

25791 Commercentre Drive Lake Forest, CA 92630 Telephone: 949-448-4100 www.intertek.com

TEST REPORT

Report Number: 101324699LAX-001

Project Number: G101324699

Report Issue Date: 11/28/2013

Product Name: XS4 Model Number: A9XW

> FCCID: UKCA9XW ICID: 10088A-A9XW

FCC Standards: Title 47 CFR Part 15 Subpart B and C, 15.225

Industry Canada Standards: RSS-210 Issue 8 and ICES-003

Tested by: Intertek Testing Services NA, Inc. 25791 Commercentre Drive Lake Forest, CA 92630

Client: Salto Systems S.L Pol. Lanbarren, C/ Arkotz 9 20180-OIARTZUN Spain

Report prepared by

David O'Reilly Staff Engineer Report reviewed by

David Chernomordia

David Chernomordik Senior Staff Engineer

EMC Report for Salto Systems S.L. Model: A9XW FCCID: UKCA9XW; ICID: 10088A-A9XW

Page 1 of 18

Report Number: 101324699LAX-001 Issued: 11/28/2013

TABLE OF CONTENTS

1	Introduction and Conclusion	
2	Test Summary	
	Description of Equipment Under Test	
	20dB Bandwidth	
5	In-Band Radiated Spurious Emissions (Transmitter)	
6	Out of Band Radiated Spurious Emissions (Transmitter)	9
7	FCC Part 15B Radiated Emissions	11
8	AC Powerline Conducted Emissions	15
9	Frequency Stability	15
10	Antenna Requirement per FCC Part 15.203	17
11	Measurement Uncertainty	17
12	Revision History	18

1 Introduction and Conclusion

The tests indicated in section 2 were performed on the product constructed as described in section 3. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test method, a list of the actual test equipment used, documentation photos, results and raw data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested complied with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested.

The INTERTEK-Lake Forest is located at 25791 Commercentre Drive, Lake Forest, CA 92630. The radiated emission test site is a 3-meter semi-anechoic chamber. The chamber meets the characteristics of CISPR 16-1 and ANSI C63.4. For measurements, a remotely controlled flush-mount metal-top turntable is used to rotate the EUT a full 360 degrees. A remote controlled non-conductive antenna mast is used to scan the antenna height from one to four meters. The test site is listed with the FCC under registration number 381415. The test site is listed with Industry Canada under site number IC 2042T.

2 Test Summary

Page	Test Name	Test Name FCC Reference		Result
6	20dB Bandwidth	§ 2.1049	RSS-GEN (4.6.1)	Pass
7	In-Band Radiated Spurious Emissions (Transmitter)	§ 15.225(a)(b)(c)	RSS-210 (A2.6)	Pass
9	Out of Band Radiated Spurious Emissions (Transmitter)	§ 15.225(d), § 15.209	RSS-210 (A2.6)	Pass
11	FCC Part 15B Radiated Emissions	§ 15.109	ICES-003	Pass
15	AC Power line Conducted Emissions	§ 15.107, § 15.207	RSS-Gen (7.2.4)	Pass
15	Frequency Stability	§ 15.225(e)	RSS-210 (A2.6)	Pass
17	Antenna Requirement per FCC Part 15.203	§ 15.203	RSS-Gen (7.1.2)	Pass

EMC Report for Salto Systems S.L. Model: A9XW Page 3 of 18

Report Number: 101324699LAX-001 Issued: 11/28/2013

Description of Equipment Under Test 3

Equipment Under Test				
Manufacturer	Salto Systems, S.L.			
Model Number	A9XW			
Serial Number	N/A			
FCC Identifier	UKCA9XW			
IC Identifier	10088A-A9XW			
Receive Date	11/4/2013			
Test Start Date	11/4/2013			
Test End Date	11/23/2013			
Device Received Condition	Good			
Test Sample Type	Production			
Frequency Band	13.56MHz			
Mode(s) of Operation	RFID			
Transmission Control	Normal Operation			
Antenna Type (15.203)	Internal			
Power Supply	Powered by 3 AA dry cell batteries			

Description of Equipment Under Test	
ELECTRONIC PROXIMITY XS4 LOCK A9xxxW SERIES by SALTO SYSTEMS	

Operating modes of the EUT:

No.	Descriptions of EUT Exercising
1	Transmitting its normal 13.56MHz signal.

EMC Report for Salto Systems S.L. Model: A9XW FCCID: UKCA9XW; ICID: 10088A-A9XW Page 4 of 18

Report Number: 101324699LAX-001 Issued: 11/28/2013

3.1 System setup including cable interconnection details, support equipment and simplified block diagram

3.2 EUT Block Diagram:

A9XW (EUT)

3.3 Cables:

Cables							
Description	Longth	Chioldina	E a muita a	Connection			
Description	Length	Shielding	Ferrites	From	То		
n/a	n/a	n/a	n/a	n/a	n/a		

3.4 Support Equipment:

Support Equipment						
Description	Description Manufacturer Model Number Serial Number					
n/a n/a n/a n/a						

EMC Report for Salto Systems S.L. Model: A9XW Page 5 of 18

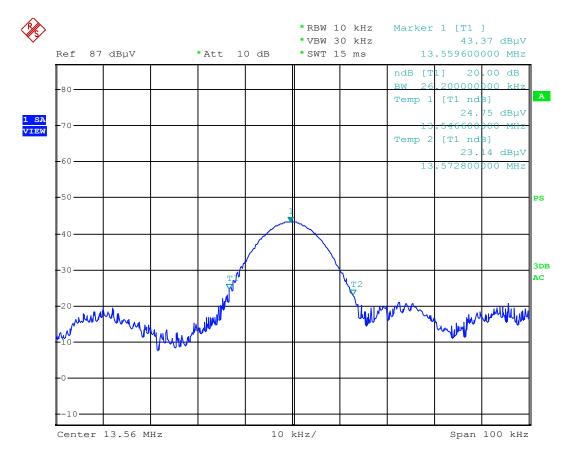
Issued: 11/28/2013 Report Number: 101324699LAX-001

20dB Bandwidth

4.1 **Test Limits**

None

4.2 **Test Procedure**


The 20dB bandwidth was measured by a spectrum analyzer connected to a receive antenna placed near the test sample while it is transmitting.

4.3 Test Equipment Used:

Description	Asset Number	Manufacturer	Model	Cal. Date	Cal. Due
EMI Test Receiver	1140	Rohde & Schwarz	ESCI7	2/10/2013	2/10/2014
Active Loop Antenna	590	EMCO	6502	5/14/2013	5/14/2014

4.4 Results:

The 20dB bandwidth was measured to be 26.2kHz as shown below.

Date: 18.NOV.2013 16:23:13

EMC Report for Salto Systems S.L. Model: A9XW Page 6 of 18 FCCID: UKCA9XW; ICID: 10088A-A9XW

5 In-Band Radiated Spurious Emissions (Transmitter)

5.1 Test Limits

§ 15.225 Operation within the band 13.110-14.010 MHz.

- (a) The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.
- (b) Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.
- (c) Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.

5.2 Test Procedure

ANSI C63.10: 2009

5.3 Example of Field Strength Calculation Method:

The measured field strength was calculated by summing the readings taken from the spectrum analyzer with the appropriate correction factors associated with the antenna losses and cable losses. The calculation formula and sample calculations are listed below:

Formula:

FS = RA + AF + CF

FS = Field Strength in $dB\mu V/m$

RA = Receiver Amplitude in dBµV

AF = Antenna Factor in dB

CF = Cable Attenuation Factor in dB (Including preamplifier and filter attenuation)

Example Calculation:

 $RA = 19.48 \, dB\mu V$

AF = 18.52 dB

CF = 0.78 dB

 $FS = 19.48 + 18.52 + 0.78 = 38.78 \, dB\mu V/m$

Level in μ V/m = Common Antilogarithm [(38.78 dB μ V/m)/20] = 86.89 μ V/m

5.4 Test Equipment Used:

Description	Asset Number	Manufacturer	Model	Cal. Date	Cal. Due
EMI Test Receiver	10887490.26	Rohde & Schwarz	ESCI7	9/11/2013	9/11/2014
Active Loop Antenna	590	EMCO	6502	4/19/2013	4/19/2014
Biconnilog Antenna	1174	TESEQ	CBL6112D	2/01/2013	2/01/2014
RF Cable	798	n/a	n/a	7/9/2013	7/9/2014

EMC Report for Salto Systems S.L. Model: A9XW Page 7 of 18

5.5 Results:

The spurious emissions listed in the following tables are the worst case emissions. Emissions not reported were at or below the measurement noise floor.

Worst Case Spurious Emissions (Radio Transmitting)

Α	В	С	D	Е	F	G	Н	J	K
Freq MHz	RA QP (dBµV)	Antenna (dB)	Cable (dB)	3m Corr reading dBµV/m	30m Corr reading dBµV/m	30m Limit dBµV/m	Delta (dB)	Test Distance meters	Results
13.56	45.52	10.9	0.6	57.02	17.02	84	-66.98	3	Compliant
Calcul	Calculations: $E = B + C + D$ $F = E - 40dB$ $H = F - G$ $RBW / QP = 9KHz / QP$								

Notes:

- (1) The test sample was evaluated on one orthogonal axis since the product could only be mounted in one orientation.
- (2) All measurements were performed with a loop antenna positioned in three orthogonal axis with the level at the highest position being recorded.
- (3) Measurements were performed at 3m distance and the level extrapolated to the specified measurement distance of 30m. An inverse linear distance extrapolation factor of 40dB/decade (from part 15.31(f)) was used to facilitate this. Extrapolation Factor = 20log(30/3)² = 40dB.
- (4) All emissions in the frequency bands 13.410-13.553 MHz, 13.567-13.710, 13.110-13.410 MHz and 13.710-14.010 MHz were more than 20dB below the limits.

EMC Report for Salto Systems S.L. Model: A9XW Page 8 of 18

6 Out of Band Radiated Spurious Emissions (Transmitter)

6.1 Test Limits

6.2 § 15.225 Operation within the band 13.110-14.010 MHz.

(d) The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in § 15.209.

Part 15.209(a): Field General Strength Limits for Restricted Bands of Operation

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2,400 / F (kHz)	300
0.490 - 1.705	24,000 / F (kHz)	30
1.705 - 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 – 960	200	3
Above 960	500	3

6.3 Test Procedure

ANSI C63.4: 2009

6.4 Example of Field Strength Calculation Method:

The measured field strength was calculated by summing the readings taken from the spectrum analyzer with the appropriate correction factors associated with the antenna losses and cable losses. The calculation formula and sample calculations are listed below:

Formula:

FS = RA + AF + CF

FS = Field Strength in $dB\mu V/m$

RA = Receiver Amplitude in dBuV

AF = Antenna Factor in dB

CF = Cable Attenuation Factor in dB (Including preamplifier and filter attenuation)

Example Calculation:

 $RA = 19.48 dB\mu V$

AF = 18.52 dB

CF = 0.78 dB

 $FS = 19.48 + 18.52 + 0.78 = 38.78 \, dB\mu V/m$

Level in μ V/m = Common Antilogarithm [(38.78 dB μ V/m)/20] = 86.89 μ V/m\

6.5 Test Equipment Used:

Description	Asset Number	Manufacturer	Model	Cal. Date	Cal. Due
EMI Test Receiver	10887490.26	Rohde & Schwarz	ESCI7	9/11/2013	9/11/2014
Active Loop Antenna	590	EMCO	6502	4/19/2013	4/19/2014
Biconnilog Antenna	1147	TESEQ	CBL6112D	2/01/2013	2/01/2014
RF Cable	798	n/a	n/a	7/9/2013	7/9/2014

EMC Report for Salto Systems S.L. Model: A9XW Page 9 of 18

6.6 Results:

All of the out of band emissions were below the general limits from Part 15.209. The sample was tested from 9kHz - 1GHz excluding the in band 13.110 - 14.010 MHz range. The spurious emissions listed in the following tables are the worst case emissions.

Worst Case Out of Band Spurious Emissions (Radio Transmitting)

Α	В	С	D	E	F	G	J	K
Freq. MHz	RA (dBµV)	Ant (dB)	Cable (dB)	Corr dBµV/m	Limit dBµV/m	Margin dB/m	Dist	RBW/ Detector
25.56	25.56	10.1	0.9	36.56	69.54	-32.98	3	QP / 9KHz
27.12	11.04	9.4	0.9	21.34	69.54	-48.2	3	QP / 9KHz
40.68	20.7	14	0.96	35.66	40	-4.34	3	P / 120KHz
54.24	21.01	8.4	1.27	30.68	40	-9.32	3	P / 120KHz
67.8	23.9	6	1.3	31.2	40	-8.8	3	P / 120KHz
81.36	22.04	7.9	1.4	31.34	40	-8.66	3	P / 120KHz
94.92	25.48	10.4	1.5	37.38	43.52	-6.14	3	QP / 120KHz
108.48	24.91	12.4	1.6	38.91	43.52	-4.61	3	P / 120KHz
122	22.25	12.9	1.75	36.9	43.52	-6.62	3	P / 120KHz
135.6	20.14	12.4	1.76	34.3	43.52	-9.22	3	P / 120KHz
Calculation	Calculations: E = B + C + D G = F - G							

Notes:

- (1) The test sample was evaluated on three orthogonal axes since it was a module and could be used in any orientation.
- (2) All measurements below 30MHz were performed with a loop antenna positioned in three orthogonal axis with the level at the highest position being recorded.
- (3) All measurements above 30MHz were performed with a bilog antenna maximized from 1-4m in height and in vertical and horizontal polarities.
- (4) Measurements were performed at 3m distance.

EMC Report for Salto Systems S.L. Model: A9XW Page 10 of 18

7 FCC Part 15B Radiated Emissions

7.1 Method

ANSI C63.4: 2009

7.2 Test Location

This test was performed at the Intertek offices located at the following address:

Intertek 25791 Commercentre Drive Lake Forest, CA. 92630

7.3 Test Equipment Used:

Description	Serial Number	Manufacturer	Model	Cal. Date	Cal. Due
EMI Test Receiver	10887490.26	Rohde & Schwarz	ESI26	9/11/2013	9/11/2014
Preamplifier	SF456200904	Mini-Circuits	ZX60-3018G-S+	9/11/2013	9/11/2014
Biconnilog Antenna	00051864	ETS	3142C	12/14/2012	12/14/2013
Active Loop Antenna	3416	ETS	6502	4/19/2013	4/19/2014
System Controller	121701-1	Sunol Sciences	SC99V	Calibration Not Required	Calibration Not Required

EMC Report for Salto Systems S.L. Model: A9XW
Page 11 of 18

7.4 Results and Data:

The sample tested was found to Comply.

Test: Radiated Emissions

Frequency Range: 9KHz to 1000 MHz Measurement Uncertainty: 4.2 dB Temperature: 23.9 °C

Limits: Class B

Measurement Distance: 3 meters Relative Humidity: 50.6 % EUT: P023 (Compact Console Unit Host Equipment) Power Input: Battery

FCC, pat 15 per 15.209 Horzontal								
Frequency H/V MHz	Quasi Pk FS dB(uV/m)	Limit@3m dB(uV/m)	Margin dB	RA dB(uV)	AG dB	AF dB(1/m)	CF dB	DCF dB
30.588 (*)	34.5	40	-5.5	14.4	0	19.2	0.9	0
94.103	26.3	43.5	-17.2	14.4	0	10.4	1.5	0
203.395	30.2	43.5	-13.3	17.3	0	10.7	2.1	0
216.953	28.9	46	-17.1	16.5	0	10.2	2.2	0
230.514	30.3	46	-15.7	16.9	0	11.2	2.3	0
244.246	29.5	46	-16.5	14.7	0	12.5	2.3	0
Detectors/Bandwithds (Det/RBW/VBW)= 120/300kHz								

FCC, pat 15 per 15.209 Vertical								
Frequency H/V MHz	Quasi Pk FS dB(uV/m)	Limit@3m dB(uV/m)	Margin dB	RA dB(uV)	AG dB	AF dB(1/m)	CF dB	DCF dB
41.36	27.7	40	-12.3	15.5	0	11.2	1	0
203.391	34	43.5	-9.5	20.9	0	11	2.1	0
216.956	29.2	46	-16.8	16.4	0	10.6	2.2	0
230.515	39.2	46	-6.8	25.4	0	11.5	2.3	0
244.072	30.7	46	-15.3	15.8	0	12.6	2.3	0
473.14	25.8	46	-20.2	16.5	0	8.2	1.1	0
	Detectors/Bandwithds (Det/RRW/VRW)= 120/300kHz							

Quasi FS – (Final) Quasi Peak Field Strength

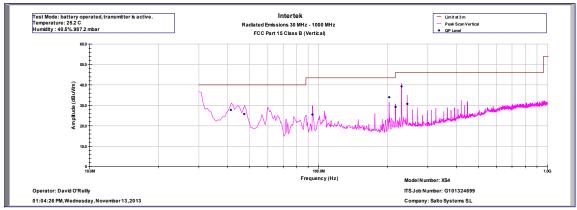
RA - Receiver (quasi peak) Amplitude

AG - Preamp Gain

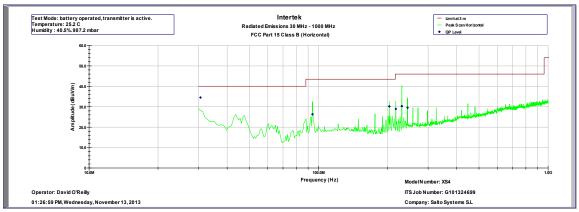
AF – Antenna Factor

CF - Cable Factor

DCF - Distance Correction Factor Calculation: FS=RA+AF+CF-AG-DCF

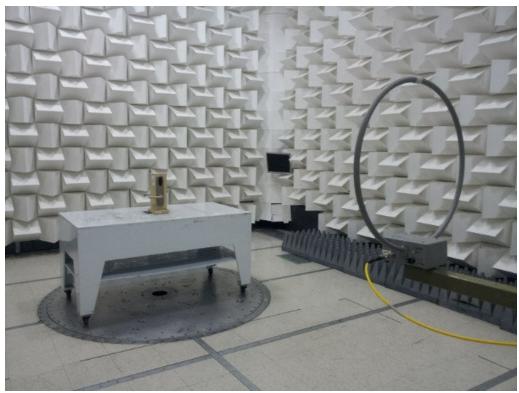

Test Result:

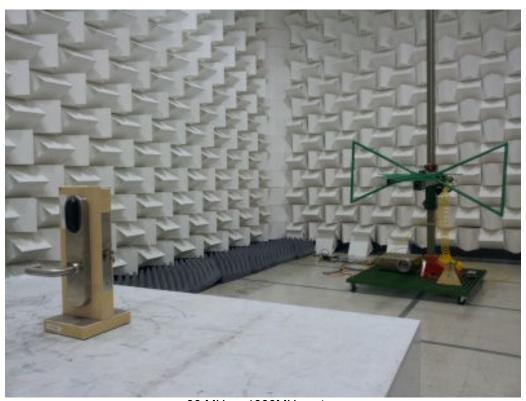
(*)The EUT PASSED Radiated Emission test with 5.5 dB margin at 30.558 MHz.


Deviations, Additions, or Exclusions: None

EMC Report for Salto Systems S.L. Model: A9XW Page 12 of 18

7.5 Plots:


FCC part 15.209 Vertical 30-1000MHz


FCC part 15.209 Horizontal 30-1000MHz

EMC Report for Salto Systems S.L. Model: A9XW Page 13 of 18

7.6 Setup Photos:

9kHz - 30MHz setup

30 MHz - 1000MHz setup

EMC Report for Salto Systems S.L. Model: A9XW FCCID: UKCA9XW; ICID: 10088A-A9XW

AC Power line Conducted Emissions 8

Test Limits

§ 15.107(e): Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz. shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Eraguanov of aminaian	Conducted limit (dBµV)				
Frequency of emission (MHz)	Quasi-peak	Average			
0.15–0.5	66 to 56*	56 to 46*			
0.5–5	56	46			
5–30	60	50			

^{*}Decreases with the logarithm of the frequency.

8.2 Test Procedure

ANSI C63.4: 2009

8.3 Test Equipment Used:

Description	Serial Number	Manufacturer	Model	Cal. Date	Cal. Due
EMI Test Receiver	10887490.26	Rohde & Schwarz	ESI26	9/11/2013	9/11/2014
LISN	3333	Teseq	NNB52	3/11/2013	3/11/2014

8.4 Results:

This test does not apply since the EUT is battery powered, and has no connection to the AC mains.

9 Frequency Stability

9.1 **Test Limits**

§ 15.225 Operation within the band 13.110-14.010 MHz.

(e) The frequency tolerance of the carrier signal shall be maintained within ±0.01% of the operating frequency over a temperature variation of −20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

EMC Report for Salto Systems S.L. Model: A9XW Page 15 of 18

9.3 Results:

The data below shows that the test sample meets the frequency stability requirements from Part 15.225.

Frequency Stability Test Data

Operating

Frequency 13,560,000

Channel: RFID Single Channel

Reference

Voltage: 4.5VDC battery operated by 3 AAA cells

Deviation Limit 0.01% of 13.56MHz = 1,356Hz

(±): Notes:

Valtaga	Voltogo	Tomn	Intonial	F	Davistian	Davistian
Voltage	Voltage	Temp	Interval	Frequency	Deviation	Deviation
(%)	(VDC)	(°C)	Minutes	(Hz)	(Hz)	(%)
3 x AA	4.21	-30°	Startup	13,560,800	800.00	0.006
3 x AA		-30°	2 min	13,560,800	800.00	0.006
3 x AA		-30°	5 min	13,560,800	800.00	0.006
3 x AA		-30°	10 min	13,560,800	800.00	0.006
3 x AA	4.25	-20°	Startup	13,560,400	400.00	0.003
3 x AA		-20°	2 min	13,560,400	400.00	0.003
3 x AA		-20°	5 min	13,560,400	400.00	0.003
3 x AA		-20°	10 min	13,560,400	400.00	0.003
3 x AA	4.32	-10°	Startup	13,560,400	400.00	0.003
3 x AA		-10°	2 min	13,560,400	400.00	0.003
3 x AA		-10°	5 min	13,560,400	400.00	0.003
3 x AA		-10°	10 min	13,560,400	400.00	0.003
3 x AA	4.29	0°	Startup	13,560,400	400.00	0.003
3 x AA		0°	2 min	13,560,400	400.00	0.003
3 x AA		0°	5 min	13,560,400	400.00	0.003
3 x AA		0°	10 min	13,560,400	400.00	0.003
3 x AA	4.27	10°	Startup	13,560,400	400.00	0.003
3 x AA		10°	2 min	13,560,400	400.00	0.003
3 x AA		10°	5 min	13,560,400	400.00	0.003
3 x AA		10°	10 min	13,560,400	400.00	0.003
3 x AA	4.23	20°	Startup	13,560,400	400.00	0.003
3 x AA		20°	2 min	13,560,400	400.00	0.003
3 x AA		20°	5 min	13,560,400	400.00	0.003
3 x AA		20°	10 min	13,560,400	400.00	0.003
3 x AA	4.25	30°	Startup	13,564,000	0.00	0
3 x AA		30°	2 min	13,564,000	0.00	0
3 x AA		30°	5 min	13,564,000	0.00	0
3 x AA		30°	10 min	13,564,000	0.00	0
3 x AA	4.35	40°	Startup	13,564,000	0.00	0
3 x AA		40°	2 min	13,564,000	0.00	0
3 x AA		40°	5 min	13,564,000	0.00	0
3 x AAA		40°	10 min	13,560,000	0.00	0

EMC Report for Salto Systems S.L. Model: A9XW
Page 16 of 18

10 Antenna Requirement per FCC Part 15.203

10.1 Test Limits

§ 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

10.2 Results:

The sample tested met the antenna requirement. The antenna was a pcb loop antenna permanently attached to the circuit board.

11 Measurement Uncertainty

The measured value related to the corresponding limit will be used to decide whether the equipment meets the requirements.

The measurement uncertainty figures were calculated and correspond to a coverage factor of k = 2, providing a confidence level of respectively 95.45 % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian).

Measurement uncertainty Table

Parameter	Uncertainty	Notes
Radiated emissions, 30 to 1000 MHz	<u>+</u> 3.9dB	
Radiated emissions, 1 to 18 GHz	<u>+</u> 4.2dB	
Radiated emissions, 18 to 40 GHz	<u>+</u> 4.3dB	
Power Port Conducted emissions, 150kHz to 30 MHz	<u>+</u> 2.8dB	

EMC Report for Salto Systems S.L. Model: A9XW Page 17 of 18

Report Number: 101324699LAX-001 Issued: 11/28/2013

12 Revision History

Revision	Date	Report Number	Notes
Level			
0	11/28/2013	101324716LAX-001	Original Issue

EMC Report for Salto Systems S.L. Model: A9XW FCCID: UKCA9XW; ICID: 10088A-A9XW Page 18 of 18