	BUREAU VERITAS
	FCC Test Report
Report No.:	RF190226C07 R1
FCC ID:	UK7-DW10
Test Model:	DW10M2
Series Model:	DW10F1, DW10M1, DW10E1, DW10D1 (Refer to section 3.1 for more details)
Received Date:	Feb. 26, 2019
Test Date:	Mar. 13, 2019 ~ May 09, 2019
Issued Date:	Jun. 03, 2019
Anna Barand	
	Fossil Group, Inc.
Address:	901 S. Central Expressway, Richardson, TX 75080, USA
	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
Lab Address:	No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan (R.O.C)
Test Location (1):	No.19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, Taiwan, R.O.C.
Test Location (2):	B2F., No.215, Sec. 3, Beixin Rd., Xindian Dist., New Taipei City 231, Taiwan, R.O.C
FCC Registration /	427177 / TW0011
Designation Number:	
	Iac-MRA
	Testing Laboratory 2021
	copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted
report are not indicative or representative unless specifically and expressly noted. provided to us. You have 60 days from however, that such notice shall be in writ shall constitute your unqualified acceptar mention, the uncertainty of measurement	his report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this we of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product Our report includes all of the tests requested by you and the results thereof based upon the information that you date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, ing and shall specifically address the issue you wish to raise. Afailure to raise such issue within the prescribed time to conflue the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific thas been explicitly taken into account to dedare the compliance or non-compliance to the specification. The report roduct certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

Re	eleas	e Control Record	4
1	Cer	tificate of Conformity	5
2	Sur	nmary of Test Results	6
		Measurement Uncertainty	
	2.2	Modification Record	7
3	Ger	neral Information	8
		General Description of EUT	
	3.2	Description of Test Modes	
		3.2.1 Test Mode Applicability and Tested Channel Detail	
	3.3	Description of Support Units	12
	24	3.3.1 Configuration of System under Test General Description of Applied Standards	
4		t Types and Results	
		uetooth EDR>	-
	4.1	Radiated Emission and Bandedge Measurement	
		4.1.1 Limits of Radiated Emission and Bandedge Measurement	
		4.1.2 Test Instruments	
		4.1.3 Test Procedures.4.1.4 Deviation from Test Standard.	
		4.1.5 Test Set Up	
		4.1.6 EUT Operating Conditions	
		4.1.7 Test Results	
	4.2	Conducted Emission Measurement	
		4.2.1 Limits of Conducted Emission Measurement	
		4.2.2 Test Instruments	32
		4.2.3 Test Procedures	
		4.2.4 Deviation from Test Standard	
		4.2.5 Test Setup	
		4.2.6 EUT Operating Condition4.2.7 Test Results	
	43	Number of Hopping Frequency Used	
	ч.0	4.3.1 Limits of Hopping Frequency Used Measurement	
		4.3.2 Test Setup	
		4.3.3 Test Instruments	
		4.3.4 Test Procedure	
		4.3.5 Deviation from Test Standard	
		4.3.6 Test Results	
	4.4	Dwell Time on Each Channel	
		4.4.1 Limits of Dwell Time on Each Channel Measurement	
		4.4.2 Test Setup4.4.3 Test Instruments	
2		4.4.4 Test Procedures	
		4.4.5 Deviation from Test Standard	
		4.4.6 Test Results	
	4.5	Channel Bandwidth	41
		4.5.1 Limits of Channel Bandwidth Measurement	
		4.5.2 Test Setup	
		4.5.3 Test Instruments	
		4.5.4 Test Procedure	
		4.5.5 Deviation from Test Standard	
		4.5.6 EUT Operating Condition4.5.7 Test Results	
	46	Occupied Bandwidth Measurement	
	4.0		-0

		4.6.1 Test Setup	43
		4.6.2 Test Instruments	
		4.6.3 Test Procedure	-
		4.6.4 Deviation from Test Standard	
		4.6.5 EUT Operating Conditions	
		4.6.6 Test Results	
	4.7	Hopping Channel Separation	
		4.7.1 Limits of Hopping Channel Separation Measurement	
		4.7.2 Test Setup	
		4.7.3 Test Instruments	
		4.7.4 Test Procedure	45
		4.7.5 Deviation from Test Standard	45
		4.7.6 Test Results	
	4.8	Maximum Output Power	
		4.8.1 Limits of Maximum Output Power Measurement	
		4.8.2 Test Setup	
		4.8.3 Test Instruments	
		4.8.4 Test Procedure	
		4.8.5 Deviation from Test Standard	
		4.8.6 EUT Operating Condition	
		4.8.7 Test Results	
	4.9	Conducted Out of Band Emission Measurement	
		4.9.1 Limits Of Conducted Out of Band Emission Measurement	
		4.9.2 Test Instruments	
		4.9.3 Test Procedure	
		4.9.4 Deviation from Test Standard	
		4.9.5 EUT Operating Condition	
		4.9.6 Test Results	49
5	Pict	ures of Test Arrangements	54
An	nex	A- Band-edge measurement	55
Ар	peno	dix – Information of the Testing Laboratories	59

Release Control Record

Issue No.	Description	Date Issued
RF190226C07 Original Release		May 16, 2019
RF190226C07 R1	Revise Note 1 of section 3.1	Jun. 03, 2019

1 **Certificate of Conformity**

Product:	Smart Watch
Test Model:	DW10M2
Series Model:	DW10F1, DW10M1, DW10E1, DW10D1 (Refer to section 3.1 for more details)
Sample Status:	Identical Prototype
Applicant:	Fossil Group, Inc.
Test Date:	Mar. 13, 2019 ~ May 09, 2019
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)
	ANSI C63.10:2013

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by :

Rona Chen / Specialist

Date: Jun. 03, 2019

Date:

Jun. 03, 2019

Approved by :

Dylan Chiou / Project Engineer

Report No.: RF190226C07 R1

2 Summary of Test Results

<Bluetooth EDR>

47 CFR FCC Part 15, Subpart C (Section 15.247)								
FCC Clause	Test Item	Result	Remarks					
15.207	15.207 AC Power Conducted Emission		Meet the requirement of limit. Minimum passing margin is -23.54 dB at 0.15000 MHz.					
15.247(a)(1) (iii)	Number of Hopping Frequency Used	Pass	Meet the requirement of limit.					
15.247(a)(1) (iii)	Dwell lime on Each Channel		Meet the requirement of limit.					
1. Hopping Channel Separation 2. Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System		Pass	Meet the requirement of limit.					
15.247(a)(1)	Maximum Peak Output Power	Pass	Meet the requirement of limit.					
	Occupied Bandwidth Measurement	Pass	Reference only					
15.205 & 209	15.205 & 209 Radiated Emissions		Meet the requirement of limit. Minimum passing margin is -12.79 dB at 2483.64 MHz.					
15.247(d)	Band Edge Measurement	Pass	Meet the requirement of limit.					
15.247(d)	Antenna Port Emission	Pass	Meet the requirement of limit.					
15.203	Antenna Requirement	Pass	No antenna connector is used.					

Note:

1. If the Frequency Hopping System operating in 2400-2483.5 MHz band and the output power less than 125 mW. The hopping channel carrier frequencies separated by a minimum of 25 kHz or two-thirds of the 20 dB bandwidth of hopping channel whichever is greater.

2. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expended Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150 kHz ~ 30 MHz	2.44 dB
	9 kHz ~ 30 MHz	3.04 dB
Radiated Emissions up to 1 GHz	30 MHz ~ 200 MHz	2.0153 dB
	200 MHz ~ 1000 MHz	2.0224 dB
Radiated Emissions above 1 GHz	1 GHz ~ 18 GHz	1.0121 dB
Raulaleu Emissions above 1 GHZ	18 GHz ~ 40 GHz	1.1508 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Smart Watch				
Test Model	DW10M2				
Series Model	DW10F1, DW10	M1, DW10E1, DW10D1			
Status of EUT	Identical Prototy	pe			
Power Supply Rating	5.0 Vdc (Host ec	quipment or Adapter)			
	3.85 Vdc (Battery)				
Modulation Type	Bluetooth EDR GFSK, π/4-DQPSK, 8DPSK				
Transfer Rate	Bluetooth EDR	1/2/3 Mbps			
Operating Frequency	Bluetooth EDR	2402 ~ 2480 MHz			
Number of Channel	Bluetooth EDR	79			
Output Power	Bluetooth EDR	15.488 mW			
Antenna Type	Loop antenna				
Antenna Connector	N/A				
Accessory Device	Refer to Note as below				
Data Cable Supplied	Refer to Note as	below			

Note:

1. All models are listed as below. Model: DW10M2 antenna gain is maximum as a representative for the final test.

Samala	Model	Antenna Gain (dBi)		Description	
Sample	Model	2.4G / BT	GPS	Description	
А	DW10F1	-7.45	-6.48		
В	DW10M1	-8.00	-6.36	The complex are different in the encourance	
С	DW10M2	-6.21	-5.17	The samples are different in the appearance and antenna gain only.	
D	DW10E1	-6.80	-5.47	anu antenna gan only.	
E	DW10D1	-7.15	-5.61		

2. The EUT's accessories list refers to user manual.

3. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or User's Manual.

3.2 Description of Test Modes

<Bluetooth EDR>

79 channels are provided to this EUT:

Channel	Freq. (MHz)						
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

3.2.1 Test Mode Applicability and Tested Channel Detail

<Bluetooth EDR>

EUT Configure		Applica	able To		Description
Mode	RE≥1G	RE<1G	PLC	APCM	Description
-		\checkmark	\checkmark	\checkmark	-
	E≥1G: Radiated LC: Power Line			adiated Emission below 1 GHz tenna Port Conducted Measurement	
P	LC: Power Line	Conducted Em	ission	APCM: An	tenna Port Conducted Measurement

Note:

1. The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on Z-plane.

Radiated Emission Test (Above 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Packet Type
-	0 to 78	0, 39, 78	FHSS	GFSK	DH5
	0 to 78	0, 39, 78	FHSS	8DPSK	3DH5

Radiated Emission Test (Below 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Packet Type
-	0 to 78	78	FHSS	GFSK	DH5

Power Line Conducted Emission Test:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Packet Type
-	0 to 78	78	FHSS	GFSK	DH5

Antenna Port Conducted Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

 EUT Configure
 Available Channel

 Tested Channel
 Modulation

 Modulation
 Modulation Type

EU	T Configure Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Packet Type
	-	0 to 78	0, 39, 78	FHSS	GFSK	DH5
	-	0 to 78	0, 39, 78	FHSS	8DPSK	3DH5

Test Condition:

Applicable To	Environmental Conditions	Input Power	Tested by
RE≥1G	25 deg. C, 65 % RH	120 Vac, 60 Hz	Charles Hsiao
RE<1G	25 deg. C, 65 % RH	120 Vac, 60 Hz	Charles Hsiao
PLC	25 deg. C, 65 % RH	120 Vac, 60 Hz	Thomas Wei
APCM	25 deg. C, 65 % RH	3.8 Vdc	Gavin Wu

3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

0.	Product	Brand	Model No.	Serial No.	FCC ID
	Adapter	SALCOMP	TC U250	N/A	N/A
	Cradle	Simula Technology Inc.	CB846E-6040-102	N/A	N/A
) .		Signal Cable	e Description Of The Ab	ove Support Units	
1r	m shielded cable	1			
3.1 Sluet	Configuration	of System under Tes	t		
			_		
		F	ገ		
			EUT		
		(Pov	ver from AC Adapter)		
	*Test Table				
•			\$ \$\$		
			Bluetooth Tester		
	*Kept in remo	ote area			

3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247) KDB 558074 D01 15.247 Meas Guidance v05r02

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

<BLUETOOTH EDR>

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20 dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F (kHz)	300
0.490 ~ 1.705	24000/F (kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- a. The lower limit shall apply at the transition frequencies.
- b. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- c. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

4.1.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Date Of Calibration	Due Date Of Calibration
Test Receiver Agilent Technologies	N9038A	MY52260177	Aug. 20, 2018	Aug. 19, 2019
Spectrum Analyzer R&S	FSU43	100115	Jan. 21, 2019	Jan. 20, 2020
HORN Antenna ETS-Lindgren	3117	00143293	Nov. 25, 2018	Nov. 24, 2019
BILOG Antenna SCHWARZBECK	VULB 9168	9168-616	Nov. 27, 2018	Nov. 26, 2019
HORN Antenna SCHWARZBECK	BBHA 9170	9170-480	Nov. 25, 2018	Nov. 24, 2019
Fixed Attenuator	MDCS18N-10	MDCS18N-10-01	Apr. 16, 2018	Apr. 15, 2019
Mini-Circuits			Apr. 15, 2019	Apr. 14, 2020
Bluetooth Tester	CBT	100980	Jun. 28, 2017	Jun. 27, 2019
Loop Antenna	EM-6879	269	Sep. 07, 2018	Sep. 06, 2019
Preamplifier Agilent	310N	187226	Jun. 19, 2018	Jun. 18, 2019
Preamplifier Agilent	83017A	MY39501357	Jun. 19, 2018	Jun. 18, 2019
Power Meter Anritsu	ML2495A	1232002	Dec. 17, 2018	Dec. 16, 2019
Power Sensor Anritsu	MA2411B	1207325	Dec. 17, 2018	Dec. 16, 2019
Preamplifier EMCI	EMC 184045	980116	Oct. 12, 2018	Oct. 11, 2019
RF signal cable ETS-LINDGREN	5D-FB	Cable-CH1-01(RFC -SMS-100-SMS-120 +RFC-SMS-100-SM S-400)	Jun. 19, 2018	Jun. 18, 2019
RF signal cable ETS-LINDGREN	8D-FB	Cable-CH1-02(RFC -SMS-100-SMS-24)	Jun. 19, 2018	Jun. 18, 2019
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA
Software BV ADT	E3 8.130425b	NA	NA	NA
Antenna Tower MF	NA	NA	NA	NA
Turn Table MF	NA	NA	NA	NA
Antenna Tower &Turn Table Controller MF	MF-7802	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 / 24 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HsinTien Chamber 1.
- 3. The horn antenna and preamplifier (model: 83017A) are used only for the measurement of emission frequency above 1 GHz if tested.

4.1.3 Test Procedures

For Radiated Emission below 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Both Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

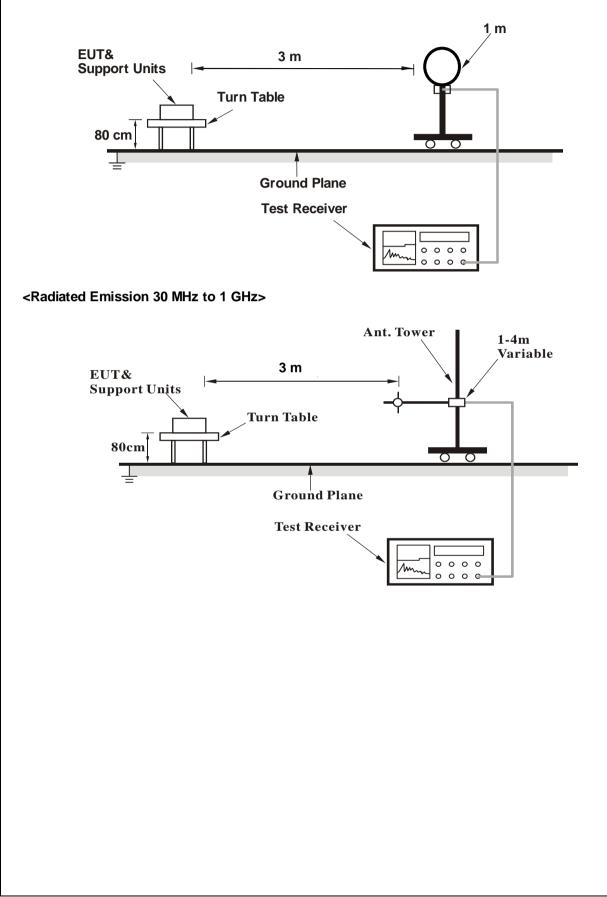
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9 kHz at frequency below 30 MHz.

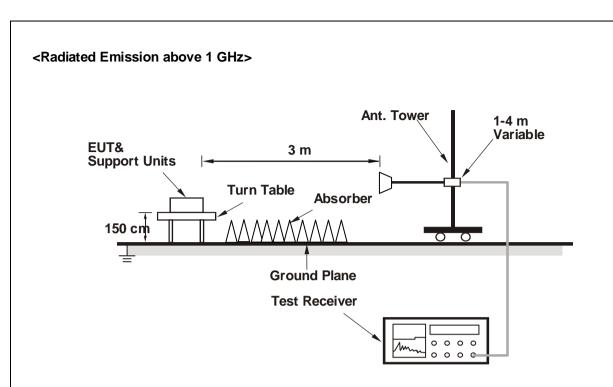
For Radiated Emission above 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30 MHz ~ 1 GHz) / 1.5 meters (for above 1 GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detected function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) or Peak detection (PK) at frequency below 1 GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1 GHz.
- The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98 %) or 10 Hz (Duty cycle ≥ 98 %) for Average detection (AV) at frequency above 1 GHz. (RBW = 1 MHz, VBW = 1 kHz)
- 4. All modes of operation were investigated and the worst-case emissions are reported.


4.1.4 Deviation from Test Standard


No deviation.

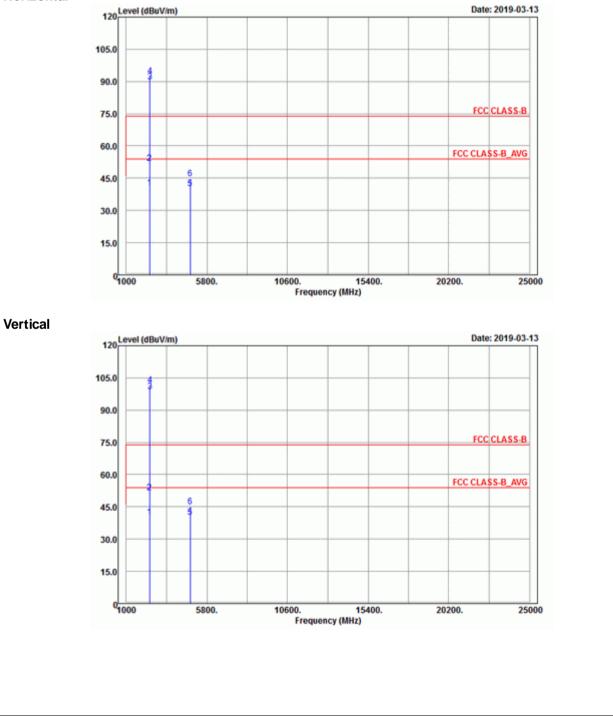
4.1.5 Test Set Up

<Radiated Emission below 30 MHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

Set the EUT under transmission condition continuously at specific channel frequency.

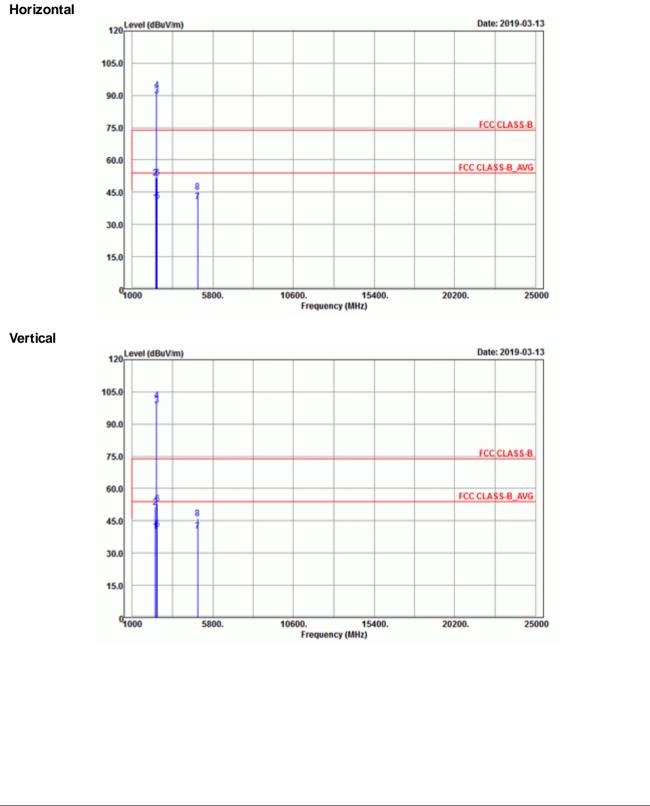

4.1.7 Test Results

Above 1 GHz Data:

GFSK

EUT Test Condition		Measurement Detail		
Channel	Channel 0	Frequency Range	1 GHz ~ 25 GHz	
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Charles Hsiao	

Horizontal


		Antonno	Delerity 9	Toot Diston	oo, Horizoni	al at 2 m		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Ce: Horizont	Antenna Height (cm)	Table Angle (Degree)	Remark
2377.95	40.4	38.74	1.66	54	-13.6	220	236	Average
2377.95	51.92	50.26	1.66	74	-22.08	220	236	Peak
2402	89.87	88.14	1.73			220	236	Average
2402	92.52	90.79	1.73			220	236	Peak
4804	40.2	32.11	8.09	54	-13.8	118	2	Average
4804	44.94	36.85	8.09	74	-29.06	118	2	Peak
		Antenna	a Polarity 8	Test Dista	nce: Vertica	l at 3 m		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2389.2	40.36	38.65	1.71	54	-13.64	149	8	Average
2389.2	51.69	49.98	1.71	74	-22.31	149	8	Peak
2402	98.59	96.86	1.73			149	8	Average
2402	101.59	99.86	1.73			149	8	Peak
4804	40.36	32.27	8.09	54	-13.64	124	206	Average
4804	45.19	37.1	8.09	74	-28.81	124	206	Peak

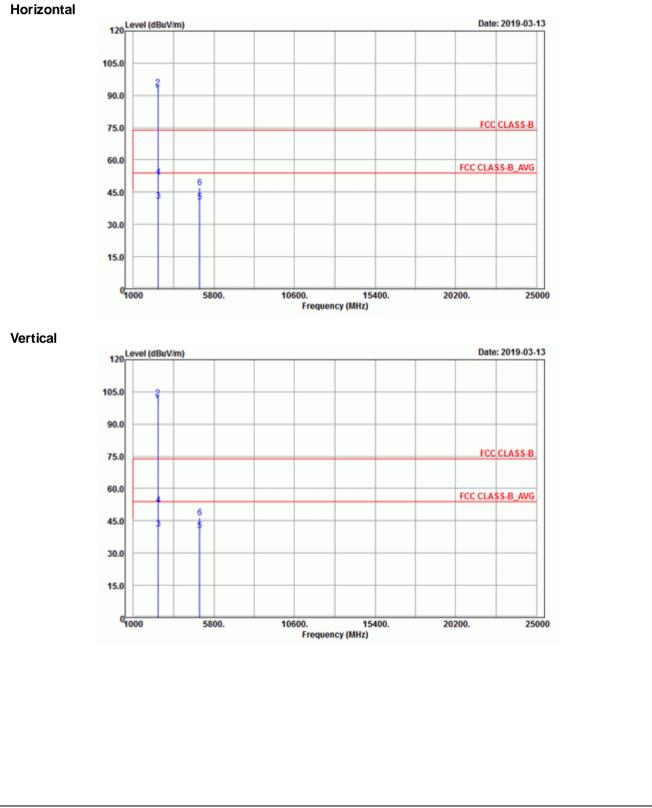
 Emission Level = Read Level + Factor Margin value = Emission level – Limit value

- 2. 2402 MHz: Fundamental frequency.
- 3. The emission levels of other frequencies were very low against the limit.

EUT Test Condition		Measurement Detail		
Channel	Channel 39	Frequency Range	1 GHz ~ 25 GHz	
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Charles Hsiao	

	Antenna Polarity & Test Distance: Horizontal at 3 m								
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark	
2384.88	40.31	38.62	1.69	54	-13.69	220	236	Average	
2384.88	51.71	50.02	1.69	74	-22.29	220	236	Peak	
2441	89.87	88	1.87			220	236	Average	
2441	92.55	90.68	1.87			220	236	Peak	
2496.76	40.89	38.87	2.02	54	-13.11	220	236	Average	
2496.76	51.56	49.54	2.02	74	-22.44	220	236	Peak	
4882	40.49	32.3	8.19	54	-13.51	124	276	Average	
4882	45.27	37.08	8.19	74	-28.73	124	276	Peak	
		Antenna	a Polarity 8	Test Dista	nce: Vertica	l at 3 m			
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark	
2359.86	40.32	38.69	1.63	54	-13.68	149	8	Average	
2359.86	51.21	49.58	1.63	74	-22.79	149	8	Peak	
2441	98.66	96.79	1.87			149	8	Average	
2441	101.15	99.28	1.87			149	8	Peak	
2484	41.1	39.14	1.96	54	-12.9	149	8	Average	
2484	52.87	50.91	1.96	74	-21.13	149	8	Peak	
4882	40.34	32.15	8.19	54	-13.66	125	175	Average	
4882	46.24	38.05	8.19	74	-27.76	125	175	Peak	

1. Emission Level = Read Level + Factor


Margin value = Emission level - Limit value

2. 2441 MHz: Fundamental frequency.

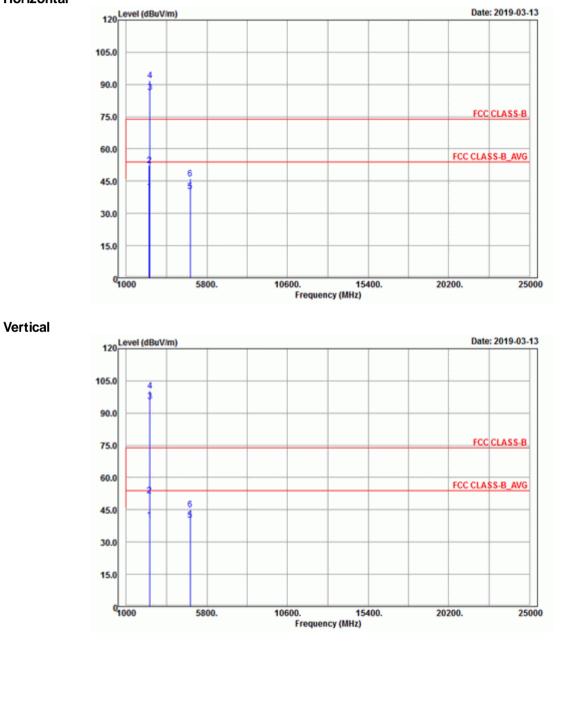
3. The emission levels of other frequencies were very low against the limit.

EUT Test Condition		Measurement Detail		
Channel	Channel 78	Frequency Range	1 GHz ~ 25 GHz	
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Charles Hsiao	

Cancels and replaces the report No. RF190226C08 dated May 16, 2019

		Antenna	Polarity &	Test Distan	ce: Horizont	al at 3 m		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2480	90.57	88.61	1.96			220	236	Average
2480	93.36	91.4	1.96			220	236	Peak
2497.4	40.95	38.93	2.02	54	-13.05	220	236	Average
2497.4	51.97	49.95	2.02	74	-22.03	220	236	Peak
4960	40.61	32.34	8.27	54	-13.39	134	14	Average
4960	47.01	38.74	8.27	74	-26.99	134	14	Peak
		Antenna	a Polarity 8	Test Dista	nce: Vertica	l at 3 m		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2480	99.22	97.26	1.96			149	8	Average
2480	102.01	100.05	1.96			149	8	Peak
2483.64	41.21	39.25	1.96	54	-12.79	149	8	Average
2483.64	52.34	50.38	1.96	74	-21.66	149	8	Peak
4960	40.48	32.21	8.27	54	-13.52	215	5	Average
4960	46.53	38.26	8.27	74	-27.47	215	5	Peak

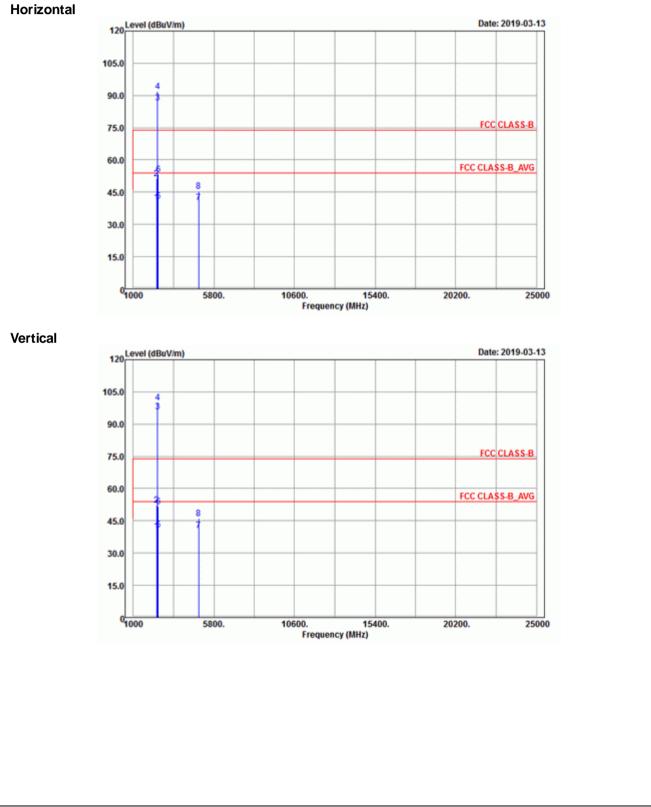
 Emission Level = Read Level + Factor Margin value = Emission level – Limit value


- 2. 2480 MHz: Fundamental frequency.
- 3. The emission levels of other frequencies were very low against the limit.

8DPSK

EUT Test Condition		Measurement Detail		
Channel	Channel 0	Frequency Range 1 GHz ~ 25 GHz		
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Charles Hsiao	

Horizontal


		Antonno	Delerity 0	Taat Distan				
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	ce: Horizont	Antenna Height (cm)	Table Angle (Degree)	Remark
2371.56	40.36	38.7	1.66	54	-13.64	220	236	Average
2371.56	52.2	50.54	1.66	74	-21.8	220	236	Peak
2402	86.44	84.71	1.73			220	236	Average
2402	91.93	90.2	1.73			220	236	Peak
4804	40.14	32.05	8.09	54	-13.86	189	99	Average
4804	45.98	37.89	8.09	74	-28.02	189	99	Peak
		Antenna	a Polarity 8	Test Dista	nce: Vertica	l at 3 m		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2387.58	40.32	38.61	1.71	54	-13.68	149	8	Average
2387.58	51.68	49.97	1.71	74	-22.32	149	8	Peak
2402	95.5	93.77	1.73			149	8	Average
2402	100.26	98.53	1.73			149	8	Peak
4804	40.15	32.06	8.09	54	-13.85	215	118	Average
4804	45.28	37.19	8.09	74	-28.72	215	118	Peak

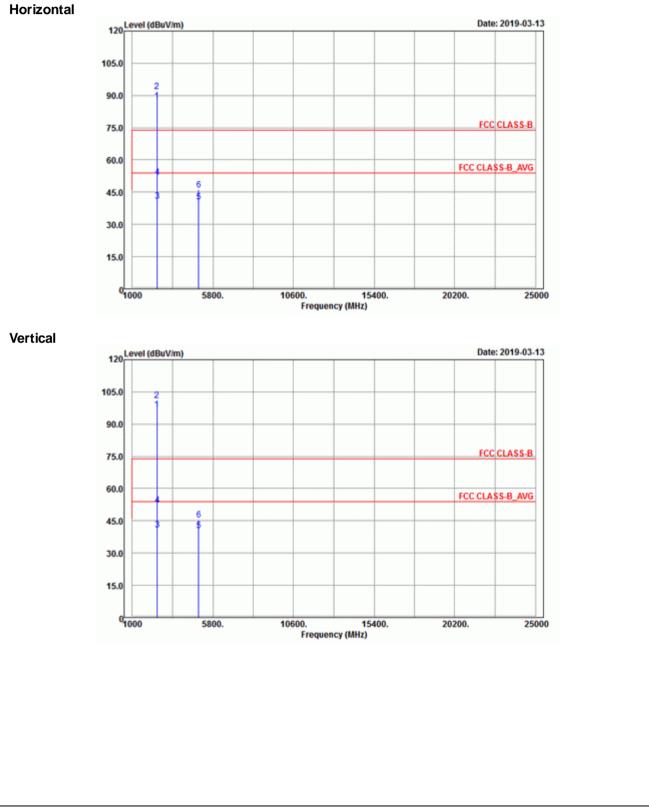
 Emission Level = Read Level + Factor Margin value = Emission level – Limit value

- 2. 2402 MHz: Fundamental frequency.
- 3. The emission levels of other frequencies were very low against the limit.

EUT Test Condition		Measurement Detail		
Channel	Channel 39	Frequency Range	1 GHz ~ 25 GHz	
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Charles Hsiao	

	Antenna Polarity & Test Distance: Horizontal at 3 m								
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark	
2388.66	40.37	38.66	1.71	54	-13.63	220	236	Average	
2388.66	51.23	49.52	1.71	74	-22.77	220	236	Peak	
2441	86.52	84.65	1.87			220	236	Average	
2441	91.84	89.97	1.87			220	236	Peak	
2487.68	40.92	38.91	2.01	54	-13.08	220	236	Average	
2487.68	53.27	51.26	2.01	74	-20.73	220	236	Peak	
4882	40.27	32.08	8.19	54	-13.73	159	97	Average	
4882	45.35	37.16	8.19	74	-28.65	159	97	Peak	
		Antenna	a Polarity 8	Test Dista	nce: Vertica	l at 3 m			
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark	
2385.51	40.38	38.67	1.71	54	-13.62	149	8	Average	
2385.51	52.35	50.64	1.71	74	-21.65	149	8	Peak	
2441	95.8	93.93	1.87			149	8	Average	
2441	100.15	98.28	1.87			149	8	Peak	
2486.12	40.91	38.92	1.99	54	-13.09	149	8	Average	
2486.12	51.73	49.74	1.99	74	-22.27	149	8	Peak	
4882	40.55	32.36	8.19	54	-13.45	185	5	Average	
4882	46.13	37.94	8.19	74	-27.87	185	5	Peak	

1. Emission Level = Read Level + Factor


Margin value = Emission level - Limit value

2. 2441 MHz: Fundamental frequency.

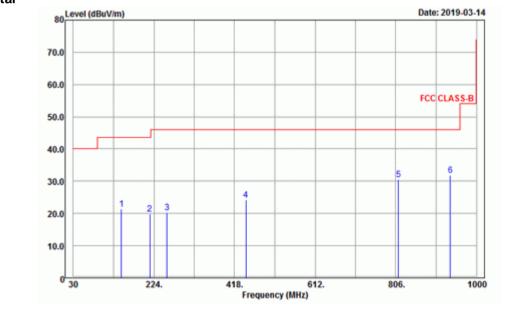
3. The emission levels of other frequencies were very low against the limit.

EUT Test Condition		Measurement Detail		
Channel	Channel 78	Frequency Range	1 GHz ~ 25 GHz	
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Charles Hsiao	

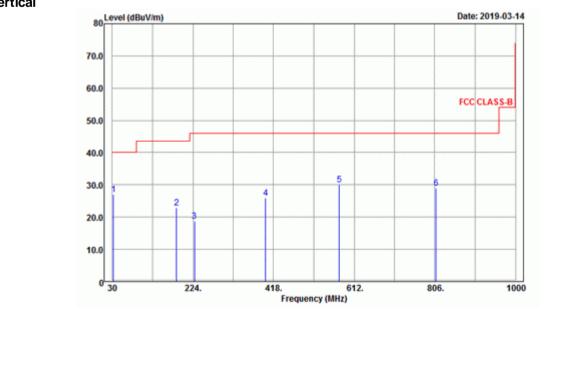
	_	A 1	Dalawita 0					
Frequency (MHz)	Emission Level (dBuV/m)	Antenna Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	ce: Horizont	Antenna Height (cm)	Table Angle (Degree)	Remark
2480	87.14	85.18	1.96			220	236	Average
2480	92	90.04	1.96			220	236	Peak
2498.68	40.84	38.82	2.02	54	-13.16	220	236	Average
2498.68	52.03	50.01	2.02	74	-21.97	220	236	Peak
4960	40.59	32.32	8.27	54	-13.41	111	121	Average
4960	46.21	37.94	8.27	74	-27.79	111	121	Peak
		Antenna	a Polarity &	Test Dista	nce: Vertica	l at 3 m		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2480	96.64	94.68	1.96			149	8	Average
2480	101.02	99.06	1.96			149	8	Peak
2483.84	41.01	39.05	1.96	54	-12.99	149	8	Average
2483.84	52.46	50.5	1.96	74	-21.54	149	8	Peak
4960	40.44	32.17	8.27	54	-13.56	183	334	Average
4960	45.3	37.03	8.27	74	-28.7	183	334	Peak

 Emission Level = Read Level + Factor Margin value = Emission level – Limit value

- 2. 2480 MHz: Fundamental frequency.
- 3. The emission levels of other frequencies were very low against the limit.


9 kHz ~ 30 MHz Data:

The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.


30 MHz ~ 1 GHz Worst-Case Data:

EUT Test Condition		Measurement Detail		
Channel	Channel 78	Frequency Range	30 MHz ~ 1 GHz	
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Quasi-peak (QP)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Charles Hsiao	

Horizontal

Antenna Polarity & Test Distance: Horizontal at 3 m								
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
146.37	21.31	43.82	-22.51	43.5	-22.19	134	26	Peak
214.68	19.9	39.26	-19.36	43.5	-23.6	102	221	Peak
255.72	20.32	38.06	-17.74	46	-25.68	158	88	Peak
445.6	24.3	38.47	-14.17	46	-21.7	124	244	Peak
812.4	30.41	38.55	-8.14	46	-15.59	189	264	Peak
937	31.93	37.87	-5.94	46	-14.07	105	2	Peak
		Antenna	a Polarity 8	Test Dista	nce: Vertica	l at 3 m		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
32.97	26.97	46.74	-19.77	40	-13.03	105	213	Peak
184.98	22.92	43.35	-20.43	43.5	-20.58	124	6	Peak
228.18	18.82	37.48	-18.66	46	-27.18	118	249	Peak
399.4	25.84	40.73	-14.89	46	-20.16	142	299	Peak
576.5	30.14	41.95	-11.81	46	-15.86	124	142	Peak
808.9	29.07	37.29	-8.22	46	-16.93	105	28	Peak

1. Emission Level = Read Level + Factor

Margin value = Emission level - Limit value

2. The emission levels of other frequencies were very low against the limit.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Frequency (MHz)	Conducted Limit (dBuV)				
Frequency (MHz)	Quasi-Peak	Average			
0.15 - 0.5	66 - 56	56 - 46			
0.50 - 5.0	56	46			
5.0 - 30.0	60	50			

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

4.2.2 Test Instruments

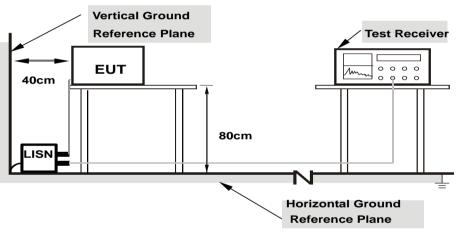
Description & Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Test Receiver ROHDE & SCHWARZ	ESCI	100613	Dec. 10, 2018	Dec. 09, 2019
RF signal cable Woken	5D-FB	Cable-cond1-01	Sep. 05, 2018	Sep. 04, 2019
LISN/AMN ROHDE & SCHWARZ (EUT)	ENV216	101826	Feb. 21, 2019	Feb. 20, 2020
LISN/AMN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100311	Aug. 19, 2018	Aug. 18, 2019
Software ADT	BV ADT_Cond_ V7.3.7.4	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Shielded Room 1.

3. The VCCI Site Registration No. is C-12040.

4.2.3 Test Procedures


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50 uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels under (Limit 20 dB) was not recorded.

Note: The resolution bandwidth and video bandwidth of test receiver is 9 kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15 MHz - 30 MHz.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

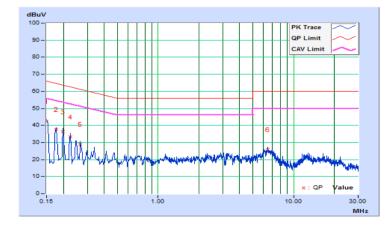
Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Condition

Set the EUT under transmission condition continuously at specific channel frequency.

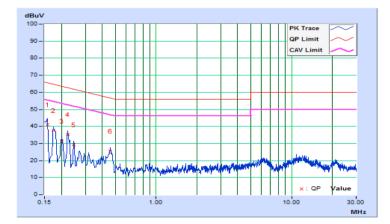
4.2.7 Test Results


CONDUCTED WORST-CASE DATA : GFSK

Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	25℃, 65%RH
Tested by	Thomas Wei	Test Date	2019/3/19

Phase Of Power : Line (L)											
	Frequency	Correction	Reading Value		Emission Level		Limit		Margin		
No		Factor	(dB	(dBuV)		(dBuV)		(dBuV)		(dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15000	9.69	32.77	15.70	42.46	25.39	66.00	56.00	-23.54	-30.61	
2	0.17708	9.68	27.97	13.90	37.65	23.58	64.62	54.62	-26.97	-31.04	
3	0.19800	9.68	26.75	10.68	36.43	20.36	63.69	53.69	-27.26	-33.33	
4	0.22600	9.68	23.78	6.78	33.46	16.46	62.60	52.60	-29.14	-36.14	
5	0.26600	9.68	19.28	3.96	28.96	13.64	61.24	51.24	-32.28	-37.60	
6	6.45400	9.80	16.11	2.02	25.91	11.82	60.00	50.00	-34.09	-38.18	

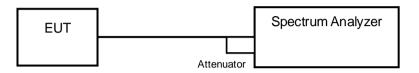
Remarks:


- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	25℃, 65%RH
Tested by	Thomas Wei	Test Date	2019/3/19

Phase Of Power : Neutral (N)										
	Frequency	Correction	0		Emission Level		Limit		Margin	
No		Factor	(dBuV)		(dBuV)		(dBuV)		(dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15770	9.66	31.47	16.40	41.13	26.06	65.58	55.58	-24.45	-29.52
2	0.17430	9.66	28.11	13.23	37.77	22.89	64.75	54.75	-26.98	-31.86
3	0.20201	9.66	21.79	3.79	31.45	13.45	63.53	53.53	-32.08	-40.08
4	0.22211	9.66	25.81	6.77	35.47	16.43	62.74	52.74	-27.27	-36.31
5	0.24614	9.66	19.65	3.89	29.31	13.55	61.89	51.89	-32.58	-38.34
6	0.45800	9.65	15.80	1.99	25.45	11.64	56.73	46.73	-31.28	-35.09

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



4.3 Number of Hopping Frequency Used

4.3.1 Limits of Hopping Frequency Used Measurement

At least 15 channels frequencies, and should be equally spaced.

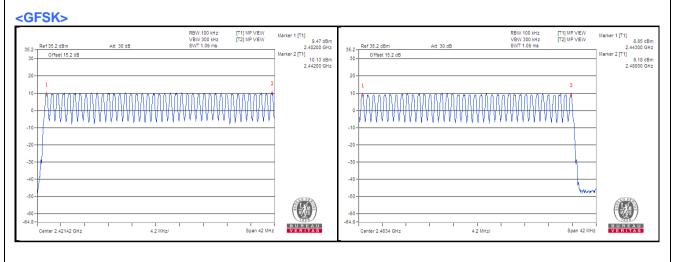
4.3.2 Test Setup

4.3.3 Test Instruments

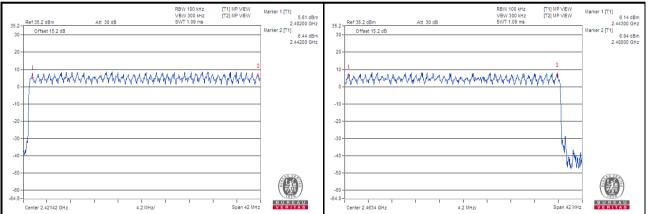
Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.


4.3.5 Deviation from Test Standard

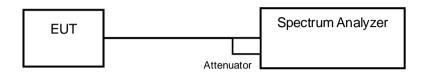
No deviation.



4.3.6 Test Results

There are 79 hopping frequencies in the hopping mode. Please refer to next page for the test result. On the plots, it shows that the hopping frequencies are equally spaced.

<8DPSK>



4.4 Dwell Time on Each Channel

4.4.1 Limits of Dwell Time on Each Channel Measurement

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.4.2 Test Setup

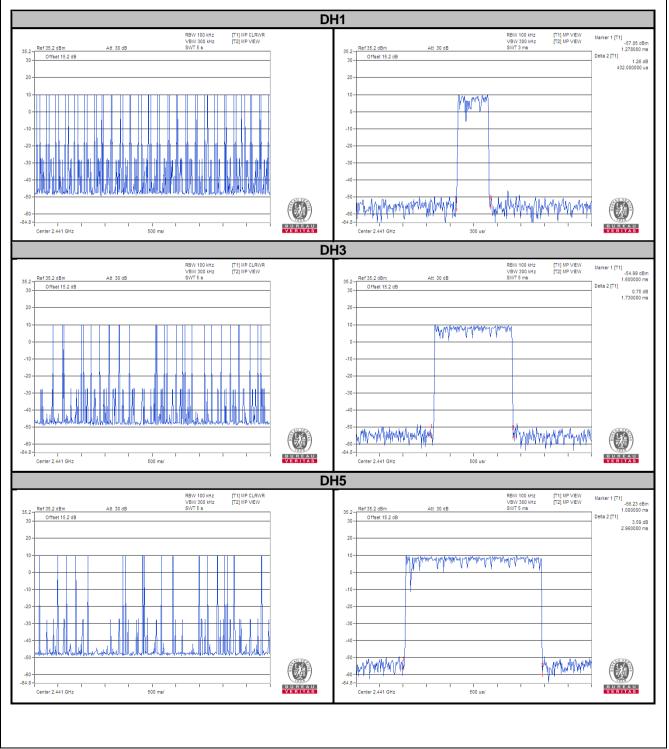
4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.
- 4.4.5 Deviation from Test Standard

No deviation.



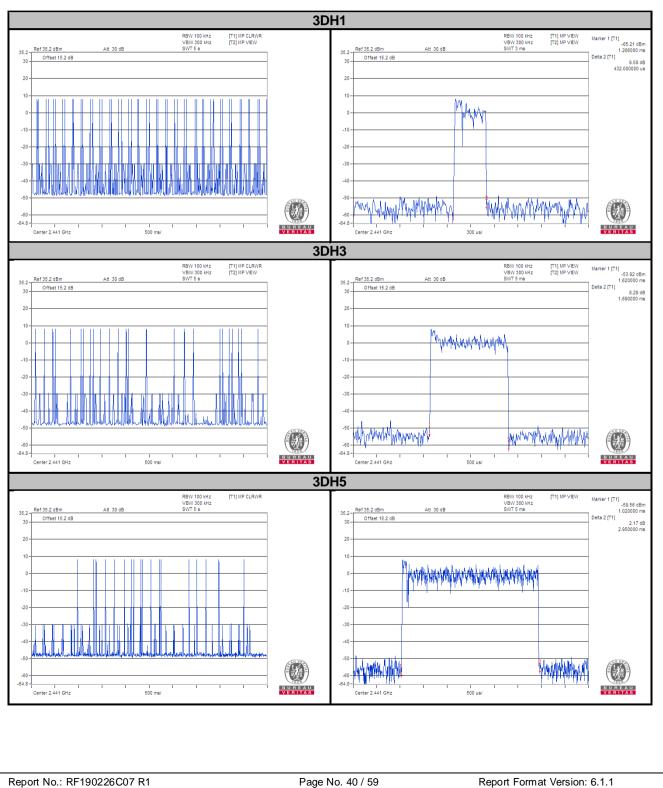
4.4.6 Test Results

GFSK

Mode	Number of Transmission in a 31.6 (79 Hopping*0.4)	Length of Transmission Time (msec)	Result (msec)	Limit (msec)
DH1	51 (times / 5 sec) * 6.32 = 322.32 times	0.432	139.2	400
DH3	26 (times / 5 sec) * 6.32 = 164.32 times	1.73	284.3	400
DH5	18 (times / 5 sec) * 6.32 = 113.76 times	2.96	336.7	400

Note: Test plots of the transmitting time slot are shown as below.

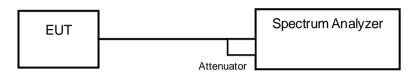
Report No.: RF190226C07 R1


Cancels and replaces the report No. RF190226C08 dated May 16, 2019

8DPSK

Mode	Number of Transmission in a 31.6 (79 Hopping*0.4)	Length of Transmission Time (msec)	Result (msec)	Limit (msec)
3DH1	50 (times / 5 sec) * 6.32 = 316 times	0.432	136.5	400
3DH3	25 (times / 5 sec) * 6.32 = 158 times	1.69	267	400
3DH5	18 (times / 5 sec) * 6.32 = 113.76 times	2.95	335.6	400

Note: Test plots of the transmitting time slot are shown as below.



4.5 Channel Bandwidth

4.5.1 Limits of Channel Bandwidth Measurement

For frequency hopping system operating in the 2400-2483.5 MHz, if the 20 dB bandwidth of hopping channel is greater than 25 kHz, two-thirds 20 dB bandwidth of hopping channel shell be a minimum limit for the hopping channel separation.

4.5.2 Test Setup

4.5.3 Test Instruments

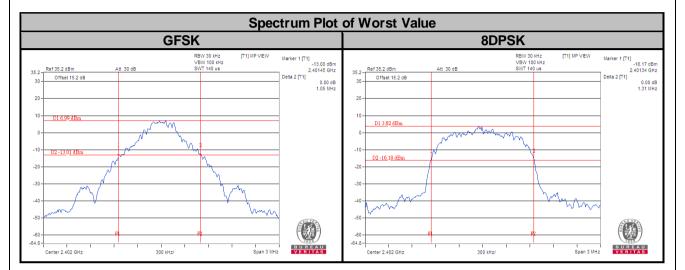
Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

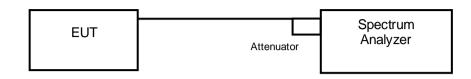
4.5.5 Deviation from Test Standard

No deviation.


4.5.6 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.5.7 Test Results


Channel	Frequency	20 dB Band	width (MHz)
Channer	(MHz)	GFSK	8DPSK
0	2402	1.05	1.31
39	2441	1.05	1.31
78	2480	1.05	1.31

4.6 Occupied Bandwidth Measurement

4.6.1 Test Setup

4.6.2 Test Instruments

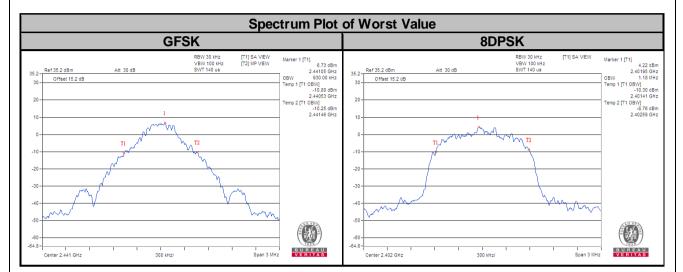
Refer to section 4.1.2 to get information of above instrument

4.6.3 Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with resolution bandwidth in the range of 1 % to 5 % of the anticipated emission bandwidth, and a video bandwidth at least 3x the resolution bandwidth and set the detector to PEAK. The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the total mean power of a given emission.

4.6.4 Deviation from Test Standard

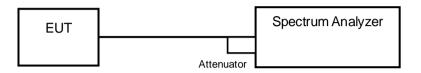
No deviation.


4.6.5 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.6.6 Test Results

Channel	Frequency	Occupied Bar	ndwidth (MHz)
Channer	(MHz)	GFSK	8DPSK
0	2402	0.92	1.18
39	2441	0.93	1.18
78	2480	0.93	1.18



4.7 Hopping Channel Separation

4.7.1 Limits of Hopping Channel Separation Measurement

At least 25 kHz or two-third of 20 dB hopping channel bandwidth (whichever is greater).

4.7.2 Test Setup

4.7.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

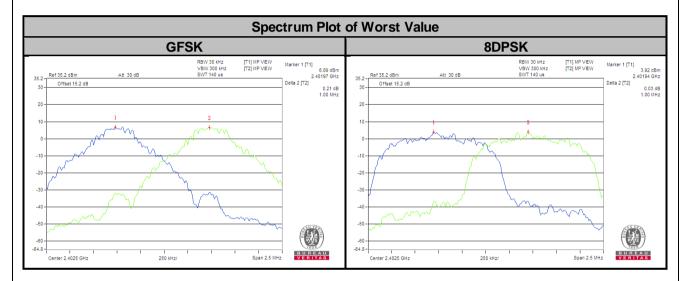
4.7.4 Test Procedure

Measurement Procedure REF

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- c. By using the MaxHold function record the separation of two adjacent channels.
- d. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

4.7.5 Deviation from Test Standard

No deviation.

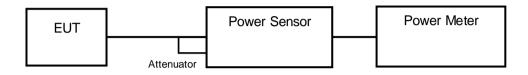


4.7.6 Test Results

Channel	Freq. (MHz)	Sepa	Channel ration Hz)	20 Bandwid	dB th (MHz)	Minimum L	.imit (MHz)	Pass / Fail
		GFSK	8DPSK	GFSK	8DPSK	GFSK	8DPSK	
0	2402	1.00	1.00	1.05	1.31	0.70	0.88	Pass
39	2441	1.00	1.00	1.05	1.31	0.70	0.88	Pass
78	2480	1.00	1.00	1.05	1.31	0.70	0.88	Pass

Note:

1. The minimum limit is two-third 20 dB bandwidth.



4.8 Maximum Output Power

4.8.1 Limits of Maximum Output Power Measurement

Refer to Regulation 15.247 (a)(1), the Maximum Output Power Measurement is 125 mW.

4.8.2 Test Setup

4.8.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.8.4 Test Procedure

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

4.8.5 Deviation from Test Standard

No deviation.

4.8.6 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.8.7 Test Results

<GFSK>

Channel	Freq. (MHz)	Peak Power (mW)	Peak Power (dBm)	Power Limit (mW)	Pass / Fail
0	2402	14.622	11.65	125	Pass
39	2441	13.646	11.35	125	Pass
78	2480	12.503	10.97	125	Pass

<8DPSK>

Channel	Freq. (MHz)	Peak Power (mW)	Peak Power (dBm)	Power Limit (mW)	Pass / Fail
0	2402	15.488	11.90	125	Pass
39	2441	13.964	11.45	125	Pass
78	2480	12.912	11.11	125	Pass

4.9 Conducted Out of Band Emission Measurement

4.9.1 Limits Of Conducted Out of Band Emission Measurement

Below –20 dB of the highest emission level of operating band (in 100 kHz RBW).

4.9.2 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.9.3 Test Procedure

The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100 kHz and 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

4.9.4 Deviation from Test Standard

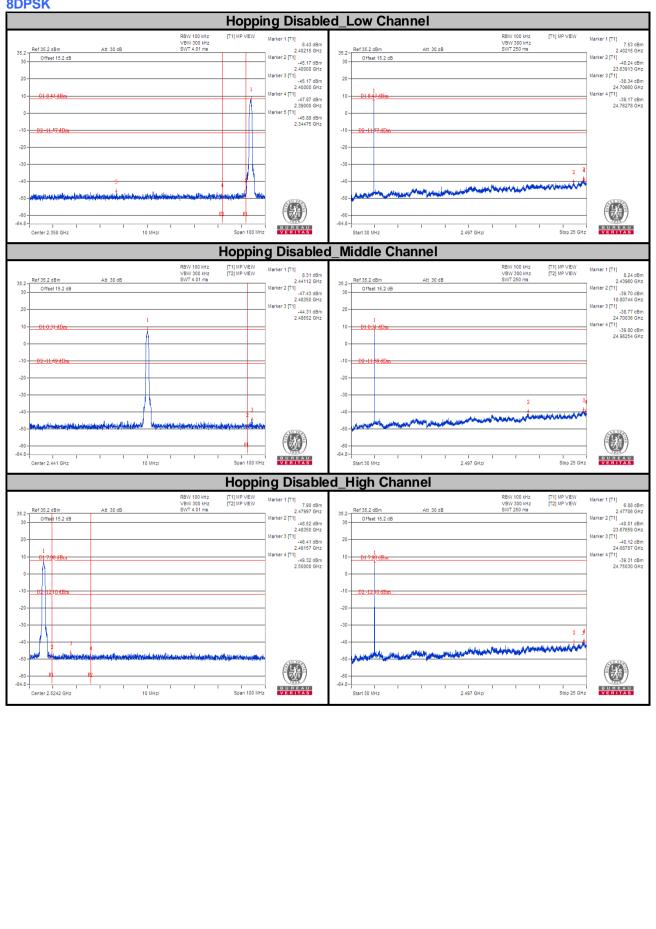
No deviation.

4.9.5 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

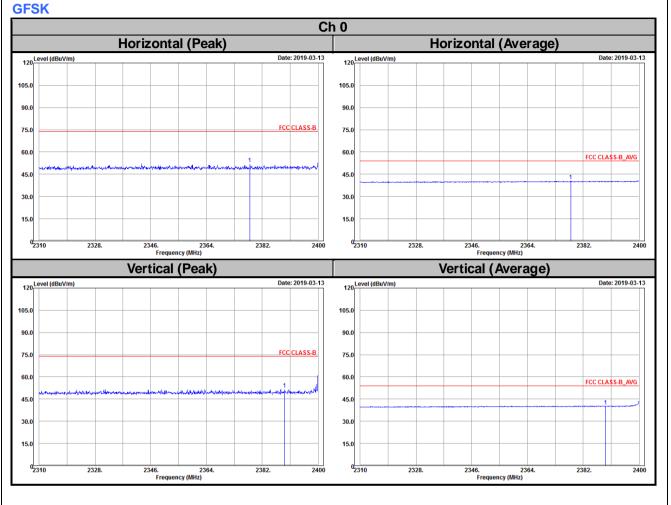
4.9.6 Test Results

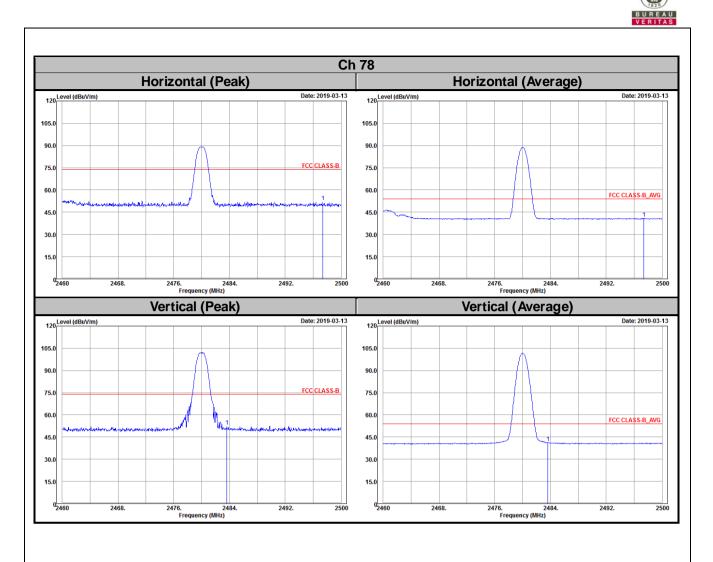
The spectrum plots are attached on the following images. D1 line indicates the highest level, D2 line indicates the 20 dB offset below D1. It shows compliance with the requirement.


GFSK Hopping Disabled_Low Channel Marker 1 [T1] 10.22 dBm 2.40197 GHz Marker 2 [T1] -46.30 dBm 2.40000 GHz Marker 3 [T1] RBW 100 kHz VBW 300 kHz SWT 4.01 ms RBW 100 kHz VBW 300 kHz SWT 250 ms [T1] MP VIEW [T1] MP VIEW Marker 1 [T1] Marker 1 [71] 9.45 dBm 2.40215 GHz Marker 2 [71] -40.84 dBm 24.18847 GHz Marker 3 [71] -39.62 dBm 24.68163 GHz Marker 4 [71] -40.66 dBm 24.75030 GHz Att 30 dB 35.2 - Ref 35.2 dBm Att 30 dB 35.2 - Ref 35.2 dBm Offset 15.2 dB Offset 15.2 dB 30 30-2.40000 . ker 3 [T1] -45.73 dBm 2.39977 GHz rker 4 [T1] -47.65 dBm 2.39000 GHz - TT1 - 49m 20 20-1 D1 10.22 dBi D1 10.22 dBn 10-11 [1] -45.66 dBm 2.36495 GHz -10--10 .20 -20 -30 -30 -4 فمطما فالالذاذة والمراكف السبهما الإعوال متألوط الميانيا يراطب -50 -50 -64.8--64.8-BUREAU BUREAU I Stop 25 GHz 10 MHz/ 2.497 GHz/ Center 2 358 GHz Span 100 MH: Start 30 MH Hopping Disabled_Middle Channel RBW 100 kHz VBW 300 kHz SWT 4.01 ms Marker 1 [T1] 10.08 dBm 2.44115 GHz Marker 2 [T1] -48.12 dBm 2.48350 GHz Marker 3 [T1] -45.41 dBm 2.48622 GHz [T1] MP VIEW [T2] MP VIEW RBW 100 kHz VBW 300 kHz SWT 250 ms [T1] MP VIEW [T2] MP VIEW Marker 1 [T1] Marker 1 [T1] 9.10 dBm 2.43960 GHz Marker 2 [T1] -40.71 dBm 24.46314 GHz Marker 2 [1] 35.2 - Ref 35.2 dBm Att 30 dE Ref 35.2 dBm Att 30 dB 35.2-Offset 15.2 dB Offset 15.2 dB 30 30 -24.46314 GHz Marker 3 [T1] -39.97 dBm 24.59423 GHz Marker 4 [T1] -40.63 dBm 24.81272 GHz 20 20-D1 10.08 AI 10 D2 -9.92 dE -10 D2 -9 -10 -20 -20--30 -30 -4 -40 والمستحلين والمحاسبة والمتحاسبة والمتحاصية والمحالي المراجع -50 -50--60 -60 -64.8--64.8-I Span 100 MHz BUREAU VERITAS 2.497 GHz/ Stop 25 GHz BUREAU VERITAS 10 MHz/ Center 2.441 GHz Start 30 MHz Hopping Disabled_High Channel RBW 100 kHz VBW 300 kHz SWT 4.01 ms RBW 100 kHz VBW 300 kHz SWT 250 ms [T1] MP VIEW [T2] MP VIEW [T1] MP VIEW [T2] MP VIEW Marker 1 [71] 9.70 dBm 2.47997 GHZ Marker 2 [71] -48.80 dBm 2.43350 GHz Marker 3 [71] -48.61 dBm 2.49140 GHZ Marker 4 [71] -48.44 dBm 2.50000 GHZ Marker 1 [T1] 9, 15 dBm 2,47706 GHz Marker 2 [T1] -40, 74 dBm 24,49435 GHz 44,65042 GHz Marker 3 [T1] -40,82 dBm 24,65042 GHz Marker 4 [T1] -40,12 dBm 24,80648 GHz Marker 1 [T1] Marker 1 [T1] Ref 35.2 dBm Att 30 dB Ref 35.2 dBm Att 30 dB 35.2 35.2 Offset 15.2 dB Offset 15.2 dB 30 30-20 20 1 D1 9.7 10 10-0--10--11 -20 -20--30 -30 -40 -40 والالج فسادا بالباني ومناج المراجع في ويتجمع المياها ال -50 -50--60 -60 .64.8 -64.8-Start 30 MHz 10 MHz/ l Span 100 MHz BUREAU VERITAS 2.497 GHz/ BUREAU Stop 25 GHz Center 2.5242 GHz

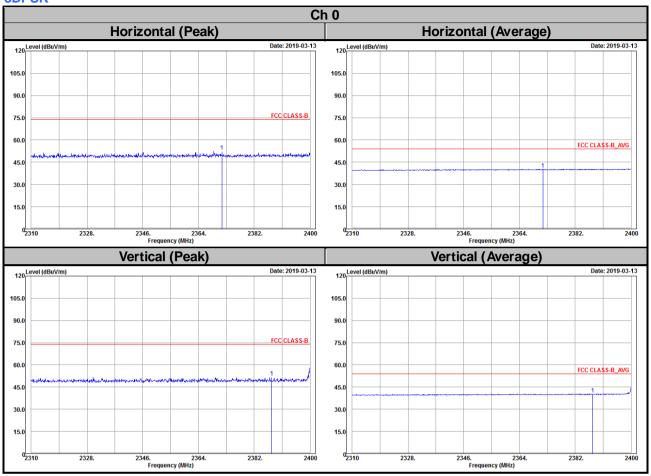
10.26 dBm 1 40.0 dBm 10 1	9.5 2.4208 rker 2 [T1] -40.4 23.5767 rker 3 [T1] -38.8 24.6504
10.26 dBm 1 40.0 dBm 10 1	-40.4 23.5767 rker 3 [T1] -38.8 24.6504
Marker 3 [T1] 46.01 dBm 20 Marker 3 [T1] 20 Marker 3 [T1] Marker 3 [T1] Marker 3 [T1] Marker 3 [T1] 20 Marker 3 [T1] Marker 3 [T1]<	rker 3 [T1] -38.8 24.6504
10.26 dBm 12.39974 GHz 11 10.26 dBm 10 10 10 26 dBm 10 10 10 20 dBm 2.39900 GHz 20000 GHz 10 10 10 10 00 GHz 10 10 10 10 10 10 10 10 10 10 10 10 10	24.6504
10-148.03 dBm 2.39900 GHz Marker ST11 0-	
Marker 5 [T1]	rker 4 [T1] -39.6 24.7690
-45.91 dBm	2
-9.74 dBm 2.30052 GHz -10. D2-9.34 dBm	
-20 -	
-30	
r 2358 GHz 14 MHz/ Span 140 MHz USERTAS Stat 30 MHz 247 GHz/ Span 140 MHz	VERITA
S.2 dBm Att 30 dB Vort 4.01 mm Vort 4.01 mm Att 30 dB Vort 30 mm Image: 1 mm Att 30 dB Vort 30 mm Image: 1 mm Att 30 dB Vort 30 mm Image: 1 mm Att 30 dB Vort 30 mm Image: 1 mm Att 30 dB Vort 30 mm Image: 1 mm Att 30 dB Vort 30 mm Image: 1 mm Att 30 dB Vort 30 mm Image: 1 mm Att 30 dB Vort 30 mm Image: 1 mm Att 30 dB Vort 30 mm Image: 1 mm Att 30 dB Start 30 mm Image: 1 mm Att 30 dB Start 30 mm Image: 1 mm Att 30 dB Start 30 mm Image: 1 mm Att 30 dB Start 30 mm Att 30 dB Start 30 mm Image: 1 mm Att 30 dB Start 30 mm Att 30 dB <	rker 1 [T1] 9 2.408 rker 2 [T1] -40. 24.175 rker 3 [T1] -39. 24.694 rker 4 [T1] -39. 24.762
-20 -	
23	
	LUVE
- 2.5242 GH 2 14 MHz/ Span 140 MHz V€R1TAS Start 30 MHz 2.497 GHz/ Stop 25 GHz	VERITAS

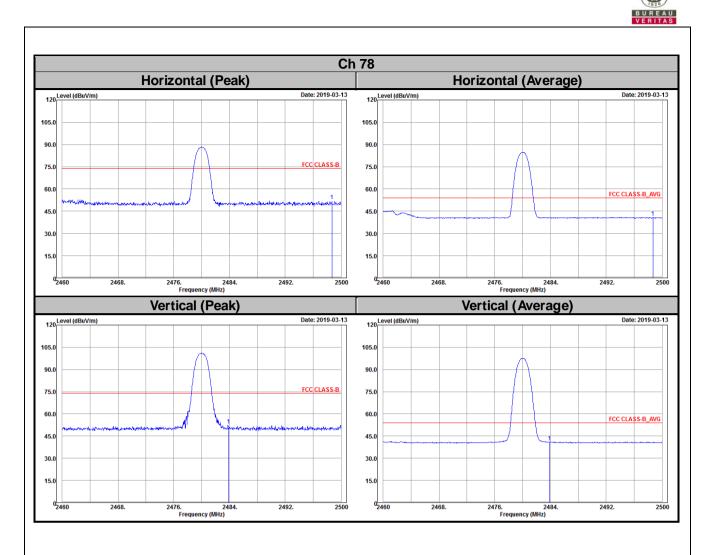
RBW 100 MHz WW 300 MHz Offset 15 2 dB CT1 UP VEW WW 300 MHz WW 300 MHz F12 UP VEW F12 UP VEW WW 300 MHz F12 UP VEW C40012 CH Addres 2 (TH) 2 40012 CH Addres 2 (TH) 2 40012 CH Addres 2 (TH) 2 40012 CH Addres 3 (TH) Addres 3 (Marker 1 [71] 2.826 (2.40359 (2.40359 (2.40359 (2.40359 (2.40359 (2.4055 (2.405)(2.4055 (2.405)(2.4055 (2.4055 (2.4055 (2.4055) (2.405
O2 11.44.4Em 0 -10 02.11.44.4Em	
Center 2.353 GHz 14 MHz/ Span 140 MHz 2.457 GHz/ Stor 25 GHz Start 30 MHz 2.457 GHz/ Stor 25 GHz	BUREAU VERITAS
Hopping Enabled_High Channel	
RBW 100 kHz [T1] NP VEW VBV 300 kHz Marker 1 [T1] 0 KHz Narker 1 [T1] 2.46910 GHz RBW 100 kHz [T1] NP VEW VBW 300 kHz RBW 100 kHz [T1] NP VEW RBW 100 kHz [T1] NP VEW RBW 100 kHz RBW 100 kHz [T1] NP VEW RBW 100 kHz [T1] NP VEW RBW 100 kHz [T1] NP VEW RBW 100 kHz RBW 100 kHz [T1] NP VEW RBW 100 kHz [T1] NP VEW RBW 100 kHz [T1] NP VEW RBW 100 kHz RBW 100 kHz [T1] NP VEW RBW 100 kHz [T1] NP VEW RBW 100 kHz RBW 100 kHz [T1] NP VEW RBW 100 kHz [T2] NP VEW RBW 100 kHz [T1] NP VEW RBW 100 kHz RBW 100 kHz [T2] NP VEW RBW 100 kHz [T1] NP VEW RBW 100 kHz RBW 100 kHz [T1] NP VEW R	Marker 1 [T1] 6.80 (2.47081 (Marker 2 [T1] -40.29 (24.21344 (
Image: Second	24.21344 Marker 3 [T1] -38.38 24.67539 Marker 4 [T1] -40.12 24.78151
-02-11:90 /Bm	-
P FP Context Context </td <td></td>	


5 Pictures of Test Arrangements


Please refer to the attached file (Test Setup Photo).

Annex A- Band-edge measurement


<Bluetooth EDR>



8DPSK

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---