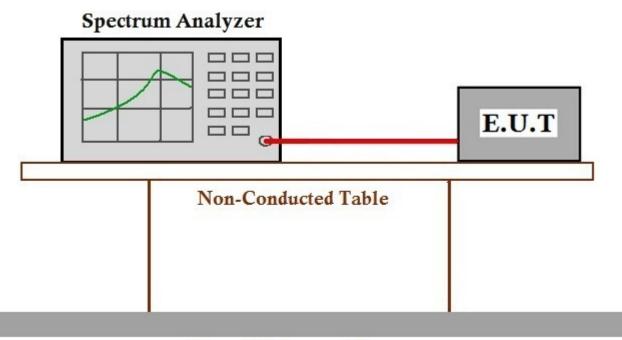
7.1.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247

Report No.: SZEM180600566801 Page: 14 of 53

7.2 Conducted Peak Output Power

Test Requirement	47 CFR Part 15, Subpart C 15.247(b)(3)
Test Method:	ANSI C63.10 (2013) Section 11.9.1
Limit:	


Frequency range(MHz)	Output power of the intentional radiator(watt)		
	1 for ≥50 hopping channels		
902-928	0.25 for 25≤ hopping channels <50		
	1 for digital modulation		
	1 for ≥75 non-overlapping hopping channels		
2400-2483.5	0.125 for all other frequency hopping systems		
	1 for digital modulation		
5725-5850	1 for frequency hopping systems and digital modulation		

7.2.1 E.U.T. Operation

Operating Environment:

Temperature:	23 °C	Humidity: 5	51.1 % RH	Atmospheric Pressure: 1010	mbar
Test mode	b:TX mode_K modulation	eep the EUT in	continuously tr	ansmitting mode with GFSK	

7.2.2 Test Setup Diagram

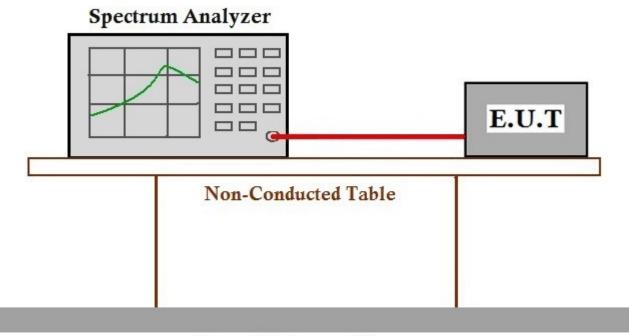
Ground Reference Plane

7.2.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247

Report No.: SZEM180600566801 Page: 15 of 53

7.3 Power Spectrum Density


Test Requirement	47 CFR Part 15, Subpart C 15.247(e)
Test Method:	ANSI C63.10 (2013) Section 11.10.2
Limit:	${\leqslant}8\text{dBm}$ in any 3 kHz band during any time interval of continuous transmission

7.3.1 E.U.T. Operation

Operating Environment:

Temperature:	23	°C	Humidity:	51.1 % RH	Atmospheric Pressure:	1010	mbar
Test mode		mode_Ke	ep the EUT	in continuously tr	ansmitting mode with GF	SK	

7.3.2 Test Setup Diagram

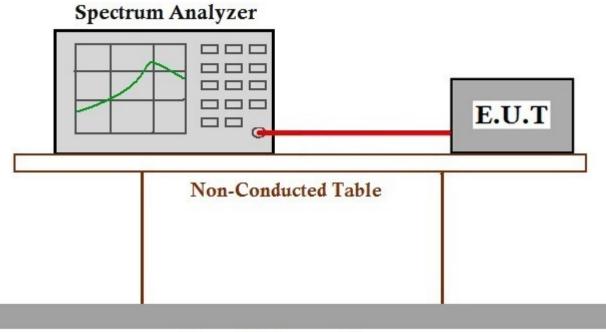
Ground Reference Plane

7.3.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247

Report No.: SZEM180600566801 Page: 16 of 53

7.4 Conducted Band Edges Measurement


Test Requirement	47 CFR Part 15, Subpart C 15.247(d)
Test Method:	ANSI C63.10 (2013) Section 11.13.3.2
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)

7.4.1 E.U.T. Operation

Operating Environment:

Temperature:	23 °C	Humidity:	51.1 % RH	Atmospheric Pressure: 1010	mbar
Test mode	b:TX mode_ modulation	Keep the EUT	in continuously	transmitting mode with GFSK	

7.4.2 Test Setup Diagram

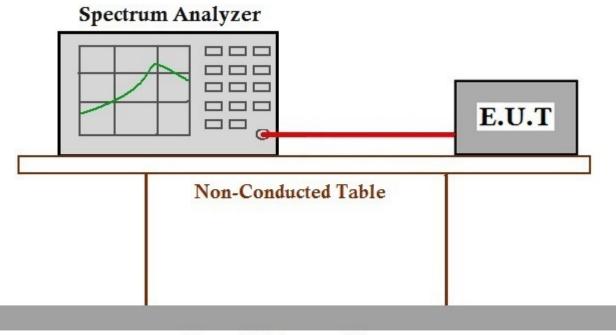
Ground Reference Plane

7.4.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247

Report No.: SZEM180600566801 Page: 17 of 53

7.5 Conducted Spurious Emissions


Test Requirement	47 CFR Part 15, Subpart C 15.247(d)
Test Method:	ANSI C63.10 (2013) Section 11.11
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)

7.5.1 E.U.T. Operation

Operating Environment:

Temperature:	23 °C	Humidity:	51.1 % RH	Atmospheric Pressure: 101) mbar
Test mode	b:TX mode_ modulation	Keep the EUT	in continuously	transmitting mode with GFSK	

7.5.2 Test Setup Diagram

Ground Reference Plane

7.5.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247

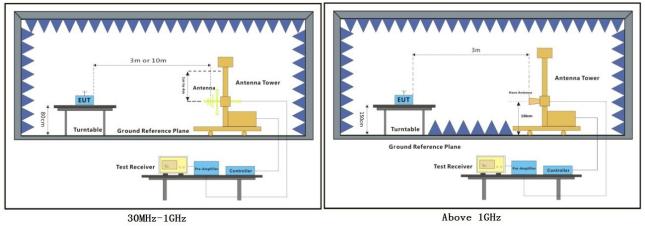
Report No.: SZEM180600566801 Page: 18 of 53

7.6 Radiated Emissions which fall in the restricted bands

Test Requirement47 CFR Part 15, Subpart C 15.205 & 15.209Test Method:ANSI C63.10 (2013) Section 6.10.5Measurement Distance:3mLimit:Image: Construction of the section of t

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.


Report No.: SZEM180600566801 Page: 19 of 53

7.6.1 E.U.T. Operation

Operating Environment:

Temperature:24 °CHumidity:55 % RHAtmospheric Pressure:1010 mbarTest modeb:TX mode_Keep the EUT in continuously transmitting mode with GFSK
modulationmodulation

7.6.2 Test Setup Diagram

Report No.: SZEM180600566801 Page: 20 of 53

7.6.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

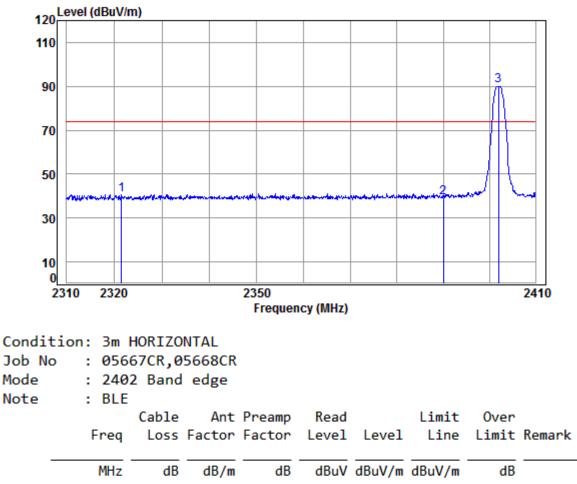
f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

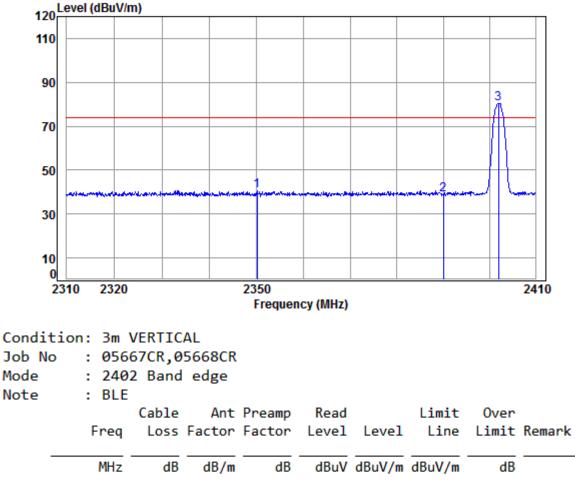
j. Repeat above procedures until all frequencies measured was complete.


Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Report No.: SZEM180600566801 Page: 21 of 53

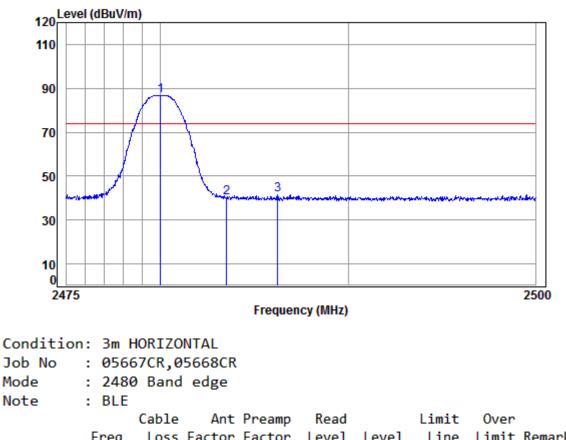
Mode:b; Polarization:Horizontal; Modulation:GFSK; Channel:Low



1	2321.482	5.38	28.40	41.84	48.68	40.62	74.00	-33.38 Peak
2	2390.000	5.47	28.52	41.87	47.26	39.38	74.00	-34.62 peak
3 pp	2402.000	5.49	28.54	41.88	98.31	90.46	74.00	16.46 peak

Report No.: SZEM180600566801 Page: 22 of 53

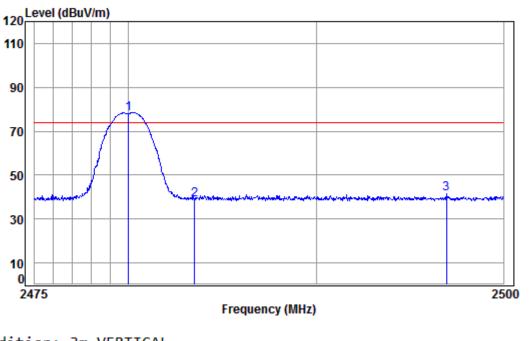
Mode:b; Polarization: Vertical; Modulation:GFSK; Channel:Low



12350.1895.4228.4541.8648.6740.6874.00-33.32Peak22390.0005.4728.5241.8746.6938.8174.00-35.19peak3pp2402.0005.4928.5441.8887.9680.1174.006.11peak

Report No.: SZEM180600566801 Page: 23 of 53

Mode:b; Polarization: Horizontal; Modulation:GFSK; ; Channel:High



	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 pp	2480.000	5.59	28.67	41.91	94.23	86.58	74.00	12.58	peak
2	2483.500	5.60	28.67	41.91	47.83	40.19	74.00	-33.81	peak
3	2486.219	5.60	28.68	41.91	49.26	41.63	74.00	-32.37	Peak

Report No.: SZEM180600566801 Page: 24 of 53

Mode:b; Polarization:Vertical; Modulation:GFSK; ; Channel:High

Job No	:	05667CR,05668CR
Mode	:	2480 Band edge
Note	:	BLE

	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
2	2480.000 2483.500 2496.937	5.60	28.67	41.91	46.41	38.77	74.00	-35.23	peak

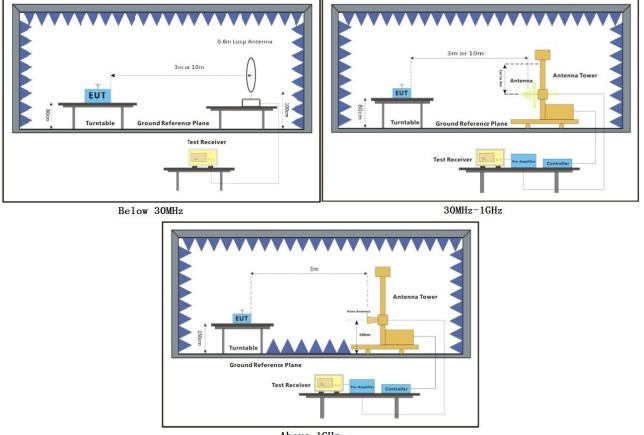
Report No.: SZEM180600566801 Page: 25 of 53

7.7 Radiated Spurious Emissions

Test Requirement	47 CFR Part 15, Subpart C 15.205 & 15.209
Test Method:	ANSI C63.10 (2013) Section 6.4,6.5,6.6
Measurement Distance:	3m
Limit:	

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.


Report No.: SZEM180600566801 Page: 26 of 53

7.7.1 E.U.T. Operation

Operating Environment:

Humidity: 55 % RH Atmospheric Pressure: 1010 mbar Temperature: 24 °C b:TX mode_Keep the EUT in continuously transmitting mode with GFSK Test mode modulation

7.7.2 Test Setup Diagram

Above 1GHz

Report No.: SZEM180600566801 Page: 27 of 53

7.7.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

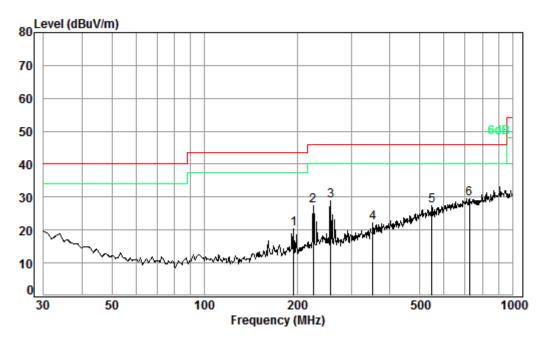
Remark:

1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

3) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

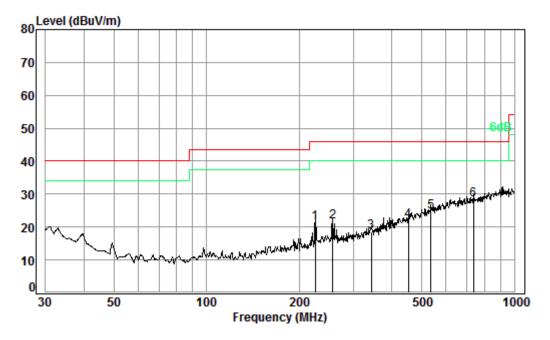

4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Report No.: SZEM180600566801 Page: 28 of 53

Radiated emission below 1GHz

Mode:b ; Horizontal

Condition:	3m HORIZONTAL
Job No. :	05667CR
Test mode:	b


:	406-3368
:	406-3368

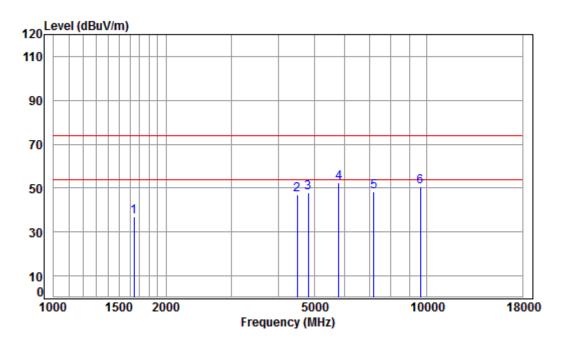
	Freq			Preamp Factor				
-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 3 4 5 6 pp	195.14 225.31 257.42 351.71 547.10 724.26	1.55 1.71 2.06 2.65	17.64 19.06 21.15 25.59	27.53 27.53 27.54 27.65 27.79 27.52	35.64 35.67 26.74 26.97	27.30 28.90 22.30 27.42	46.00 46.00 46.00 46.00	-18.70 -17.10 -23.70 -18.58

Report No.: SZEM180600566801 Page: 29 of 53

Mode:b ;Vertical

Condition:	3m VERTICAL
Job No. :	05667CR
Test mode:	b

:	406-3368
---	----------


	Freq			Preamp Factor				
_	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 3 4 5 6 pp	225.31 257.42 343.18 452.72 535.71 737.07	1.71 2.04 2.42 2.64	19.06 20.91 23.62 25.36	27.53 27.54 27.63 27.81 27.81 27.50	28.45 23.13 23.78 24.47	21.68 18.45 22.01 24.66	46.00 46.00 46.00 46.00	-24.32 -27.55 -23.99 -21.34

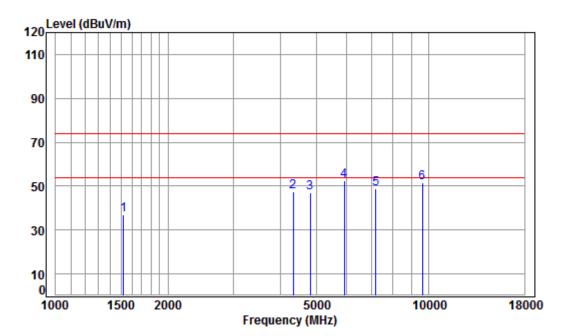
Report No.: SZEM180600566801 30 of 53 Page:

Transmitter emission above 1GHz

Mode:b; Polarization:Horizontal; Modulation:GFSK; Channel:Low

Condition:	Зm	HORIZONTAL
------------	----	------------

Job No	:	05667CR/05668CR
Mode	:	2402 TX SE
Note	:	BLE


Ν	O	t	e		

	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
2 4 3 4 4 pp 5 5 7	644.019 495.125 804.000 797.032 206.000 608.000	7.55 7.89 9.89 10.08	33.59 33.97 34.90 36.07	42.42 42.47 41.78 40.71	48.43 48.48 49.56 42.97	47.15 47.87 52.57 48.41	74.00 74.00 74.00 74.00	-26.85 -26.13 -21.43 -25.59	peak peak peak peak

Report No.: SZEM180600566801 31 of 53 Page:

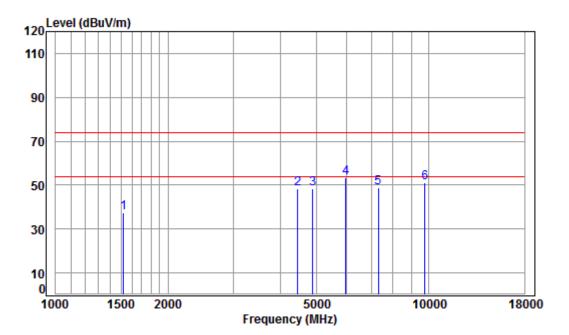
Mode:b; Polarization: Vertical; Modulation:GFSK; Channel:Low

Condition: 3m VERTICAL

Job No : 05667CR	/05668CR
------------------	----------

Mode	:	2402	ТΧ	SE
Note	:	BLE		

N	0	t	e	


.

	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1520.598	5.45	25.89	41.42	47.01	36.93	74.00	-37.07	peak
2	4329.354	7.37	33.30	42.39	49.19	47.47	74.00	-26.53	peak
3	4804.000	7.89	33.97	42.47	47.81	47.20	74.00	-26.80	peak
4 pp	5932.638	10.35	35.04	41.66	48.91	52.64	74.00	-21.36	peak
5	7206.000	10.08	36.07	40.71	43.46	48.90	74.00	-25.10	peak
6	9608.000	10.75	37.67	37.74	40.82	51.50	74.00	-22.50	peak

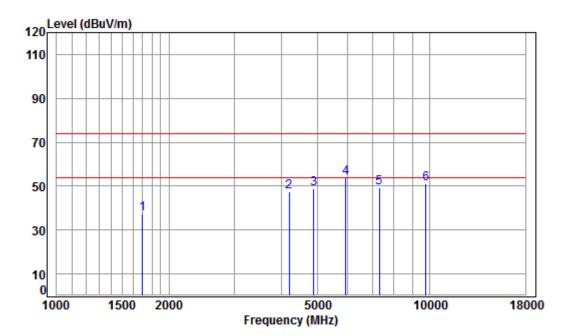
Report No.: SZEM180600566801 Page: 32 of 53

Mode:b; Polarization: Horizontal; Modulation:GFSK; Channel:Middle

Condition:	Зm	HORIZONTAL
------------	----	------------

Job No	:	05667CR/05668CR
Mode	:	2440 TX SE

: BLE


Note

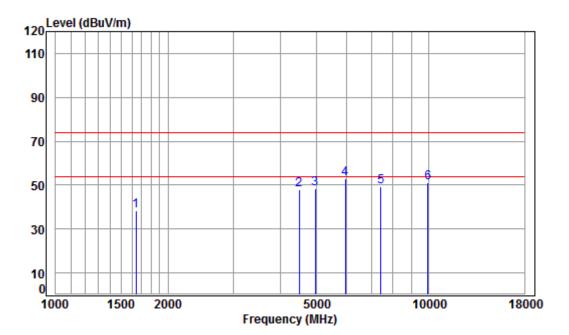
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1520.598	5.45	25.89	41.42	47.56	37.48	74.00	-36.52	peak
2	4456.315	7.51	33.53	42.41	49.53	48.16	74.00	-25.84	peak
3	4880.000	7.97	34.06	42.48	48.97	48.52	74.00	-25.48	peak
4 pp	5984.305	10.52	35.08	41.62	49.30	53.28	74.00	-20.72	peak
5	7320.000	10.05	36.16	40.63	43.12	48.70	74.00	-25.30	peak
6	9760.000	10.82	37.76	37.53	40.24	51.29	74.00	-22.71	peak

Report No.: SZEM180600566801 Page: 33 of 53

Mode:b; Polarization:Vertical; Modulation:GFSK; Channel:Middle

Condition: 3m VERTICAL

Job	No	:	05667CR/05668	BCR
-----	----	---	---------------	-----

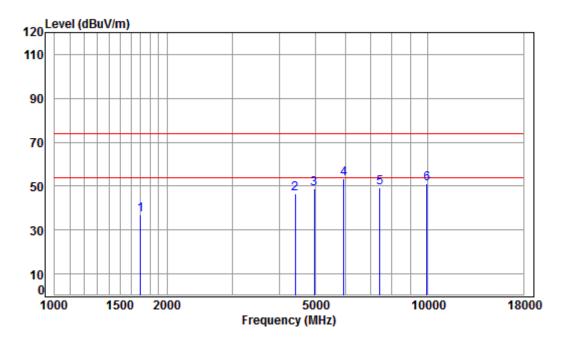

Mode	:	2440	ТΧ	SE
Note	:	BLE		

	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1697.129	5.23	26.66	41.53	47.02	37.38	74.00	-36.62	peak
2	4193.872	7.21	33.06	42.36	49.74	47.65	74.00	-26.35	peak
3	4880.000	7.97	34.06	42.48	49.06	48.61	74.00	-25.39	peak
4 pp	5949.811	10.40	35.05	41.65	50.15	53.95	74.00	-20.05	peak
5	7320.000	10.05	36.16	40.63	43.70	49.28	74.00	-24.72	peak
6	9760.000	10.82	37.76	37.53	40.08	51.13	74.00	-22.87	peak

Report No.: SZEM180600566801 34 of 53 Page:

Mode:b; Polarization:Horizontal; Modulation:GFSK; Channel:High

Condition: 3m HORIZONTAL


Job No	:	05667CR/05668CR						
Mode	:	2480 TX SE						
Note	:	BLE						

	Freq			Preamp Factor					Remark
-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
2 3 4 pp 5	1644.019 4495.125 4960.000 5967.033 7440.000 9920.000	7.55 8.05 10.46 10.02	33.59 34.15 35.07 36.25	42.42 42.49 41.63 40.56	49.17 48.80 49.21 43.37	47.89 48.51 53.11 49.08	74.00 74.00 74.00 74.00	-26.11 -25.49 -20.89 -24.92	peak peak peak peak

Report No.: SZEM180600566801 Page: 35 of 53

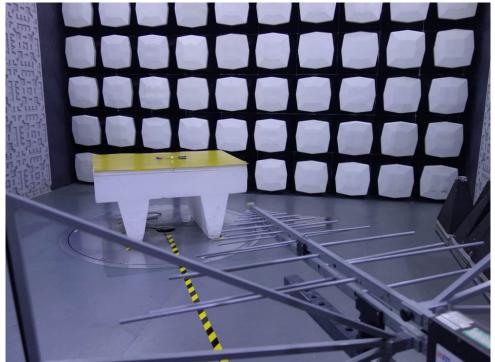
Mode:b; Polarization:Vertical; Modulation:GFSK; Channel:High

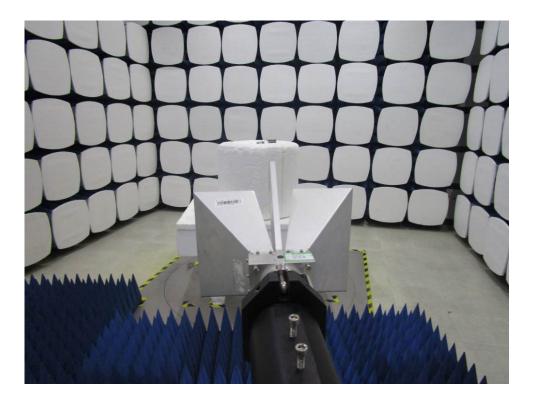
Condition: 3m VERTICAL

Job No : 05667CR/05668CR

Mode	:	2480	ТΧ	SE
Note	:	BLE		

1.1	Ο	L.			

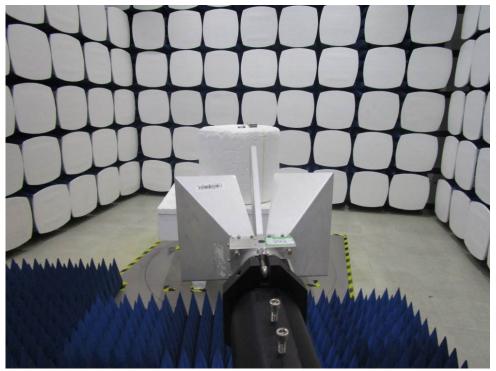

		Cable	ble Ant Preamp		Read Limit		0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1697.129	5.23	26.66	41.53	46.38	36.74	74.00	-37.26	peak
2	4405.090	7.46	33.44	42.40	48.15	46.65	74.00	-27.35	peak
3	4960.000	8.05	34.15	42.49	49.08	48.79	74.00	-25.21	peak
4 pp	5949.811	10.40	35.05	41.65	49.64	53.44	74.00	-20.56	peak
5	7440.000	10.02	36.25	40.56	43.63	49.34	74.00	-24.66	peak
6	9920.000	10.90	37.85	37.31	39.62	51.06	74.00	-22.94	peak



Report No.: SZEM180600566801 Page: 36 of 53

8 Photographs

8.1 Radiated Spurious Emissions Test Setup



Report No.: SZEM180600566801 Page: 37 of 53

8.2 Radiated Emissions which fall in the restricted bands Test Setup

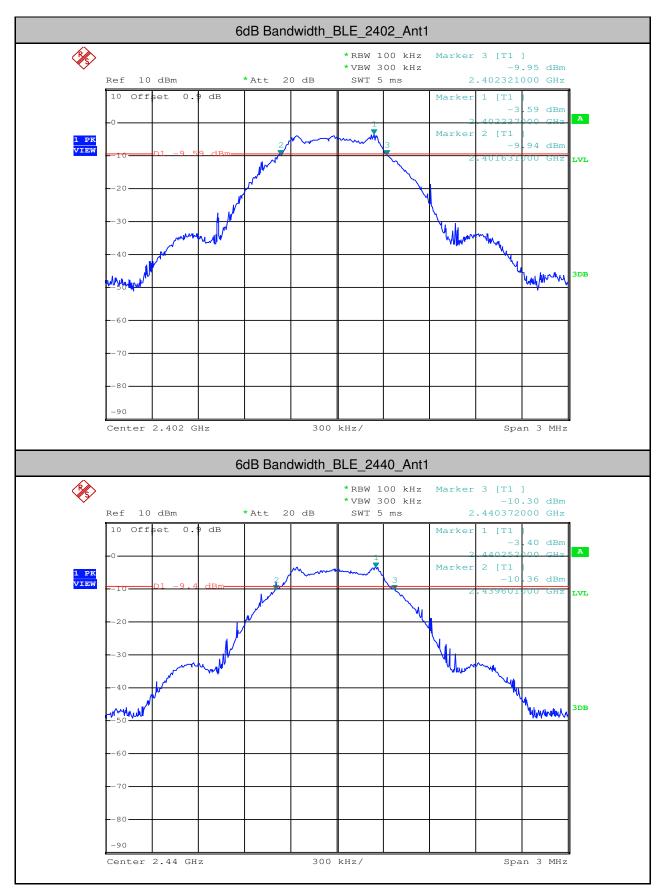
Report No.: SZEM180600566801 Page: 38 of 53

8.3 EUT Constructional Details (EUT Photos)

Please Refer to external and internal photos for details.

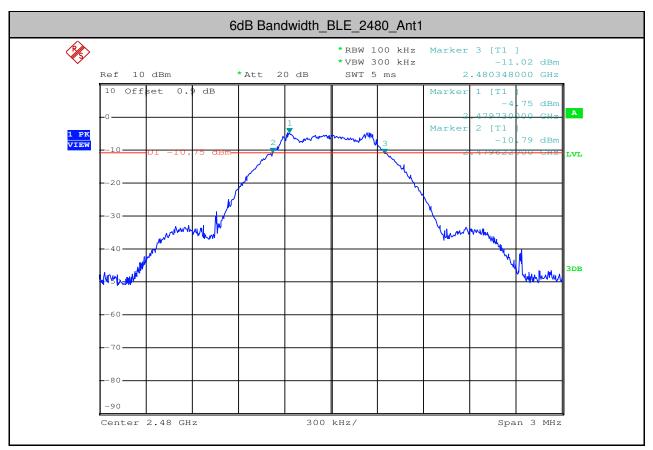
Report No.: SZEM180600566801 Page: 39 of 53

9 Appendix


9.1 Appendix 15.247

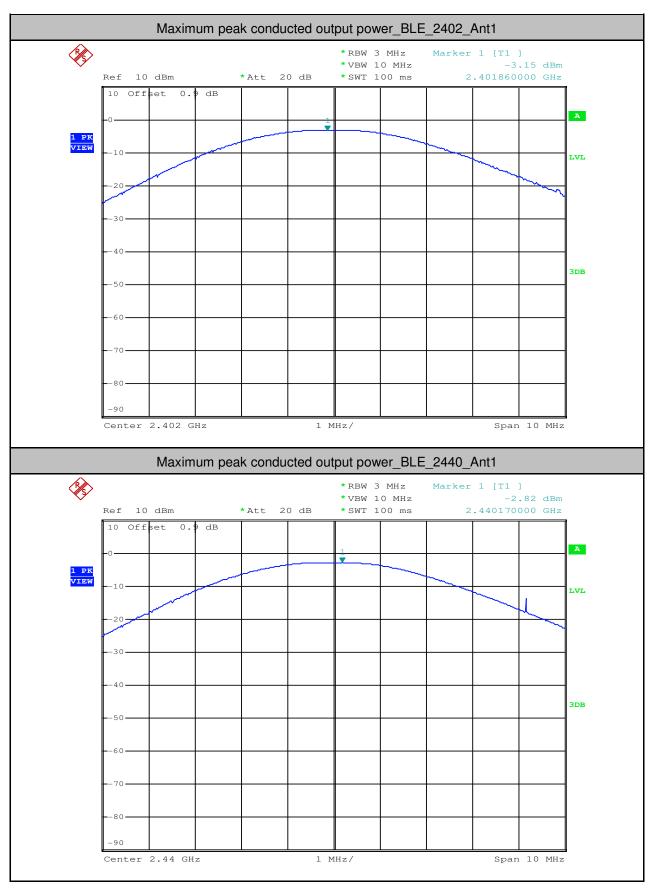
1.6dB Bandwidth

Test Mode	Test Channel Ant		EBW[MHz]	Limit[MHz]	Verdict
BLE	2402	Ant1	0.690	>=0.5	PASS
BLE	BLE 2440		0.771	>=0.5	PASS
BLE	2480	Ant1	0.726	>=0.5	PASS



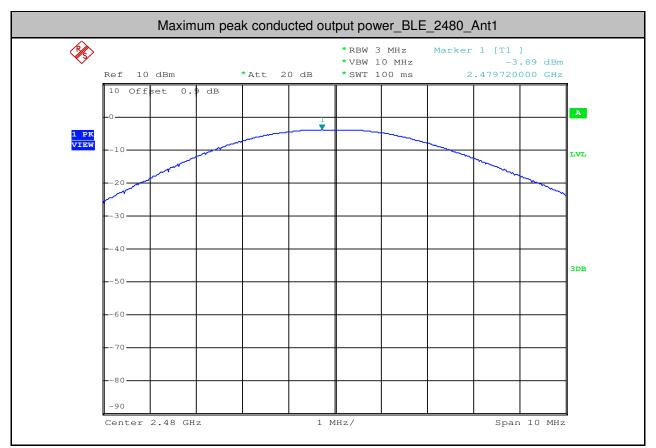
Report No.: SZEM180600566801 Page: 40 of 53

Report No.: SZEM180600566801 Page: 41 of 53


Report No.: SZEM180600566801 Page: 42 of 53

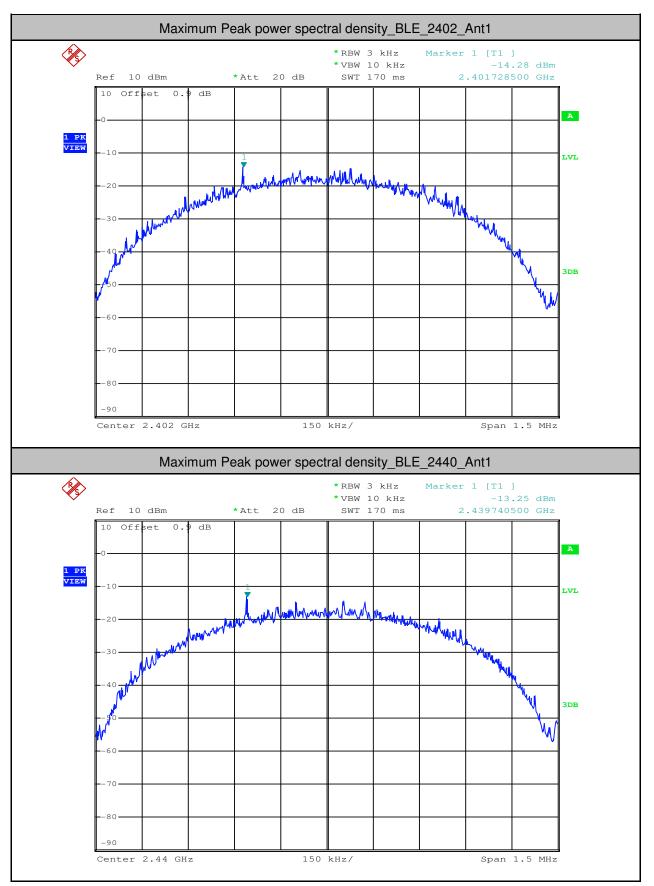
Test Mode	Test Channel	Ant	Power[dBm]	Limit[dBm]	Verdict
BLE	2402	Ant1	-3.15	<30	PASS
BLE	2440	Ant1	-2.82	<30	PASS
BLE	BLE 2480		-3.89	<30	PASS

2.Maximum peak conducted output power



Report No.: SZEM180600566801 Page: 43 of 53

Report No.: SZEM180600566801 Page: 44 of 53

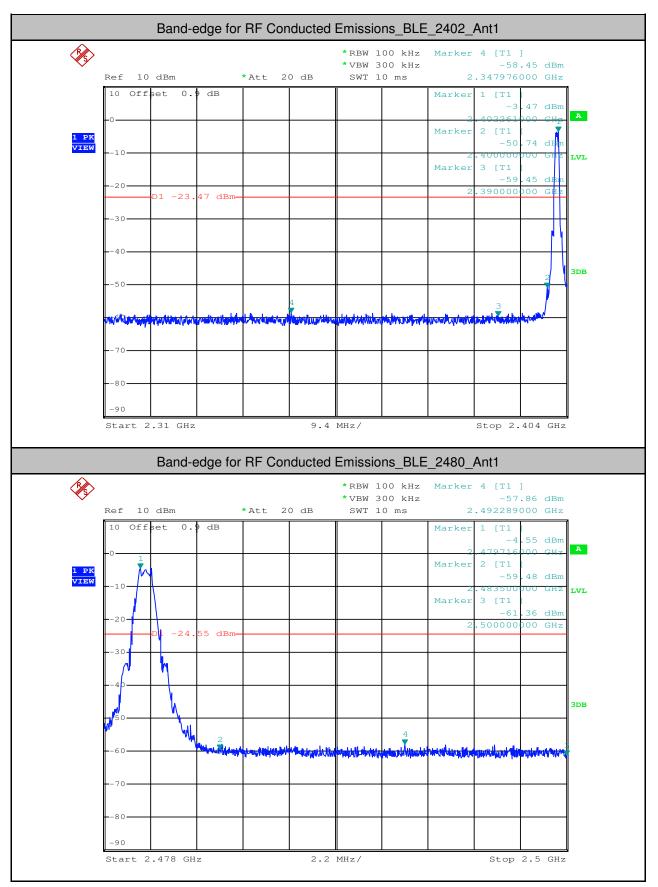


3.Maximum Peak power spectral density

Test Mode	Test Channel	Ant	PSD[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
BLE	2402	Ant1	-14.28	<8.00	PASS
BLE	2440	Ant1	-13.25	<8.00	PASS
BLE	2480	Ant1	-15.47	<8.00	PASS

Report No.: SZEM180600566801 Page: 45 of 53

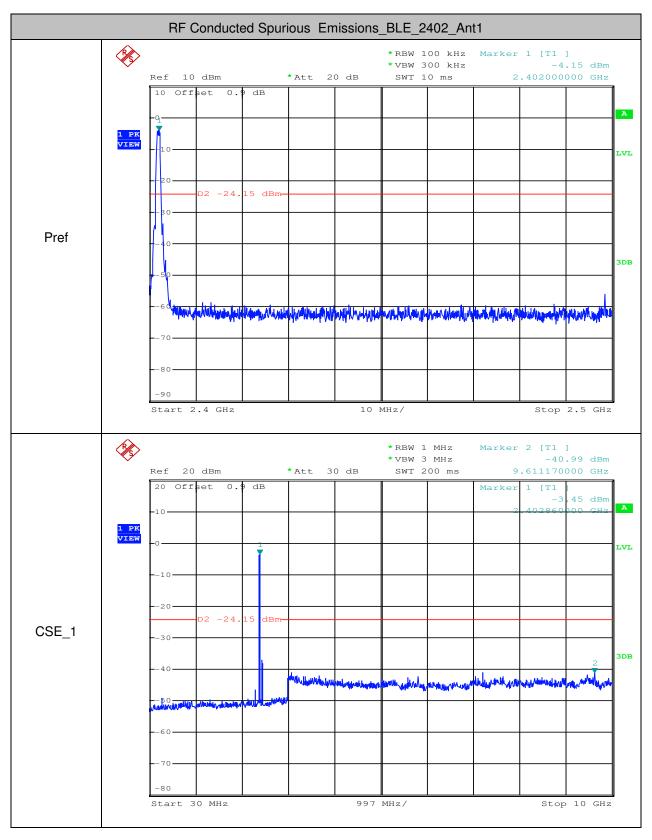
Report No.: SZEM180600566801 Page: 46 of 53



4.Band-edge for RF Conducted Emissions

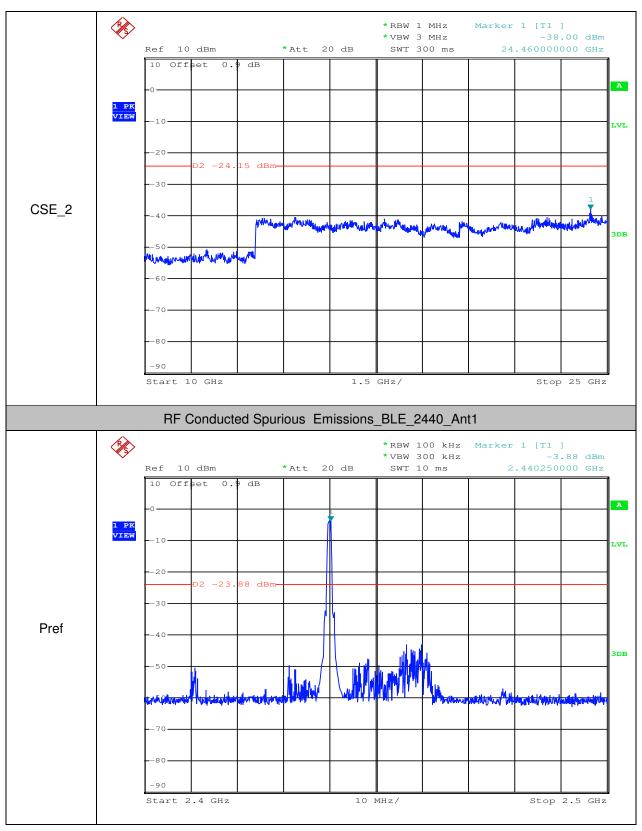
Test Mode	Test Channel	Ant	Carrier Power[dBm]	Max. Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	2402	Ant1	-3.470	-58.451	<-23.47	PASS
BLE	2480	Ant1	-4.550	-57.860	<-24.55	PASS

Report No.: SZEM180600566801 Page: 47 of 53

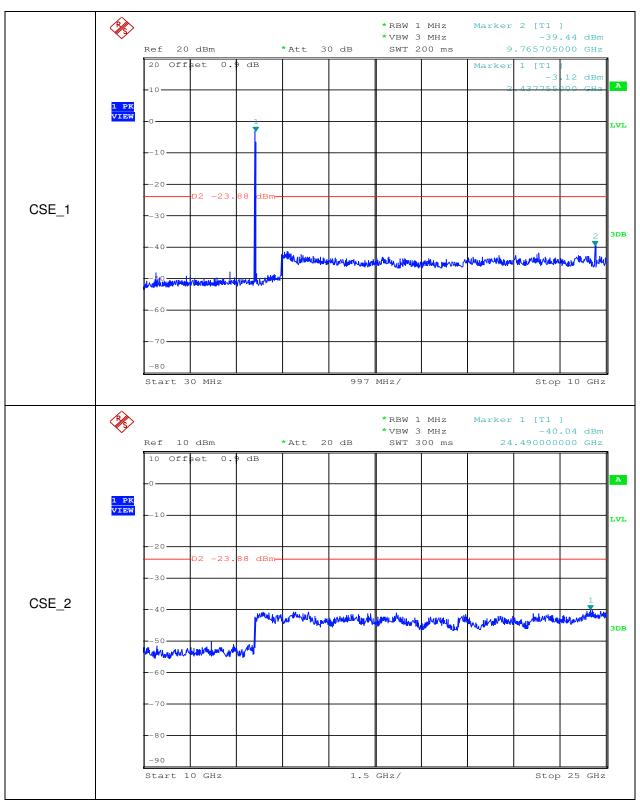

Report No.: SZEM180600566801 Page: 48 of 53

5.RF Conducted Spurious Emissions

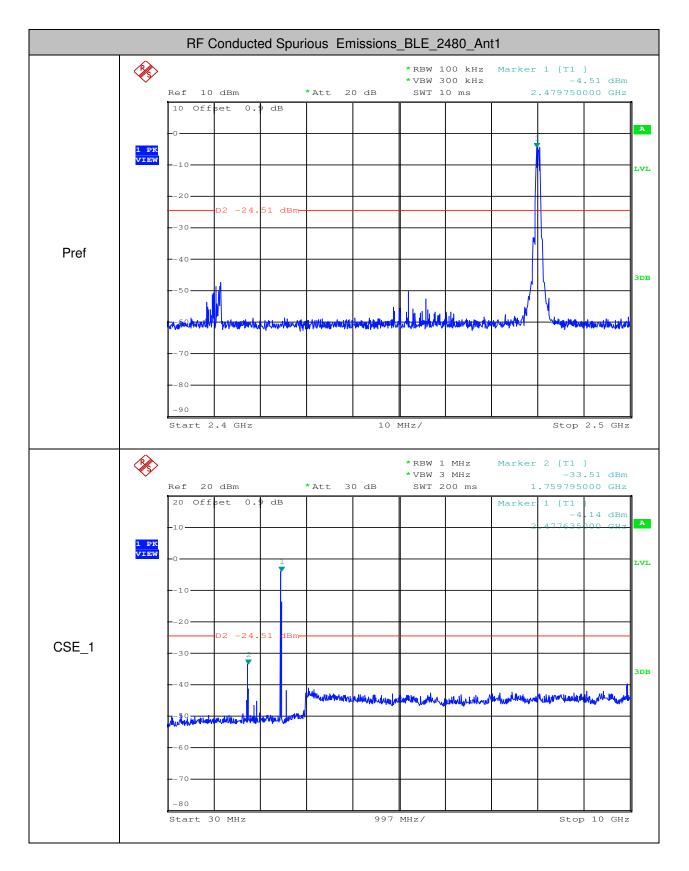
Test Mode	Test Channel	StartFre [MHz]	StopFre [MHz]	RBW [kHz]	VBW [kHz]	Pref[dBm]	Max. Level [dBm]	Limit [dBm]	Verdict
BLE	2402	30	10000	1000	3000	-4.15	-40.990	<-24.15	PASS
BLE	2402	10000	25000	1000	3000	-4.15	-38.000	<-24.15	PASS
BLE	2440	30	10000	1000	3000	-3.88	-39.440	<-23.88	PASS
BLE	2440	10000	25000	1000	3000	-3.88	-40.040	<-23.88	PASS
BLE	2480	30	10000	1000	3000	-4.51	-33.510	<-24.51	PASS
BLE	2480	10000	25000	1000	3000	-4.51	-39.430	<-24.51	PASS



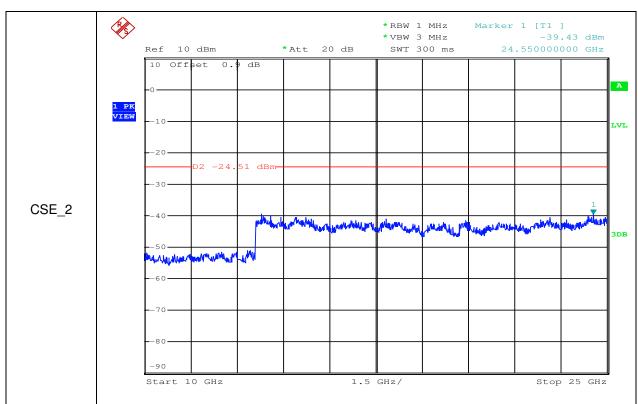
Report No.: SZEM180600566801 Page: 49 of 53



Report No.: SZEM180600566801 Page: 50 of 53



Report No.: SZEM180600566801 Page: 51 of 53



Report No.: SZEM180600566801 Page: 52 of 53

Report No.: SZEM180600566801 Page: 53 of 53

- End of the Report -