

Test Report Issue Date

Test Report Serial No. 01282014UJW-1279

Description of Test(s) Specific Absorption Rate Test Report Revision No. 1.0

28 Jan 2014

RF Exposure Category **General Population**

		[DEC	CLARA	TION O	FC	OMPL	_IAN	CE				
			SAF	R RF EXPOS	URE EVAL	UATIO	N - FCC	/ IC C1F	C				
TEST LAB INFORMAT	ION	Name	CEI	LLTECH LAB	S INC.								
TEOT EAD IN ORMAT	1014	Address	21-	21-364 Lougheed Road, Kelowna, B.C. V1X 7R8 Canada									
TEST LAB ACCREDITA	ATION	Туре	ISO	ISO / IEC 17025 Accreditation A2LA Test Lab Certificate No. 2470.01							2470.01		
APPLICANT INFORMA	TION	Name	NAI	NAUTIC DEVICES INC.									
ATT LIOANT IN ONINA		Address	12 I	12 Bram Ct., Unit 10, Brampton, Ontario L6W 3V1 Canada									
STANDARDS APPLIED)	FCC	47 (CFR §2.1093						IC	Health	Cana	da Safety Code 6
FCC			KD	B 447498 D01	v05r01, KDE	86566	4 D01v01r	02		IC		RSS1	02 Issue 4
PROCEDURES APPLIE	ED	FCC	KD	B 865664 D02	v01r01, KDE	64364	6 D01v01r	01		IEC		6220	9-1:2005
		IEEE	IEEE 1528-2013					IEC		6220	9-2:2010		
DEVICE CLASSIFICATION FCC Licensed Non-				ensed Non-Br	oadcast Trai	nsmitte	r Body						
DEVICE DESCRIPTION	N	Wireless	Portal	ble Phone									
APPLICATION TYPE		New Cert	ficatio	n									
DATE(S) OF EVALUAT	DATE(S) OF EVALUATION				21, <mark>23, 20</mark> 14			SAMP	LES RE	CEIVED			
					Devices	Tested							
FCC ID	IC Ce	rtification		Model	Duty Cycle	Modes of Operation Frequ		IONCY Range			ıfacturer's Rated Output Power		
UJW-4000	669	5A-4000	Yap	palong4000	8.3 %	FS	SK and GF	SK	902	– 928 MHz			25.79 dBm
	An	tennas Test	ed						Batte	ries Tes	ted		
Description	F	requency Ra (MHz)	nge	Model	Gain		Part No	umber		Outpu	ıt Volta	ige	Capacity (mAh)
1/4 wave dipole whip	p 9	002-928 MF	Ιz	JCG110	2dbi		Lithium	Polymer	r	3	3.7V		
Во	dy-Warı	n Accessor	ies Te	ested				Au	dio Acc	essorie	s Test	ed	
Part Number			De	scription			Part No	umber			D)escrip	otion
-			В	elt-Clip				•				none	9
Mariana CAR	Fl			E	VALUATION	RESU	LTS						
Maximum SAR Level FCC	∟valuate	В	ody	0.093		4 ==	0.007	D 4 F -	-1	Gener	ral Pop	ulatio	n/ UnControlled
Maximum SAR Level IC	Evaluate	d Be	ody	0.116	W/kg	1g	8.3% Duty Factor		Exposure			ure	
FCC / IC Spatial Peak SAR Limit		nit Be	ody	1.6	W/kg	1g	8.3%	Duty Fa	ctor	General Population/ UnControlled Exposure			

Celltech Labs Inc. declares under its sole responsibility that this wireless portable device has demonstrated compliance with the Specific Absorption Rate (SAR) RF exposure requirements specified in FCC 47 CFR §2.1093 and Health Canada Safety Code 6 for the General Population / Uncontrolled Exposure environment. The device was tested in accordance with the measurement procedures specified in FCC OET Bulletin 65, Supplement C (Edition 01-01), Industry Canada RSS-102 Issue 4, IEEE Standard 1528-2003 and International Standard IEC 62209-2:2010. All measurements were performed in accordance with the SAR system manufacturer recommendations.

***** This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc. *****

The results and statements contained in this report pertain only to the device(s) evaluated

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Test Report Approved By	Sulvers	Art Voss, P.Eng.	Senior Engineer	Celltech Labs Inc.
-------------------------	---------	------------------	-----------------	--------------------

Applicant:	N	lautic Devices Inc.	FCC ID:	UJW-40	000	IC ID:	6695A-4000	
DUT Type:		Wireless Portable Phone		Models:	Yapalong4000		902 – 928 MHz	
2013 Celltech La	ıbs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 1 of 39

Test Report Issue Date 28 Jan 2014

Test Report Serial No. 01282014UJW-1279

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. 1.0

ory To

RF Exposure Category
General Population

TABLE OF CONTENTS	
1.0 INTRODUCTION	4
2.0 SAR MEASUREMENT SYSTEM	4
3.0 RF CONDUCTED OUTPUT POWER MEASUREMENTS	5
4.0 FLUID DIELECTRIC PARAMETERS	7
5.0 SAR MEASUREMENT SUMMARY	8
6.0 SAR SCALING	9
7.0 DETAILS OF SAR EVALUATION	10
8.0 SAR EVALUATION PROCEDURES	10
9.0 SYSTEM VERIFICATION	11
10.0 SIMULATED EQUIVALENT TISSUES	
11.0 SAR LIMITS	
12.0 ROBOT SYSTEM SPECIFICATIONS	
13.0 PROBE SPECIFICATION (ET3DV6)	
14.0 PHANTOM	
15.0 DEVICE HOLDER	14
16.0 TEST EQUIPMENT LIST	
17.0 MEASUREMENT UNCERTAINTIES (IC)	
18.0 REFERENCES	17
APPENDIX A - SAR MEASUREMENT PLOTS	
APPENDIX B - SYSTEM PERFORMANCE CHECK PLOTS	
APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS	
APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS	
APPENDIX E - DIPOLE CALIBRATION	
APPENDIX F - PROBE CALIBRATION	
APPENDIX G - PHANTOM CERTIFICATE OF CONFORMITY	39

Applicant:	N	lautic Devices Inc.	FCC ID:	UJW-40	000	IC ID:	6695A-4000	
DUT Type:		Wireless Portable Phone		Models:	Yapalong4000		902 – 928 MHz	
2013 Celltech La	ibs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 2 of 39

Test Report Issue Date 28 Jan 2014

Description of Test(s) Specific Absorption Rate Test Report Revision No. 1.0

Test Lab Certificate No. 2470.01 General Population

	REVISION HISTORY								
REVISION NO. DESCRIPTION IMPLEMENTED BY RELEASE DATE									
1.0	Initial Release	Art Voss	28 Jan 2014						

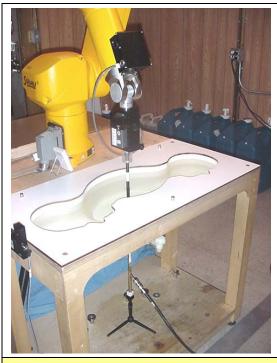
	TEST REPORT SIGN-OFF							
DEVICE TESTED BY REPORT PREPARED BY QA REVIEW BY REPORT APPROVED BY								
Art Voss	Cheri Frangiadakis	Glen Westwell	Art Voss					

Applicant:	N	lautic Devices Inc. FCC ID:		UJW-4000 IC ID:		6695A-4000		
DUT Type:		Wireless Portable Phone		Models:	Yapalong4000		902 – 928 MHz	
2013 Celltech La	ıbs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 3 of 39

Test Report Issue Date 28 Jan 2014 Test Report Serial No. 01282014UJW-1279

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. 1.0

RF Exposure Category
General Population



1.0 INTRODUCTION

This measurement report demonstrates that the Nautic Devices Inc. Model: Yapalong4000 Wireless Portable Phone complies with the SAR (Specific Absorption Rate) RF exposure requirements FCC 47 CFR §2.1093 (see reference [1]) and Health Canada's Safety Code 6 (see reference [2]) for the General Population / Uncontrolled Exposure environment. The measurement procedures described in FCC KDB 865664 (see reference [3]), IC RSS-102 Issue 4 (see reference [4]), IEEE Standard 1528-2013 (see reference [5]) and IEC Standard 62209-2:2010 (see reference [6]) were employed. A description of the device, operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used and the various provisions of the rules are included within this test report.

2.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for head and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (joystick), and remote control is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electrooptical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses a controller with a built in VME-bus computer.

DASY4 Measurement Server

Applicant:	N	autic Devices Inc.	FCC ID:	UJW-40	000	IC ID:	6695A-4000	
DUT Type:		Wireless Portable Phone		Models:	Yapalong4000		902 – 928 MHz	
2013 Celltech La	ıbs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 4 of 39

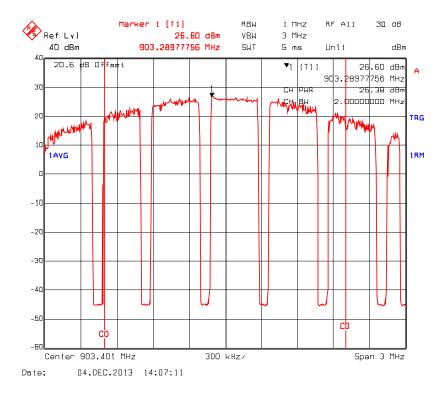
Test Report Issue Date 28 Jan 2014

Test Report Serial No. 01282014UJW-1279

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. 1.0

RF Exposure Category
General Population


3.0 RF CONDUCTED OUTPUT POWER MEASUREMENTS

MEASURED RF CONDUCTED OUTPUT POWER LEVELS							
Test Freq.	Conducted Power (dBm)						
MHz	Measured	Max Rated					
903.401	25.38	27					
914.651	25.79	27					
926.651	25.44	27					

Notes

- 1. The test channels were selected in accordance with the procedures specified in FCC KDB 447498 (see reference [8]).
- 2. The RF conducted output power levels of the DUT were measured by Celltech Labs prior to the SAR evaluations using a Gigatronics 8652A Universal Power Meter at the external antenna connector of the radio in accordance with requirements of FCC 47 CFR §2.1046 (see reference [13]) and IC RSS-Gen (see reference [14]).

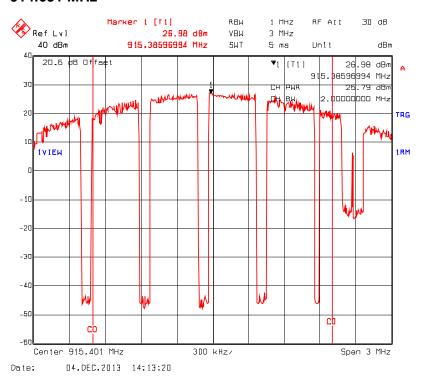
903.401 MHz

Applicant:	Nautic Devices Inc.	FCC ID:	UJW-4000 IC I		IC ID:	6695A-4000	
DUT Type:	Wireless Portable Ph	Wireless Portable Phone		Yapalong4000		902 – 928 MHz	
2013 Celltech La	abs Inc. This document is not to be	ole or in part wit	hout the pri	ior written permis	sion of Celltech Labs Inc.	Page 5 of 39	

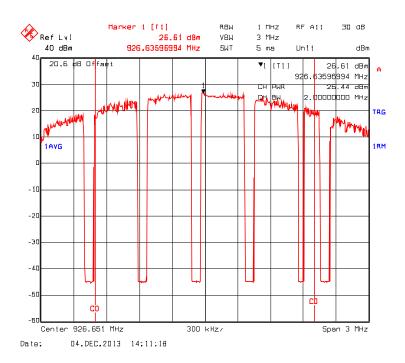
28 Jan 2014

 January 19-23, 2014
 01282014UJW-1279

 Test Report Issue Date
 Description of Test(s)


Specific Absorption Rate

Test Report Serial No. 01282014UJW-1279 Test Report Revision No. 1.0


RF Exposure Category
General Population

914.651 MHz

926.651 MHz

Applicant:	N	autic Devices Inc.	FCC ID:	UJW-4	000	IC ID:	6695A-4000	
DUT Type:		Wireless Portable Phone		Models:	Yapalong4000		902 – 928 MHz	
2013 Celltech La	abs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 6 of 39

Test Report Issue Date 28 Jan 2014

Test Report Serial No. 01282014UJW-1279

Description of Test(s) Specific Absorption Rate

Test Report Revision No. ilac-MRA RF Exposure Category General Population

1.0

4.0 FLUID DIELECTRIC PARAMETERS

	FLU	JID DIEL	ECTRIC	PARAME	ETERS	
Date: 01/19,2	21,23/2014	Free	quency: 835 l	MHz	Tissu	e: Body
Freq	Test_e	Test_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
735.000	54.66	0.92	55.59	0.96	-1.67%	-4.17%
745.000	53.95	0.92	55.55	0.96	-2.88%	-4.17%
755.000	54.42	0.93	55.51	0.96	-1.96%	-3.12%
765.000	54.35	0.95	55.47	0.96	-2.02%	-1.04%
775.000	54.19	0.97	55.43	0.97	-2.24%	0.00%
785.000	54.04	0.99	55.39	0.97	-2.44%	2.06%
795.000	54.25	0.98	55.36	0.97	-2.01%	1.03%
805.000	54.06	0.99	55.32	0.97	-2.28%	2.06%
815.000	53.65	0.99	55.28	0.97	-2.95%	2.06%
825.000	53.40	1.00	55.24	0.97	-3.33%	3.09%
835.000	53.80	1.02	55.20	0.97	-2.54%	5.15%
845.000	53.52	1.03	55.17	0.98	-2.99%	5.10%
855.000	53.21	1.04	55.14	0.99	-3.50%	5.05%
865.000	53.15	1.05	55.11	1.01	-3.56%	3.96%
875.000	53.20	1.07	55.08	1.02	-3.41%	4.90%
885.000	52.97	1.07	55.05	1.03	-3.78%	3.88%
895.000	52.89	1.07	55.02	1.04	-3.87%	2.88%
903.401*	53.22	1.08	55.00	1.05	-3.24%	2.86%
905.000	53.28	1.08	55.00	1.05	-3.13%	2.86%
914.651*	52.88	1.10	55.00	1.06	-3.85%	3.74%
915.000	52.87	1.10	55.00	1.06	-3.87%	3.77%
925.000	52.94	1.11	54.98	1.06	-3.71%	4.72%
926.651*	52.95	1.11	54.98	1.06	-3.68%	4.87%
935.000	52.50	1.12	54.96	1.07	-4.48%	4.67%

^{*}interpolated using DASY4 software

Test Date	Fluid Type	Ambient Temperature	Fluid Temperature	Fluid Depth	Atmospheric Pressure	Relative Humidity	ρ (Kg /m³)
Jan 19	835 Body	25°C	23.3°C	≥ 15 cm	102.6 kPa	15%	1000
Jan 21	835 Body	26°C	23.0°C	≥ 15 cm	103.4 kPa	12%	1000
Jan 23	835 Body	26°C	23.0°C	≥ 15 cm	103.4 kPa	14%	1000

Applicant:	N	lautic Devices Inc.	FCC ID:	UJW-4000 IC ID:			6695A-4000	
DUT Type:		Wireless Portable Ph	Models:	Yapalong4000		902 – 928 MHz		
2013 Celltech La	abs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 7 of 39	

Test Report Issue Date 28 Jan 2014 Test Report Serial No. 01282014UJW-1279

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. 1.0

RF Exposure Category
General Population

5.0 SAR MEASUREMENT SUMMARY

				BOD	Y-WORN	SAR E	VALUAT	ION SUN	IMARY			
Test	Plot #	Freq.	Test	Crest	Access attached		Spac (cr	_	Measure Conducte	ed During	SAI	sured R (1g) //kg)
Date	1 101 #		Mode	Factor			(,	Power	Test	Duty Cycle	
		MHz			Body	Audio	DUT	Antenna	dBm	dB	100%	8.3%
Jan 21	B1	903.401	FSK	1.18	Belt-Clip	-	1.0	1.5	25.38	-0.877	0.785	0.065
Jan 21	B2	914.651	FSK	1.18	Belt-Clip	-	1.0	1.5	25.79	-0.525	0.790	0.066
Jan 21	В3	926.651	FSK	1.18	Belt-Clip	-	1.0	1.5	25.44	-0.524	0.690	0.058
Jan 23	B4	903.401	GFSK	1.18	Belt-Clip	-	1.0	1.5	25.38	-0.576	0.797	0.066
Jan 23	B5	914.651	GFSK	1.18	Belt-Clip	-	1.0	1.5	25.79	-0.954	0.849	0.071
Jan 23	В6	926.651	GFSK	1.18	Belt-Clip	-	1.0	1.5	25.44	-0.669	0.727	0.061
		SAR S	AFETY I	_IMIT(S)			BODY	SPATIAL	PEAK	RF EXPOS	URE CATE	GORY
FC	C 47 CF	R 2.1093	He	alth Canad	da Safety (Code 6	1.6 W/kg	1g ave	erage	General Popu	lation / Un	controlled
Notes			•									
1.	De	tailed meas	urement	data and p	lot showing	g the ma	ximum SAR	location of	the DUT is	reported in App	endix A.	
2.	The	SAR drift	of the DU	JT was me	asured by	the DAS	/4 system fo	r the durati	on of the S	AR evaluation.		
3.	The	The Lithium-Polymer battery installed in the DUT was fully charged prior to the SAR evaluation.										
4.	The	The fluid temperature remained within +/-2°C from the dielectric parameter measurement to the completion of the SAR test.										
5.	The dielectric parameters of the simulated tissue mixture were measured prior to the SAR evaluations using a Dielectric Probe Kit and a Network Analyzer (see Appendix C).											
6.	Pha	antom: SAN	Л Twin Р	hantom v4	.0c							

Applicant:	N	autic Devices Inc.	FCC ID:	UJW-4000 IC ID:			6695A-4000	
DUT Type:		Wireless Portable Ph	Models: Yapalong4000		902 – 928 MHz			
2013 Celltech La	abs Inc.	c. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						

Test Report Issue Date 28 Jan 2014

Test Report Serial No. 01282014UJW-1279

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. 1.0

RF Exposure Category
General Population

6.0 SAR SCALING

SCALIN	SCALING OF MAXIMUM SAR LEVELS TO MANUFACTURER'S TUNE-UP TOLERANCE SPECIFICATION									
Plot	Test Freq. (MHz)	Test Mode	Crest Factor	Power (8.3% d/t)		Scaling up to Manuf. Upper Tol. Power	Scaled SAR (8.3% d/f) 1g (W/kg)			
	(11112)			Watts	dB	W/kg	Spec.	. ig (****\\g)		
FCC (scaled	I without drif	ft)								
B5	914.651	GFSK	1.18	25.79	-0.954	0.071	27 dB	0.093		
IC (with drift)										
B5	914.651	GFSK	1.18	25.79	-0.954	0.071	27 dB	0.116		

Notes:

- 1. Only the highest SAR values for face and body per frequency band are scaled.
- 2. The resulting value is the reported SAR.
- 3. The scaled SAR levels are below the FCC/IC Occupational SAR Limit of 8.0 W/kg.
- 4. IC requires that the reported SAR also be scaled for the measured drift, therefore the above table calculates the SAR separately for IC.

Applicant:	N	Nautic Devices Inc. FCC ID:		UJW-4000 IC ID:		IC ID:	6695A-4000	
DUT Type:		Wireless Portable Ph	Models: Yapalong4000			902 – 928 MHz		
2013 Celltech La	ibs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 9 of 39

<u>Test Report Issue Date</u> 28 Jan 2014 Test Report Serial No. 01282014UJW-1279

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
1.0

RF Exposure Category

General Population

7.0 DETAILS OF SAR EVALUATION

- 1. The number of test frequencies and the test channels evaluated for SAR were selected in accordance with the procedures described in FCC KDB 447498 (see reference [8]).
- 2. Each SAR evaluation was performed with a fully charged battery.
- The SAR drift of the DUT was measured by the DASY4 system for the duration of the SAR evaluations. The measured SAR drift was added to the measured SAR levels to report scaled SAR levels as shown in the SAR test data tables.
- 4. The fluid temperature was measured prior to and after the SAR evaluations. The fluid temperature remained within +/- 2°C during the SAR evaluations.
- 5. The dielectric parameters of the simulated tissue mixtures were measured prior to the SAR evaluations using a Dielectric Probe Kit and a Network Analyzer (see Appendix C).
- 6. The DUT was tested at the maximum conducted output power level preset by the manufacturer in unmodulated continuous transmit operation (Continuous Wave mode at 100% duty cycle) with the transmit key constantly depressed. For a push-to-talk device the 50% duty cycle compensation reported assumes a transmit/receive cycle of equal time base.
- 7. The DUT was evaluated for SAR in accordance with the procedures described in FCC KDB 643646 D01v01 (see reference [9]).

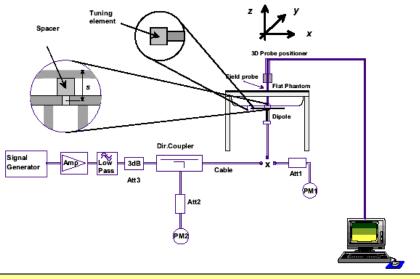
8.0 SAR EVALUATION PROCEDURES

- a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.
 - (ii) For body-worn and face-held devices a planar phantom was used.
- b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.
 - An area scan was determined as follows:
- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.
 - A 1g and 10g spatial peak SAR was determined as follows:
- e. Extrapolation is used to find the points between the dipole center of the probe and the surface of the phantom. This data cannot be measured, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix F). The extrapolation was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
- f. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
- g. A zoom scan volume of 30 mm x 30 mm x 30 mm (5 x 5 x 7 points) centered at the peak SAR location determined from the area scan is used for all zoom scans for devices with a transmit frequency < 800 MHz. Zoom scans for frequencies ≥ 800 MHz are determined with a scan volume of 30 mm x 30 mm x 30 mm (7 x 7 x 7) to ensure complete capture of the peak spatial-average SAR.

Applicant:	N	autic Devices Inc.	FCC ID:	UJW-4000 IC ID:			6695A-4000	
DUT Type:		Wireless Portable Ph	Models: Yapalong4000		902 – 928 MHz			
2013 Celltech La	abs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						

Test Report Issue Date 28 Jan 2014 Test Report Serial No. 01282014UJW-1279

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. 1.0


RF Exposure Category
General Population

9.0 SYSTEM VERIFICATION

Prior to the SAR evaluations, system checks were performed with a planar phantom and SPEAG 835 MHz dipole (see Appendix B) in accordance with the procedures described in IEEE Standard 1528-2013 (see reference [5]) and IEC Standard 62209-2:2010 (see reference [6]). The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer (see Appendix C). A forward power of 250 mW was applied to the dipole and the system was verified to a tolerance of ±10% from the SAR system manufacturer's dipole calibration target SAR value (see Appendix E).

				Ş	SYSTEM	PERF	ORM/	ANCE C	HECK	EVAL	UATIO	NS				
Test	Equiv. Tissue		SAR 1g (W/kg)		Dielec	tric Cons ε _r	stant		nductivit (mho/m)	•	ρ	Amb. Temp.	Fluid Temp.	Fluid Depth	Humid.	Barom. Press.
Date	Freq. (MHz)	SPEAG Target	Meas.	Dev.	SPEAG Target	Meas.	Dev.	SPEAG Target	Meas.	Dev.	(Kg/m³)	(°C)	(°C)	(cm)	(%)	(kPa)
Jan 19	Body 835	2.47 ±10%	2.5	+1.2%	55.2 ±5%	53.8	-2.5%	0.97 ±5%	1.02	+5.2%	1000	25	23.3	≥ 15	15	102.6
	1.	The target SAR values are the measured values from the SAR system manufacturer's dipole calibration (see Appendix E).														
	2.	The targ	et dielec	tric para	meters are	e the nor	minal va	lues from t	the SAR	system	manufac	turer's dip	ole calib	ration (se	e Append	Jix E).
Notes	3.							d after the			mance c	heck eva	luations.	The flu	uid tempe	rature
	4. The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer (see Appendix C).															
		Spacer	Tuning element		<u> </u>	z	Z , '	x								

SPEAG 835 MHz Validation Dipole Setup

Applicant:	N	autic Devices Inc.	FCC ID:	UJW-4000 IC ID:			6695A-4000	
DUT Type:		Wireless Portable Pho	Models:	dels: Yapalong4000		902 – 928 MHz		
2013 Celltech La	abs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 11 of 39	

<u>Test Report Issue Date</u> 28 Jan 2014 Test Report Serial No. 01282014UJW-1279

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
1.0

RF Exposure Category
General Population

10.0 SIMULATED EQUIVALENT TISSUES

The simulated equivalent tissue recipes in the table below are derived from the SAR system manufacturer's suggested recipes in the DASY4 manual (see references [10] and [11]) in accordance with the procedures and requirements specified in IEEE Standard 1528-2013 (see reference [5]) and IEC Standard 62209-1:2005 (see reference [7]). The ingredient percentage may have been adjusted minimally in order to achieve the appropriate target dielectric parameters within the specified tolerance.

	SIMULATED TISSUE MIXTURES								
	Water		40.71 %		53.79 %				
	Sugar		56.63 %		45.13 %				
INGREDIENT	Salt	835 MHz Head Tissue Mixture	1.48 %	835 MHz Body Tissue Mixture	0.98 %				
	HEC		0.99 %						
	Bactericide		0.19 %		0.10 %				

11.0 SAR LIMITS

	SAR RF EXPO	SURE LIMITS		
FCC 47 CFR 2.1093	Health Canada Safety Code 6	(General Population / Uncontrolled Exposure)	(Occupational / Controlled Exposure)	
-	atial Average over the whole body)	0.08 W/kg	0.4 W/kg	
	spatial Peak over any 1 g of tissue)	1.6 W/kg	8.0 W/kg	
	spatial Peak d/ankles averaged over 10 g)	4.0 W/kg	20.0 W/kg	

The Spatial Average value of the SAR averaged over the whole body.

The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.

Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

Applicant:	N	Nautic Devices Inc. FCC II		UJW-4000 IC ID:		6695A-4000		
DUT Type:		Wireless Portable Phone		Models:	Yapalong4000		902 – 928 MHz	
2013 Celltech La	ıbs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 12 of 39

Test Report Issue Date 28 Jan 2014

Test Report Serial No. 01282014UJW-1279

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. 1.0

RF Exposure Category
General Population

12.0 ROBOT SYSTEM SPECIFICATIONS

<u>Specifications</u>	
Positioner	Stäubli Unimation Corp. Robot Model: RX60L
Repeatability	0.02 mm
No. of axis	6
Data Acquisition Electronic (DAE) System
Cell Controller	
Processor	AMD Athlon XP 2400+
Clock Speed	2.0 GHz
Operating System	Windows XP Professional
<u>Data Converter</u>	
Features	Signal Amplifier, multiplexer, A/D converter, and control logic
Software	Measurement Software: DASY4, V4.7 Build 80
Software	Postprocessing Software: SEMCAD, V1.8 Build 186
Connecting Lines	Optical downlink for data and status info., Optical uplink for commands and clock
DASY4 Measurement Server	
Function	Real-time data evaluation for field measurements and surface detection
Hardware	PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM
Connections	COM1, COM2, DAE, Robot, Ethernet, Service Interface
E-Field Probe	
Model	ET3DV6
Serial No.	1590
Construction	Triangular core fiber optic detection system
Frequency	10 MHz to 6 GHz
Linearity	± 0.2 dB (30 MHz to 3 GHz)
Phantom 1	
Туре	SAM V4.0C
Shell Material	Fiberglass
Thickness	2.0 ±0.1 mm
Volume	Approx. 25 liters

Applicant:	N	Nautic Devices Inc. FCC ID:		UJW-40	UJW-4000 IC ID:		6695A-4000	
DUT Type:		Wireless Portable Ph	one	Models:	Yapa	long4000	902 – 928 MHz	
2013 Celltech La	abs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 13 of 39

Test Report Issue Date 28 Jan 2014 Test Report Serial No. 01282014UJW-1279

<u>Description of Test(s)</u> Specific Absorption Rate

1.0

RF Exposure Category
General Population

Test Report Revision No.

13.0 PROBE SPECIFICATION (ET3DV6)

Construction: Symmetrical design with triangular core;

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, glycol)

Calibration: In air from 10 MHz to 2.5 GHz

In head simulating tissue at frequencies of 900 MHz

and 1.8 GHz (accuracy \pm 8%)

Frequency: 10 MHz to > 6 GHz; Linearity: \pm 0.2 dB (30 MHz to 3 GHz) Directivity: \pm 0.2 dB in head tissue (rotation around probe axis)

 \pm 0.4 dB in head tissue (rotation normal to probe axis)

Dynamic Range: $5 \mu W/g$ to > 100 mW/g; Linearity: \pm 0.2 dB

Surface Detect: \pm 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces

Dimensions: Overall length: 330 mm; Tip length: 16 mm; Body diameter: 12 mm; Tip diameter: 6.8 mm

Distance from probe tip to dipole centers: 2.7 mm

Application: General dosimetry up to 3 GHz: Compliance tests of mobile phone

ET3DV6 E-Field Probe

14.0 PHANTOM

The SAM Twin Phantom V4.0C is a fiberglass shell phantom with a 2.0 mm (+/-0.2 mm) shell thickness for left and right head and flat planar area integrated in a wooden table. The shape of the fiberglass shell corresponds to the phantom defined by SCC34-SC2. The device holder positions are adjusted to the standard measurement positions in the three sections. See Appendix H for specifications of the SAM Twin Phantom V4.0C.

SAM Twin Phantom V4.0C

15.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Device Holder

Applicant:	N	Nautic Devices Inc. FCC ID:		UJW-40	UJW-4000 IC ID:		6695A-4000	
DUT Type:		Wireless Portable Phone		Models:	Yapalong4000		902 – 928 MHz	
2013 Celltech La	ıbs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 14 of 39

Test Report Issue Date 28 Jan 2014 Test Report Serial No. 01282014UJW-1279

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. 1.0

RF Exposure Category
General Population

16.0 TEST EQUIPMENT LIST

	TEST EQUIPMENT	ASSET NO.	SERIAL NO.	DATE	CALIBRATION
USED	DESCRIPTION	AGGET NO.	OLIVIAL NO.	CALIBRATED	INTERVAL
х	Schmid & Partner DASY4 System	-	-	-	-
х	-DASY4 Measurement Server	00158	1078	CNR	CNR
х	-Robot	00046	599396-01	CNR	CNR
х	-DAE4	00019	353	19-Apr-12	Biennial
х	-ET3DV6 E-Field Probe	00017	1590	24-Apr-13	Annual
х	-D835V2 Validation Dipole	00217	4d075	20-Apr-12	Triennial
х	SPEAG SAM Twin Phantom V4.0C	00154	1033	CNR	CNR
х	HP 85070C Dielectric Probe Kit	00033	none	CNR	CNR
х	Gigatronics 8652A Power Meter	00007	1835272	03-May-12	Biennial
х	Gigatronics 80701A Power Sensor	00014	1833542	03-May-12	Biennial
х	Gigatronics 80334A Power Sensor	-	1837001	03-May-12	Biennial
х	HP 8753ET Network Analyzer	00134	US39170292	26-Apr-12	Biennial
х	Rohde & Schwarz SMR20 Signal Generator	00006	100104	02-May-12	Biennial
х	Amplifier Research 5S1G4 Power Amplifier	00106	26235	CNR	CNR
Abbr.	CNR = Calibration Not Required				

Applicant:	N	Nautic Devices Inc. FCC ID:		UJW-40	UJW-4000 IC ID:		6695A-4000	
DUT Type:		Wireless Portable Phone		Models:	Yapalong4000		902 – 928 MHz	
2013 Celltech La	ıbs Inc.	c. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 15 of 39

Test Report Issue Date 28 Jan 2014 Test Report Serial No. 01282014UJW-1279

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. 1.0

17.0 MEASUREMENT UNCERTAINTIES (IC)

UNCERT	AINTY BU	IDGET FOR	DEVICE EV	ALUATION (IEC 62	2209-2	2:2010)		
Source of Uncertainty	IEC 62209-2 Section	Tolerance / Uncertainty ±%	Probability Distribution	Divisor	ci 1g	ci 10g	Standard Uncertainty ±% (1g)	Standard Uncertainty ±% (10g)	V _i or V _{eff}
Measurement System									
Probe Calibration (835 MHz)	7.2.2.1	6.0	Normal	1	1	1	6.0	6.0	∞
Isotropy	7.2.2.2	4.7	Rectangular	1.732050808	1	1	2.7	2.7	oc
Boundary Effect	7.2.2.6	1	Rectangular	1.732050808	1	1	0.6	0.6	∞
Linearity	7.2.2.3	4.7	Rectangular	1.732050808	1	1	2.7	2.7	∞
Detection Limits	7.2.2.5	1	Rectangular	1.732050808	1	1	0.6	0.6	∞
Readout Electronics	7.2.2.7	0.3	Normal	1	1	1	0.3	0.3	∞
Response Time	7.2.2.8	0.8	Rectangular	1.732050808	1	1	0.5	0.5	∞
Integration Time	7.2.2.9	2.6	Rectangular	1.732050808	1	1	1.5	1.5	∞
RF Ambient Conditions	7.2.4.5	3	Rectangular	1.732050808	1	1	1.7	1.7	∞
Probe Positioner Mechanical Restrictions	7.2.3.1	0.4	Rectangular	1.732050808	1	1	0.2	0.2	∞
Probe Positioning wrt Phantom Shell	7.2.3.3	2.9	Rectangular	1.732050808	1	1	1.7	1.7	∞
Post-processing	7.2.5	1	Rectangular	1.732050808	1	1	0.6	0.6	∞
Test Sample Related									
Test Sample Positioning	7.2.3.4.3	2.9	Normal	1	1	1	2.9	2.9	12
Device Holder Uncertainty	7.2.3.4.2	3.6	Normal	1	1	1	3.6	3.6	8
Drift of Output Power (meas. SAR drift)	7.2.2.10	0	Rectangular	1.732050808	1	1	0.0	0.0	∞
Phantom and Tissue Parameters									
Phantom Uncertainty	7.2.3.2	4	Rectangular	1.732050808	1	1	2.3	2.3	∞
SAR Correction Algorithm for deviations in permittivity and conductivity	7.2.4.3	1.9	Normal	1	1	0.81	1.9	1.54	8
Liquid Conductivity (measured)	7.2.4.3	14.43	Normal	1	0.78	0.71	11.3	10.2	00
,				1	0.73		1.0	_	
Liquid Permittivity (measured)	7.2.4.3	4.17	Normal			0.26	_	1.1	∞
Liquid Permittivity - temp. uncertainty	7.2.4.4	1	Rectangular	1.732050808	0.78	0.71	0.5	0.4	∞
Liquid Conductivity - temp. uncertainty	7.2.4.4	0.25	Rectangular	1.732050808	0.23	0.26	0.0	0.0	∞
Combined Standard Uncertainty	7.3.1		RSS				14.77	13.98	
Expanded Uncertainty (95% Confidence Interval)	7.3.2		k=2				29.55	27.97	
Measuremer	t Uncertain	ty Table in acc	ordance with Ir	nternational Sta	ndard I	EC 622	09-2:2010		

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

Applicant:	N	Nautic Devices Inc. FCC ID:		UJW-40	UJW-4000 IC ID:		6695A-4000	
DUT Type:		Wireless Portable Ph	one	Models:	Yapalong4000		902 – 928 MHz	
2013 Celltech La	ıbs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 16 of 39

Test Report Issue Date 28 Jan 2014

Test Report Serial No. 01282014UJW-1279

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. 1.0

RF Exposure Category
General Population

18.0 REFERENCES

- [1] Federal Communications Commission "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093.
- [2] Health Canada "Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz", Safety Code 6: 1999.
- [3] Federal Communications Commission, Office of Engineering and Technology "SAR Measurement Requirements for 100 MHz to 6 GHz"; KDB 865664 D01v01r01: May 2013.
- [4] Industry Canada "Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)", Radio Standards Specification RSS-102 Issue 4: March 2010.
- [5] IEEE Standard 1528-2013 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques": December 2003.
- [6] International Standard IEC 62209-2 Edition 1.0 2010-03 "Human exposure to radio frequency fields from hand-held & body-mounted wireless communication devices Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)".
- [7] IEC International Standard 62209-1:2005 "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures."
- [8] Federal Communications Commission, Office of Engineering and Technology "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies"; KDB 447498 D01v05r01: May 2013.
- [9] Federal Communications Commission, Office of Engineering and Technology "SAR Test Reduction Considerations for Occupational PTT Radios", KDB 643646 D01v01r01: April 2011.
- [10] Schmid & Partner Engineering AG DASY4 Manual V4.6, Chapter 16 Application Note, Head Tissue Recipe: Sept. 2005.
- [11] Schmid & Partner Engineering AG DASY4 Manual V4.6, Chapter 17 Application Note, Body Tissue Recipe: Sept. 2005.
- [12] ISO/IEC 17025 "General requirements for the competence of testing and calibration laboratories (ISO/IEC 17025:2005)."
- [13] Federal Communications Commission "Measurements Required: RF Power Output"; Rule Part 47 CFR §2.1046.
- [14] Industry Canada "General Requirements and Information for the Certification of Radiocommunication Equipment", Radio Standards Specification RSS-Gen Issue 3: December 2010.

Applicant:	N	Nautic Devices Inc. FCC ID:		UJW-4000 IC ID:			6695A-4000	
DUT Type:		Wireless Portable Pho	one	Models:	Yapa	long4000	902 – 928 MHz	
2013 Celltech La	abs Inc.	Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 17 of 39

Test Report Issue Date 28 Jan 2014

Test Report Serial No. 01282014UJW-1279

Description of Test(s) Specific Absorption Rate Test Report Revision No. 1.0

ilac-MRA RF Exposure Category General Population

APPENDIX A - SAR MEASUREMENT PLOTS

Applicant:	N	Nautic Devices Inc. FCC ID:		UJW-40	UJW-4000 IC ID:		6695A-4000	
DUT Type:		Wireless Portable Ph	Portable Phone		Yapalong4000		902 – 928 MHz	
2013 Celltech La	ibs Inc.	c. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 18 of 39

Test Report Issue Date 28 Jan 2014

Test Report Serial No. 01282014UJW-1279

Description of Test(s)
Specific Absorption Rate

Test Report Revision No. 1.0

RF Exposure Category
General Population

Plot B1

Date Tested: 01/21/2014

DUT: Yapalong; Type: FSK/GFSK; Serial: Not Specified

Program Notes: 21 Jan 2014, Ambient Temp: 26C; Fluid Temp: 23.0C; Barometric Pressure: 103.4 kPa; Humidity: 12%

Communication System: CW

Frequency: 903.4 MHz; Duty Cycle: 1:1.18

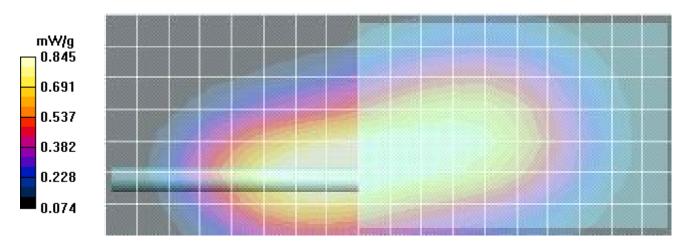
Medium: M835 Medium parameters used (interpolated): f = 903.4 MHz; $\sigma = 1.08 \text{ mho/m}$; $\epsilon_r = 53.2$; $\rho = 1000 \text{ kg/m}^3$

- Probe: ET3DV6 SN1590; ConvF(6.67, 6.67, 6.67); Calibrated: 24/04/2013
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: SAM 4.0; Type: Fiberglass; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body 903.401MHz FSK, Crest = 1.18, Belt Clip 2/Area Scan (8x19x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.938 mW/g

Body 903.401MHz FSK, Crest = 1.18, Belt Clip 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 29.3 V/m; Power Drift = -0.877 dB

Peak SAR (extrapolated) = 1.15 W/kg

SAR(1 g) = 0.785 mW/g; SAR(10 g) = 0.519 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.845 mW/g

Applicant:	N	Nautic Devices Inc. FCC ID:		UJW-40	000	IC ID:	6695A-4000	
DUT Type:		Wireless Portable Ph	one	Models: Yapalong		long4000	902 – 928 MHz	
2013 Celltech La	abs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 19 of 39

Test Report Issue Date
28 Jan 2014

Test Report Serial No. 01282014UJW-1279

Description of Test(s)
Specific Absorption Rate

Test Report Revision No. 1.0

RF Exposure Category
General Population

Plot B2

Date Tested: 01/21/2014

DUT: Yapalong; Type: FSK/GFSK; Serial: Not Specified

Program Notes: 21 Jan 2014, Ambient Temp: 26C; Fluid Temp: 23.0C; Barometric Pressure: 103.4 kPa; Humidity: 12%

Communication System: CW

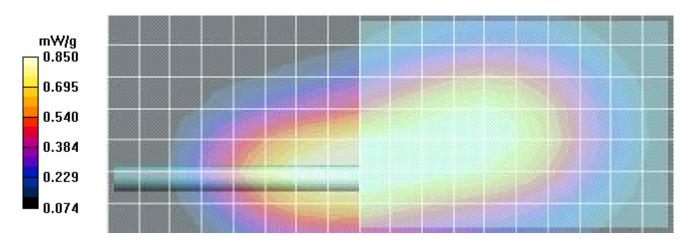
Frequency: 914.651 MHz; Duty Cycle: 1:1.18

Medium: M835 Medium parameters used: f = 915 MHz; σ = 1.1 mho/m; ε_r = 52.9; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.67, 6.67, 6.67); Calibrated: 24/04/2013
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: SAM 4.0; Type: Fiberglass; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body 914.651MHz FSK, Crest = 1.18, Belt Clip/Area Scan (8x19x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.930 mW/g

Body 914.651MHz FSK, Crest = 1.18, Belt Clip/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 28.3 V/m; Power Drift = -0.525 dB

Peak SAR (extrapolated) = 1.16 W/kg

SAR(1 g) = 0.790 mW/g; SAR(10 g) = 0.526 mW/g

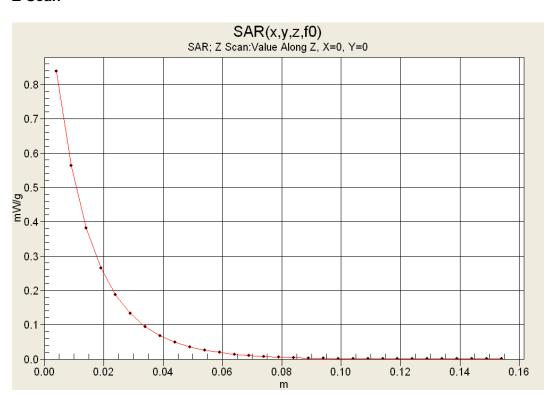
Maximum value of SAR (measured) = 0.850 mW/g

Applicant:	Nautic Devices Inc.		FCC ID:	UJW-4000		IC ID:	6695A-4000	
DUT Type: Wireless Portable Phone		Models:	Yapalong4000		902 – 928 MHz			
2013 Celltech Labs Inc. This document is not to be reproduced in wh			ole or in part wit	hout the pri	ior written permis	sion of Celltech Labs Inc.	Page 20 of 39	

Test Report Issue Date 28 Jan 2014 Test Report Serial No. 01282014UJW-1279

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. 1.0

RF Exposure Category


General Population

SAR vs Time

Z-Scan

Applicant:	N	lautic Devices Inc. FCC ID:		UJW-4000 IC ID		IC ID:	6695A-4000	
DUT Type:		Wireless Portable Phone		Models:	Models: Yapalong4000		902 – 928 MHz	
2013 Celltech La	ıbs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 21 of 39

Test Report Issue Date 28 Jan 2014

Test Report Serial No. 01282014UJW-1279

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. 1.0

RF Exposure Category
General Population

Plot B3

Date Tested: 01/21/2014

DUT: Yapalong; Type: FSK/GFSK; Serial: Not Specified

Program Notes: 21 Jan 2014, Ambient Temp: 26C; Fluid Temp: 23.0C; Barometric Pressure: 103.4 kPa; Humidity: 12%

Communication System: CW

Frequency: 926.651 MHz; Duty Cycle: 1:1.18

Medium: M835 Medium parameters used (interpolated): f = 926.651 MHz; $\sigma = 1.11$ mho/m; $\epsilon_r = 52.9$; $\rho = 1000$ kg/m³

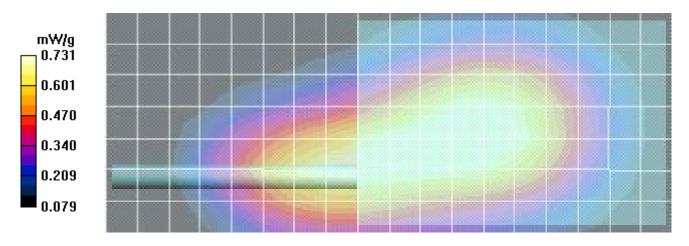
- Probe: ET3DV6 SN1590; ConvF(6.67, 6.67, 6.67); Calibrated: 24/04/2013
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: SAM 4.0; Type: Fiberglass; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body 926.651MHz FSK, Crest = 1.18, Belt Clip/Area Scan (8x19x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.787 mW/g

Body 926.651MHz FSK, Crest = 1.18, Belt Clip/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm


Reference Value = 26.5 V/m; Power Drift = -0.524 dB

Peak SAR (extrapolated) = 0.931 W/kg

SAR(1 g) = 0.690 mW/g; SAR(10 g) = 0.488 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.731 mW/g

Applicant:	N	lautic Devices Inc. FCC ID:		UJW-40	UJW-4000 IC ID:		6695A-4000	
DUT Type:		Wireless Portable Phone		Models:	Yapalong4000		902 – 928 MHz	
2013 Celltech La	ibs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 22 of 39

Test Report Issue Date 28 Jan 2014

Test Report Serial No. 01282014UJW-1279

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. 1.0

RF Exposure Category
General Population

Plot B4

Date Tested: 01/23/2014

DUT: Yapalong; Type: FSK/GFSK; Serial: Not Specified

Program Notes: 23 Jan 2014, Ambient Temp: 26C; Fluid Temp: 23.0C; Barometric Pressure: 103.4 kPa; Humidity: 14%

Communication System: CW

Frequency: 903.4 MHz; Duty Cycle: 1:1.18

Medium: M835 Medium parameters used (interpolated): f = 903.4 MHz; $\sigma = 1.08 \text{ mho/m}$; $\epsilon_r = 53.2$; $\rho = 1000 \text{ kg/m}^3$

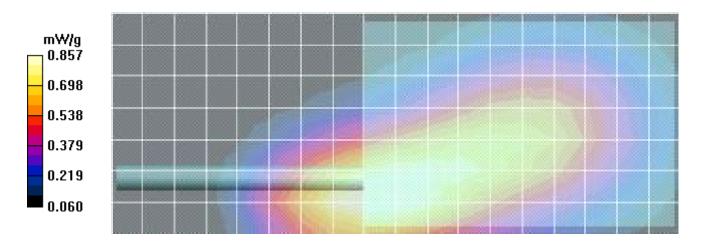
- Probe: ET3DV6 SN1590; ConvF(6.67, 6.67, 6.67); Calibrated: 24/04/2013
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: SAM 4.0; Type: Fiberglass; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body 903.401MHz GFSK, Crest = 1.18, Belt Clip 2/Area Scan (8x19x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.893 mW/g

Body 903.401MHz GFSK, Crest = 1.18, Belt Clip 2/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm,

dy=7.5mm, dz=5mm


Reference Value = 23.2 V/m; Power Drift = -0.576 dB

Peak SAR (extrapolated) = 1.16 W/kg

SAR(1 g) = 0.797 mW/g; SAR(10 g) = 0.519 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.857 mW/g

Applicant:	N	Nautic Devices Inc. FCC ID:		UJW-40	UJW-4000 IC ID:		6695A-4000	
DUT Type:		Wireless Portable Phone		Models:	Yapalong4000		902 – 928 MHz	
2013 Celltech La	ıbs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 23 of 39

Test Report Issue Date 28 Jan 2014

Test Report Serial No. 01282014UJW-1279

<u>Description of Test(s)</u> Specific Absorption Rate

Test Report Revision No. 1.0

RF Exposure Category
General Population

Plot B5

Date Tested: 01/23/2014

DUT: Yapalong; Type: FSK/GFSK; Serial: Not Specified

Program Notes: 23 Jan 2014, Ambient Temp: 26C; Fluid Temp: 23.0C; Barometric Pressure: 103.4 kPa; Humidity: 14%

Communication System: CW

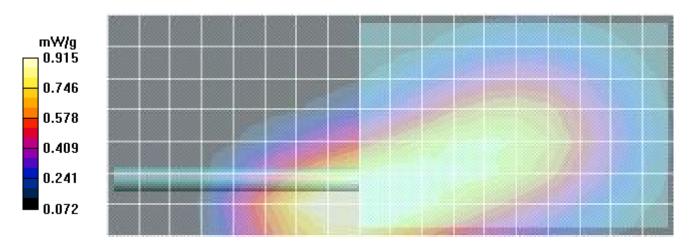
Frequency: 914.651 MHz; Duty Cycle: 1:1.18

Medium: M835 Medium parameters used: f = 915 MHz; σ = 1.1 mho/m; ϵ_r = 52.9; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.67, 6.67, 6.67); Calibrated: 24/04/2013
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: SAM 4.0; Type: Fiberglass; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body 914.651MHz GFSK, Crest = 1.18, Belt Clip/Area Scan (8x19x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.02 mW/g

Body 914.651MHz GFSK, Crest = 1.18, Belt Clip/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm,


dy=7.5mm, dz=5mm

Reference Value = 25.4 V/m; Power Drift = -0.954 dB

Peak SAR (extrapolated) = 1.24 W/kg

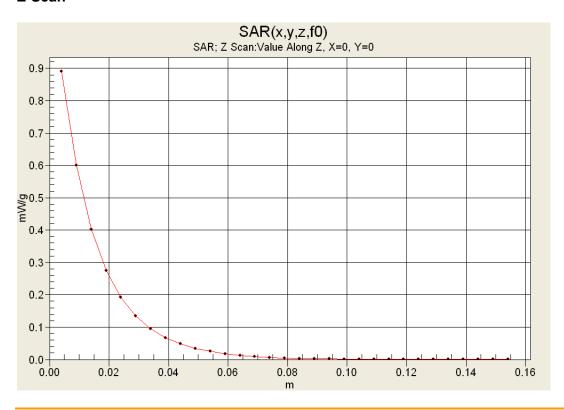
SAR(1 g) = 0.849 mW/g; SAR(10 g) = 0.553 mW/g

Maximum value of SAR (measured) = 0.915 mW/g

Applicant:	N	autic Devices Inc.	FCC ID:	UJW-4000		IC ID:	6695A-4000	
DUT Type:		Wireless Portable Phone		Models:	Models: Yapalong4000		902 – 928 MHz	
2013 Celltech La	abs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 24 of 39

Test Report Issue Date 28 Jan 2014 Test Report Serial No. 01282014UJW-1279

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. 1.0


RF Exposure Category
General Population

SAR vs Time

Z-Scan

Applicant:	N	autic Devices Inc. FCC ID:		UJW-4000 IC		IC ID:	6695A-4000	
DUT Type:		Wireless Portable Phone		Models:	lels: Yapalong4000		902 – 928 MHz	
2013 Celltech La	ıbs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 25 of 39

Test Report Issue Date
28 Jan 2014

Test Report Serial No. 01282014UJW-1279

Description of Test(s)
Specific Absorption Rate

Test Report Revision No. 1.0

RF Exposure Category
General Population

Plot B6

Date Tested: 01/23/2014

DUT: Yapalong; Type: FSK/GFSK; Serial: Not Specified

Program Notes: 23 Jan 2014, Ambient Temp: 26C; Fluid Temp: 23.0C; Barometric Pressure: 103.4 kPa; Humidity: 14%

Communication System: CW

Frequency: 926.651 MHz; Duty Cycle: 1:1.18

Medium: M835 Medium parameters used (interpolated): f = 926.651 MHz; $\sigma = 1.11$ mho/m; $\epsilon_r = 52.9$; $\rho = 1000$ kg/m³

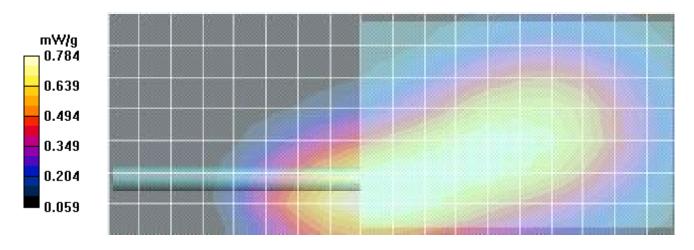
- Probe: ET3DV6 SN1590; ConvF(6.67, 6.67, 6.67); Calibrated: 24/04/2013
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: SAM 4.0; Type: Fiberglass; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body 926.651MHz GFSK, Crest = 1.18, Belt Clip/Area Scan (8x19x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.806 mW/g

Body 926.651MHz GFSK, Crest = 1.18, Belt Clip/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm,

dy=7.5mm, dz=5mm


Reference Value = 23.4 V/m; Power Drift = -0.669 dB

Peak SAR (extrapolated) = 1.07 W/kg

SAR(1 g) = 0.727 mW/g; SAR(10 g) = 0.474 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.784 mW/g

Applicant:	N	Nautic Devices Inc. FCC ID:		UJW-40	UJW-4000 IC ID:		6695A-4000	
DUT Type:		Wireless Portable Phone		Models:	Yapalong4000		902 – 928 MHz	
2013 Celltech La	ıbs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 26 of 39

Test Report Issue Date 28 Jan 2014 Test Report Serial No. 01282014UJW-1279

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. 1.0

RF Exposure Category
General Population

APPENDIX B - SYSTEM PERFORMANCE CHECK PLOTS

Applicant:	N	lautic Devices Inc.	FCC ID:	UJW-4	UJW-4000		6695A-4000	
DUT Type:		Wireless Portable Phone		Models:	: Yapalong4000		902 – 928 MHz	
2013 Celltech La	2013 Celltech Labs Inc. This document is not to be reproduced in wh				hout the pri	ior written permis	sion of Celltech Labs Inc.	Page 27 of 39

Test Report Issue Date 28 Jan 2014

Test Report Serial No. 01282014UJW-1279

Description of Test(s)
Specific Absorption Rate

Test Report Revision No. 1.0

RF Exposure Category
General Population

System Performance Check - 835 MHz Body

Date Tested: 01/19/2014

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d075; Calibrated: 04/20/2012

Program Notes: 19 Jan 2014, Ambient Temp: 25C; Fluid Temp: 23.3C; Barometric Pressure: 102.6 kPa; Humidity: 15%

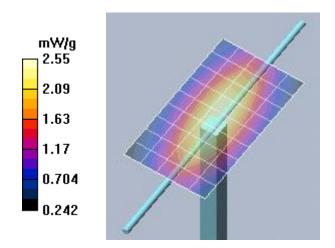
Procedure Notes:

Communication System: CW

Frequency: 835 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used: f = 835 MHz; $\sigma = 1.02$ mho/m; $\epsilon_r = 53.8$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.67, 6.67, 6.67); Calibrated: 24/04/2013
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 19/04/2012
- Phantom: SAM 4.0; Type: Fiberglass; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Head d=15mm Pin=250mW/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 2.62 mW/g

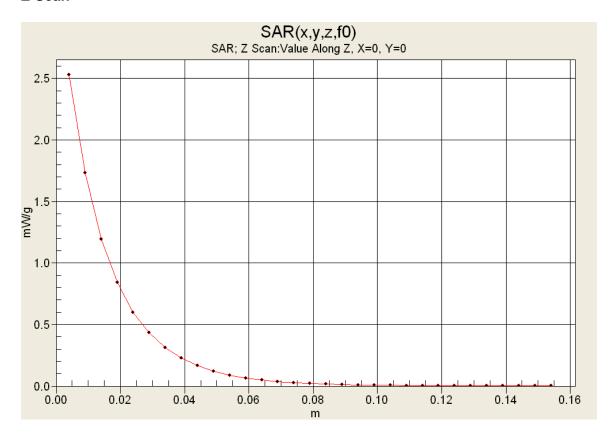
Head d=15mm Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.9 V/m; Power Drift = 0.009 dB

Peak SAR (extrapolated) = 3.64 W/kg

SAR(1 g) = 2.5 mW/g; SAR(10 g) = 1.65 mW/g Maximum value of SAR (measured) = 2.71 mW/g

Applicant:	N	Nautic Devices Inc. FCC ID:		UJW-4	UJW-4000 IC ID:		6695A-4000	
DUT Type:		Wireless Portable Phone		Models:	Models: Yapalong4000		902 – 928 MHz	
2013 Celltech La	abs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 28 of 39


Test Report Issue Date 28 Jan 2014 Test Report Serial No. 01282014UJW-1279

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. 1.0

RF Exposure Category
General Population

Z-Scan

Applicant:	N	Nautic Devices Inc. FCC ID		UJW-4000		IC ID:	6695A-4000	
DUT Type:		Wireless Portable Ph	one	Models: Yapalo		long4000	902 – 928 MHz	
2013 Celltech La	013 Celltech Labs Inc. This document is not to be reproduced in wh					ior written permis	sion of Celltech Labs Inc.	Page 29 of 39

Test Report Issue Date 28 Jan 2014 Test Report Serial No. 01282014UJW-1279

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. 1.0

RF Exposure Category
General Population

APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS

Applicant:	N	Nautic Devices Inc. FCC ID:		UJW-40	UJW-4000 IC ID:		6695A-4000	
DUT Type:		Wireless Portable Phone		Models:	Yapalong4000		902 – 928 MHz	
2013 Celltech La	ıbs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 30 of 39

Test Report Serial No.

01282014UJW-1279 Description of Test(s) 1.0

Test Report Revision No.

Test Report Issue Date 28 Jan 2014

RF Exposure Category General Population

835 MHz Body

Specific Absorption Rate

Celltech Labs Inc, Test Result for UIM Dielectric Parameter 19/Jan/2014 Frequency(GHz) FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM

******			*****	*****
Freq	FCC_eB	FCC_sE	3 Test_e	Test_s
0.7350	55.59	0.96	54.66	0.92
0.7450	55.55	0.96	53.95	0.92
0.7550	55.51	0.96	54.42	0.93
0.7650	55.47	0.96	54.35	0.95
0.7750	55.43	0.97	54.19	0.97
0.7850	55.39	0.97	54.04	0.99
0.7950	55.36	0.97	54.25	0.98
0.8050	55.32	0.97	54.06	0.99
0.8150	55.28	0.97	53.65	0.99
0.8250	55.24	0.97	53.40	1.00
0.8350	55.20	0.97	53.80	1.02
0.8450	55.17	0.98	53.52	1.03
0.8550	55.14	0.99	53.21	1.04
0.8650	55.11	1.01	53.15	1.05
0.8750	55.08	1.02	53.20	1.07
0.8850	55.05	1.03	52.97	1.07
0.8950	55.02	1.04	52.89	1.07
0.9050	55.00	1.05	53.28	1.08
0.9150	55.00	1.06	52.87	1.10
0.9250	54.98	1.06	52.94	1.11
0.9350	54.96	1.07	52.50	1.12

Applicant:	N	lautic Devices Inc. FCC ID:		UJW-40	UJW-4000 IC ID:		6695A-4000	
DUT Type:		Wireless Portable Phone		Models:	Models: Yapalong4000		902 – 928 MHz	
2013 Celltech La	ibs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 31 of 39

Test Report Issue Date 28 Jan 2014 Test Report Serial No. 01282014UJW-1279

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. 1.0

RF Exposure Category
General Population

APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS

Applicant:	N	autic Devices Inc.	FCC ID:	UJW-4000		IC ID:	6695A-4000	
DUT Type:		Wireless Portable Phone		Models:	Yapalong4000		902 – 928 MHz	
2013 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Cellte					sion of Celltech Labs Inc.	Page 32 of 39		

Test Report Issue Date 28 Jan 2014 Test Report Serial No. 01282014UJW-1279

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. 1.0

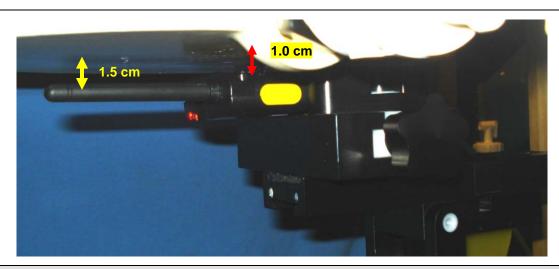
RF Exposure Category
General Population

BODY-WORN SAR TEST SETUP PHOTOGRAPHS

Body-worn SAR Configuration Test Setup with Belt-Clip

Applicant:	N	autic Devices Inc.	FCC ID:	UJW-4000		IC ID:	6695A-4000	
DUT Type:		Wireless Portable Phone		Models:	Yapalong4000		902 – 928 MHz	
2013 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					sion of Celltech Labs Inc.	Page 33 of 39		

<u>Test Report Issue Date</u> 28 Jan 2014 Test Report Serial No. 01282014UJW-1279


<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. 1.0

RF Exposure Category

General Population

BODY-WORN SAR TEST SETUP PHOTOGRAPHS

Body-worn SAR Configuration

Applicant:	N	lautic Devices Inc. FCC ID:		UJW-4000		IC ID:	6695A-4000	
DUT Type:		Wireless Portable Ph	Models:	Yapalong4000		902 – 928 MHz		
2013 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					sion of Celltech Labs Inc.	Page 34 of 39		

<u>Test Report Issue Date</u> 28 Jan 2014 Test Report Serial No. 01282014UJW-1279

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
1.0

RF Exposure Category
General Population

DUT PHOTOGRAPHS

Front Side

Back Side

Left Side

Right Side

Applicant:	N	autic Devices Inc.	FCC ID:	UJW-4000		IC ID:	6695A-4000	
DUT Type:		Wireless Portable Phone		Models:	Yapalong4000		902 – 928 MHz	
2013 Celltech La	2013 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 35 of 39	

Date(s) of Evaluation January 19-23, 2014
Test Report Issue Date

28 Jan 2014

01282014UJW-1279

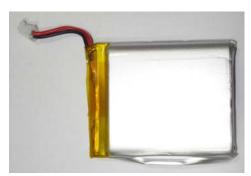
Description of Test(s)

Specific Absorption Rate

Test Report Serial No.

Test Report Revision No. 1.0

RF Exposure Category
General Population



Bottom Side

Top Side

Lithium Polymer Battery

Device Used for Measuring Conducted Power

Applicant:	N	autic Devices Inc.	FCC ID:	UJW-4000		IC ID:	6695A-4000	
DUT Type:		Wireless Portable Phone		Models:	Yapalong4000		902 – 928 MHz	
2013 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Cell					sion of Celltech Labs Inc.	Page 36 of 39		

Date(s) of Evaluation January 19-23, 2014

Test Report Issue Date 28 Jan 2014 Test Report Serial No. 01282014UJW-1279

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. 1.0

RF Exposure Category
General Population

APPENDIX E - DIPOLE CALIBRATION

Applicant:	N	autic Devices Inc.	FCC ID:	UJW-40	000	IC ID:	6695A-4000	
DUT Type:		Wireless Portable Ph	one	Models:	Yapa	long4000	902 – 928 MHz	
2013 Celltech La	abs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 37 of 39	

<u>Date:</u> Aug 19, 2013

Revision No. Rev. 1.1

835 MHz Dipole Extended Calibration

 Dipole:
 D835V2

 Serial Number:
 4d075

 Last Calibrated:
 Apr. 20, 2012

Antenna Parameters with Head TSL						
	Impedance Real (ohms)	Deviation from cal	Impedance Imaginary (ohms)	Deviation from cal	Return Loss (dB)	Deviation from Cal
Last Calibration	51.4	-	-4.6	-	-26.5	-
Extended Cal Aug 14, 2013	50.9	0.5	-3.6	1.0	-28.4	7.2%

Antenna Parameters with Body TSL							
	Impedance Real (ohms)	Deviation from cal (ohms)	Impedance Imaginary (ohms)	Deviation from cal (ohms)	Return Loss (dB)	Deviation from Cal (%)	
Last Calibration	46.8	-	-6.2	-	-22.8	-	
Extended Cal Aug. 19, 2013	45.9	0.9	-6.3	0.1	-22.2	2.6%	

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

S

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Celltech

Certificate No: D835V2-4d075_Apr12

CALIBRATION CERTIFICATE

Object D835V2 - SN: 4d075

Calibration procedure(s) QA CAL-05.v8

Calibration procedure for dipole validation kits above 700 MHz

Calibration date: April 20, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	05-Oct-11 (No. 217-01451)	Oct-12
Power sensor HP 8481A	US37292783	05-Oct-11 (No. 217-01451)	Oct-12
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.2 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe ES3DV3	SN: 3205	30-Dec-11 (No. ES3-3205_Dec11)	Dec-12
DAE4	SN: 601	04-Jul-11 (No. DAE4-601_Jul11)	Jul-12
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-11)	In house check: Oct-12
	Name	Function	Signature
Calibrated by:	Israe El-Naouq	Laboratory Technician	0 . 0
			Irraa El Daoug
Approved by:	Katja Pokovic	Technical Manager	0014
			Solo las-

Issued: April 20, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-4d075_Apr12

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d075_Apr12 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.1
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.1 ± 6 %	0.90 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.36 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.42 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.55 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.19 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.5 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.47 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.56 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.62 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.31 mW / g ± 16.5 % (k=2)

Certificate No: D835V2-4d075_Apr12 Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.4 Ω - 4.6 jΩ
Return Loss	- 26.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.8 Ω - 6.2 jΩ
Return Loss	- 22.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.395 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 09, 2007

Certificate No: D835V2-4d075_Apr12 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 20.04.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d075

Communication System: CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.9 \text{ mho/m}$; $\varepsilon_r = 41.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(6.07, 6.07, 6.07); Calibrated: 30.12.2011;

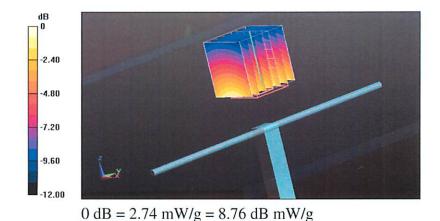
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.07.2011

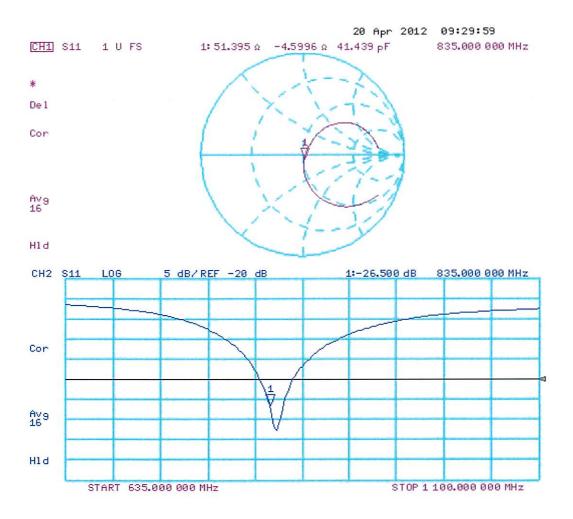
Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

DASY52 52.8.1(838); SEMCAD X 14.6.5(6469)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.890 V/m; Power Drift = 0.03 dB


Peak SAR (extrapolated) = 3.477 mW/g

SAR(1 g) = 2.36 mW/g; SAR(10 g) = 1.55 mW/g

Maximum value of SAR (measured) = 2.74 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 19.04.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d075

Communication System: CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 1.01$ mho/m; $\varepsilon_r = 54.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(6.02, 6.02, 6.02); Calibrated: 30.12.2011;

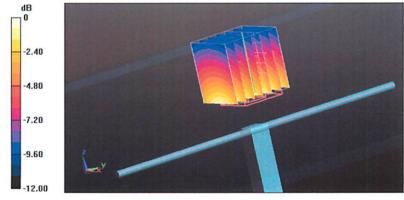
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.07.2011

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

DASY52 52.8.1(838); SEMCAD X 14.6.5(6469)

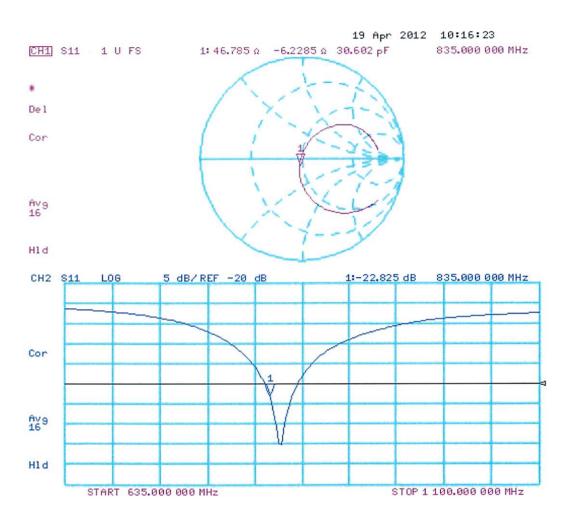
Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.283 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 3.580 mW/g

SAR(1 g) = 2.47 mW/g; SAR(10 g) = 1.62 mW/g


Maximum value of SAR (measured) = 2.87 mW/g

0 dB = 2.87 mW/g = 9.16 dB mW/g

Certificate No: D835V2-4d075_Apr12 Page 7 of 8

Impedance Measurement Plot for Body TSL

Date(s) of Evaluation January 19-23, 2014

Test Report Issue Date 28 Jan 2014 Test Report Serial No. 01282014UJW-1279

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. 1.0

RF Exposure Category
General Population

APPENDIX F - PROBE CALIBRATION

Applicant:	N	autic Devices Inc.	FCC ID:	UJW-4000		IC ID:	6695A-4000	
DUT Type:		Wireless Portable Ph	ess Portable Phone		Yapalong4000		902 – 928 MHz	
2013 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 38 of 39	

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Celltech

Certificate No: ET3-1590_Apr13

S

C

S

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object ET3DV6 - SN:1590

Calibration procedure(s) QA CAL-01.v8, QA CAL-12.v7, QA CAL-23.v4, QA CAL-25.v4

Calibration procedure for dosimetric E-field probes

Calibration date: April 24, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
Power sensor E4412A	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Reference 3 dB Attenuator	SN: S5054 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-13 (No. 217-01735)	Apr-14
Reference 30 dB Attenuator	SN: S5129 (30b)	04-Apr-13 (No. 217-01738)	Apr-14
Reference Probe ES3DV2	SN: 3013	28-Dec-12 (No. ES3-3013_Dec12)	Dec-13
DAE4	SN: 660	31-Jan-13 (No. DAE4-660_Jan13)	Jan-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-15
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

Name Function Signature
Calibrated by: Claudio Leubler Laboratory Technician

Approved by: Katja Pokovic Technical Manager

Issued: April 27, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center).

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

ET3DV6 - SN:1590

Probe ET3DV6

SN:1590

Calibrated:

Manufactured: March 19, 2001 April 24, 2013

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	1.73	1.85	1.61	± 10.1 %
DCP (mV) ^B	94.7	99.4	88.0	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc [±] (k=2)
0	CW	Х	0.0	0.0	1.0	0.00	186.7	±2.7 %
		Υ	0.0	0.0	1.0		151.0	
		Z	0.0	0.0	1.0		171.2	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^B Numerical linearization parameter: uncertainty not required.

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the

Calibration Parameter Determined in Head Tissue Simulating Media

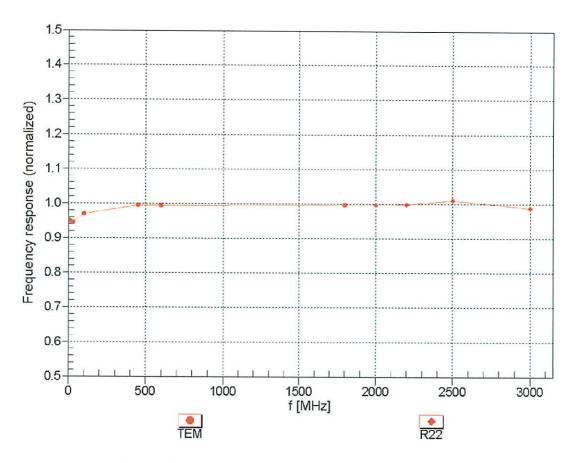
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)	
450	43.5	0.87	7.53	7.53	7.53	0.21	2.23	± 13.4 %	
750	41.9	0.89	7.24	7.24	7.24	0.25	3.00	± 12.0 %	
835	41.5	0.90	6.84	6.84	6.84	0.26	3.00	± 12.0 %	
900	41.5	0.97	6.68	6.68	6.68	0.28	3.00	± 12.0 %	

^C Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Calibration Parameter Determined in Body Tissue Simulating Media

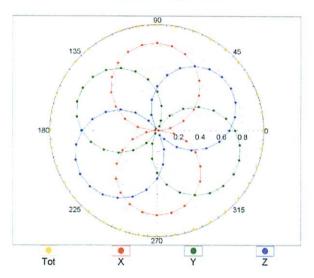

			_					
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	56.7	0.94	7.98	7.98	7.98	0.13	2.14	± 13.4 %
750	55.5	0.96	6.84	6.84	6.84	0.31	2.49	± 12.0 %
835	55.2	0.97	6.67	6.67	6.67	0.29	2.67	± 12.0 %
900	55.0	1.05	6.63	6.63	6.63	0.26	3.00	± 12.0 %

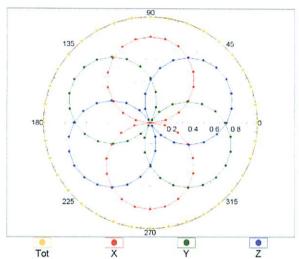
^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

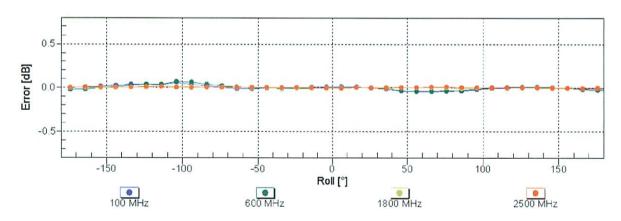
FAt frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if fluid compensation formula is applied to

At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

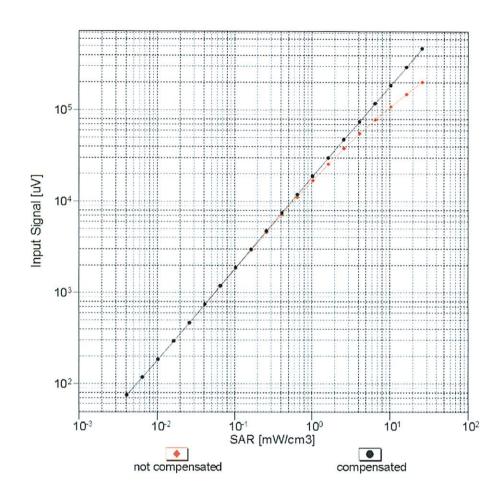
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

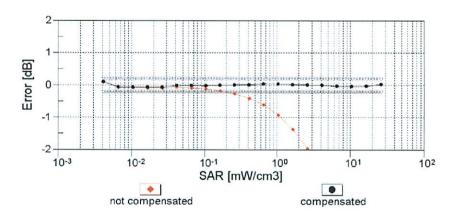



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

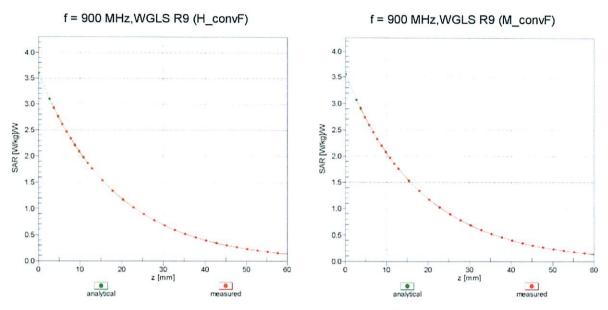

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

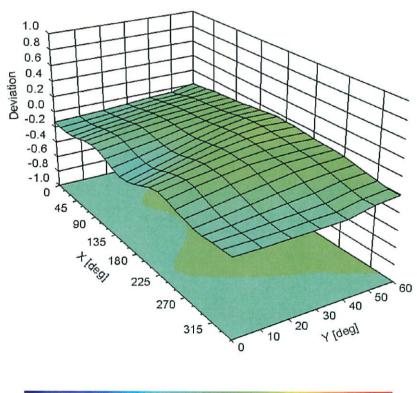
f=1800 MHz,R22





Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (ϕ, ϑ) , f = 900 MHz

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	6
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	6.8 mm
Probe Tip to Sensor X Calibration Point	2.7 mm
Probe Tip to Sensor Y Calibration Point	2.7 mm
Probe Tip to Sensor Z Calibration Point	2.7 mm
Recommended Measurement Distance from Surface	4 mm

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ET3DV6
Serial Number:	1590
Place of Assessment:	Zurich
Date of Assessment:	April 29, 2013
Probe Calibration Date:	April 24, 2013

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 450, 835 and 900 MHz.

Assessed by:

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ET3DV6 SN:1590

Conversion factor (± standard deviation)

$$150 \pm 50 \text{ MHz}$$

$$9.31 \pm 10\%$$

$$\varepsilon_r = 52.3 \pm 5\%$$

$$\sigma = 0.76 \pm 5\%$$
 mho/m

(head tissue)

$$300 \pm 50 \text{ MHz}$$

$$8.36 \pm 9\%$$

$$\varepsilon_r = 45.3 \pm 5\%$$

$$\sigma = 0.87 \pm 5\%$$
 mho/m

(head tissue)

$$150 \pm 50 \text{ MHz}$$

$$8.65 \pm 10\%$$

$$\varepsilon_r = 61.9 \pm 5\%$$

$$\sigma = 0.80 \pm 5\% \text{ mho/m}$$

(body tissue)

$$300 \pm 50 \text{ MHz}$$

ConvF
$$8.41 \pm 9\%$$

$$\varepsilon_r = 58.2 \pm 5\%$$

$$\sigma = 0.92 \pm 5\%$$
 mho/m

(body tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also DASY Manual.

Date(s) of Evaluation January 19-23, 2014

Test Report Issue Date 28 Jan 2014 Test Report Serial No. 01282014UJW-1279

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. 1.0

RF Exposure Category
General Population

APPENDIX G - PHANTOM CERTIFICATE OF CONFORMITY

Applicant:	N	autic Devices Inc.	FCC ID:	FCC ID: UJW-4000 IC ID:		6695A-4000		
DUT Type:		Wireless Portable Phone		Models:	Yapalong4000		902 – 928 MHz	
2013 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 39 of 39	

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Certificate of conformity / First Article Inspection

Item	SAM Twin Phantom V4.0
Type No	QD 000 P40 BA
Series No	TP-1002 and higher
Manufacturer / Origin	Untersee Composites Hauptstr. 69 CH-8559 Fruthwilen Switzerland

Tests

The series production process used allows the limitation to test of first articles. Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series units (called samples).

Test	Requirement	Details	Units tested
Shape	Compliance with the geometry according to the CAD model.	IT'IS CAD File (*)	First article, Samples
Material thickness	Compliant with the requirements according to the standards	2mm +/- 0.2mm in specific areas	First article, Samples
Material parameters	Dielectric parameters for required frequencies	200 MHz – 3 GHz Relative permittivity < 5 Loss tangent < 0.05.	Material sample TP 104-5
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards	Liquid type HSL 1800 and others according to the standard.	Pre-series, First article

Standards

- [1] CENELEC EN 50361
- [2] IEEE P1528-200x draft 6.5
- [3] IEC PT 62209 draft 0.9
- (*) The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of [1] and [3].

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standard [1] and draft standards [2] and [3].

Date

18.11.2001

Signature / Stamp

Schmid & Partner Engineering AG

Zeughausstrasse 43, CH-8004 Zurich Tel. +41 1 245 97 00, Fax +41 1 245 97 79

Fin Brubolt