

Prediction of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density P = power input to the antenna G = antenna gain R = distance

Conducted output power:	17.44	(dBm)
	55	(mW)
Antenna gain:	7.0	(dBi)
Maximum antenna gain:	5.0	(numeric)
Distance:	20	(cm)
Duty Cycle:	100	(%)
Frequency:	2400	(MHz)
MPE Limit:	1.0	(mW/cm^2)
Power density:	0.055	(mW/cm^2)
Margin	12.6	(dB)