

Inter**Lab**®

FCC Measurement/Technical Report on

KLEER transceiver NR-207

Report Reference: MDE_MEE_1213_FCCa

Test Laboratory:

Borsigstr. 11 Germany 7Layers AG 40880 Ratingen

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7 layers AG Borsigstrasse 11 40880 Ratingen, Germany Phone: +49 (0) 2102 749 0 Fax: +49 (0) 2102 749 350 www.7Layers.com Aufsichtsratsvorsitzender • Chairman of the Supervisory Board: Ralf Mertens Vorstand • Board: Dr. H.-J. Meckelburg

Registergericht • registered in: Düsseldorf, HRB 44096 USt-IdNr • VAT No.: DE 203159652 TAX No. 147/5869/0385

Table of Contents

O	Sun	nmary	3
).1).2	Technical Report Summary Measurement Summary	3 4
1	Adr	ninistrative Data	6
1	.1 .2 .3 .4	Testing Laboratory Project Data Applicant Data Manufacturer Data	6 6 6
2	Tes	t object Data	7
	2.1 2.2 2.3 2.4 2.5 2.6 2.7	General EUT Description EUT Main components Ancillary Equipment Auxiliary Equipment EUT Setups Operating Modes Product labelling	7 8 8 8 9 9
3	Tes	t Results	10
3 3 3	3.1 3.2 3.3 3.4 3.5 3.6	Occupied bandwidth Peak power output Spurious RF conducted emissions Spurious radiated emissions Band edge compliance Power density	10 12 15 17 22 25
4	Tes	t Equipment	27
5	Pho	oto Report	34
6	Set	up Drawings	34
7	FCC	and IC Correlation of measurement requirements	35
8	Anr	nex measurement plots	36
8	3.1 3.2 3.3 3.4	Occupied bandwidth Peak power output Band edge compliance conducted and Spurious RF conducted emissic Power density	36 39 ons 42 48

0 Summary

0.1 Technical Report Summary

Type of Authorization

Certification for an Intentional Radiator (Digital Device / Spread Spectrum).

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 (10-1-11 Edition) and 15 (10-1-11 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart C – Intentional Radiators

§ 15.207 Conducted limits

§ 15.209 Radiated emission limits; general requirements

§ 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz

Note:

The tests were selected and performed with reference to the FCC measurement guide line "Measurement of Digital Transmission Systems Operating under Section 15.247 March 23, 2005"

Instead of applying ANSI C63.4–1992 which is referenced in the FCC Public Note, the newer ANSI C63.4–2009 is applied.

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 0.2 Measurement Summary.

Test report Reference: MDE_MEE_1213_FCCa

0.2 Measurement Summary

FCC Part 15, Sub	part C	§ 15.207	
Conducted emissio	ns (AC power line)		
The measurement	was performed accord	ling to ANSI C63.4	2009
OP-Mode	Setup	Port	Final Result
_	-	_	N/A
FCC Part 15, Sub		§ 15.247 (a) (1)	
Occupied bandwidt			
The measurement	was performed accord	ling to FCC § 15.31	10-1-11 Edition
OP-Mode	Setup	Port	Final Result
op-mode 1	Setup_02	Int.ant.connector	passed
op-mode 2	Setup_02	Int.ant.connector	passed
op-mode 3	Setup_02	Int.ant.connector	passed
'	. –		•
FCC Part 15, Sub		§ 15.247 (b) (1)	
Peak power output			
The measurement	was performed accord	ling to FCC § 15.31	10-1-11 Edition
OP-Mode	Setup	Port	Final Result
op-mode 1	Setup_02	Int.ant.connector	passed
op-mode 2	Setup_02	Int.ant.connector	passed
op-mode 3	Setup_02	Int.ant.connector	passed
			p
FCC Part 15, Subpart C		§ 15.247 (d)	
Spurious RF condu	cted emissions		
The measurement	was performed accord	ling to FCC § 15.31	10-1-11 Edition
OP-Mode	Setup	Port	Final Result
op-mode 1	Setup_02	Int.ant.connector	passed
op-mode 2	Setup_02	Int.ant.connector	passed
op-mode 3	Setup_02	Int.ant.connector	passed
- 1			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
FCC Part 15, Subpart C		§ 15.247 (d), § 15.	35 (b), § 15.209
Spurious radiated e	emissions		
The measurement	was performed accord	ling to ANSI C63.4	2009
OP-Mode	Setup	Port	Final Result
op-mode 1	Setup_01/02/03	Enclosure	passed
op-mode 2	Setup_01/02/03	Enclosure	passed
op-mode 3	Setup_01/02/03	Enclosure	passed
'	. –		•
FCC Part 15, Subpart C		§ 15.247 (d)	
Band edge complia			
The measurement	was performed accord	ling to FCC § 15.31 /	10-1-11 Edition /
ANSI C63.4			2009
OP-Mode	Setup	Port	Final Result
op-mode 1	Setup_02	Int.ant.connector	passed
op-mode 3	Setup_02	Int.ant.connector	passed
op-mode 3	Setup_01	Enclosure	passed
- 1	1- — - ·		1

Responsible for

Accreditation Scope:

FCC Part 15, Subpart C § 15.247 (e) Power density The measurement was performed according to FCC § 15.31 10-1-11 Edition **OP-Mode** Setup Port **Final Result** op-mode 1 Setup_02 Int.ant.connector passed Setup_02 op-mode 2 Int.ant.connector passed op-mode 3 Setup_02 Int.ant.connector passed N/A not applicable (the EUT is powered by DC)

Responsible for Test Report:

1 Administrative Data

1.1 Testing Laboratory

Company Name: 7Layers AG

Address Borsigstr. 11

40880 Ratingen

Germany

This facility has been fully described in a report submitted to the FCC and accepted under the registration number 96716 .

The test facility is also accredited by the following accreditation organisation:

Laboratory accreditation no.: DAkkS D-PL-12140-01-01

Responsible for Accreditation Scope: Dipl.-Ing. Bernhard Retka

Dipl.-Ing. Robert Machulec Dipl.-Ing. Marco Kullik Dipl.-Ing. Andreas Petz

Report Template Version: 2012-03-14

1.2 Project Data

Responsible for testing and report: Dipl.-Ing. Marco Kullik

Date of Test(s): 2012-10-15 to 2013-01-07

Date of Report: 2013-01-09

1.3 Applicant Data

Company Name: Mitsubishi Electric Europe B.V.

Address: Mündelheimer Weg 35

40472 Düsseldorf

Germany

Contact Person: Mr. Rolf Borchert

1.4 Manufacturer Data

Company Name: Mitsubishi Electric Corporation

Address: Sanda Works

2-3-33, Miwa, Sanda-city

Hyogo 669-1513

Japan

Contact Person:

2 Test object Data

2.1 General EUT Description

Equipment under Test: KLEER transceiver

Type Designation: NR-207

Kind of Device: Car Multimedia System

(optional)

Voltage Type: DC (vehicular)

Voltage Level: 12 V

Tested Modulation Type: FSK (MSK)

General product description:

The KLEER Transceiver is operating in the 2.4 GHz ISM band in the range 2403.0 – 2478.0 MHz and uses the Direct Sequence Spread Spectrum (DSSS) Modulation. The KLEER technology supports 16 channels in the 2.4 GHz ISM band, each spaced by 5 MHz whilst the nominal bandwidth is designed as 3 MHz. The KLEER technology provides Dynamic Frequency Selection.

Specific product description for the EUT:

The EUT is a car multimedia system containing besides a KLEER also a Bluetooth transceiver and a GPS receiver.

The EUT provides the following ports:

Ports

KLEER antenna connector
Enclosure
GPS antenna port
Bluetooth antenna port
Cable harness including DC Port
AM/FM antenna port
Auxiliary audio port
Display port
Night view camera port
Retrovit NAVI port
TV tuner port
RVC/UCI port
Rear seat entertainment port

The KLEER antenna connector is not accessible for the end user.

The main components of the EUT are listed and described in Chapter 2.2

2.2 EUT Main components

Type, S/N, Short Descriptions etc. used in this Test Report

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status	Date of Receipt
EUT A	KLEER	NR-207	ME7030C22	A21290282	A21290158	_
(Code:	transceiver		81040	04	04	
08780a01)						
Remark: EUT	A is equipped w	ith an integral a	ntenna (gain =	-4.8 dBi) & ant	enna connector.	
EUT B	KLEER	NR-207	ME7000C22	A21290280	A21290156	_
(Code:	transceiver		71008	04	04	
08780c01)						
Remark: EUT	A is equipped w	ith an integral a	ntenna (gain =	-4.8 dBi) & ant	enna connector.	
EUT C	KLEER	NR-207	ME7020C07	A21290233	A21290182	_
(Code:	transceiver		41011	07	06	
08780e01)						
Remark: EUT	A is equipped w	ith an integral a	ntenna (gain =	-4.8 dBi) & ant	enna connector.	

NOTE: The short description is used to simplify the identification of the EUT in this test report.

2.3 Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	HW Status	SW Status	Serial no.	FCC ID
-	_	_	_	_	_	

2.4 Auxiliary Equipment

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	Serial no.	HW Status	SW Status	FCC ID
AUX1		Display Unit	-	-	-	-
AUX2		Turning knob	-	-	-	-
AUX3		Cable	-	-	-	-
		harness				

2.5 EUT Setups

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup No.	Combination of EUTs	Description and Rationale
Setup_01	EUT A + AUX1 + AUX2 +	setup for radiated & conducted measurements (AUX1, AUX2
	AUX3	and AUX3 are required to operate the EUT)
Setup_02	EUT B + AUX1 + AUX2 +	setup for radiated & conducted measurements (AUX1, AUX2
	AUX3	and AUX3 are required to operate the EUT)
Setup_03	EUT C + AUX1 + AUX2 +	setup for radiated & conducted measurements (AUX1, AUX2
	AUX3	and AUX3 are required to operate the EUT)
<u> </u>		

2.6 Operating Modes

This chapter describes the operating modes of the EUTs used for testing.

Op. Mode	Description of Operating Modes	Remarks
op-mode 1	TX-mode, the EUT transmits on the lowest	Operation on lowest frequency (channel 0)
	channel (2403 MHz)	
op-mode 2	TX-mode, the EUT transmits on the mid	Operation on mid frequency (channel 7)
	channel (2438 MHz)	
op-mode 3	TX-mode, the EUT transmits on the	Operation on highest frequency (channel 15)
	highest channel (2478 MHz)	

2.6.1 Special software used for testing

No special software was used for testing.

2.7 Product labelling

Please refer to the documentation of the applicant.

2.7.1 FCC ID label

FCC ID: UJHNR207UHD

IC: 662K-NR207

2.7.2 Location of the label on the EUT

Please refer to the documentation of the applicant.

3 Test Results

3.1 Occupied bandwidth

Standard FCC Part 15, 10-1-11 Subpart C

The test was performed according to: FCC §15.31

3.1.1 Test Description

The Equipment Under Test (EUT) was setup to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The results recorded were measured with the modulation which produce the worst-case (widest) occupied bandwidth.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

- Resolution Bandwidth (RBW): 100 kHz
- Video Bandwidth (VBW): 300 kHz
- Span: 30 MHz

3.1.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (a) (2)

Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Used conversion factor: Output power (dBm) = 10 log (Output power (W) / 1mW)

Test report Reference: MDE_MEE_1213_FCCa

3.1.3 Test Protocol

Temperature: 22 °C Air Pressure: 1020 hPa Humidity: 40 %

Op. Mode Setup Port

op-mode 1 Setup_01 Int.ant.connector

6 dB bandwidth MHz	Remarks
1.932	-

Remark: Please see annex for the measurement plot.

Op. ModeSetupPortop-mode 2Setup_01Int.ant.connector

6 dB bandwidth MHz	Remarks
1.812	-

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 3	Setup_01	Int.ant.connector

6 dB bandwidth MHz	Remarks
1.992	_

3.1.4 Test result: Occupied bandwidth

FCC Part 15, Subpart C

Op. Mode	Result
op-mode 1	passed
op-mode 2	passed
op-mode 3	passed

3.2 Peak power output

Standard FCC Part 15, 10-1-11 Subpart C

The test was performed according to: FCC §15.31

3.2.1 Test Description

The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power. The reference level of the spectrum analyzer was set higher than the output power of the EUT. The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

3.2.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (b) (3)

For systems using digital modulation techniques in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1 watt.

Used conversion factor: Limit (dBm) = $10 \log (Limit (W)/1mW)$

==> Maximum Output Power: 30 dBm

3.2.3 Test Protocol

Temperature: 22 °C Air Pressure: 1020 hPa Humidity: 40 %

Op. Mode Setup Port

op-mode 1 Setup_01 Int.ant.connector

Output power dBm	Remarks		
2.70	The EIRP including antenna gain (-4.8 dBi) is -2.1 dBm. Detector RMS.		

Remark: Please see annex for the measurement plot.

Op. ModeSetupPortop-mode 2Setup_01Int.ant.connector

Output power dBm	Remarks	
2.0	The EIRP including antenna gain (-4.8 dBi) is -2.8 dBm. Detector RMS.	

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 3	Setup_01	Int.ant.connector

	Output power	Remarks		
L	dBm			
	1.1	The EIRP including antenna gain (-4.8 dBi) is -3.7 dBm. Detector RMS.		

Remark: Please see annex for the measurement plot.

Test result: Peak power output FCC Part 15, Subpart C

op-mode 1 pas	sed
op-mode 2 pas	sed
op-mode 3 pas	sed

3.3 Spurious RF conducted emissions

Standard FCC Part 15, 10-1-11 Subpart C

The test was performed according to: FCC §15.31

3.3.1 Test Description

The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

- Detector: Peak-Maxhold

Frequency range: 30 – 25000 MHz
Resolution Bandwidth (RBW): 100 kHz
Video Bandwidth (VBW): 300 kHz

- Sweep Time: 330 s

The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance" (cf. chapter 3.5). This value is used to calculate the 20 dBc limit.

3.3.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (c)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

3.3.3 Test Protocol

Temperature: 23°C
Air Pressure: 1020hPa
Humidity: 41%

Op. Mode Setup Port

op-mode 1 Setup_01 Temp.ant.connector

Frequency	Corrected measurement value dBm	Reference value	Limit	Margin to limit
MHz		dBm	dBm	dB
/	/	/	/	/

Remark: No (further) spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot.

Op. ModeSetupPortop-mode 2Setup_01Temp.ant.connector

Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Margin to limit dB
/	/	/	/	/

Remark: No (further) spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 3	Setup_01	Temp.ant.connector

Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Margin to limit dB
/	/	/	/	/

Remark: No (further) spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot.

3.3.4 Test result: Spurious RF conducted emissions

<u>-</u>		
FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed
	op-mode 2	passed
	op-mode 3	passed

Spurious radiated emissions

Standard FCC Part 15, 10-1-11 Subpart C

The test was performed according to: ANSI C63.4-2009

3.4.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C63.4–2009 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a nonconductive table 1.0 x 2.0 m² in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

The test was performed at the distance of 3 m between the EUT and the receiving antenna. The measurement procedure is implemented into the EMI test software ES-K1 from R&S. The radiated emissions measurements were made in a typical installation configuration. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is performed at 2 axes. A pre-check is also performed while the EUT is powered from both AC and DC (battery) power in order to find the worst-case operating condition.

1. Measurement up to 30 MHz

The test set-up was made in accordance to the general provisions of ANSI C 63.4-2009. The Equipment Under Test (EUT) was set up on a non-conductive table in the anechoic chamber.

The radiated emissions measurements were made in a typical installation configuration. The measurement procedure is implemented into the EMI test software ES-K1 from R&S. The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

- Anechoic chamber
- Antenna distance: 10 m - Detector: Peak-Maxhold
- Frequency range: 0.009 0.15 and 0.15 30 MHz
- Frequency steps: 0.1 kHz and 5 kHz
- IF-Bandwidth: 0.2 kHz and 10 kHz
- Measuring time / Frequency step: 100 ms

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Open area test side
- Antenna distance: according to the Standard
- Detector: Quasi-Peak
- Frequency range: 0.009 30 MHz
- Frequency steps: measurement at frequencies detected in step 1
- IF-Bandwidth: 200 Hz 10 kHz
- Measuring time / Frequency step: 100 ms

2. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

Preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:
- Antenna distance: 3 m

Detector: Peak-MaxholdFrequency range: 30 – 1000 MHz

Frequency steps: 60 kHzIF-Bandwidth: 120 kHz

Measuring time / Frequency step: 100 μs
Turntable angle range: -180° to 180°

- Turntable step size: 90°

Height variation range: 1 – 3 m
Height variation step size: 2 m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: second measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is, to find out the approximate turntable angle and antenna height for each frequency.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 100 ms

- Turntable angle range: -180° to 180°

- Turntable step size: 45°

Height variation range: 1 – 4 mHeight variation step size: 0.5 m

- Polarisation: horizontal + vertical

After this step the EMI test system has determined the following values for each frequency (of step 1):

- Frequency

- Azimuth value (of turntable)

- Antenna height

The last two values have now the following accuracy:

- Azimuth value (of turntable): 45°

- Antenna height: 0.5 m **Step 3:** final measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will be slowly varied by $+/-22.5^{\circ}$ around this value. During this action the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position the antenna height is also slowly varied by +/-25 cm around the antenna height determined. During this action the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 100 ms

- Turntable angle range: -22.5° to + 22.5° around the determined value

- Height variation range: -0.25m to + 0.25m around the determined value

Step 4: final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed:

EMI receiver settings for step 4:
- Detector: Quasi-Peak(< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 1 s

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive support at 1.4 m height in the fully-anechoic chamber. The measurement distance was reduced to 1 m. The results were extrapolated by the extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements, inverse linear-distance squared for the power reference level measurements). Due to the fact that in this frequency range a double ridged wave guided horn antenna (up to 18 GHz) and a horn antenna (18–25 GHz) are used, the steps 2-4 are omitted. Step 1 was performed with one height of the receiving antenna only.

EMI receiver settings:

Detector: Peak, AverageIF Bandwidth = 1 MHz

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

For the data rate in mode n the test is performed as worst-case-check in order to verify that emissions have a comparable level as found at modes b and g. Typically, the measurement is performed in the frequency range 1 to 8 GHz but it depends on the emissions found during the test for the modes b and g. Please refer to the results for the used frequency range.

3.4.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limit(dBµV/m @10m)
0.009 - 0.49	2400/F(kHz)	300	Limit (dBµV/m) + 30 dB
0.49 - 1.705	24000/F(kHz)	30	Limit (dBµV/m) + 10 dB
1.705 – 30	30	30	Limit (dBµV/m) + 10 dB

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limit (dBµV/m)
30 – 88	100	3	40.0
88 – 216	150	3	43.5
216 – 960	200	3	46.0
above 960	500	3	54.0

§15.35(b)

..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

3.4.3 Test Protocol

Temperature: 24°C Air Pressure: 1001 hPa Humidity: 36 %

3.4.3.1 Measurement up to 30 MHz

Op. Mode	Setup	Port
op-mode 1	Setup_02	Enclosure

Antenna	Frequency	Corrected value		Limit	Limit	Margin	Margin
Position	MHz	dBµV/m		dBµV/	dBµV/	to	to
		•		m	m	limit	limit
						dB	dB
		PK	AV	PK	AV	PK	AV
0°	_	_	_	_	_	_	_
90°	_	_	_	_	_	_	_

Remark: No (further) spurious emissions in the range 20 dB below the limit found therefore step 2 was not performed.

3.4.3.2 Measurement above 30 MHz

Op. Mode	Setup	Port
op-mode 1	Setup_01/Setup_03	Enclosure

Polari- sation	Frequency MHz	Corrected value dBµV/m			Limit dBµV /m	Limit dBµV /m	Limit dBµV /m	Margin to limit dB	Margin to limit dB
		QP	PK	AV	QP	PK	AV	QP/PK	ΑV
Hor. + Vert.	2873.5	ı	52.1	43.4	_	74.0	54.0	21.9	10.6
	4805.0	ı	49.2	41.8	_	74.0	54.0	24.8	12.2

Remark: No (further) spurious emissions in the range 20 dB below the limit found.

Op. Mode	Setup	Port
op-mode 2	Setup_01/Setup_03	Enclosure

Polari- sation	Frequency MHz	Corrected value dBµV/m			Limit dBµV /m	Limit dBµV /m	Limit dBµV /m	Margin to limit dB	Margin to limit dB
		QP	PK	AV	QP	PK	AV	QP/PK	AV
Hor. + Vert.	4877.5	_	45.4	37.2	_	74.0	54.0	28.6	16.8
	7312.5	_	50.3	41.4	_	74.0	54.0	23.7	12.6

Remark: No (further) spurious emissions in the range 20 dB below the limit found.

Op. Mode	Setup	Port
op-mode 3	Setup 01/Setup 03	Enclosure

Polari- sation	Frequency MHz	Corrected value dBµV/m		Limit dBµV /m	Limit dBµV /m	Limit dBµV /m	Margin to limit dB	Margin to limit dB	
		QP	PK	AV	QP	PK	AV	QP/PK	AV
Hor. + Vert.	4955.0	_	51.2	44.0	_	74.0	54.0	22.8	10.0
	7436.0	_	48.5	39.0	_	74.0	54.0	25.5	15.0
									_

Remark: No (further) spurious emissions in the range 20 dB below the limit found.

3.4.4 Test result: Spurious radiated emissions

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed
	op-mode 2	passed
	op-mode 3	passed

3.5 Band edge compliance

Standard FCC Part 15, 10-1-11 Subpart C

The test was performed according to: ANSI C63.4-2009, FCC §15.31

3.5.1 Test Description

The procedure to show compliance with the band edge requirement is divided into two measurements:

1. Show compliance of the lower and higher band edge by a conducted measurement

For the conducted measurement, the Equipment Under Test (EUT) is placed in a shielded room. The EUT is set to transmit on the lowest channel (2412 MHz). The lower band edge is 2400 MHz and the EUT is set to transmit on the highest channel (2462 MHz). The higher band edge is 2483.5 MHz.

Analyzer settings for conducted measurement:

- Detector: Peak
- RBW / VBW = 100 / 300 kHz
- 2. Show compliance of the higher band edge falls in to restricted bands by a radiated measurement.

The radiated emissions measurements are performed in a typical installation configuration inside the fully anechoic chamber using a horn antenna at 1 m distance. EMI receiver settings for radiated measurement:

- Detector: Peak, Average
- IF Bandwidth = 1 MHz

3.5.2 Test Requirements / Limits

FCC Part 15.247 (d)

"In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. ...

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))."

For the conducted measurement the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..."

For the radiated measurement of the higher band edge connected to a restricted band the limit is "specified in Section 15.209(a)".

Test report Reference: MDE_MEE_1213_FCCa

3.5.3 Test Protocol

3.5.3.1 Lower band edge Conducted measurement

Temperature: 22 °C Air Pressure: 1020 hPa Humidity: 42 %

Op. Mode Setup Port

op-mode 1 Setup_01 Int.ant.connector

Frequency	Measured value	Reference value	Limit	Margin to limit
MHz	dBm	dBm	dBm	dB
2400.00	-30.9	2.5	-17.5	13.4

Remark: Please see annex for the measurement plot.

3.5.3.2 Higher band edge Conducted measurement

Temperature: 22 °C Air Pressure: 1020 hPa Humidity: 42 %

Op. Mode Setup Port

op-mode 3 Setup_01 Int.ant.connector

Frequency	Measured value	Reference value	Limit	Margin to limit	
MHz	dBm	dBm	dBm	dB	
2483.50	-45.0	0.4	-19.6	25.4	

Remark: Please see annex for the measurement plot.

Radiated measurement

Temperature: 24 °C Air Pressure: 1001 hPa Humidity: 36 %

Op. Mode Setup Port

op-mode 3 Setup_01 Enclosure

Frequency MHz	Polari- sation		ed value V/m	Limit dBµV/m	Limit dBµV/m	Margin to limit dB	Margin to limit dB
		PK	AV	PK	AV	PK	AV
2483.50	Hor. + Vert.	60.5	49.4	74.0	54.0	13.6	4.6

Remark: Please see annex for the measurement plot.

3.5.4 Test result: Band edge compliance

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed
	op-mode 3	passed

3.6 Power density

Standard FCC Part 15, 10-1-11 Subpart C

The test was performed according to: FCC §15.31

3.6.1 Test Description

The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

- Detector: Peak-Maxhold

Resolution Bandwidth (RBW): 3 kHzVideo Bandwidth (VBW): 30 kHz

- Sweep Time: Coupled

3.6.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (e)

For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

. . .

The same method of determining the conducted output power shall be used to determine the power spectral density.

3.6.3 Test Protocol

Temperature: 22 °C Air Pressure: 1020 hPa Humidity: 42 %

Op. Mode Setup Port

op-mode 1 Setup_01 Int.ant.connector

Power density dBm/3 kHz	Remarks
-10.17	=

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 2	Setup_01	Int.ant.connector

Power density dBm/3 kHz	Remarks
-11.38	_

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 3	Setup_01	Int.ant.connector

Power de dBm/3	•	Remarks
-12.7	1	-

Remark: Please see annex for the measurement plot.

3.6.4 Test result: Power density

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed
	op-mode 2	passed
	op-mode 3	passed

4 Test Equipment

The calibration, hardware and software states are shown for the testing period.

Test Equipment Anechoic Chamber

Lab 1D: Lab 1
Manufacturer: Frankonia

Description: Anechoic Chamber for radiated testing

Type: 10.58x6.38x6.00 m³

Single Devices for Anechoic Chamber

Single Device Name	Туре	Serial Number	Manufacturer
Air compressor	none	-	Atlas Copco
Anechoic Chamber	10.58 x 6.38 x 6.00 m ³ Calibration Details	none	Frankonia Last Execution Next Exec.
	FCC listing 96716 3m Part15/18 IC listing 3699A-1 3m		2011/01/11 2014/01/10 2011/02/07 2014/02/06
Controller Maturo	MCU	961208	Maturo GmbH
EMC camera	CE-CAM/1	-	CE-SYS
EMC camera Nr.2	CCD-400E	0005033	Mitsubishi
Filter ISDN	B84312-C110-E1		Siemens&Matsushita
Filter Universal 1A	BB4312-C30-H3	-	Siemens&Matsushita

Test Equipment Auxiliary Equipment for Radiated emissions

Lab ID: Lab 1

Description: Equipment for emission measurements

Serial Number: see single devices

Single Devices for Auxiliary Equipment for Radiated emissions

Single Device Name	Туре	Serial Number	Manufacturer
Antenna mast	AS 620 P	620/37	HD GmbH
Biconical dipole	VUBA 9117 <i>Calibration Details</i>	9117-108	Schwarzbeck Last Execution Next Exec.
	Standard Calibration Standard Calibration		2008/10/27 2013/10/26 2012/01/18 2015/01/17
Broadband Amplifier 18MHz-26GHz	JS4-18002600-32-5P	849785	Miteq
	Path Calibration		2012/05/24 2012/11/23
Broadband Amplifier 1GHz-4GHz	AFS4-01000400-1Q-10P-4	-	Miteq
	Path Calibration		2012/05/24 2012/11/23
Broadband Amplifier 30MHz-18GHz	JS4-00101800-35-5P	896037	Miteq
	Path Calibration		2012/05/24 2012/11/23
Cable "ESI to EMI Antenna"	EcoFlex10	W18.01-2+W38.0	01- Kabel Kusch
	Path Calibration		2012/05/24 2012/11/23
Cable "ESI to Horn Antenna"	UFB311A+UFB293C	W18.02-2+W38.0	02- Rosenberger Micro-Coax
	Path Calibration		2012/05/24 2012/11/23

Test report Reference: MDE_MEE_1213_FCCa

Single Devices for Auxiliary Equipment for Radiated emissions (continued)

Single Device Name	Туре	Serial Number	Manufacturer
	Path Calibration		2012/05/24 2012/11/23
Double-ridged horn	HF 906	357357/001	Rohde & Schwarz GmbH & Co. KG
	Standard Calibration		2012/05/18 2015/05/17
Double-ridged horn	HF 906	357357/002	Rohde & Schwarz GmbH & Co. KG
	Standard Calibration		2012/06/26 2015/06/25
High Pass Filter	4HC1600/12750-1.5-KK Path Calibration	9942011	Trilithic 2012/05/24 2012/11/23
High Pass Filter	5HC2700/12750-1.5-KK Path Calibration	9942012	Trilithic 2012/05/24 2012/11/23
High Pass Filter	5HC3500/12750-1.2-KK Path Calibration	200035008	Trilithic 2012/05/24 2012/11/23
High Pass Filter	WHKX 7.0/18G-8SS Path Calibration	09	Wainwright 2012/05/24 2012/11/23
Horn Antenna Schwarzbeck 15-26 GHz BBHA 9170	BBHA 9170 z		
Logper. Antenna	HL 562 Ultralog	830547/003	Rohde & Schwarz GmbH & Co. KG
Loop Antenna	HFH2-Z2	829324/006	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/10/27 2014/10/26
Pyramidal Horn Antenna 26,5 GHz	a 3160-09	00083069	EMCO Elektronik GmbH
Pyramidal Horn Antenna 40 GHz	a 3160-10	00086675	EMCO Elektronik GmbH
Tilt device Maturo (Rohacell)	Antrieb TD1.5-10kg	TD1.5- 10kg/024/3790709	Maturo GmbH

Test Equipment Auxiliary Test Equipment

Lab ID: Lab 1

Manufacturer: see single devices

Description: Single Devices for various Test Equipment

Type: various Serial Number: none

Single Devices for Auxiliary Test Equipment

Single Device Name	Туре	Serial Number	Manufacturer
Broadband Power Divider1506A / 93459 N (Aux)		LM390	Weinschel Associates
Broadband Power Divide SMA	rWA1515	A855	Weinschel Associates
Digital Multimeter 03 (Multimeter)	Fluke 177	86670383	Fluke Europe B.V.
,	Calibration Details		Last Execution Next Exec.
	Customized calibration		2011/10/19 2013/10/18
Fibre optic link Satellite (Aux)	FO RS232 Link	181-018	Pontis
Fibre optic link Transceiver (Aux)	FO RS232 Link	182-018	Pontis
Isolating Transformer	LTS 604	1888	Thalheimer Transformatorenwerke GmbH
Notch Filter Ultra Stable (Aux)	WRCA800/960-6EEK	24	Wainwright
Vector Signal Generator	SMIQ 03B	832492/061	Rohde & Schwarz GmbH & Co.KG

Test Equipment Digital Signalling Devices

Lab ID: Lab 1

Description: Signalling equipment for various wireless technologies.

Single Devices for Digital Signalling Devices

Single Device Name	Туре	Serial Number	Manufacturer
Bluetooth Signalling Uni CBT	СВТ	100589	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/11/24 2014/11/23
CMW500	CMW500	107500	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Initial factory calibration Firmware: V.2.01.25 3G:		2012/01/26 2014/01/25 2012/07/03 2012/10/29
	KC42x 11.48.02, 12.16.00 LTE:	1.7.0 1 2.0.0	
	KC501 1.7.0 up to 2.0.0, KC503 KC506 1.9.8 up to 2.0.0, KC507 KC508 1.8.5 up to 2.0.0, KC551	1.7.0, 1.4.9 up to 2.0.0,	
	KC553 1.7.0 up to 2.0.0, KC556 KC571 1.8.5 up to 2.0.0, KC572		
	Firmware: V.2.01.25 3G: KC42x 12.23.00		2012/10/29
	LTE: KC501 1.7.0 up to 2.0.0, KC503 KC506 1.9.8 up to 2.0.0, KC507 KC508 1.8.5 up to 2.0.0, KC551 KC553 1.7.0 up to 2.0.0, KC556 KC571 1.8.5 up to 2.0.0, KC572	1.7.0, 1.4.9 up to 2.0.0, 2.0.0,	
	Firmware: V.3.00.11 LTE: KC501 2.2.0, KC503 2.2.0, KC50 KC508 2.2.0, KC551 2.2.0, KC55 KC556 2.2.0, KC571 2.2.0, KC57	3 2.2.0,	
Universal Radio Communication Tester	CMU 200	102366	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/05/26 2013/05/25
	HW/SW Status		Date of Start Date of End
	Hardware: B11, B21V14, B21-2, B41, B52V B53-2, B56V14, B68 3v04, PCMC Software:		2007/07/16
	K21 4v21, K22 4v21, K23 4v21, K43 4v21, K53 4v21, K56 4v22, K59 4v22, K61 4v22, K62 4v22, K65 4v22, K66 4v22, K67 4v22, Firmware: µP1 8v50 02.05.06	K57 4v22, K58 4v22, K63 4v22, K64 4v22,	
Universal Radio Communication Tester	CMU 200	837983/052	Rohde & Schwarz GmbH & Co KG
Communication rester	Calibration Details		KG Last Execution Next Exec.
	Standard calibration		2011/12/07 2014/12/06
	Standard Cambration		2011/12/07 2014/12/00

Test report Reference: MDE_MEE_1213_FCCa

HW/SW Status

Date of End

Date of Start

Single Devices for Digital Signalling Devices (continued)

Single Device Name	Туре	Serial Number	Manufacturer
	HW options:		2007/01/02
	B11, B21V14, B21-2, B41, B52V14, B5	52-2, B53-2,	
	B54V14, B56V14, B68 3v04, B95, PCN	ICIA, U65V02	
	SW options:		
	K21 4v11, K22 4v11, K23 4v11, K24 4	v11, K27 4v10,	
	K28 4v10, K42 4v11, K43 4v11, K53 4	v10, K65 4v10,	
	K66 4v10, K68 4v10,		
	Firmware:		
	μP1 8v40 01.12.05		
	SW:		2008/11/03
	K62, K69		

Test Equipment Emission measurement devices

Lab ID: Lab 1

Description: Equipment for emission measurements

Serial Number: see single devices

Single Devices for Emission measurement devices

Single Device Name	Туре	Serial Number	Manufacturer
Personal Computer	Dell	30304832059	Dell
Power Meter	NRVD	828110/016	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2012/05/22 2013/05/21
Sensor Head A	NRV-Z1	827753/005	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2012/05/21 2013/05/20
Signal Generator	SMR 20	846834/008	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	standard calibration		2011/05/12 2014/05/11
Spectrum Analyzer	ESIB 26	830482/004	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2011/12/05 2013/12/04
	HW/SW Status		Date of Start Date of End
	Firmware-Update 4.34.4 from 3	.45 during calibration	2009/12/03

Test Equipment Multimeter 12

Lab 1D:Lab 2Description:Ex-Tech 520Serial Number:05157876

Single Devices for Multimeter 12

Single Device Name	Туре	Serial Number	Manufacturer
Digital Multimeter 12 (Multimeter)	EX520	05157876	Extech Instruments Corp.
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2011/10/18 2013/10/17

Test report Reference: MDE_MEE_1213_FCCa Page 31 of 50

Test Equipment Shielded Room 07

Lab ID: Lab 2

Description: Shielded Room 4m x 6m

Test Equipment T/H Logger 04

Lab ID:Lab 2Description:Lufft Opus10Serial Number:7481

Single Devices for T/H Logger 04

Single Device Name Type	Serial Number	Manufacturer
ThermoHygro DataloggerOpus10 THI (8152.00) 04 (Environ)	7481	Lufft Mess- und Regeltechnik GmbH

Test Equipment Temperature Chamber 01

Lab ID: Lab 2

Manufacturer: see single devices

Description: Temperature Chamber KWP 120/70

Type: Weiss

Serial Number: see single devices

Single Devices for Temperature Chamber 01

Single Device Name	Туре	Serial Number	Manufacturer
Temperature Chamber Weiss 01	KWP 120/70	59226012190010	Weiss Umwelttechnik GmbH
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2012/03/12 2014/03/11

Test report Reference: MDE_MEE_1213_FCCa Page 32 of 50

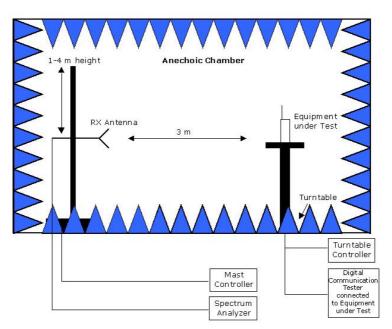
Test Equipment WLAN RF Test Solution

Lab 1D: Lab 2
Manufacturer: 7 layers AG

Description: Regulatory WLAN RF Tests

Type: WLAN RF Serial Number: 001

Single Devices for WLAN RF Test Solution


Single Device Name	Туре	Serial Number	Manufacturer
Arbitrary Waveform Generator	TGA12101	284482	
Power Meter NRVD	NRVD Standard Calibration	832025/059	2012/07/23 2013/07/22
Power Sensor NRV Z1 A	PROBE	832279/013	
	Standard Calibration		2012/07/23 2013/07/22
Power Supply	NGSM 32/10 Calibration Details	2725	Last Execution Next Exec.
	Standard Calibration		2011/06/15 2013/06/14
Rubidium Frequency Normal MFS	Datum MFS	002	Datum GmbH
Wormer wir o	Standard Calibration		2012/08/20 2013/08/19
Signal Analyser FSIQ26	1119.6001.26	832695/007	Rohde & Schwarz GmbH & Co.KG
Spectrum Analyser	FSU26	100136	Rohde & Schwarz GmbH & Co.KG
	Standard calibration		2012/06/20 2013/06/19
	HW/SW Status		Date of Start Date of End
	FSU FW Update to v4.61 SP3, K5 v4.60	and K73 v4.61	2011/12/05
Spectrum Analyser	FSU3	200046	Rohde & Schwarz GmbH & Co.KG
	Standard calibration		2012/05/15 2013/05/14
	HW/SW Status		Date of Start Date of End
	Firmware Version 4.51 SP1 Option FS-K72 4.50 SP1 Option FS-K73 4.50 SP1		2011/12/07
TOCT Switching Unit	Switching Unit	030106	7 layers, Inc.
Vector Signal Generator SMIQ03B	SMIQ03B	832870/017	
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2010/06/23 2013/06/20

5 Photo Report

Photos are included in an external report.

6 Setup Drawings

<u>Remark:</u> Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Setup in the Anechoic chamber:

Measurements below 1 GHz: Semi-anechoic, conducting ground plane. Measurements above 1 GHz: Fully-anechoic, absorbers on all surfaces.

7 FCC and IC Correlation of measurement requirements

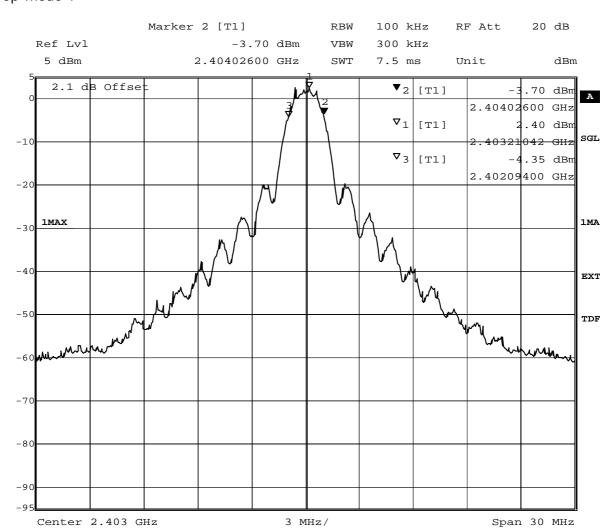
The following tables show the correlation of measurement requirements for WLAN equipment and Digital Apparatus from FCC and IC standards.

WLAN equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC mains	§ 15.207	RSS-Gen: 7.2.4
Occupied bandwidth	§ 15.247 (a) (1)	RSS-210: A8.1
Peak power output	§ 15.247 (b) (1)	RSS-210: A8.4
Spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen: 6; RSS-210: A8.5
Spurious radiated emissions	§ 15.247 (d)	RSS-Gen: 6; RSS-210: A8.5
Band edge compliance	§ 15.247 (d)	RSS-210: A8.5
Power density	§ 15.247 (e)	RSS-210: A8.2 (b)
Antenna requirement	§ 15.203 / 15.204	RSS-Gen: 7.1.2

Digital Apparatus

Measurement	FCC reference	IC reference
Conducted Emissions (AC Power Line)	§ 15.107	ICES-003
Spurious Radiated Emissions	§ 15.109	ICES-003

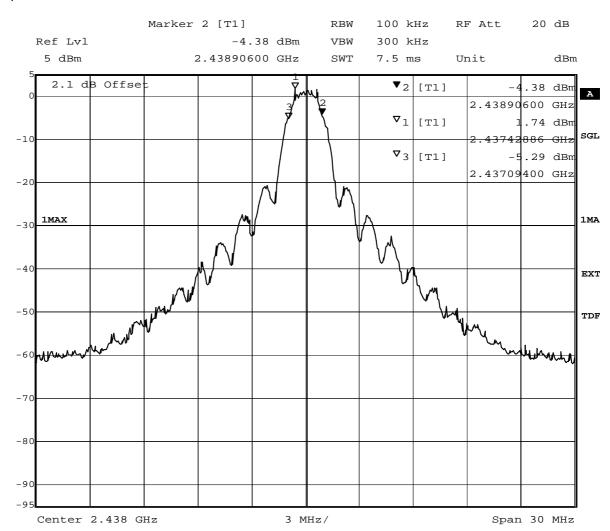


8 Annex measurement plots

8.1 Occupied bandwidth

Op. Mode

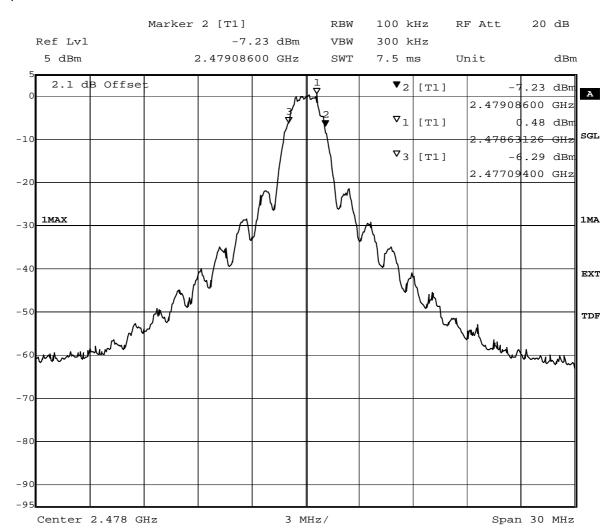
op-mode 1


Title: 6dB Bandwidth

Comment A: CH B: 2403 MHz; 6dB bandwidth (kHz):1932

Date: 7.JAN.2013 13:53:51

op-mode 2


Title: 6dB Bandwidth

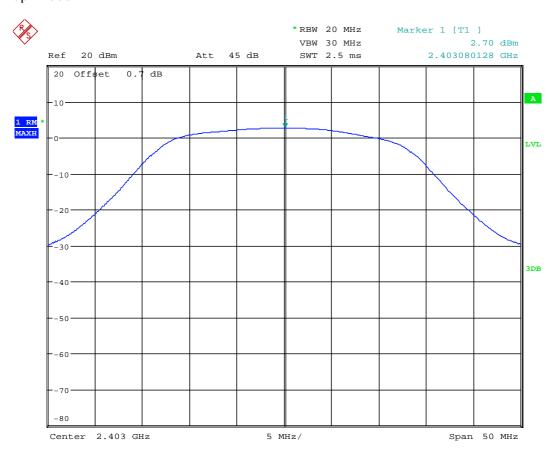
Comment A: CH M: 2438 MHz; 6dB bandwidth (kHz):1812

Date: 7.JAN.2013 10:45:50

op-mode 3

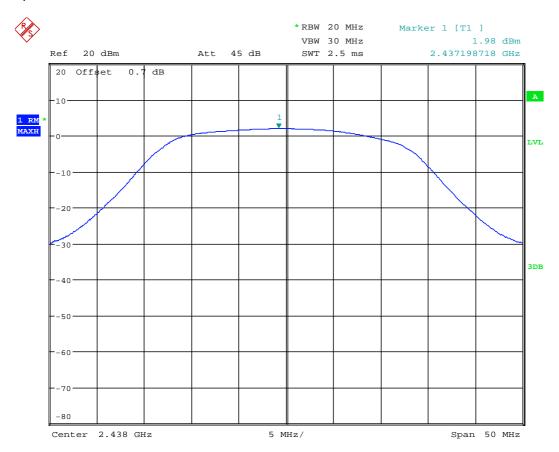
Title: 6dB Bandwidth

Comment A: CH T: 2478 MHz; 6dB bandwidth (kHz):1992

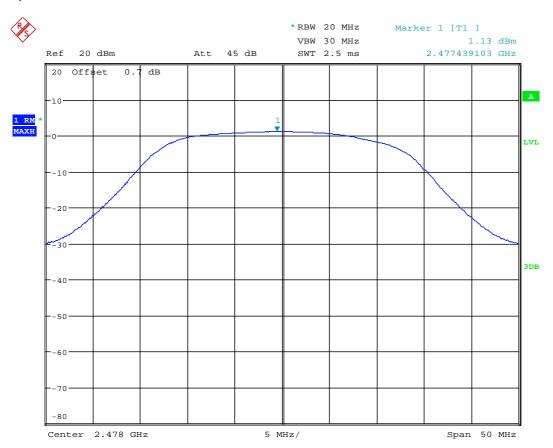

Date: 7.JAN.2013 11:19:57

8.2 Peak power output

Op. Mode


op-mode 1

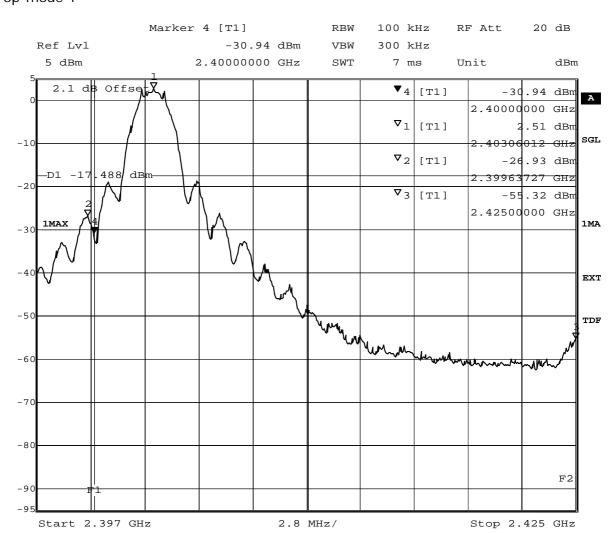
Date: 7.JAN.2013 13:25:21


op-mode 2

Date: 7.JAN.2013 13:26:18

op-mode 3

Date: 7.JAN.2013 13:27:10

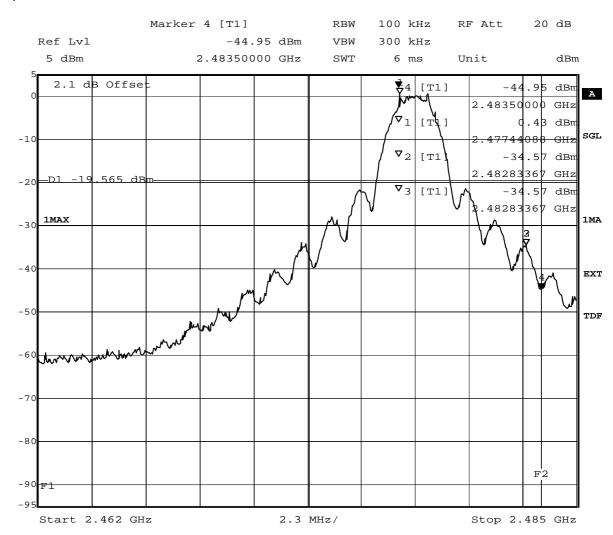


8.3 Band edge compliance conducted and Spurious RF conducted emissions

8.3.1 Band edge compliance conducted

Op. Mode

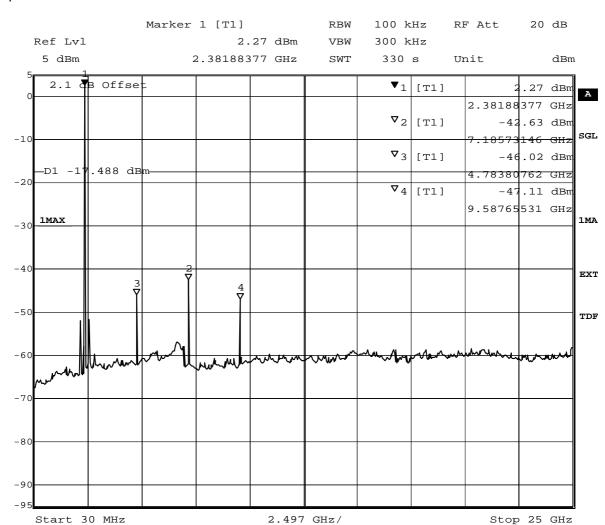
op-mode 1



Title: Band Edge Compliance

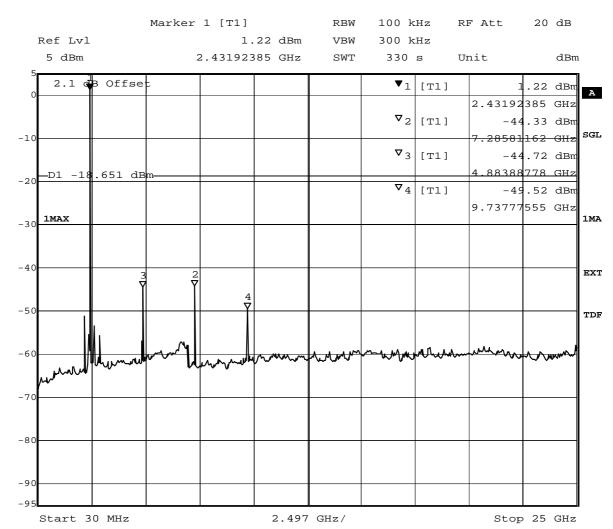
Comment A: CH B: 2403 MHz
Date: 7.JAN.2013 13:57:12

op-mode 3

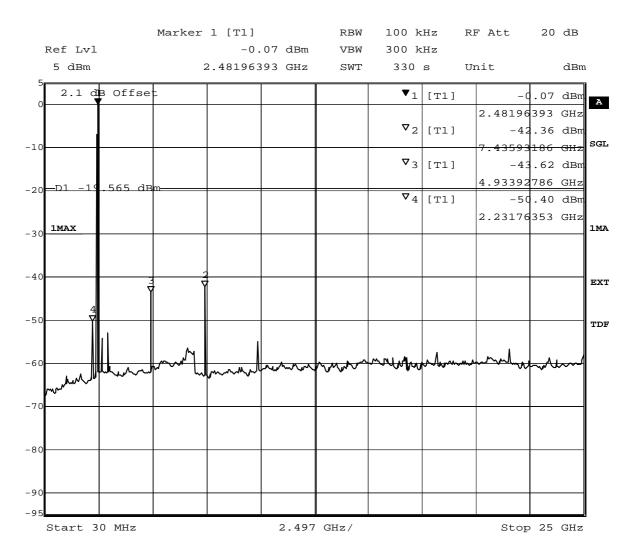

Title: Band Edge Compliance Comment A: CH T: 2478 MHz
Date: 7.JAN.2013 11:37:14

8.3.2 Spurious RF conducted emission

Op. Mode

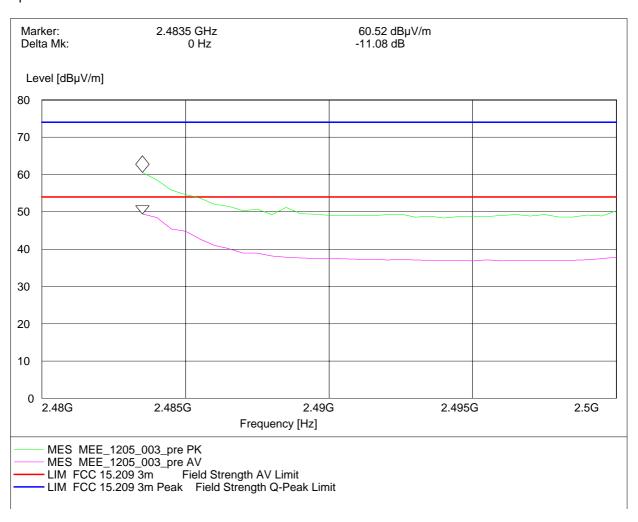

op-mode 1

Title: spurious emissions
Comment A: CH B: 2403 MHz
Date: 7.JAN.2013 14:08:59


op-mode 2

Title: spurious emissions
Comment A: CH M: 2438 MHz
Date: 7.JAN.2013 11:14:44

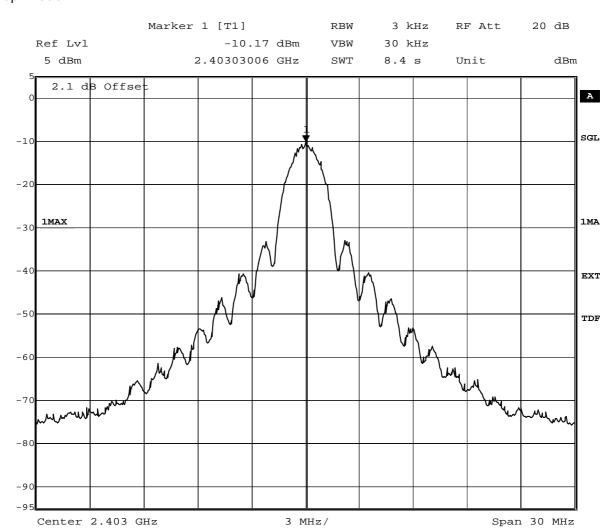
op-mode 3


Title: spurious emissions
Comment A: CH T: 2478 MHz
Date: 7.JAN.2013 11:52:30

8.3.3 Band edge compliance radiated

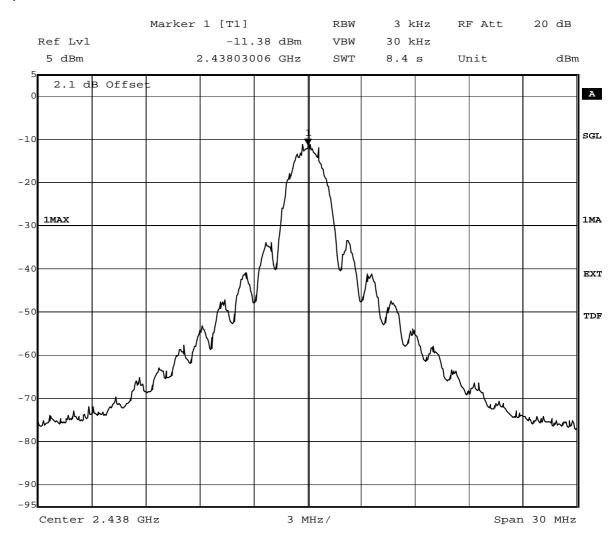
Op. Mode higher band edge

op-mode 3

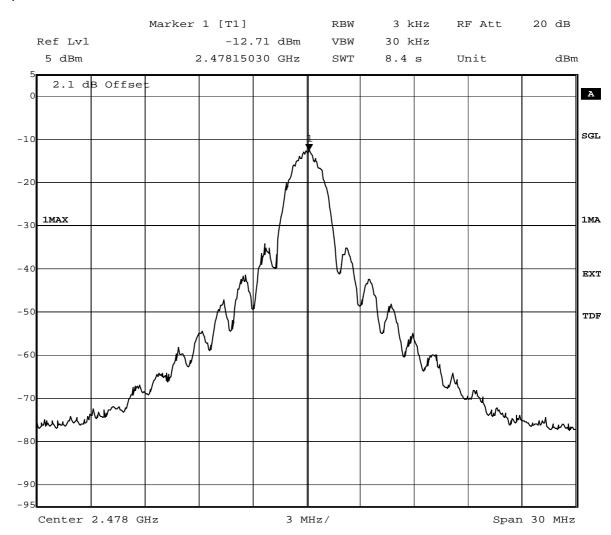

Radiated measurement (higher band edge)

8.4 Power density

Op. Mode


op-mode 1

Title: Power Density
Comment A: CH B: 2403 MHz;
Date: 7.JAN.2013 13:50:12


op-mode 2

Title: Power Density
Comment A: CH M: 2438 MHz;
Date: 7.JAN.2013 11:01:20

op-mode 3

Title: Power Density
Comment A: CH T: 2478 MHz;
Date: 7.JAN.2013 11:35:38