

Inter**Lab**

FCC Measurement/Technical Report on

Main Unit of Car Multimedia System NR-218

FCC ID: UJHNR218

IC: 662K-NR218

Report Reference: MDE_MEE_1309_FCCa

Test Laboratory:

Borsigstrasse 11 Germany 7Layers AG 40880 Ratingen

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7 layers AG Borsigstrasse 11 40880 Ratingen, Germany Phone: +49 (0) 2102 749 0 Fax: +49 (0) 2102 749 350 www.7Layers.com Aufsichtsratsvorsitzender • Chairman of the Supervisory Board: Peter Mertel Vorstand • Board: Dr. H.-J. Meckelburg Registergericht • registered in: Düsseldorf, HRB 44096 USt-IdNr • VAT No.: DE 203159652 TAX No. 147/5869/0385

Table of Contents

0 9	Summary	3
0.1 0.2	,	3 4
1 /	Administrative Data	7
1.1 1.2 1.3 1.4	Project Data Applicant Data	7 7 7 7
2 7	Test object Data	8
2.1 2.2 2.3 2.4 2.5 2.6 2.7	EUT Main components Ancillary Equipment Auxiliary Equipment EUT Setups Operating Modes	8 9 9 10 10
3	Test Results	12
3.1 3.2 3.3 3.4 3.5 3.6	Peak power output Spurious RF conducted emissions Spurious radiated emissions Band edge compliance	12 15 18 22 29 33
4 7	Test Equipment	37
5 I	Photo Report	43
6 9	Setup Drawings	43
7 I	FCC and IC Correlation of measurement requirements	44
8 /	Annex measurement plots	45
8.1 8.2 8.3 8.4 8.5	Peak power output Band edge compliance Band edge compliance radiated Spurious RF conducted emissions	45 49 53 57 59 63

0 Summary

0.1 Technical Report Summary

Type of Authorization

Certification for an Intentional Radiator (Digital Device / Spread Spectrum).

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 (10-1-13 Edition) and 15 (10-1-13 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart C - Intentional Radiators

- § 15.201 Equipment authorization requirement
- § 15.207 Conducted limits
- § 15.209 Radiated emission limits; general requirements
- § 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz

Note:

The tests were selected and performed with reference to the FCC measurement guide line "Measurement of Digital Transmission Systems Operating under Section 15.247 March 23, 2005".

Instead of applying ANSI C63.4–1992 which is referenced in the FCC Public Note, the newer ANSI C63.4–2009 is applied.

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 0.2 Measurement Summary.

0.2 Measurement Summary

FCC Part 15, Subpart C § 15.207

Conducted emissions (AC power line)

OP-Mode	Setup	Port	Final Result
-	-	_	N/A

FCC Part 15, Subpart C § 15.247 (a) (1)

Occupied bandwidth

The measurement w	ccording to FCC § 15.31	10-1-11 Edition	
OP-Mode	Setup	Port	Final Result
op-mode 1b	Setup_01	WLAN/BT ant.connector	passed
op-mode 1g	Setup_01	WLAN/BT ant.connector	passed
op-mode 1n	Setup_01	WLAN/BT ant.connector	passed
op-mode 2b	Setup_01	WLAN/BT ant.connector	passed
op-mode 2g	Setup_01	WLAN/BT ant.connector	passed
op-mode 2n	Setup_01	WLAN/BT ant.connector	passed
op-mode 3b	Setup_01	WLAN/BT ant.connector	passed
op-mode 3g	Setup_01	WLAN/BT ant.connector	passed
op-mode 3n	Setup_01	WLAN/BT ant.connector	passed
op-mode 4	Setup_03	KLEER temp. ant.connector	passed
op-mode 5	Setup_03	KLEER temp. ant.connector	passed
op-mode 6	Setup_03	KLEER temp. ant.connector	passed

FCC Part 15, Subpart C § 15.247 (b) (1)

Peak power output

The measurement w	vas performed a	ccording to FCC § 15.31	10-1-11 Edition
OP-Mode	Setup	Port	Final Result
op-mode 1b	Setup_01	WLAN/BT ant.connector	passed
op-mode 1g	Setup_01	WLAN/BT ant.connector	passed
op-mode 1n	Setup_01	WLAN/BT ant.connector	passed
op-mode 2b	Setup_01	WLAN/BT ant.connector	passed
op-mode 2g	Setup_01	WLAN/BT ant.connector	passed
op-mode 2n	Setup_01	WLAN/BT ant.connector	passed
op-mode 3b	Setup_01	WLAN/BT ant.connector	passed
op-mode 3g	Setup_01	WLAN/BT ant.connector	passed
op-mode 3n	Setup_01	WLAN/BT ant.connector	passed
op-mode 4	Setup_03	KLEER temp. ant.connector	passed
op-mode 5	Setup_03	KLEER temp. ant.connector	passed
op-mode 6	Setup_03	KLEER temp. ant.connector	passed

FCC Part 15, Subpart C § 15.247 (d)

Spurious RF conducted emissions

The measurement v	vas performed a	ccording to FCC § 15.31	10-1-11 Edition
OP-Mode	Setup	Port	Final Result
op-mode 1b	Setup_01	WLAN/BT ant.connector	passed
op-mode 1g	Setup_01	WLAN/BT ant.connector	passed
op-mode 1n	Setup_01	WLAN/BT ant.connector	passed
op-mode 2b	Setup_01	WLAN/BT ant.connector	passed
op-mode 2g	Setup_01	WLAN/BT ant.connector	passed
op-mode 2n	Setup_01	WLAN/BT ant.connector	passed
op-mode 3b	Setup_01	WLAN/BT ant.connector	passed
op-mode 3g	Setup_01	WLAN/BT ant.connector	passed
op-mode 3n	Setup_01	WLAN/BT ant.connector	passed
op-mode 4	Setup_03	KLEER temp. ant.connector	passed
op-mode 5	Setup_03	KLEER temp. ant.connector	passed
op-mode 6	Setup_03	KLEER temp. ant.connector	passed

FCC Part 15, Subpart C

§ 15.247 (d), § 15.35 (b), § 15.209

Spurious radiated emissions

The measurement w	vas performed	according to ANSI C63.4	2009
OP-Mode	Setup	Port	Final Result
op-mode 1b	Setup_02	WLAN/BT antenna radiating	passed
op-mode 2b	Setup_02	WLAN/BT antenna radiating	passed
op-mode 3b	Setup_02	WLAN/BT antenna radiating	passed
op-mode 1g	Setup_02	WLAN/BT antenna radiating	passed
op-mode 2g	Setup_02	WLAN/BT antenna radiating	passed
op-mode 3g	Setup_02	WLAN/BT antenna radiating	passed
op-mode 1n	Setup_02	WLAN/BT antenna radiating	passed
op-mode 2n	Setup_02	WLAN/BT antenna radiating	passed
op-mode 3n	Setup_02	WLAN/BT antenna radiating	passed
op-mode 4	Setup_01	KLEER integrated ant. radiating	passed
op-mode 5	Setup_01	KLEER integrated ant. radiating	passed
op-mode 6	Setup_01	KLEER integrated ant. radiating	passed

FCC Part 15, Subpart C § 15.247 (d)

Band edge compliance

The measurement was performed according to FCC § 15.31 / ANSI C63.4

10-1-11 Edition / 2009

OP-Mode op-mode 1b op-mode 1g	Setup_01	Port WLAN/BT ant.connector WLAN/BT ant.connector	Final Result passed
op-mode 1n op-mode 3b	Setup_01 Setup_01 Setup_01	WLAN/BT ant.connector WLAN/BT ant.connector	passed passed passed
op-mode 3g	Setup_01	WLAN/BT ant.connector WLAN/BT ant.connector KLEER temp. ant.connector	passed
op-mode 3n	Setup_01		passed
op-mode 4	Setup_03		passed
op-mode 6	Setup_03	KLEER temp. ant.connector WLAN/BT antenna radiating WLAN/BT antenna radiating	passed
op-mode 3b	Setup_02		passed
op-mode 3g	Setup_02		passed
op-mode 3n	Setup_02	WLAN/BT antenna radiating KLEER integrated ant. radiating	passed
op-mode 6	Setup_01		passed

FCC Part 15, Subpart C

§ 15.247 (e)

Power density

The measurement was performed according to FCC § 15.31 10-1-11 Edition

op-Mode op-mode 1b op-mode 1g op-mode 1n op-mode 2b op-mode 2g op-mode 2n op-mode 3b op-mode 3g op-mode 3n op-mode 4 op-mode 5	Setup Setup_01 Setup_01 Setup_01 Setup_01 Setup_01 Setup_01 Setup_01 Setup_01 Setup_01 Setup_03 Setup_03	Port WLAN/BT ant.connector KLEER temp. ant.connector KLEER temp. ant.connector	Final Result passed
			•
op-mode 6	Setup_03	KLEER temp. ant.connector	passed

Responsible for Accreditation Scope:

Responsible for Test Report:

7 lawers AG, Borsigstr. 11 40860 Ratingen, Germany Phone +49 (0)2102 749 0

1 Administrative Data

1.1 Testing Laboratory

Company Name: 7 Layers AG

Address Borsigstr. 11

40880 Ratingen

Germany

This facility has been fully described in a report submitted to the FCC and accepted under the registration number 96716.

The test facility is also accredited by the following accreditation organisation:

Laboratory accreditation no.: DAkkS D-PL-12140-01-01

Responsible for Accreditation Scope: Dipl.-Ing. Bernhard Retka

Dipl.-Ing. Robert Machulec Dipl.-Ing. Thomas Hoell Dipl.-Ing. Andreas Petz Dipl.-Ing. Marco Kullik

Report Template Version: 2012-08-27

1.2 Project Data

Responsible for testing and report: Dipl.-Ing. Marco Kullik

Date of Test(s): 2013-12-25 to 2014-01-15

Date of Report: 2014-01-27

1.3 Applicant Data

Company Name: Mitsubishi Electric Europe B. V.

Address: Mündelheimer Weg 35

40472 Düsseldorf

Germany

Contact Person: Mr. Rolf Borchert

1.4 Manufacturer Data

Company Name: Mitsubishi Electric Corporation (Hyogo)

Address: Sanda Works, 2-3-33, Miwa

Sanda-City, Hyogo 669-1513

Japan

Contact Person: Yuji Funaba

2 Test object Data

2.1 General EUT Description

Equipment under Test: Main Unit of Car Multimedia System

Type Designation: NR-218

Kind of Device: WLAN and KLEER transceivers

(optional)

Voltage Type: DC (Car battery)

Voltage Level: 12 V

Tested Modulation Type: WLAN: DBPSK; OFDM:BPSK; OFDM:64-QAM

KLEER: FSK

General product description:

The WLAN (Wireless Local Area Network) Transceiver is operating in the 2.4 GHz ISM band in the range 2412.0 - 2462.0 MHz and uses the Direct Sequence Spread Spectrum (DSSS) Modulation. The KLEER Transceiver is operating in the 2.4 GHz ISM band in the range 2403.0 - 2478.0 MHz and uses DSSS modulation too.

Specific product description for the EUT:

The EUT supports the following modes:

WLAN: IEE802.11b, IEE802.11g and IEE802.11n (up to 72.2 Mbps data rate / MCS7). The KLEER technology supports 16 channels, each spaced by 5 MHz whilst the nominal bandwidth is designed as 3 MHz.

Besides WLAN and KLEER transceivers, the EUT contains also a BLUETOOTH transceiver and GPS receiver.

The WLAN/BT antenna has a gain of 2.3 dBi (at 2480 MHz).

The integrated KLEER antenna has a gain of -4.3 dBi (at 2442 MHz).

The EUT provides the following ports:

Ports

Cable harness including DC port, WLAN/BT antenna port, FM/AM antenna port, GPS antenna port, USB port, Auxiliary audio port, Display port, Night view camera port, TV tuner port, RVC/UCI port, Rear seat entertainment port, Enclosure.

The main components of the EUT are listed and described in Chapter 2.2

2.2 EUT Main components

Type, S/N, Short Descriptions etc. used in this Test Report

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status	Date of Receipt
EUT A	WLAN and	NR-218	ME8240D	A2189019300	A2189021701	-
(Code:	KLEER		9045021	(13/36/00)	(13/40/00)	
08850a01)	transceivers					
Remark:	EUT A is equipped with integral KLEER antenna (gain -4.3 dBi) and a permanent					
	WLAN/BT ant	enna connector.				
EUT B	WLAN and	NR-218	ME8240D	A2189019300	A2189021701	_
(Code:	KLEER		9045006	(13/36/00)	(13/40/00)	
08850c01)	transceivers					
Remark:	EUT B is equipped with temporary KLEER antenna connector and a permanent WLAN/BT antenna connector.					

NOTE: The short description is used to simplify the identification of the EUT in this test report.

2.3 Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	HW Status	SW Status	Serial no.	FCC ID
AE1 (Code: No 8-1, wite label)	Bluetooth & WLAN antenna	AG 90	-	-	-	-

2.4 Auxiliary Equipment

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	Serial no.	HW Status	SW Status	FCC ID
AUX1	Display Unit	Display No.02	B345 - 16	-	-	-
AUX2	Turning knob	CCE-No.02	-	A205 905 19 00-	A205 902 11 00	-
AUX3	Cable harness		-	=	-	-

2.5 EUT Setups

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup No.	Combination of EUTs	Description and Rationale
Setup_01	EUT A + AUX1 + AUX2 + AUX3	setup for WLAN conducted measurements or
		KLEER radiated measurements
Setup_02	EUT B + AE1 + AUX1 + AUX2 + AUX3	setup for WLAN radiated measurements
Setup 03	EUT B + AUX1 + AUX2 + AUX3	setup for KLEER conducted measurements

2.6 Operating Modes

This chapter describes the operating modes of the EUTs used for testing.

Op. Mode	Description of Operating Modes	Remarks
op-mode 1b	TX-mode, the EUT transmits on	Worst case data rate 1 Mbps (channel 1)
	the lowest channel (2412 MHz)	
op-mode 1g	TX-mode, the EUT transmits on	Worst case data rate 6 Mbps (channel 1)
	the lowest channel (2412 MHz)	
op-mode 1n	TX-mode, the EUT transmits on	Worst case data rate 54 Mbps (channel 1)
	the lowest channel (2412 MHz)	
op-mode 2b	TX-mode, the EUT transmits on	Worst case data rate 1 Mbps (channel 6)
	the mid channel (2437 MHz)	
op-mode 2g	TX-mode, the EUT transmits on	Worst case data rate 6 Mbps (channel 6)
	the mid channel (2437 MHz)	
op-mode 2n	TX-mode, the EUT transmits on	Worst case data rate 54 Mbps (channel 6)
	the mid channel (2437 MHz)	
op-mode 3b	TX-mode, the EUT transmits on	Worst case data rate 1 Mbps (channel 11)
	the highest channel (2462 MHz)	
op-mode 3g	TX-mode, the EUT transmits on	Worst case data rate 6 Mbps (channel 11)
	the highest channel (2462 MHz)	
op-mode 3n	TX-mode, the EUT transmits on	Worst case data rate 54 Mbps (channel 11)
	the highest channel (2462 MHz)	
op-mode 4	TX-mode, the EUT transmits on	KLEER transmitter.
	the lowest channel (2403 MHz)	Operation on lowest frequency (channel 0)
op-mode 5	TX-mode, the EUT transmits on	KLEER transmitter.
	the mid channel (2438 MHz)	Operation on mid frequency (channel 7)
op-mode 6	TX-mode, the EUT transmits on	KLEER transmitter.
	the highest channel (2478 MHz)	Operation on highest frequency (channel 15)

2.6.1 Special software used for testing

None

2.7 Product labelling

Please refer to the documentation of the applicant.

2.7.1 FCC ID label

Please refer to the documentation of the applicant.

2.7.2 Location of the label on the EUT

Please refer to the documentation of the applicant.

3 Test Results

3.1 Occupied bandwidth

Standard FCC Part 15, Subpart C

The test was performed according to: FCC §15.31

3.1.1 Test Description

The Equipment Under Test (EUT) was setup to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical. The results recorded were measured with the modulation which produces the worst-case

(widest) occupied bandwidth.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

- Resolution Bandwidth (RBW): 100 kHz

- Video Bandwidth (VBW): 300 kHz

- Span: 30 MHz

3.1.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (a) (2)

Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Used conversion factor: Output power (dBm) = 10 log (Output power (W) / 1mW)

3.1.3 Test Protocol

Temperature: 24° C Air Pressure: 1020 hPa Humidity: 42 %

Op. Mode Setup Port

op-mode 1b Setup_01 WLAN/BT antenna connector

6 dB bandwidth MHz	Remarks
10.164	-

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 1g	Setup_01	WLAN/BT antenna connector
6 dB handwidt	h	Remarks

6 dB bandwidth	Remarks
MHz	
16.116	-

Op. Mode	Setup	Port
op-mode 1n	Setup_01	WLAN/BT antenna connector

6 dB bandwidth MHz	Remarks
16.536	-

Op. Mode	Setup	Port
op-mode 2b	Setup_01	WLAN/BT antenna connector

6 dB bandwidth MHz	Remarks
10 164	_

Op. Mode	Setup	Port
op-mode 2g	Setup_01	WLAN/BT antenna connector

6 dB bandwidth MHz	Remarks
15.996	-

Op. Mode	Setup	Port
op-mode 2n	Setup 01	WLAN/BT antenna connector

6 dB bandwidth MHz	Remarks
17.076	-

Op. Mode	Setup	Port
op-mode 3b	Setup_01	WLAN/BT antenna connector

6 dB bandwidth MHz	Remarks
10.164	-

Op. Mode	Setup	Port	
op-mode 3g	Setup_01	WLAN/BT antenna connector	
6 dB bandwidt	h	Remarks	
MHz			
1 5 756	1		

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 3n	Setup_01	WLAN/BT antenna connector
6 dB bandwidth		Remarks
MHz		
16.416		-

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 4	Setup_03	KLEER temp. antenna connector
6 dB bandwidth MHz		Remarks
1.932		-
Op. Mode	Setup	Port
op-mode 5	Setup_03	KLEER temp. antenna connector
F		
6 dB bandwidth MHz		Remarks
1.872		-

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 6	Setup_03	KLEER temp. antenna connector
6 dB bandwidth MHz		Remarks
1.992		-

3.1.4 Test result: Occupied bandwidth

FCC Part

15, Subpart C	Op. Mode	Result
	op-mode 1b	passed
	op-mode 1g	passed
	op-mode 1n	passed
	op-mode 2b	passed
	op-mode 2g	passed
	op-mode 2n	passed
	op-mode 3b	passed
	op-mode 3g	passed
	op-mode 3n	passed
	op-mode 4	passed
	op-mode 5	passed
	op-mode 6	passed

3.2 Peak power output

Standard FCC Part 15, Subpart C

The test was performed according to: FCC §15.31

3.2.1 Test Description

The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power. The reference level of the spectrum analyzer was set higher than the output power of the EUT. The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:
- Detector: RMS

3.2.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (b) (3) For systems using digital modulation techniques in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1 watt.

==> Maximum conducted peak output power: 30 dBm (excluding antenna gain, if antennas with directional gains that do not exceed 6 dBi are used).

Used conversion factor: Limit (dBm) = 10 log (Limit (W)/1mW)

3.2.3 Test Protocol

Temperature: 23° C Air Pressure: 1020 hPa Humidity: 42 %

Op. Mode Setup Port

op-mode 1b Setup_01 WLAN/BT antenna connector

Output power dBm	Remarks
22.0	The EIRP including antenna directional gain (2.3 dBi) is 22.0 dBm

Remark: Please see annex for the measurement plot.

 Op. Mode
 Setup
 Port

 op-mode 1g
 Setup_01
 WLAN/BT antenna connector

Output power dBm	Remarks
22.0	The EIRP including antenna directional gain (2.3 dBi) is 22.0 dBm

Op. ModeSetupPortop-mode 1nSetup_01WLAN/BT antenna connector

Output power dBm	Remarks
22.0	The EIRP including antenna directional gain (2.3 dBi) is 22.0 dBm

Op. ModeSetupPortop-mode 2bSetup_01WLAN/BT antenna connector

Output power dBm	Remarks
22.0	The EIRP including antenna directional gain (2.3 dBi) is 22.0 dBm

Op. ModeSetupPortop-mode 2gSetup_01WLAN/BT antenna connector

Output power dBm	Remarks
22.0	The EIRP including antenna directional gain (2.3 dBi) is 22.0 dBm

Remark: Please see annex for the measurement plot.

Op. ModeSetupPortop-mode 2nSetup_01WLAN/BT antenna connector

Output power dBm	Remarks
22.0	The EIRP including antenna directional gain (2.3 dBi) is 22.0 dBm

Test report Reference: MDE_MEE_1309_FCCa Page 16 of 66

Op. Mode	Setup	Port
op-mode 3b	Setup_01	WLAN/BT antenna connector

Output power dBm	Remarks		
22.0	The EIRP including antenna directional gain (2.3 dBi) is 22.0 dBm		

Op. Mode **Port** Setup op-mode 3g WLAN/BT antenna connector Setup_01

Output power dBm	Remarks
22.0	The EIRP including antenna directional gain (2.3 dBi) is 22.0 dBm

Op. Mode	Setup	Port
op-mode 3n	Setup_01	WLAN/BT antenna connector

Output power dBm	Remarks
22.0	The EIRP including antenna directional gain (2.3 dBi) is 22.0 dBm

Remark: Please see annex for the measurement plot.

Op. Mode Setup op-mode 4 KLEER temp. antenna connector Setup_03

Output power dBm	Remarks
-4 7	The FIRP including antenna directional gain (-4 3 dBi) is -4 2 dBm

Op. Mode	Setup	Port
op-mode 5	Setup 03	KLEER temp, antenna connector

Output power dBm	Remarks		
-4.2	The EIRP including antenna directional gain (-4.3 dBi) is -4.2 dBm		

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 6	Setup_03	KLEER temp. antenna connector

Output power dBm	Remarks	
-5.0	The EIRP including antenna directional gain (-4.3 dBi) is -5.0 dBm	

3.2.4 Test result: Peak power output

FCC Part 15, Subpart C Op. Mode Result op-mode 1b passed op-mode 1g passed op-mode 1n passed op-mode 2b passed op-mode 2g passed op-mode 2n passed op-mode 3b passed op-mode 3g passed op-mode 3n

op-mode 4

op-mode 5

op-mode 6

passed

passed

passed

passed

3.3 Spurious RF conducted emissions

Standard FCC Part 15, Subpart C

The test was performed according to: FCC §15.31

3.3.1 Test Description

The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

- Detector: Peak-Maxhold

Frequency range: 30 – 25000 MHz
Resolution Bandwidth (RBW): 100 kHz
Video Bandwidth (VBW): 300 kHz

- Sweep Time: 330 s

The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance" (cf. chapter 3.5). This value is used to calculate the 20 dBc limit.

3.3.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (c)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

3.3.3 Test Protocol

Temperature: 24° C Air Pressure: 1020 hPa Humidity: 42 %

Op. Mode Setup Port

op-mode 1b Setup_01 WLAN/BT antenna connector

Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Margin dB
-	_	_	ı	_

Remark: No spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot.

 Op. Mode
 Setup
 Port

 op-mode 1g
 Setup_01
 WLAN/BT antenna connector

	Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Margin dB
Ī	-	_	_	-	-

Remark: No spurious emissions in the range 20 dB below the limit found.

Op. ModeSetupPortop-mode 1nSetup_01WLAN/BT antenna connector

Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Margin dB
_	_	_	_	_

Remark: No spurious emissions in the range 20 dB below the limit found.

 Op. Mode
 Setup
 Port

 op-mode 2b
 Setup_01
 WLAN/BT antenna connector

Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Margin dB
-	_	-	-	_

Remark: No spurious emissions in the range 20 dB below the limit found.

Op. ModeSetupPortop-mode 2gSetup_01WLAN/BT antenna connector

F	requency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Margin dB
	-	-	_	-	-

Remark: No spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot.

Test report Reference: MDE_MEE_1309_FCCa Page 19 of 66

Op. Mode	Setup	Port
op-mode 2n	Setup_01	WLAN/BT antenna connector

Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Margin dB
_	_	_	_	_

Remark: No spurious emissions in the range 20 dB below the limit found.

Op. ModeSetupPortop-mode 3bSetup_01WLAN/BT antenna connector

Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Margin dB
_	_	-	_	_

Remark: No spurious emissions in the range 20 dB below the limit found.

Op. ModeSetupPortop-mode 3gSetup_01WLAN/BT antenna connector

Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Margin dB
_	-	-	_	-

Remark: No spurious emissions in the range 20 dB below the limit found.

Op. ModeSetupPortop-mode 3nSetup_01WLAN/BT antenna connector

Frequency	Corrected measurement value dBm	Reference value	Limit	Margin
MHz		dBm	dBm	dB
_	_	_	_	_

Remark: No spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot.

Test report Reference: MDE_MEE_1309_FCCa Page 20 of 66

Op. Mode	Setup	Port
op-mode 4	Setup_03	KLEER temp. antenna connector

Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Margin dB
_	-	-	-	_

Remark: No spurious emissions in the range 20 dB below the limit found.

Op. Mode	Setup	Port
op-mode 5	Setup_03	KLEER temp. antenna connector

	Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Margin dB
ſ	_	_	_	-	_

Remark: No spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 6	Setup_03	KLEER temp. antenna connector

Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Margin dB
_	_	_	-	_

Remark: No spurious emissions in the range 20 dB below the limit found.

3.3.4 Test result: Spurious RF conducted emissions

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1b	passed
	op-mode 1g	passed
	op-mode 1n	passed
	op-mode 2b	passed
	op-mode 2g	passed
	op-mode 2n	passed
	op-mode 3b	passed
	op-mode 3g	passed
	op-mode 3n	passed
	op-mode 4	passed
	op-mode 5	passed
	op-mode 6	passed

3.4 Spurious radiated emissions

Standard FCC Part 15, Subpart C

The test was performed according to: ANSI C63.4

3.4.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C63.4 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software ES-K1 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is performed at 2 axes. A pre-check is also performed while the EUT is powered from both AC and DC (battery) power in order to find the worst-case operating condition.

1. Measurement up to 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

- Anechoic chamber

Antenna distance: 10 mDetector: Peak-Maxhold

- Frequency range: $0.009 - 0.15 \, \text{MHz}$ and $0.15 - 30 \, \text{MHz}$

Frequency step: 0.1 and 5 kHzIF Bandwidth: 0.2 and 10 kHz

- Measuring time / Frequency step: 100 ms

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Open area test side

- Antenna distance: according to the Standard

- Detector: Quasi-Peak

- Frequency range: 0.009 - 30 MHz

- Frequency steps: measurement at frequencies detected in step 1

- IF-Bandwidth: 0.2 - 10 kHz

- Measuring time / Frequency step: 100 ms

2. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

Preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:
- Antenna distance: 3 m
- Detector: Peak-Maxhold

- Frequency range: 30 – 1000 MHz

Frequency steps: 60 kHzIF-Bandwidth: 120 kHz

- Measuring time / Frequency step: 100 μ s - Turntable angle range: -180° to 180°

- Turntable step size: 90°

Height variation range: 1 – 3 m
Height variation step size: 2 m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: second measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is, to find out the approximate turntable angle and antenna height for each frequency.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 100 ms

- Turntable angle range: -180° to 180°

- Turntable step size: 45°

Height variation range: 1 – 4 m
Height variation step size: 0.5 m
Polarisation: horizontal + vertical

After this step the EMI test system has determined the following values for each frequency (of step 1):

- Frequency

- Azimuth value (of turntable)

- Antenna height

The last two values have now the following accuracy:

- Azimuth value (of turntable): 45°

- Antenna height: 0.5 m

Step 3: final measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will be slowly varied by +/- 22.5° around this value. During this action the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position the antenna height is also slowly varied by +/- 25 cm around the antenna height determined. During this action the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 100 ms

- Turntable angle range: -22.5° to +22.5° around the determined value

- Height variation range: -0.25 m to +0.25 m around the determined value

Step 4: final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed:

EMI receiver settings for step 4:
- Detector: Quasi-Peak (< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 1 s

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive support at 1.4 m height in the fully-anechoic chamber. The measurement distance was reduced to 1 m. The results were extrapolated by the extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements, inverse linear-distance squared for the power reference level measurements). Due to the fact that in this frequency range a double ridged wave guided horn antenna (up to 18 GHz) and a horn antenna (18–25 GHz) are used, the steps 2-4 are omitted. Step 1 was performed with one height of the receiving antenna only.

EMI receiver settings:
- Detector: Peak, Average
- IF Bandwidth = 1 MHz

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

For the data rate in mode n the test is performed as worst-case-check in order to verify that emissions have a comparable level as found at modes b and g. Typically, the measurement is performed in the frequency range 1 to 8 GHz but it depends on the emissions found during the test for the modes b and g. Please refer to the results for the used frequency range.

3.4.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement	Calculated	Limits (dBµV/m)
		distance (m)	Limits (dBµV/m @10m)	@10m
0.009 - 0.49	2400/F (kHz)	300 59.1 di	3 (48.5 – 13.8) + 30 dB	78.5 - 43.8
0.49 - 1.705	24000/F (kHz)	30 19.1 di	3 (48.9 – 23.0) + 10 dB	58.9 - 33.0
1.705 - 30	30	30 19.1 di	3 29.5 + 10 dB	39.5

Frequency in MHz	Limits (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100	3	40.0
88 - 216	150	3	43.5
216 - 960	200	3	46.0
above 960	500	3	54.0

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

Test report Reference: MDE_MEE_1309_FCCa Page 24 of 66

3.4.3 Test Protocol

Temperature: 25 °C Air Pressure: 1023 hPa Humidity: 49 %

3.4.3.1 Measurement up to 30 MHz

Op. Mode	Setup	Port
op-mode 2b	Setup_02	WLAN/BT antenna radiating

Polari- sation	Frequency MHz	Corrected value dBuV/m			Limit dBuV/m			Margin dB	
		QP	PK	AV	QP	PK	AV	QP/PK	AV
_	_	_	_	_	_	_		_	_

Remark: No spurious emissions in the range 20 dB below the limit found.

Op. Mode	Setup	Port
op-mode 2g	Setup_02	WLAN/BT antenna radiating

Polari- sation	Frequency MHz	Corrected value dBµV/m			Limit dBµV/m			Margin dB	
		QP	PK	AV	QP	PK	AV	QP/PK	AV
_	_	_	_	_	_	_	_	_	_

Remark: No spurious emissions in the range 20 dB below the limit found.

Op. Mode Setup		Port
op-mode 2n	Setup_02	WLAN/BT antenna radiating

Polari- sation	Frequency MHz	Corrected value dBµV/m		Limit dBµV/m			Margin dB		
		QP	PK	AV	QP	PK	AV	QP/PK	AV
_	-	_	_	_	_	_	_	_	_

Remark: No spurious emissions in the range 20 dB below the limit found.

Op. Mode	Setup	Port
op-mode 6	Setup 03	KLEER integral antenna radiating

Polari- sation	Frequency MHz	Corrected value dBµV/m		Limit dBµV/m			Margin dB		
		QP	PK	AV	QP	PK	AV	QP/PK	AV
_	_	_	_	_	_	_	_	_	_

Remark: No spurious emissions in the range 20 dB below the limit found.

3.4.3.2 Measurement above 30 MHz

Op. Mode	Setup	Port	
op-mode 1b	Setup 02	WLAN/BT antenna radiating	

Polari- sation	Frequency MHz	Corrected value dBµV/m		Limit dBµV/m			Margin dB		
		QP	PK	AV	QP	PK	AV	QP/PK	AV
	1475	-	46.3	36.9	-	74	54	27.7	17.1
Vert. + Hor.	2792	-	51.1	41.0	-	74	54	22.9	13.1
	4825	_	65.1	49.1	-	74	54	8.9	22.7

Remark: No further spurious emissions in the range 20 dB below the limit found.

Op. Mode	Setup	Port
op-mode 1g	Setup_02	WLAN/BT antenna radiating

Polari- sation	Frequency MHz	Corrected value dBµV/m		Limit dBµV/m			Margin dB		
		QP	PK	AV	QP	PK	AV	QP/PK	AV
Vert. + Hor.	1475	-	46.5	37.2	-	74	54	27.5	16.8
vert. + nor.	4824	-	63.4	29.9	-	74	54	10.6	24.1

Remark: No further spurious emissions in the range 20 dB below the limit found.

Op. Mode	Setup	Port
op-mode 1n	Setup_02	WLAN/BT antenna radiating

Polari- sation	Frequency MHz	Cor	rected va			Limit dBµV/m		Maı d	gin B
		QP	PK	AV	QP	PK	AV	QP/PK	AV
	1475	-	46.3	36.9	-	74	54	27.7	17.1
Vert. + Hor.	2792	-	51.1	41.0	-	74	54	22.9	13.1
	4825	-	65.1	31.3	-	74	54	8.9	22.7

Remark: No further spurious emissions in the range 20 dB below the limit found.

Op. Mode	Setup	Port
op-mode 2b	Setup_02	WLAN/BT antenna radiating

Polari- sation	Frequency MHz	Coi	rected va			Limit dBµV/m			rgin B
		QP	PK	AV	QP	PK	AV	QP/PK	AV
Mark I Han	1475	-	46.5	38.0	-	74	54	27.5	16.0
Vert. + Hor.	4874	-	67.7	47.4	-	74	54	6.6	6.6
_	7313	_	55.4	34.9	_	74	54	18.7	19.1

Remark: No further spurious emissions in the range 20 dB below the limit found.

Op. Mode	Setup			Port					
op-mode 2g	g Setup_	02	2 WLAN/BT antenna radiating						
Polari- sation	Frequency MHz	Cor	rected va dBµV/m			Limit dBµV/m		Maı d	_
		QP	PK	AV	QP	PK	AV	QP/PK	AV
	1475	-	46.2	37.2	-	74	54	27.8	16.8
Vert. + Hor.	2792	-	52.9	41.1	-	74	54	21.1	12.9
	4871	-	61.7	27.7	_	74	54	12.3	26.3

Remark: No further spurious emissions in the range 20 dB below the limit found.

Test report Reference: MDE_MEE_1309_FCCa Page 26 of 66

Op. Mode	Setup	Port	

op-mode 2n Setup_02 WLAN/BT antenna radiating

Polari- sation	Frequency MHz	Corrected value dBµV/m		Limit dBµV/m			Margin dB		
		QP	PK	AV	QP	PK	AV	QP/PK	AV
	1475	-	46.1	36.7	-	74.0	54.0	27.9	17.3
Vert. + Hor.	2792	-	50.8	41.2	-	74.0	54.0	23.2	12.8
	4876	-	63.6	29.0	_	74.0	54.0	10.4	25.0

Remark: No further spurious emissions in the range 20 dB below the limit found.

Op. Mode	Setup	Port
op-mode 3b	Setup_02	WLAN/BT antenna radiating

Polari- sation	Frequency MHz	Corrected value dBµV/m			Limit dBµV/m		Mar d	_	
		QP	PK	AV	QP	PK	AV	QP/PK	AV
	1475	-	47.1	37.9	-	74.0	54.0	26.9	16.1
llam I Vamb	2792	-	51.0	41.5	-	74.0	54.0	23.0	12.5
Hor. + Vert.	4924	_	67.0	46.8	_	74.0	54.0	7.0	7.2
	7387	_	57.0	36.1	_	74.0	54.0	17.0	17.9

Remark: No further spurious emissions in the range 20 dB below the limit found.

Op. Mode	Setup	Port
op-mode 3g	Setup_02	WLAN/BT antenna radiating

Polari- sation	Frequency MHz	Corrected value dBµV/m			Limit dBµV/m			Margin dB		
		QP	PK	AV	QP	PK	AV	QP/PK	AV	
	1475	-	45.9	37.1	-	74	54	28.1	16.9	
Vert. + Hor.	2792	-	51.5	41.1	-	74	54	22.5	12.9	
	4923	-	60.2	28.7	_	74	54	13.8	25.3	

Remark: No further spurious emissions in the range 20 dB below the limit found.

Op. Mode	Setup	Port
op-mode 3n	Setup_02	WLAN/BT antenna radiating

Polari- sation	Frequency MHz	Corrected value dBµV/m		Limit dBµV/m			Margin dB		
		QP	PK	ΑV	QP	PK	AV	QP/PK	ΑV
	1475	-	46.6	36.6	_	74	54	27.4	17.4
Vert. + Hor.	1475	-	46.6	36.6	_	74	54	27.4	17.4
	2792	-	51.4	41.1	-	74	54	22.6	12.9

Remark: No further spurious emissions in the range 20 dB below the limit found.

Test report Reference: MDE_MEE_1309_FCCa Page 27 of 66

Op. Mode	Setup	Port
op-mode 4	Setup 03	KLEER integrated antenna radiating

Polari- sation	Frequency MHz	Corrected value dBµV/m		Limit dBµV/m			Margin dB		
		QP	PK	AV	QP	PK	AV	QP/PK	AV
	1106	-	45.4	35.3	-	74	54	28.6	18.7
Mawh I Haw	1475	-	46.7	38.0	-	74	54	27.3	16.0
Vert. + Hor.	2792	-	51.7	44.1	-	74	54	22.3	10.0
	4805	-	46.2	38.2	_	74	54	27.8	15.8

Remark: No further spurious emissions in the range 20 dB below the limit found.

Op. Mode	Setup	Port
op-mode 5	Setup_03	KLEER integrated antenna radiating

Polari- Frequency sation MHz		Corrected value dBµV/m			Limit dBµV/m			Margin dB	
		QP	PK	AV	QP	PK	AV	QP/PK	AV
	1106	_	45.1	35.2	-	74	54	28.9	18.8
	1475	-	46.8	38.0	-	74	54	27.2	16.0
Vert. + Hor.	2792	-	52.1	44.5	-	74	54	21.9	9.5
	4875	-	49.9	42.7	-	74	54	24.1	11.3
	7313	_	48.8	38.8	_	74	54	25.2	15.9

Remark: No further spurious emissions in the range 20 dB below the limit found.

Op. Mode	Setup	Port
op-mode 6	Setup_03	KLEER integrated antenna radiating

Polari- sation	Frequency MHz	Corrected value dBµV/m		Limit dBµV/m		Margin dB			
		QP	PK	ΑV	QP	PK	AV	QP/PK	ΑV
	1106	1	45.8	35.2	Ī	74	54	28.2	18.8
	1475	ı	46.2	38.0	I	74	54	27.8	16.0
Vert. + Hor.	2792	ı	53.3	44.3	ı	74	54	20.7	9.7
	4955	1	48.2	41.1	Ī	74	54	25.8	12.9
	7436	ı	47.3	37.3	ı	74	54	26.7	16.7

Remark: No further spurious emissions in the range 20 dB below the limit found.

3.4.4 Test result: Spurious radiated emissions

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1b	passed
	op-mode 1g	passed
	op-mode 1n	passed
	op-mode 2b	passed
	op-mode 2g	passed
	op-mode 2n	passed
	op-mode 3b	passed
	op-mode 3g	passed
	op-mode 3n	passed
	op-mode 4	passed
	op-mode 5	passed
	op-mode 6	passed

3.5 Band edge compliance

Standard FCC Part 15, Subpart C

The test was performed according to: ANSI C63.4-2009, FCC §15.31

3.5.1 Test Description

The procedure to show compliance with the band edge requirement is divided into two measurements:

1. Show compliance of the lower and higher band edge by a conducted measurement. For the conducted measurement, the Equipment Under Test (EUT) is placed in a shielded room. The EUT is set to transmit on the lowest channel (respectively ch1 - 2412 MHz for WLAN and ch 0 - 2403 MHz for KLEER). The lower band edge is 2400 MHz. Then the EUT is set to transmit on the highest channel (respectively ch 11 - 2462 MHz for WLAN and ch 15 - 2478 MHz forKLEER). The higher band edge is 2483.5 MHz.

Analyzer settings for conducted measurement:

- Detector: Peak
- RBW / VBW = 100 / 300 kHz
- 2. Show compliance of the higher band edge falls in to restricted bands by a radiated measurement.

The radiated emissions measurements are performed in a typical installation configuration inside the fully anechoic chamber using a horn antenna at 1 m distance. EMI receiver settings for radiated measurement:

- Detector: Peak, Average
- IF Bandwidth = 1 MHz

3.5.2 Test Requirements / Limits

FCC Part 15.247 (d)

"In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. ...

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))."

For the conducted measurement the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..."

For the radiated measurement of the higher band edge connected to a restricted band the limit is "specified in Section 15.209(a)".

3.5.3 Test Protocol

3.5.3.1 Lower band edge

Conducted measurement

Temperature: 24° C Air Pressure: 1020 hPa Humidity: 43 %

Op. Mode Setup Port

op-mode 1b Setup_01 WLAN/BT antenna connector

Frequency MHz	Measured value dBm	Reference value dBm	Limit dBm	Margin dB
2400.00	-38.4	5	-15	23.4

Op. ModeSetupPortop-mode 1gSetup_01WLAN/BT antenna connector

Frequency MHz	Measured value dBm	Reference value dBm	Limit dBm	Margin dB
2400.00	-34.3	2.7	-17.3	17.0

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 1n	Setup_01	WLAN/BT antenna connector

Frequency	Measured value	Reference value	Limit	Margin
MHz	dBm	dBm	dBm	dB
2400.00	-41.9	0.6	-19.4	

Op. Mode	Setup	Port
op-mode 4	Setup_03	KLEER temp. antenna connector

Frequency	Measured value	Reference value	Limit	Margin
MHz	dBm	dBm	dBm	dB
2400.00	-39.4	-5.9	-25.9	

Remark: Please see annex for the measurement plot.

Higher band edge

Conducted measurement

Temperature: 23 °C Air Pressure: 1020 hPa Humidity: 42 %

Op. Mode Setup Port

op-mode 3b Setup_01 WLAN/BT antenna connector

Frequency MHz	Measured value dBm	Reference value dBm	Limit dBm	Margin dB
2483.50	-42.2	-14.2	-34.2	23.7

 Op. Mode
 Setup
 Port

 op-mode 3g
 Setup_01
 WLAN/BT antenna connector

Frequency MHz	Measured value dBm	Reference value dBm	Limit dBm	Margin dB
2483.50	-41.7	-17 3	-37.3	21.5

Remark: Please see annex for the measurement plot.

Op. ModeSetupPortop-mode 3nSetup_01WLAN/BT antenna connector

Frequency MHz	Measured value dBm	Reference value dBm	Limit dBm	Margin dB
2483.50	-49.1	-19.2	-39.2	22.5

Op. ModeSetupPortop-mode 6Setup_03KLEER temp. antenna connector

Frequency MHz	Measured value dBm	Reference value dBm	Limit dBm	Margin dB
2483.50	-51.4	-7.2	-27.2	24.2

Remark: Please see annex for the measurement plot.

Radiated measurement

Temperature: 24 °C Air Pressure: 1023 hPa Humidity: 47 %

Op. Mode Setup Port

op-mode 3b Setup_02 WLAN/BT antenna radiating

Frequency MHz	Polari- sation	Corrected value dBµV/m			nit V/m	Margin dB	
		PK	AV	PK	AV	PK	AV
2483.50	Hor. + Vert.	49.5	37.3	74.0	54.0	24.5	16.7

Op. Mode Setup Port

op-mode 3g Setup_02 WLAN/BT antenna radiating

F	requency MHz	Polari- sation	Corrected value dBµV/m			Limit dBµV/m		Margin dB	
			PK	AV	PK	AV	PK	AV	
	2483.50	Hor. + Vert.	49.5	37.2	74.0	54.0	24.5	16.8	

Op. Mode Setup Port

op-mode 3n Setup_02 WLAN/BT antenna radiating

Frequency MHz	Polari- sation	Corrected value dBµV/m		Limit dBµV/m		Margin dB	
		PK	AV	PK	AV	PK	AV
2483.50	Hor. + Vert.	49.4	37.3	74.0	54.0	24.6	16.7

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port

op-mode 6 Setup_01 KLEER integrated antenna radiating

Frequency MHz	Polari- sation	Corrected value dBµV/m		Limit dBµV/m		Margin dB	
		PK	AV	PK	AV	PK	AV
2483.50	Hor. + Vert.	51.7	40	74.0	54.0	22.3	14

Remark: Please see annex for the measurement plot.

3.5.4 Test result: Band edge compliance

Jio.: 1000100aici Dana cage compilance						
FCC Part 15, Subpart C	Op. Mode	Result				
	op-mode 1b	passed				
	op-mode 1g	passed				
	op-mode 1n	passed				
	op-mode 3 b	passed				
	op-mode 3 g	passed				
	op-mode 3 n	passed				
	op-mode 4	passed				
	op-mode 6	passed				

3.6 Power density

Standard FCC Part 15, 10-1-11 Subpart C

The test was performed according to: FCC §15.31

3.6.1 Test Description

The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

- Detector: Peak-Maxhold

Resolution Bandwidth (RBW): 3 kHzVideo Bandwidth (VBW): 30 kHz

- Sweep Time: Coupled

3.6.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (e)

For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

...

The same method of determining the conducted output power shall be used to determine the power spectral density.

3.6.3 Test Protocol

Temperature: 23 °C Air Pressure: 1020 hPa Humidity: 42 %

Op. Mode Setup Port

op-mode 1b Setup_01 WLAN/BT antenna conector

Power density dBm/3 kHz	Remarks
-3.8	-

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 1g	Setup_01	WLAN/BT antenna conector

Power density dBm/3 kHz	Remarks
-12.7	-

Op. Mode	Setup	Port
op-mode 1n	Setup_01	WLAN/BT antenna conector

Power density dBm/3 kHz	Remarks
-15.0	-

Op. Mode	Setup	Port	
op-mode 2b	Setup 01	WLAN/BT antenna conector	

Power density dBm/3 kHz	Remarks
-5.9	_

Op. Mode	Setup	Port
op-mode 2g	Setup_01	WLAN/BT antenna conector

Power density dBm/3 kHz	Remarks
-12.9	-

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 2n	Setup_01	WLAN/BT antenna conector

Power density dBm/3 kHz	Remarks
-15.4	-

Test report Reference: MDE_MEE_1309_FCCa Page 34 of 66

Op. Mode	Setup	Port	
op-mode 3b	Setup_01	WLAN/BT antenna conector	
•	. —		
Power density		Remarks	
dBm/3 kHz			
-3.8		=	

Op. Mode	Setup	Port
op-mode 3g	Setup_01	WLAN/BT antenna conector
	1	
Power density		Remarks
dBm/3 kHz		
-11.9		_

Op. Mode	Setup	Port
op-mode 3n	Setup_01	WLAN/BT antenna conector
Power density		Remarks
dBm/3 kHz		
1 - 1		

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 4	Setup_03	KLEER temp. antenna conector
Power density dBm/3 kHz		Remarks
-19.6		

Op. Mode	Setup	Port
op-mode 5	Setup_03	KLEER temp. antenna conector

_		
	Power density	Remarks
	dBm/3 kHz	
	-19.6	_

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 6	Setup_03	KLEER temp. antenna conector
Power density dBm/3 kHz		Remarks
-20.9		-

op-mode 6

3.6.4 Test result: Power density

	•	
FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1b	passed
	op-mode 1g	passed
	op-mode 1n	passed
	op-mode 2b	passed
	op-mode 2g	passed
	op-mode 2n	passed
	op-mode 3b	passed
	op-mode 3g	passed
	op-mode 3n	passed
	op-mode 4	passed
	op-mode 5	passed

passed

4 Test Equipment

The calibration, hardware and software states are shown for the testing period.

Test Equipment Anechoic Chamber

Lab ID:Lab 1Manufacturer:Frankonia

Description: Anechoic Chamber for radiated testing

Type: 10.58x6.38x6.00 m³

Calibration DetailsLast ExecutionNext Exec.NSA (FCC, IC)2011/01/102014/01/10

Single Devices for Anechoic Chamber

Single Device Name	Type Serial Number		Manufacturer		
Air compressor	none	-	Atlas Copco		
Anechoic Chamber	$10.58 \times 6.38 \times 6.00 \text{ m}^3$ none Calibration Details		Frankonia Last Execution Next Exec.		
	FCC listing 96716 3m Part15/18 IC listing 3699A-1 3m		2011/01/11 2014/01/10 2011/02/07 2014/02/06		
Controller Maturo	MCU	961208	Maturo GmbH		
EMC camera	CE-CAM/1	-	CE-SYS		
EMC camera Nr.2	CCD-400E	0005033	Mitsubishi		
Filter ISDN	B84312-C110-E1		Siemens&Matsushita		
Filter Universal 1A	BB4312-C30-H3	-	Siemens&Matsushita		

Test report Reference: MDE_MEE_1309_FCCa Page 37 of 66

Test Equipment Auxiliary Equipment for Radiated emissions

Lab ID: Lab 1

Description: Equipment for emission measurements

Serial Number: see single devices

Single Devices for Auxiliary Equipment for Radiated emissions

Single Device Name	Туре	Serial Number	Manufacturer
Antenna mast	AM 4.0	AM4.0/180/119205 13	Maturo GmbH
Antenna mast	AS 620 P	620/37	HD GmbH
Biconical Broadband Antenna	SBA 9119	9119-005	Schwarzbeck
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2009/06/04 2014/06/03
Biconical dipole	VUBA 9117 Calibration Details	9117-108	Schwarzbeck Last Execution Next Exec.
	Standard Calibration Standard Calibration		2008/10/27 2013/10/26 2012/01/18 2015/01/17
Broadband Amplifier 18MHz-26GHz	JS4-18002600-32-5P	849785	Miteq
Broadband Amplifier 1GHz-4GHz	AFS4-01000400-1Q-10P-4	-	Miteq
Broadband Amplifier 30MHz-18GHz	JS4-00101800-35-5P	896037	Miteq
Cable "ESI to EMI Antenna"	EcoFlex10	W18.01-2+W38.01 2	- Kabel Kusch
Cable "ESI to Horn Antenna"	UFB311A+UFB293C	W18.02-2+W38.02 2	- Rosenberger Micro-Coax
Double-ridged horn	HF 906	Rohde & Schwarz GmbH & Co. KG	
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2012/05/18 2015/05/17
Double-ridged horn	HF 906	357357/002	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2012/06/26 2015/06/25
High Pass Filter	4HC1600/12750-1.5-KK	9942011	Trilithic
High Pass Filter	5HC2700/12750-1.5-KK	9942012	Trilithic
High Pass Filter	5HC3500/12750-1.2-KK	200035008	Trilithic
High Pass Filter	WHKX 7.0/18G-8SS	09	Wainwright
Horn Antenna Schwarzbeck 15-26 GHz BBHA 9170	BBHA 9170		
Logper. Antenna	HL 562 Ultralog	100609	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2012/12/18 2015/12/17
Logper. Antenna	HL 562 Ultralog	830547/003	Rohde & Schwarz GmbH & Co. KG
Loop Antenna	HFH2-Z2	829324/006	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/10/27 2014/10/26

Test report Reference: MDE_MEE_1309_FCCa

Single Devices for Auxiliary Equipment for Radiated emissions (continued)

Single Device Name	Туре	Serial Number	Manufacturer
Pyramidal Horn Antenna 26,5 GHz	3160-09	00083069	EMCO Elektronik GmbH
Pyramidal Horn Antenna 40 GHz	3160-10	00086675	EMCO Elektronik GmbH
Tilt device Maturo (Rohacell)	Antrieb TD1.5-10kg	TD1.5- 10kg/024/3790709	Maturo GmbH

Test Equipment Auxiliary Test Equipment

Lab ID:Lab 1, Lab 2Manufacturer:see single devices

Description: Single Devices for various Test Equipment

Type: various Serial Number: none

Single Devices for Auxiliary Test Equipment

Single Device Name	Туре	Serial Number	Manufacturer		
AC Power Source	Chroma 6404	64040001304	Chroma ATE INC.		
Broadband Power Divide N (Aux)	er1506A / 93459	LM390	Weinschel Associates		
Broadband Power Divide	erWA1515	A855	Weinschel Associates		
Digital Multimeter 03 (Multimeter)	Fluke 177	86670383	Fluke Europe B.V.		
(1.1.1.1.1.1.1.1.1)	Calibration Details		Last Execution Next Exec.		
	Customized calibration		2011/10/19 2013/10/18		
Fibre optic link Satellite (Aux)	FO RS232 Link	181-018	Pontis		
Fibre optic link Transceiver (Aux)	FO RS232 Link	182-018	Pontis		
Isolating Transformer	LTS 604	1888	Thalheimer Transformatorenwerke GmbH		
Notch Filter Ultra Stable (Aux)	WRCA800/960-6EEK	24	Wainwright		
Spectrum Analyser	FSP3	836722/011	Rohde & Schwarz GmbH & Co. KG		
	Calibration Details		Last Execution Next Exec.		
	Standard		2012/06/13 2015/06/12		
Vector Signal Generator	SMIQ 03B	832492/061	Rohde & Schwarz GmbH & Co.KG		

Test report Reference: MDE_MEE_1309_FCCa Page 39 of 66

Test Equipment Digital Signalling Devices

Lab ID: Lab 1, Lab 2

Description: Signalling equipment for various wireless technologies.

Single Devices for Digital Signalling Devices

Single Device Name	Туре	Serial Number	Manufacturer
Bluetooth Signalling Unit	t CBT	100589	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/11/24 2014/11/23
CMW500	CMW500	107500	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Initial factory calibration		2012/01/26 2014/01/25
Digital Radio Communication Tester	CMD 55	831050/020	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/11/28 2014/11/27
Universal Radio Communication Tester	CMU 200	102366	Rohde & Schwarz GmbH & Co. KG
	HW/SW Status		Date of Start Date of End
	B53-2, B56V14, B68 3v04, PCMCIA, U6 Software: K21 4v21, K22 4v21, K23 4v21, K24 4v K43 4v21, K53 4v21, K56 4v22, K57 4v K59 4v22, K61 4v22, K62 4v22, K63 4v K65 4v22, K66 4v22, K67 4v22, K68 4v Firmware: μP1 8v50 02.05.06	/21, K42 4v21, /22, K58 4v22, /22, K64 4v22,	
Universal Radio Communication Tester	CMU 200	837983/052	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/12/07 2014/12/06
	HW/SW Status		Date of Start Date of End
	HW options: B11, B21V14, B21-2, B41, B52V14, B5: B54V14, B56V14, B68 3v04, B95, PCM0 SW options: K21 4v11, K22 4v11, K23 4v11, K24 4v K28 4v10, K42 4v11, K43 4v11, K53 4v K66 4v10, K68 4v10, Firmware: μP1 8v40 01.12.05	CIA, U65V02 v11, K27 4v10,	2007/01/02
	SW: K62, K69		2008/11/03
Vector Signal Generator	SMU200A	100912	Rohde & Schwarz GmbH & Co. KG

Test report Reference: MDE_MEE_1309_FCCa

Test Equipment Emission measurement devices

Lab ID: Lab 1

Description: Equipment for emission measurements

Serial Number: see single devices

Single Devices for Emission measurement devices

Single Device Name	Туре	Serial Number	Manufacturer
Personal Computer	Dell	30304832059	Dell
Power Meter	NRVD	828110/016	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/05/03 2014/05/02
Sensor Head A	NRV-Z1	827753/005	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/04/30 2014/04/29
Signal Generator	SMR 20	846834/008	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	standard calibration		2011/05/12 2014/05/11
Spectrum Analyzer	ESIB 26	830482/004	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2011/12/05 2013/12/04
	HW/SW Status		Date of Start Date of End
	Firmware-Update 4.34.4 from 3.45	2009/12/03	

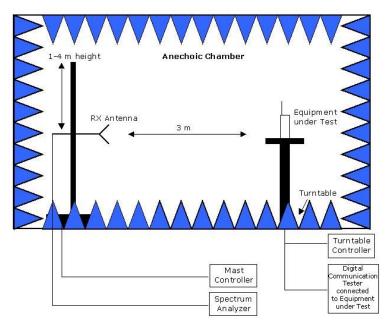
Test Equipment Radio Lab Test Equipment

Lab ID: Lab 2

Description: Radio Lab Test Equipment

Single Devices for Radio Lab Test Equipment

Single Device Name	Туре	Serial Number	Manufacturer		
Broadband Power Divide	rWA1515	A856	Weinschel Associates		
Coax Attenuator 10dB SMA 2W	4T-10	F9401	Weinschel Associates		
Coax Attenuator 10dB SMA 2W	56-10	W3702	Weinschel Associates		
Coax Attenuator 10dB SMA 2W	56-10	W3711	Weinschel Associates		
Coax Cable Huber&Suhner	Sucotest 2,0m		Huber&Suhner		
Coax Cable Rosenberger Micro Coax FA210A0010003030 SMA/SMA 1,0m	FA210A0010003030	54491-2	Rosenberger Micro-Coax		
Power Meter	NRVD	828110/016	Rohde & Schwarz GmbH & Co.KG		
	Calibration Details		Last Execution Next Exec.		
	Standard calibration		2013/05/03 2014/05/02		
RF Step Attenuator RSP	RSP	833695/001	Rohde & Schwarz GmbH & Co.KG		
Rubidium Frequency Standard	Datum, Model: MFS	5489/001	Datum-Beverly		
	Calibration Details		Last Execution Next Exec.		
	Standard calibration Standard calibration		2012/06/21 2013/06/23 2013/06/24 2014/06/23		
Sensor Head A	NRV-Z1	827753/005	Rohde & Schwarz GmbH & Co.KG		
	Calibration Details		Last Execution Next Exec.		
	Standard calibration		2013/04/30 2014/04/29		
Signal Generator SME	SME03	827460/016	Rohde & Schwarz GmbH & Co.KG		
	Calibration Details		Last Execution Next Exec.		
	Standard calibration		2011/11/25 2014/11/24		
Signal Generator SMP	SMP02	836402/008	Rohde & Schwarz GmbH & Co. KG		
	Calibration Details		Last Execution Next Exec.		
	Standard calibration		2013/05/06 2016/05/05		
Spectrum Analyser	FSIQ26	840061/005	Rohde & Schwarz GmbH & Co. KG		
	Calibration Details		Last Execution Next Exec.		
	Standard Calibration		2013/02/12 2015/02/11		
Temperature Chamber Vötsch 03	VT 4002	58566002150010	Vötsch		
	Calibration Details		Last Execution Next Exec.		
	Customized calibration		2012/03/12 2014/03/11		


Test report Reference: MDE_MEE_1309_FCCa

5 Photo Report

Photos are included in an external report.

6 Setup Drawings

Remark: Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Setup in the Anechoic chamber:

Measurements below 1 GHz: Semi-anechoic, conducting ground plane. Measurements above 1 GHz: Fully-anechoic, absorbers on all surfaces.

Test report Reference: MDE_MEE_1309_FCCa

7 FCC and IC Correlation of measurement requirements

The following tables show the correlation of measurement requirements for DTS (e.g. WLAN) equipment and Information Technology Equipment (ITE) from FCC and IC standards.

DTS equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 3: 7.2.4
Occupied bandwidth	§ 15.247 (a) (2)	RSS-210 Issue 8: A8.2 (a)
Peak power output	§ 15.247 (b) (3), (4)	RSS-210 Issue 8: A8.4 (4)
Spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen Issue 3: 6; RSS-210 Issue 8: A8.5
Spurious radiated emissions	§ 15.247 (d); § 15.209 (a)	RSS-Gen Issue 3: 6; RSS-210 Issue 8: A8.5
Band edge compliance	§ 15.247 (d)	RSS-210 Issue 8: A8.5
Power density	§ 15.247 (e)	RSS-210 Issue 8: A8.2 (b)
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 3: 7.1.2
Receiver spurious emissions	_	RSS-210 Issue 8: 2.3 RSS Gen Issue 3: 6 *)

^{*)} Receivers which are part of Transceivers are exempted with respect to Notice 2012-DRS0126.

Information Technology Equipment (ITE)

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.107	ICES-003 Issue 5: 6.1
Spurious Radiated Emissions	§ 15.109	ICES-003 Issue 5: 6.2

Op. Mode

8 Annex measurement plots

8.1 Occupied bandwidth

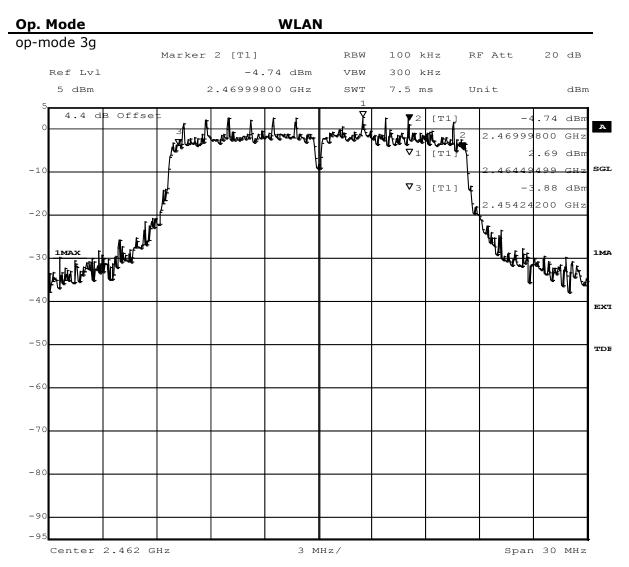
op-mode 1b								
	Marker 2 [T]	L]	RBW	100 k	Hz R	F Att	40 dE	3
Ref Lvl	-	-3.38 dBm	VBW	300 k	Hz			
25 dBm	2.4171	1200 GHz	SWT	7.5 m	ns U	nit	dE	Вm
4.4 dB Offs	et.				f.m.1.1		20 15	1
20				▼2	[T1]		.38 dE	A
				_		2.41711		
				∇1	[T1]		.13 dE	
10			1			2.41251	102 GH	_z sgl
			7	∇ 3	[T1]	-2	.15 dE	m
0	3.4	muny		M.		2.40694	800 GH	z
-10 1MAX		f.	<i>t</i>		Wy.			1MA
-20	A CONTRACTOR OF THE CONTRACTOR			A	W.	4		
-30 j £	F					A		EXI
Microtherna State Printe						This part of the state of the s	\	TDF

3 MHz/

WLAN

Title: 6dB Bandwidth

Center 2.412 GHz


-60

Comment A: CH B: 2412 MHz; 6dB bandwidth (kHz):10164

Date: 6.JAN.2014 10:44:03

Span 30 MHz

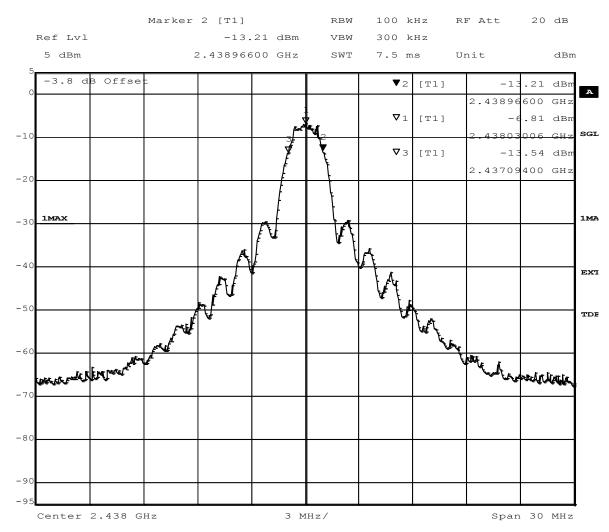
Title: 6dB Bandwidth

Comment A: CH T: 2462 MHz; 6dB bandwidth (kHz):15756

Date: 6.JAN.2014 13:56:56

Op. Mode **WLAN** op-mode 3n RBW 100 kHz RF Att 20 dB Marker 2 [T1] Ref Lvl -5.11 dBm VBW 300 kHz 5 dBm 2.47023800 GHz Unit 7.5 ms dBm SWT 4.4 dB Offse **▼**2 [T1] .11 dBm A 2.47023800 GHz .89 dBm SGL **∇**3 [T1] -6.43 dBm 2.45382200 GHz -20 -30 EXI TDE -60 -70 -80 -90 Span 30 MHz Center 2.462 GHz 3 MHz/

Title: 6dB Bandwidth

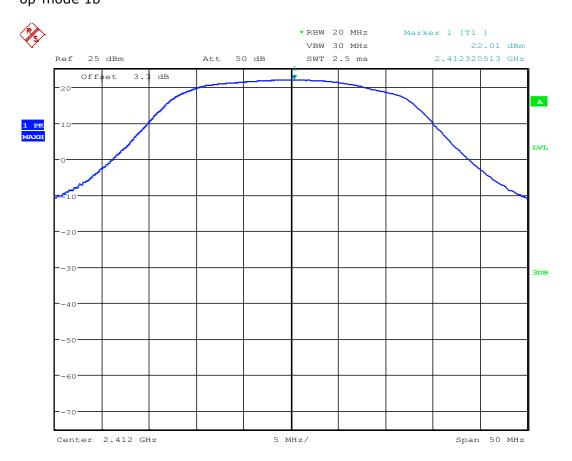

Comment A: CH T: 2462 MHz; 6dB bandwidth (kHz):16416

Date: 6.JAN.2014 15:32:38

Op. Mode KLEER

op-mode 5

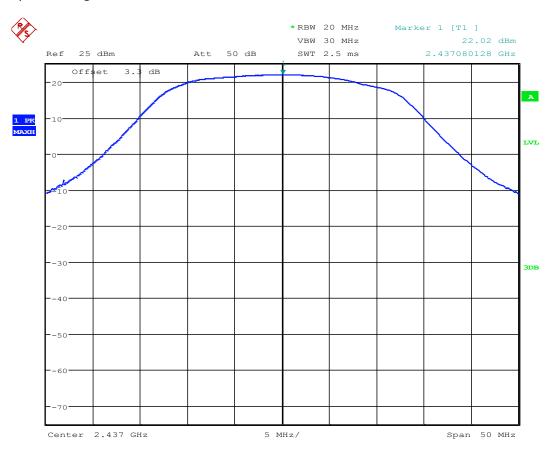
Title: 6dB Bandwidth


Comment A: CH M: 2438 MHz; 6dB bandwidth (kHz):1872

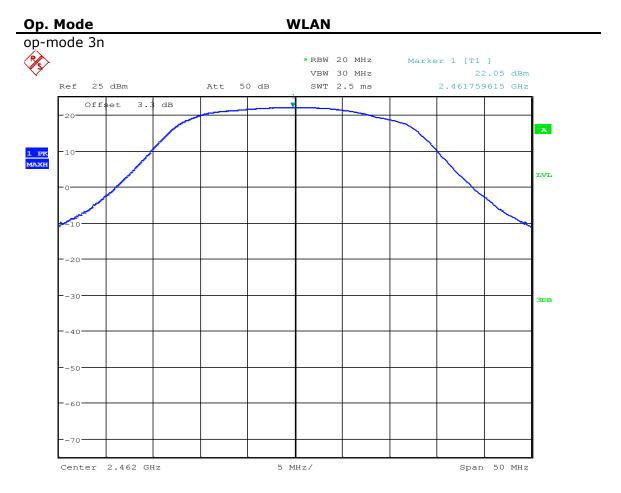
Date: 3.JAN.2014 12:53:07

8.2 Peak power output

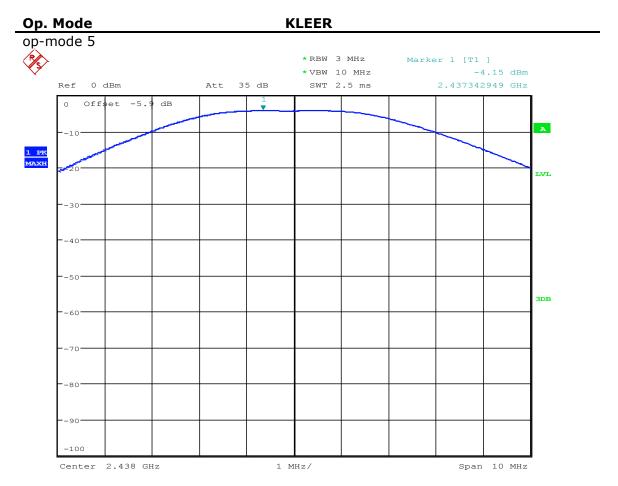
Op. Mode WLAN
op-mode 1b



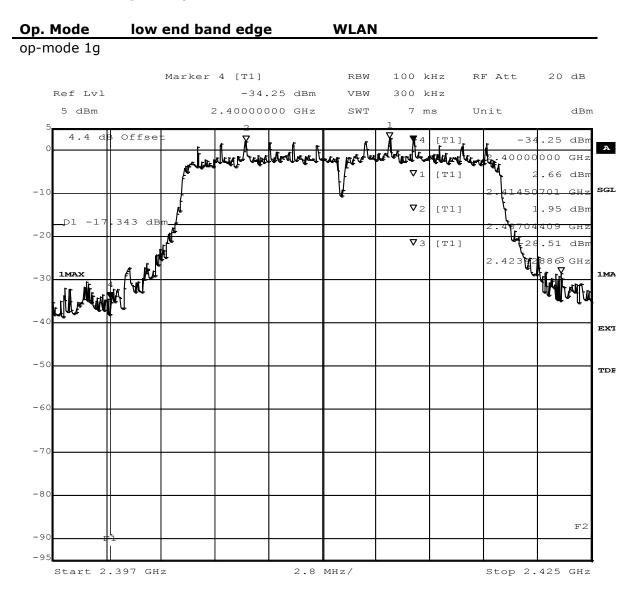
Date: 7.JAN.2014 09:09:07


Op. Mode WLAN

op-mode 2g

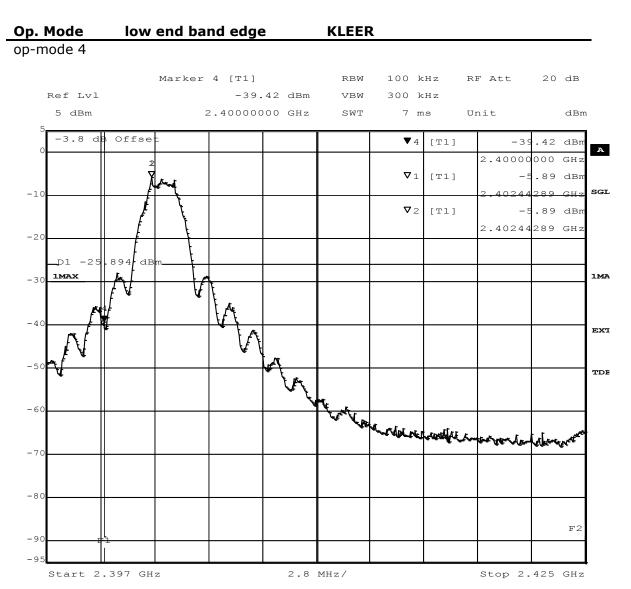

Date: 7.JAN.2014 09:11:45

Date: 7.JAN.2014 09:15:38



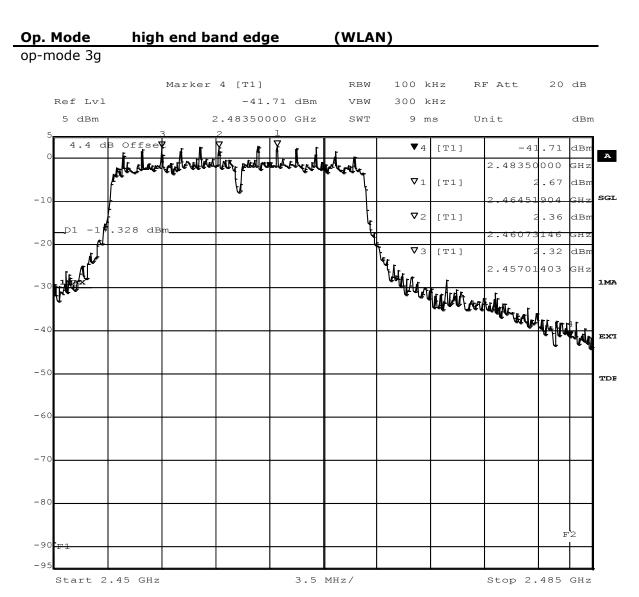
Date: 10.JAN.2014 08:54:53

8.3 Band edge compliance

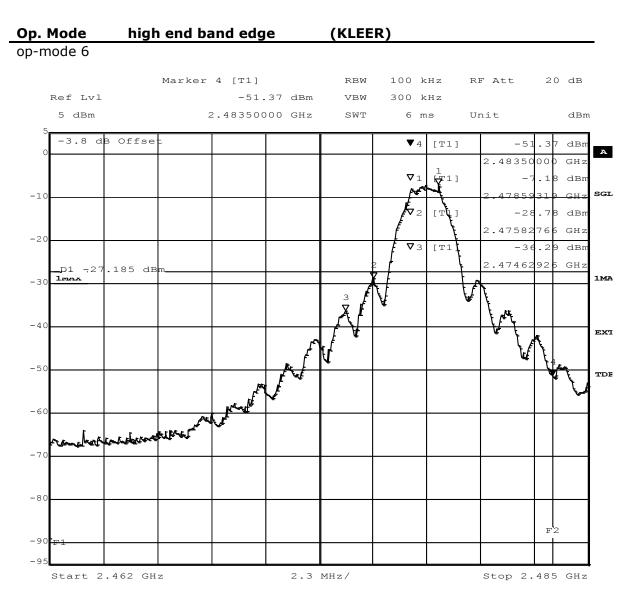

8.3.1 Band edge compliance conducted

Title: Band Edge Compliance

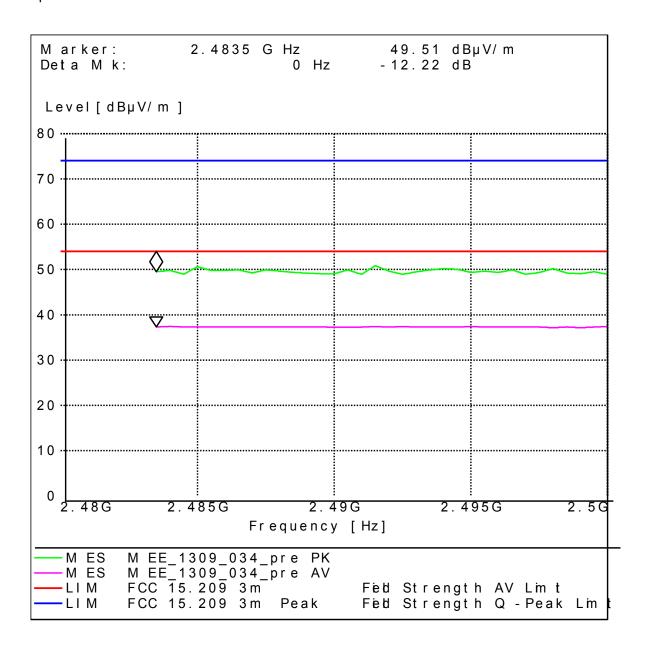
Comment A: CH B: 2412 MHz
Date: 6.JAN.2014 12:38:11



Title: Band Edge Compliance

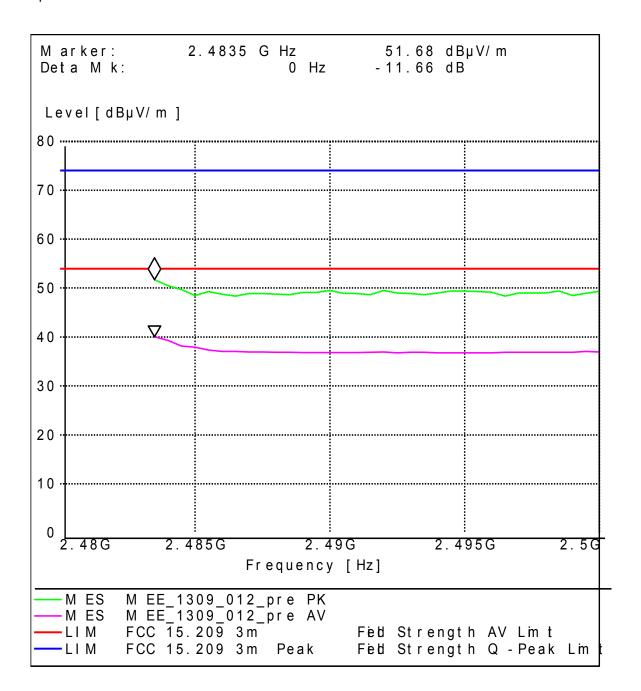

Comment A: CH B: 2403 MHz
Date: 3.JAN.2014 11:49:23

Title: Band Edge Compliance
Comment A: CH T: 2462 MHz
Date: 6.JAN.2014 13:43:19


Title: Band Edge Compliance
Comment A: CH T: 2478 MHz
Date: 3.JAN.2014 13:35:18

8.4 Band edge compliance radiated

Op. Mode high end band edge WLAN


op-mode 3n

Op. Mode high end band edge KLEER

op-mode 6

8.5 Spurious RF conducted emissions

Op. Mode		WLAN	N					_
op-mode 1b								_
	Marker 1 [T1]	RBW	100 k	Hz :	RF Att	40 dB	
Ref Lvl		5.14 dBm	VBW	300 k	Hz			
25 dBm	2.3818	8377 GHz	SWT	330	s	Unit	dBm	ı
4.4 dB Offse	et		Ι	▼1	[T1]		5.14 dBm	1
20				* +	[11]		3377 GHz	A
				∇ 2	[T1]		4.41 dBm	
10							058 GHz	
1				⊽ 3	[T1]	-3	4.41 dBm	
						6.63529	058 GHz	
0								
-10 1MAX	+							1MA
D1 -14.95 dB	m						-	l
-20								
								EXI
-30								
-30	2 V							TDF
	- Training to	In receipt when the same	Marine	whereta		متسسمت	a make	l
-40	May - Marken	The rate waster	A COLOR	1.0.00	, <u></u>			
Forth.								
-50								
-60								
-70							+	
-75								l

2.497 GHz/

Title: spurious emissions
Comment A: CH B: 2412 MHz
Date: 6.JAN.2014 10:41:34

Start 30 MHz

Stop 25 GHz

Op. Mode **WLAN** op-mode 2g Marker 1 [T1] RBW 100 kHz RF Att 20 dB Ref Lvl 2.22 dBm VBW 300 kHz 5 dBm 2.43192385 GHz SWT 330 s Unit dBm Offse **▼**1 [T1] .22 dBm 2.43192385 GHz **∇**2 [T1] .29 dBm SGL GHz -10 -54.29 dBm **∇**3 [T1] D1 -17.868 dB -20 1MA -30 -40 EXI -50 TDF -60 -80 -90

2.497 GHz/

Title: spurious emissions
Comment A: CH M: 2437 MHz
Date: 6.JAN.2014 13:20:20

Start 30 MHz

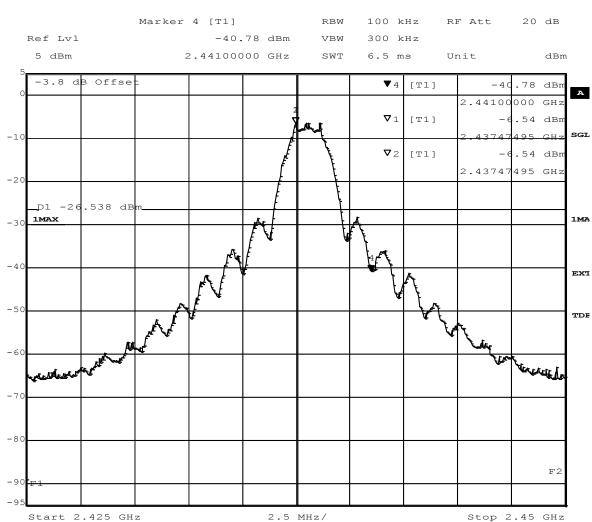
Stop 25 GHz

Op. Mode WLAN

op-mode 3n Marker 1 [T1] RBW 100 kHz RF Att 20 dB Ref Lvl 0.77 dBm VBW 300 kHz 5 dBm 2.43192385 GHz SWT 330 s Unit dBm 4.4 Offse **▼**1 [T1] .77 dBm 2.43192385 GHz **∇**2 [T1] .23 dBm 3529058 GHz SGL -10 **∇**3 [T1] -54.23 dBm 6.63529058 GHz .184 dBm -20 1MAX 1MA -30 -40 EXI -50 TDF -60 -80 -90

2.497 GHz/

Title: spurious emissions
Comment A: CH T: 2462 MHz
Date: 6.JAN.2014 15:30:42


Start 30 MHz

Stop 25 GHz

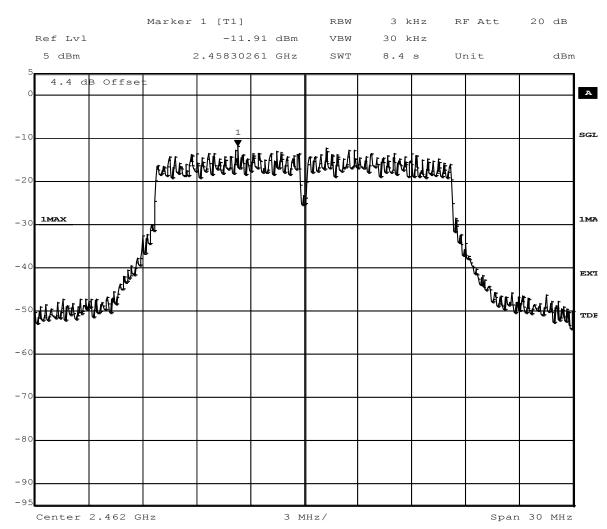
Op. Mode KLEER

op-mode 5

Title: Band Edge Compliance

Comment A: CH M: 2438 MHz
Date: 3.JAN.2014 12:38:14

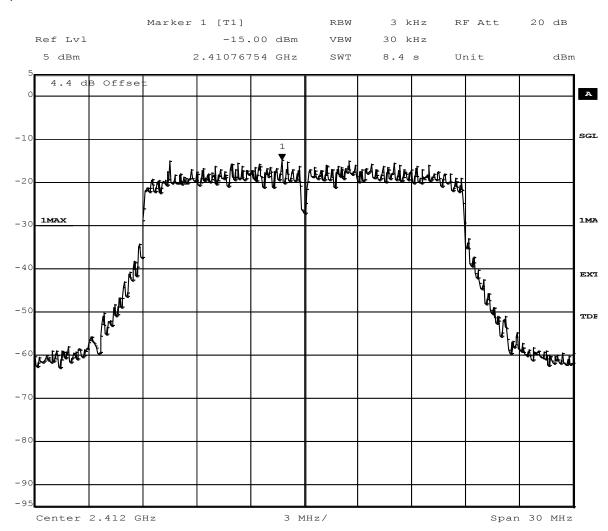
8.6 Power density


Op. Mode			WLAN	1					
op-mode 1b									
	Marker	1 [T1]		RBW	3 k	Hz F	RF Att	40 dB	
Ref Lvl		-3.	84 dBm	VBW	30 k	Hz			
25 dBm	2	2.410226	545 GHz	SWT	8.4	s U	Jnit	dBm	
4.4 dB Off	set								
20								 	A
10								+	SGI
0			1						
				1 1					
-10 1MAX		1	A. i. A. A. A.	A COMPANIENT OF THE PROPERTY O	111	_			1M2
-20		- Leveline	-aneu	· · · •••	ملكر لياتر				
-30	and the state of t	V			V	To A We	1		EX
	<u>f</u>						Tel		TD
-50	Ē						Ju .		
-60 Minterest Minterest							N.	it leaders	
-70									
-75	CII-		3 M	/	<u>[</u>	<u> </u>	Com - ::	n 30 MHz	

Title: Power Density
Comment A: CH B: 2412 MHz;
Date: 6.JAN.2014 10:58:47

Op. Mode WLAN

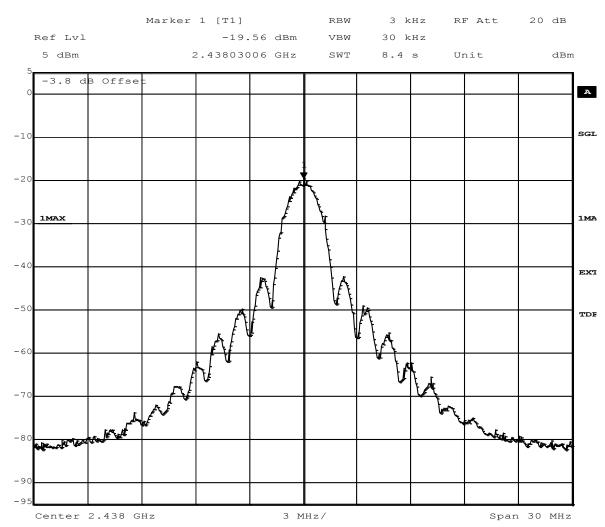
op-mode 3g



Title: Power Density
Comment A: CH T: 2462 MHz;
Date: 6.JAN.2014 14:11:38

Op. Mode WLAN

op-mode 1n



Title: Power Density
Comment A: CH B: 2412 MHz;
Date: 6.JAN.2014 14:44:45

Op. Mode KLEER

op-mode 5

Title: Power Density
Comment A: CH M: 2438 MHz;
Date: 3.JAN.2014 13:07:49