

ADDENDUM TO VULCAN PORTALS, INC. TEST REPORT FC07-070

FOR THE

ULTRA COMPACT LAPTOP, FLIPSTART E-1501A

FCC PART 22H & 24E

TESTING

DATE OF ISSUE: DECEMBER 13, 2007

PREPARED FOR:

Vulcan Portals, Inc. 505 5th Ave. South, Ste. 900 Seattle, WA 98104

P.O. No.: 20185-01046 W.O. No.: 86709

PREPARED BY:

Mary Ellen Clayton CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Date of test: August 14-30, 2007

Report No.: FC07-070A

This report contains a total of 55 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

TABLE OF CONTENTS

Administrative Information	3
Approvals	3
Conditions During Testing	3
Equipment Under Test (EUT) Description	4
Equipment Under Test	4
Peripheral Devices	4
Temperature and Humidity During Testing	5
FCC 2.1033(c)(3) User's Manual	5
FCC 2.1033(c)(4) Type of Emissions	5
FCC 2.1033(c)(5) Frequency Range	5
FCC 2.1033(c)(6) Operating Power	5
FCC 2.1033(c)(8) DC Voltages	5
FCC 2.1033(c)(9) Tune-Up Procedure	5
FCC 2.1033(c)(10) Schematics and Circuitry Description	5
FCC 2.1033(c)(11) Label and Placement	5
FCC 2.1033(c)(12) Submittal Photos	5
FCC 2.1033(c)(13) Modulation Information	5
FCC 2.1033(c)(14)/2.1046 RF Power Output	6
FCC 2.1051/2.1053 Bandedge	28
FCC 2.1033(c)(14)/2.1053/22.917 - Field Strength of Spurious Radiation	45
FCC 2.1033(c)(14)/2.1053/24.238 - Field Strength of Spurious Radiation	48

ADMINISTRATIVE INFORMATION

DATE OF TEST: August 14-30, 2007

DATE OF RECEIPT: August 14, 2007

REPRESENTATIVE: Daniel Oar

MANUFACTURER: Vulcan Portals, Inc. 505 5th Ave. South, Ste. 900 Seattle, WA 98104 **TEST LOCATION:**

CKC Laboratories, Inc. 14797 NE 95th Redmond, WA 98052

FREQUENCY RANGE TESTED: 30 MHz-20 GHz

TEST METHOD: FCC Part 22H & 24E

PURPOSE OF TEST: Original Report: To perform the testing of the Ultra Compact Laptop, Flipstart E-1501a with the requirements for FCC Part 22H & 24E devices. **Addendum A:** To add a statement regarding the RBW on pages 9-27.

APPROVALS

Steve Behm, Director of Engineering Services

QUALITY ASSURANCE:

Joyce Walker, Quality Assurance Administrative Manager

Katie Molina, Senior EMC Engineer/Lab Manager

TEST PERSONNEL:

Ryan Rutledge, EMC Test Technologist

CONDITIONS DURING TESTING

No modifications to the EUT were necessary during testing.

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The customer declares that the EUT tested by CKC Laboratories was a production unit. The following model name was referenced by CKC Laboratories during testing: **Flipstart E-1501s**.

The model name referenced was incorrect. The proper model name should have been **Flipstart E-1501a.** The data sheets in Appendix B are screen captures taken at the time of testing and will reflect the wrong model number. Any differences between the names do not affect their EMC characteristics and therefore meet the level of testing equivalent to the tested model name shown on the data sheets.

EQUIPMENT UNDER TEST

<u>Ultra Compact Laptop</u>

Manuf:	Vulcan Portals, Inc.
Model:	Flipstart E-1501a
Serial:	MVT1-103
FCC ID:	UIQE1500

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

FlipStart Battery

Manuf:	Vulcan Portals, Inc.
Model:	E-5000
Serial:	35560035

Call box

Manuf:	Agilent
Model:	8960-E5515C
Serial:	GB42361377

<u>FlipStart AC adapter</u>					
Manuf:	EOS				
Model:	ZVC36FS12S54				
Serial:	0001				

Call Box Antenna Manuf: Elect

Manuf:	Electro-metrics
Model:	RGA-60
Serial:	6154

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

FCC 2.1033(c)(3) USER'S MANUAL

The necessary information is contained in a separate document.

FCC 2.1033 (c)(4) TYPE OF EMISSIONS

F9W, G7W and GXW

FCC 2.1033 (c)(5) FREQUENCY RANGE

Part 22: 824 MHz - 849 MHz and Part 24: 1850 MHz - 1910 MHz

FCC 2.1033 (c)(6) OPERATING POWER

Part 22: 3.902305 Watts and Part 24: 0.36159 Watts

FCC 2.1033 (c)(8) DC VOLTAGES

The necessary information is contained in a separate document.

FCC 2.1033 (c)(9) TUNE-UP PROCEDURE

The necessary information is contained in a separate document.

FCC 2.1033(c)(10) SCHEMATICS AND CIRCUITRY DESCRIPTION

The necessary information is contained in a separate document.

FCC 2.1033(c)(11) LABEL AND PLACEMENT

The necessary information is contained in a separate document.

FCC 2.1033(c)(12) SUBMITTAL PHOTOS

The necessary information is contained in a separate document.

FCC 2.1033 (c)(13) MODULATION INFORMATION

GSM, EDGE, HSDPA, WCDMA

FCC 2.1033(c)(14)/2.1046/ RF POWER OUTPUT

Test Equipment				
Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4440A	S/N: MY46186330	10/03/2007	10/03/2009	AN02872
Bothell 5m Cable Set	S/N: P05444	04/26/2007	04/26/2009	ANP05444
20' RG-214 Coax	S/N: 16	11/09/2006	11/09/2008	ANP05360
Chase BILOG	S/N: 2458	01/31/2007	01/31/2009	AN01993

Test Conditions: The EUT is placed on the wooden table on a foam spacer. Evaluation of Spurious Emissions is performed without peripherals attached to the EUT.

Test Setup Photos

Test Data	
RF Output Power	EIRP Formula:
	$EIRP = (Ed)^2 / (30 * G)$
	E = Field strength of the measurement converted to V/m
	d = Measurement distance in meters
	G = Numerical gain of the EUT's antenna relative to
	Isotropic
	• To convert G, perform the following:
	$G = 10^{(dBi/10)}$
	For ERP measurements, add 2.148 to EUT antenna's dBi
	value in the above equation.
	ERP(dB) = EIRP(dB) - 2.148
	Calculations below will use 2.14 to avoid rounding down
	Where $dBi = EUT$ antenna gain above isotropic
	$\left(ERP_{dBm} \right)$
	10^{-10}
	$ERP(W) = \frac{\sqrt{y}}{1000}$
	1000

RF POWER OUTPUT FCC PART 22 & IC RSS 132 Limit: 6.3W ERP

GSM850	Band,	GS
Modulation		

SM

1100						
ERP POWER OUTPUT						
Vertical				Horizontal		
f Band- (MHz) width* (W) (MHz)			f (MHz)	Band- width* (MHz)	Level (W)	
824.200	3	0.678143	824.200	3	1.553536	
836.400	3	0.893967	836.400	3	3.641843	
848.800	3	1.003047	848.800	3	3.726673	
Measurement uncertainty (dB)				.673 dB		

Tested By: Ryan Rutledge

Result: Pass

GSM850 Band, EDGE12 Modulation

ERP POWER OUTPUT						
Vertical			Horizontal			
f (MHz)	Band- width* (MHz)	Level (W)	Level f Band- (W) (MHz) width* (W) (MHz)			
824.200	3	0.710103	824.200	3	2.638282	
836.400	3	0.914790	836.400	3	3.902305	
848.800	3	0.980215	848.800	3	3.398766	
Measurement uncertainty (dB)				.673 dB		

Tested By: Ryan Rutledge **Result:** Pass

WCDMA Band V

ERP POWER OUTPUT					
	Vertical			Horizontal	
f (MHz)	Band- width (MHz)	Level* (W)	f (MHz)	Band- width* (MHz)	Level (W)
826.400	3	0.207693	826.400	3	1.017235
836.400	3	0.267560	836.400	3	1.040929
846.600	3	0.025893	846.600	3	1.017235
Measurement uncertainty (dB)				.673 dB	

Tested By: Ryan Rutledge

Result: Pass

* Due to limitations of the test equipment, readings were taken at 3 MHz Resolution Bandwidth (RBW) and corrected to the RBW ≥ Emissions Bandwidth (EBW) requirement by adding the following correction factor: 10 log (EBW/RBW)

ERP POWER OUTPUT Vertical Horizontal f Level* f Level Band-Band-(MHz) width (W) (MHz) width* (W) (MHz) (MHz) 0.227730 826.400 3 826.400 3 1.040929 836.400 3 836.400 3 0.227730 1.280622 846.600 3 0.255518 846.600 3 1.141356 Measurement uncertainty (dB) .673 dB

WCDMA Band V, HSDPA Modulation

Tested By: Ryan Rutledge

Result: Pass

* Due to limitations of the test equipment, readings were taken at 3 MHz Resolution Bandwidth (RBW) and corrected to the RBW \geq Emissions Bandwidth (EBW) requirement by adding the following correction factor: 10 log (EBW/RBW)

RF POWER OUTPUT FCC PART 24 & IC RSS 133 Limit: 2W EIRP

PCS1900 Band, GSM Modulation

EIRP POWER OUTPUT									
Vertical			Horizontal						
f (MHz)	Band- width* (MHz)	Level (W)	f Band- (MHz) width* (W) (MHz)						
1850.200	3	0.137	1850.200	3	0.307566				
1880.000	3	0.122444	1880.000	3	0.300565				
1909.800	3	0.143860	1909.800	3	0.329563				
Measurement uncertainty (dB)				.673 dB					

Tested By: Ryan Rutledge

Result: Pass

PCS1900 Band, EDGE12 Modulation

EIRP POWER OUTPUT								
Vertical				Horizontal				
f (MHz)	Band- width* (MHz)	Level (W)	f Band- (MHz) width* (W) (MHz)					
1850.200	3	0.137	1850.200	3	0.322061			
1880.000	3	0.137385	1880.000	3	0.314730			
1909.800	3	0.150639	1909.800	3	0.361359			
Measurement uncertainty (dB)				.673 dB				

Tested By: Ryan Rutledge **Result:** Pass

WCDMA Band II

EIRP POWER OUTPUT									
Vertical				Horizontal	-				
f (MHz)	Band- width (MHz)	Level* (W)	f (MHz)	Band- width* (MHz)	Level (W)				
1852.400	3	0.072001	1852.400	3	0.247764				
1880.000	3	0.085910	1880.000	3	0.196805				
1907.600	3	0.073120	1907.600	3	0.074823				
Measurement uncertainty (dB)				.673 dB					

Tested By: Ryan Rutledge

Result: Pass

* Due to limitations of the test equipment, readings were taken at 3 MHz Resolution Bandwidth (RBW) and corrected to the RBW \geq Emissions Bandwidth (EBW) requirement by adding the following correction factor: 10 log (EBW/RBW)

EIRP POWER OUTPUT									
Vertical			Horizontal						
f (MHz)	Band- width (MHz)	Level* (W)	f Band- (MHz) width* (W) (MHz)						
1852.400	3	0.099002	1852.400	3	0.206082				
1880.000	3	0.085910	1880.000	3	0.175403				
1907.600	3	0.059434	1907.600	3	0.163697				
Measurement uncertainty (dB)				.673 dB					

WCDMA Band II, HSDPA Modulation

Tested By: Ryan Rutledge

Result: Pass

* Due to limitations of the test equipment, readings were taken at 3 MHz Resolution Bandwidth (RBW) and corrected to the RBW \geq Emissions Bandwidth (EBW) requirement by adding the following correction factor: 10 log (EBW/RBW)

Test Location: Customer: Specification:	CKC Laboratories •22116 23rd Dr SE Vulcan Portals, Inc. Part 22 RF Power and Block Edge	 Bothell, WA 98021-44 Block C (Radiated) 	413 • 425-402-1717
Work Order #:	86709	Date:	8/15/2007
Test Type:	Radiated Scan	Time:	15:30:49
Equipment:	Ultra Compact Laptop	Sequence#:	6
Manufacturer:	Vulcan Portals, Inc.	Tested By:	Ryan Rutledge
Model:	Flipstart E-1501s		
5/IN:	MIV11-103		

Test Equipment:

i i				
Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4440A	S/N: MY46186330	10/03/2007	10/03/2009	AN02872
Bothell 5m Cable Set	S/N: P05444	04/26/2007	04/26/2009	ANP05444
20' RG-214 Coax	S/N: 16	11/09/2006	11/09/2008	ANP05360
Chase BILOG	S/N: 2458	01/31/2007	01/31/2009	AN01993

Equipment Under Test (* = EUT):

Function IVIa	lanufacturer	Model #	S/N
Ultra Compact Laptop* Vu	ulcan Portals, Inc.	Flipstart E-1501s	MVT1-103

Support Devices:

Function	Manufacturer	Model #	S/N
FlipStart Battery	Vulcan Portals, Inc.	E-5000	35560035
FlipStart AC adapter	EOS	ZVC36FS12S54	0001
Call box	Agilent	8960-E5515C	GB42230675
Call box antenna	Electro-metrics	RGA-60	6154

Test Conditions / Notes:

The EUT is placed on the wooden table on a foam spacer. Evaluation of RF Output Power and Band Edges is performed without peripherals attached to the EUT. Carrier/Modulation: WCDMA Band V, WCDMA. RF Output Power. RBW=3 MHz, VBW=3 MHz Band Edge RBW=120 kHz, VBW=120 kHz 100 Sweep Average, exceptions noted. 120Vac, 60 Hz, 24°C, 39 % relative humidity. Due to limitations of the test equipment, readings were taken at 3 MHz Resolution Bandwidth (RBW) and corrected to the RBW \geq Emissions Bandwidth (EBW) requirement by adding the following correction factor: 10 log (EBW/RBW).

Transducer Legend:

T1=ANT AN01993 25-1000MHz T3=CAB-ANP05360-110906 T2=CAB-ANP05444-042607 - CPC3 Cable Set

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Те	est Distanc	e: 3 Meters	5	
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	836.400M	97.7	+22.7	+2.7	+1.8		+0.0	124.9	134.4	-9.5	Horiz
									Peak Powe	er	226
									Reading 3	MHz	
									RBW		
2	846.600M	97.6	+22.8	+2.6	+1.8		+0.0	124.8	134.4	-9.6	Horiz
							4		Peak Powe	er	229
									Reading 3	MHz	
									RBW		

3 8	26.400M	97.8	+22.6	+2.6	+1.8	+0.0 360	124.8	134.4 Peak Power	-9.6 r	Horiz 230
								Reading 3 I RBW	MHz	
4 8	24.000M	45.5	+22.6	+2.6	+1.8	+0.0	72.5	82.3	-9.8	Horiz
Av	re					360		Bandedge r	eading	230
								100 sweep	average	
								120 kHz RI	BW	
5 8	49.000M	44.7	+22.9	+2.6	+1.8	+0.0	72.0	82.3	-10.3	Horiz
Av	re					4		Bandedge r	eading	229
								100 sweep	average	
								120 kHz RI	BW	
68	36.400M	91.8	+22.7	+2.7	+1.8	+0.0	119.0	134.4	-15.4	Vert
						310		Peak Power	r	217
								Reading 3 I	MHz	
								RBW		
7 8	24.000M	39.5	+22.6	+2.6	+1.8	+0.0	66.5	82.3	-15.8	Vert
Av	ve					309		Bandedge r	eading	210
								100 sweep	average	
								120 kHz RI	<u>BW</u>	
8 8	46.600M	91.2	+22.8	+2.6	+1.8	+0.0	118.4	134.4	-16.0	Vert
						310		Peak Power	r	217
								Reading 3 I	MHz	
0.00	40.00016	20.0			.1.0		(()	RBW	160	TT .
98	49.000M	38.8	+22.9	+2.6	+1.8	+0.0	66.1	82.3	-16.2	Vert
Av	re					310		Bandedge r	eading	217
								100 sweep	average	
10 0	26 40014	00.0	100 (12 (+1.0		117.0	120 KHZ RI	5W	X 7 4
10 8	26.400M	90.9	+22.6	+2.6	+1.8	+0.0	117.9	134.4 De als Dec	-16.5	Vert
						309		Peak Power	[210
								Reading 3 I	VITIZ	
								КĎW		

Customer: Specification:	Vulcan Portals, Inc. Part 22 RF Power and Block Edge Block C	(Radiated)	
Work Order #:	86709	Date:	8/15/2007
Test Type:	Radiated Scan	Time:	14:25:04
Equipment:	Ultra Compact Laptop	Sequence#:	5
Manufacturer:	Vulcan Portals, Inc.	Tested By:	Ryan Rutledge
Model:	Flipstart E-1501s		
S/N:	MVT1-103		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
1 unetion	0/11	Cultoration Date	Cui Due Dute	11000011
Agilent E4440A	S/N: MY46186330	10/03/2007	10/03/2009	AN02872
Bothell 5m Cable Set	S/N: P05444	04/26/2007	04/26/2009	ANP05444
20' RG-214 Coax	S/N: 16	11/09/2006	11/09/2008	ANP05360
Chase BILOG	S/N: 2458	01/31/2007	01/31/2009	AN01993

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Ultra Compact Laptop*	Vulcan Portals, Inc.	Flipstart E-1501s	MVT1-103

Support Devices:

Function	Manufacturer	Model #	S/N
FlipStart Battery	Vulcan Portals, Inc.	E-5000	35560035
FlipStart AC adapter	EOS	ZVC36FS12S54	0001
Call box	Agilent	8960-E5515C	GB42230675
Call box antenna	Electro-metrics	RGA-60	6154

Test Conditions / Notes:

The EUT is placed on the wooden table on a foam spacer. Evaluation of RF Output Power and Band Edges is performed without peripherals attached to the EUT. Carrier/Modulation: WCDMA Band V, HSDPA. RF Output Power. RBW=3 MHz, VBW=3 MHz Band Edge RBW=120 kHz, VBW=120 kHz 100 Sweep Average, exceptions noted. 120Vac, 60 Hz, 24°C, 39 % relative humidity. Due to limitations of the test equipment, readings were taken at 3 MHz Resolution Bandwidth (RBW) and corrected to the RBW \geq Emissions Bandwidth (EBW) requirement by adding the following correction factor: 10 log (EBW/RBW).

T1=ANT AN01993 25-1000MHz	T2=CAB-ANP05444-042607 - CPC3 Cable Set
T3=CAB-ANP05360-110906	

Measu	rement Data:	Reading listed by margin.				Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	dBµV/m	dB	Ant
1	836.400M	98.6	+22.7	+2.7	+1.8		+0.0	125.8	134.4	-8.6	Horiz
						Peak Power					225
						Reading 3 MHz					
									RBW		
2	846.600M	98.1	+22.8	+2.6	+1.8		+0.0	125.3	134.4	-9.1	Horiz
							360		Peak Powe	er	230
									Reading 3	MHz	
									RBW		

3	826.400M	97.9	+22.6	+2.6	+1.8	+0.0 360	124.9	134.4 Peak Power Reading 3 MH	-9.5 Iz	Horiz 225
4	824.000M Ave	45.0	+22.6	+2.6	+1.8	+0.0 360	72.0	82.3 Bandedge read 100 sweep ave 120 kHz RBW	-10.3 ling erage	Horiz 225
5	849.000M Ave	43.7	+22.9	+2.6	+1.8	+0.0 360	71.0	82.3 Bandedge read 100 sweep ave 120 kHz RBW	-11.3 ling erage	Horiz 230
6	824.000M Ave	40.0	+22.6	+2.6	+1.8	+0.0 354	67.0	82.3 Bandedge read 100 sweep ave 120 kHz RBW	-15.3 ling erage	Vert 100
7	846.600M	91.6	+22.8	+2.6	+1.8	+0.0 311	118.8	134.4 Peak Power Reading 3 MH RBW	-15.6 Iz	Vert 218
8	836.400M	91.1	+22.7	+2.7	+1.8	+0.0 307	118.3	134.4 Peak Power Reading 3 MH RBW	-16.1 Iz	Vert 220
9	826.400M	91.3	+22.6	+2.6	+1.8	+0.0 354	118.3	134.4 Peak Power Reading 3 MH RBW	-16.1 Iz	Vert 100
10	849.000M Ave	38.5	+22.9	+2.6	+1.8	+0.0 311	65.8	82.3 Bandedge read 100 sweep ave 120 kHz RBW	-16.5 ling erage	Vert 218

Customer: Specification:	Vulcan Portals, Inc. Part 22 RF Power and Block Edge Block C	(Radiated)	
Work Order #:	86709	Date:	8/15/2007
Test Type:	Radiated Scan	Time:	17:36:32
Equipment:	Ultra Compact Laptop	Sequence#:	7
Manufacturer:	Vulcan Portals, Inc.	Tested By:	Ryan Rutledge
Model:	Flipstart E-1501s		
S/N:	MVT1-103		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4440A	S/N: MY46186330	10/03/2007	10/03/2009	AN02872
Bothell 5m Cable Set	S/N: P05444	04/26/2007	04/26/2009	ANP05444
20' RG-214 Coax	S/N: 16	11/09/2006	11/09/2008	ANP05360
Chase BILOG	S/N: 2458	01/31/2007	01/31/2009	AN01993

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Ultra Compact Laptop*	Vulcan Portals, Inc.	Flipstart E-1501s	MVT1-103

Support Devices:

Function	Manufacturer	Model #	S/N
FlipStart Battery	Vulcan Portals, Inc.	E-5000	35560035
FlipStart AC adapter	EOS	ZVC36FS12S54	0001
Call box	Agilent	8960-E5515C	GB42230675
Call box antenna	Electro-metrics	RGA-60	6154

Test Conditions / Notes:

The EUT is placed on the wooden table on a foam spacer. Evaluation of RF Output Power and Band Edges is performed without peripherals attached to the EUT. Carrier/Modulation: GSM850, GSM. RF Output Power RBW=3 MHz, VBW=3 MHz Band Edge RBW=120 kHz, VBW=120 kHz 100 Sweep Average, exceptions noted. 120Vac, 60 Hz, 24°C, 39% relative humidity. Due to limitations of the test equipment, readings were taken at 3 MHz Resolution Bandwidth (RBW) and corrected to the RBW \geq Emissions Bandwidth (EBW) requirement by adding the following correction factor: 10 log (EBW/RBW).

T1=ANT AN01993 25-1000MHz	T2=CAB-ANP05444-042607 - CPC3 Cable Set
T3=CAB-ANP05360-110906	

Measu	urement Data:	Re	Reading listed by margin.				Test Distance: 3 Meters				
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	848.800M	104.9	+22.9	+2.6	+1.8		+0.0	132.2	134.4	-2.2	Horiz
							1		Peak Powe	er	233
									Reading 3	MHz	
									RBW		
2	836.400M	104.9	+22.7	+2.7	+1.8		+0.0	132.1	134.4	-2.3	Horiz
							2		Peak Powe	er	228
									Reading 3	MHz	
									RBW		

3 824.2001	M 101.4	+22.6	+2.6	+1.8	+0.0 151	128.4	134.4 Peak Power Reading 3 M RBW	-6.0 Hz	Horiz 212
4 848.8001	м 99.2	+22.9	+2.6	+1.8	+0.0 313	126.5	134.4 Peak Power Reading 3 M RBW	-7.9 Hz	Vert 201
5 836.4001	M 98.8	+22.7	+2.7	+1.8	+0.0 309	126.0	134.4 Peak Power Reading 3 M RBW	-8.4 Hz	Vert 207
6 824.2001	M 97.8	+22.6	+2.6	+1.8	+0.0 309	124.8	134.4 Peak Power Reading 3 M RBW	-9.6 Hz	Vert 202
7 824.000M Ave	M 21.9	+22.6	+2.6	+1.8	+0.0 151	48.9	82.3 Bandedge rea 100 sweep av 120 kHz RBV	-33.4 ading verage W	Horiz 212
8 849.000 Ave	M 16.9	+22.9	+2.6	+1.8	+0.0 1	44.2	82.3 Bandedge rea 100 sweep av 120 kHz RBV	-38.1 ading verage W	Horiz 233
9 824.000M Ave	M 16.7	+22.6	+2.6	+1.8	+0.0 309	43.7	82.3 Bandedge rea 100 sweep av 120 kHz RBV	-38.6 ading verage W	Vert 202
10 849.000M Ave	M 12.3	+22.9	+2.6	+1.8	+0.0 313	39.6	82.3 Bandedge rea 100 sweep av 120 kHz RBV	-42.7 ading verage W	Vert 201

Customer: Specification:	Vulcan Portals, Inc. Part 22 RF Power and Block Edge Block C	(Radiated)	
Work Order #:	86709	Date:	8/15/2007
Test Type:	Radiated Scan	Time:	18:17:44
Equipment:	Ultra Compact Laptop	Sequence#:	8
Manufacturer:	Vulcan Portals, Inc.	Tested By:	Ryan Rutledge
Model:	Flipstart E-1501s		
S/N:	MVT1-103		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
1 unetion	0/11	Cultoration Date	Cui Due Dute	11000011
Agilent E4440A	S/N: MY46186330	10/03/2007	10/03/2009	AN02872
Bothell 5m Cable Set	S/N: P05444	04/26/2007	04/26/2009	ANP05444
20' RG-214 Coax	S/N: 16	11/09/2006	11/09/2008	ANP05360
Chase BILOG	S/N: 2458	01/31/2007	01/31/2009	AN01993

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Ultra Compact Laptop*	Vulcan Portals, Inc.	Flipstart E-1501s	MVT1-103

Support Devices:

Support Derices.				
Function	Manufacturer	Model #	S/N	
FlipStart Battery	Vulcan Portals, Inc.	E-5000	35560035	
FlipStart AC adapter	EOS	ZVC36FS12S54	0001	
Call box	Agilent	8960-E5515C	GB42230675	
Call box antenna	Electro-metrics	RGA-60	6154	

Test Conditions / Notes:

The EUT is placed on the wooden table on a foam spacer. Evaluation of RF Output Power and Band Edges is performed without peripherals attached to the EUT. Carrier/Modulation: GSM850, EDGE12. RF Output Power RBW=3 MHz, VBW=3 MHz Band Edge RBW=120 kHz, VBW=120 kHz 100 Sweep Average, exceptions noted. 120Vac, 60 Hz, 24°C, 39% relative humidity. Due to limitations of the test equipment, readings were taken at 3 MHz Resolution Bandwidth (RBW) and corrected to the RBW \geq Emissions Bandwidth (EBW) requirement by adding the following correction factor: 10 log (EBW/RBW).

T1=ANT AN01993 25-1000MHz	T2=CAB-ANP05444-042607 - CPC3 Cable Set
T3=CAB-ANP05360-110906	

Mea	surement Data:	Re	eading lis	ted by ma	argin.		Те	est Distanc	e: 3 Meters	5	
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
	1 836.400M	105.2	+22.7	+2.7	+1.8		+0.0	132.4	134.4	-2.0	Horiz
							2		Peak Powe	er	223
									Reading 3	MHz	
									RBW		
	2 848.800M	104.5	+22.9	+2.6	+1.8		+0.0	131.8	134.4	-2.6	Horiz
							3		Peak Powe	er	209
									Reading 3	MHz	
									RBW		

3 824.20	0M 103.7	+22.6	+2.6	+1.8	+0.0	130.7	134.4	-3.7	Horiz
							Peak Power		236
							Reading 3 N	ЛНz	
							RBW		
4 848.80	0M 99.1	+22.9	+2.6	+1.8	+0.0	126.4	134.4	-8.0	Vert
					313		Peak Power		205
							Reading 3 N	ЛНz	
							RBW		
5 836.40	0M 98.9	+22.7	+2.7	+1.8	+0.0	126.1	134.4	-8.3	Vert
					314		Peak Power		207
							Reading 3 N	ЛНz	
							RBW		
6 824.20	0M 98.0	+22.6	+2.6	+1.8	+0.0	125.0	134.4	-9.4	Vert
					309		Peak Power		205
							Reading 3 N	ЛНz	
							RBW		
7 849.00	0M 39.5	+22.9	+2.6	+1.8	+0.0	66.8	82.3	-15.5	Horiz
Ave					3		Bandedge re	eading	209
							100 sweep a	iverage	
							120 kHz RB	BW	
8 849.00	0M 38.7	+22.9	+2.6	+1.8	+0.0	66.0	82.3	-16.3	Vert
Ave					313		Bandedge re	eading	205
							100 sweep a	iverage	
							120 kHz RB	BW	
9 824.00	0M 15.4	+22.6	+2.6	+1.8	+0.0	42.4	82.3	-39.9	Vert
Ave					309		Bandedge re	eading	205
							100 sweep a	iverage	
							120 kHz RB	BW	
10 824.00	0M 13.7	+22.6	+2.6	+1.8	+0.0	40.7	82.3	-41.6	Horiz
Ave							Bandedge re	eading	236
							100 sweep a	iverage	
							120 kHz RB	BW	

Customer: Specification:	Vulcan Portals, Inc. Part 24 RF Power and Block Edge Plot Blo	ck C (Radiate	ed)
Work Order #:	86709	Date:	8/15/2007
Test Type:	Radiated Scan	Time:	10:10:14
Equipment:	Ultra Compact Laptop	Sequence#:	2
Manufacturer:	Vulcan Portals, Inc.	Tested By:	Ryan Rutledge
Model:	Flipstart E-1501s		
S/N:	MVT1-103		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4440A	S/N: MY46186330	10/03/2007	10/03/2009	AN02872
60" Pasternack 40	S/N: N/A	05/11/2006	05/11/2008	AN05423
GHz Coax				
30' Andrews Heliax	S/N: N/A	06/19/2006	06/19/2008	AN05545
18 GHz				
EMCO 3115 Horn	S/N: 9606-4854	12/13/2005	12/13/2007	AN01412
Ant				

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Ultra Compact Laptop*	Vulcan Portals, Inc.	Flipstart E-1501s	MVT1-103

Support Devices:				
Function	Manufacturer	Model #	S/N	
FlipStart Battery	Vulcan Portals, Inc.	E-5000	35560035	
FlipStart AC adapter	EOS	ZVC36FS12S54	0001	
Call box	Agilent	8960-E5515C	GB42230675	
Call box antenna	Electro-metrics	RGA-60	6154	

Test Conditions / Notes:

The EUT is placed on the wooden table on a foam spacer. Evaluation of RF Output Power and Band Edges is performed without peripherals attached to the EUT. IMPORTANT NOTE: Measurements performed at 2 meters. Carrier/Modulation: PCS1900, GSM. RF Output Power RBW=3 MHz, VBW=3 MHz Band Edge RBW=120 kHz, VBW=120 kHz 100 Sweep Average, exceptions noted. 120Vac, 60 Hz, 25°C, 40% relative humidity. Due to limitations of the test equipment, readings were taken at 3 MHz Resolution Bandwidth (RBW) and corrected to the RBW \geq Emissions Bandwidth (EBW) requirement by adding the following correction factor: 10 log (EBW/RBW).

8	
T1=CAB-ANP05545-061906	T2=ANT-AN01412-121305
T3=CAB-ANP05423-051006	

Meas	urement Data:	Re	eading lis	ted by ma	argin.	Test Distance: 2 Meters					
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	1909.800M	96.2	+2.1	+26.2	+1.9		-4.0	122.4	130.7	-8.3	Horiz
							215		Peak Powe	er	100
									Reading 3	MHz	
									RBW		

2 1850.200M	96.0	+2.0	+26.2	+1.9	-4.0 210	122.1	130.7 -8.6 Peak Power Reading 3 MHz	Horiz 106
							RBW	
3 1880.000M	95.9	+2.0	+26.2	+1.9	-4.0	122.0	130.7 -8.7	Horiz
					215		Peak Power	102
							Reading 3 MHz	
							RBW	
4 1909.800M	92.6	+2.1	+26.2	+1.9	-4.0	118.8	130.7 -11.9	Vert
					277		Peak Power	131
							Reading 3 MHz	
							RBW	
5 1850.200M	92.5	+2.0	+26.2	+1.9	-4.0	118.6	130.7 -12.1	Vert
					280		Peak Power	112
							Reading 3 MHz	
							RBW	
6 1880.000M	92.0	+2.0	+26.2	+1.9	-4.0	118.1	130.7 -12.6	Vert
					260		Peak Power	125
							Reading 3 MHz	
							RBW	
7 1910.000M	17.7	+2.1	+26.2	+1.9	-4.0	43.9	82.3 -38.4	Horiz
Ave					215		Bandedge reading	100
							100 sweep average	
0 1010 00016	16.0	10.1	10(0	+1.0	1.0	10.0	120 kHz RBW	T 7 /
8 1910.000M	16.0	+2.1	+26.2	+1.9	-4.0	42.2	82.3 -40.1	Vert
Ave					277		Bandedge reading	131
							100 sweep average	
0 1950 000M	12.0	12.0	126.2	+1.0	4.0	20.0	120 KHZ KBW	Hamim
9 1850.000M	12.9	+2.0	+26.2	+1.9	-4.0	39.0	82.3 -43.3	HOFIZ
Ave					210		100 awaan awaraga	106
							100 sweep average	
10 1850 000M	10.0	+2.0	+26.2	+1.0	_4.0	37.0	82.3 _15.2	Vert
	10.9	12.0	120.2	1.7	-4.0	57.0	02.3 -43.3 Bandedge reading	112
					200		100 sween average	112
							120 kHz RRW	
l								

Customer:	Vulcan Portals, Inc. Part 24 RF Power and Block Edge Plot Bloc	ek C (Radiat	d)
Work Order #	86709	Date [.]	8/14/2007
Test Type:	Radiated Scan	Time:	14:41:30
Equipment:	Ultra Compact Laptop	Sequence#:	1
Manufacturer:	Vulcan Portals, Inc.	Tested By:	Ryan Rutledge
Model:	Flipstart E-1501s		
S/N:	MVT1-103		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4440A	S/N: MY46186330	10/03/2007	10/03/2009	AN02872
60" Pasternack 40	S/N: N/A	05/11/2006	05/11/2008	AN05423
GHz Coax				
30' Andrews Heliax	S/N: N/A	06/19/2006	06/19/2008	AN05545
18 GHz				
EMCO 3115 Horn	S/N: 9606-4854	12/13/2005	12/13/2007	AN01412
Ant				

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Ultra Compact Laptop*	Vulcan Portals, Inc.	Flipstart E-1501s	MVT1-103

Support Devices:				
Function	Manufacturer	Model #	S/N	
FlipStart Battery	Vulcan Portals, Inc.	E-5000	35560035	
FlipStart AC adapter	EOS	ZVC36FS12S54	0001	
Call box	Agilent	8960-E5515C	GB42230675	
Call box antenna	Electro-metrics	RGA-60	6154	

Test Conditions / Notes:

The EUT is placed on the wooden table on a foam spacer. Evaluation of RF Output Power and Band Edges is performed without peripherals attached to the EUT. Carrier/Modulation: WCDMA Band II, WCDMA. RF Output Power RBW=3 MHz, VBW=3 MHz Band Edge RBW=120 kHz, VBW=120 kHz 100 Sweep Average, exceptions noted. 120Vac, 60 Hz, 25°C, 40 % relative humidity. Due to limitations of the test equipment, readings were taken at 3 MHz Resolution Bandwidth (RBW) and corrected to the RBW \geq Emissions Bandwidth (EBW) requirement by adding the following correction factor: 10 log (EBW/RBW).

T1=CAB-ANP05545-061906	T2=ANT-AN01412-121305
T3=CAB-ANP05423-051006	

Mea	su	rement Data:	Re	eading lis	ted by ma	argin.	Test Distance: 2 Meters					
#		Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
		MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
	1	1852.400M	93.3	+2.0	+26.2	+1.9		-4.0	119.4	130.7	-11.3	Horiz
								230		Peak Powe	er	104
										Reading 3	MHz	
										RBW		

2 1880.000M	92.3	+2.0	+26.2	+1.9	-4.0 215	118.4	130.7 -12.3 Peak Power	Horiz 103
							Reading 3 MHZ RBW	
3 1880.000M	88.7	+2.0	+26.2	+1.9	-4.0 275	114.8	130.7 -15.9 Peak Power Reading 3 MHz RBW	Vert 111
4 1850.000M Ave	40.1	+2.0	+26.2	+1.9	-4.0 230	66.2	82.3 -16.1 Bandedge reading 100 sweep average 120 kHz RBW	Horiz 104
5 1907.600M	88.0	+2.1	+26.2	+1.9	-4.0 333	114.2	130.7 -16.5 Peak Power Reading 3 MHz RBW	Horiz 134
6 1907.600M	87.9	+2.1	+26.2	+1.9	-4.0 285	114.1	130.7 -16.6 Peak Power Reading 3 MHz RBW	Vert 133
7 1852.400M	87.9	+2.0	+26.2	+1.9	-4.0 271	114.0	130.7 -16.7 Peak Power Reading 3 MHz RBW	Vert 146
8 1910.000M Ave	37.6	+2.1	+26.2	+1.9	-4.0 333	63.8	82.3 -18.5 Bandedge reading 100 sweep average 120 kHz RBW	Horiz 134
9 1910.000M Ave	37.5	+2.1	+26.2	+1.9	-4.0 285	63.7	82.3 -18.6 Bandedge reading 100 sweep average 120 kHz RBW	Vert 133
10 1850.000M Ave	36.2	+2.0	+26.2	+1.9	-4.0 271	62.3	82.3 -20.0 Bandedge reading 100 sweep average 120 kHz RBW	Vert 146

Customer: Specification:	Vulcan Portals, Inc. Part 24 RF Power and Block Edge Plot Blo	ck C (Radiate	ed)
Work Order #:	86709	Date:	8/15/2007
Test Type:	Radiated Scan	Time:	11:12:28
Equipment:	Ultra Compact Laptop	Sequence#:	3
Manufacturer:	Vulcan Portals, Inc.	Tested By:	Ryan Rutledge
Model:	Flipstart E-1501s		
S/N:	MVT1-103		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4440A	S/N: MY46186330	10/03/2007	10/03/2009	AN02872
60" Pasternack 40	S/N: N/A	05/11/2006	05/11/2008	AN05423
GHz Coax				
30' Andrews Heliax	S/N: N/A	06/19/2006	06/19/2008	AN05545
18 GHz				
EMCO 3115 Horn	S/N: 9606-4854	12/13/2005	12/13/2007	AN01412
Ant				

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Ultra Compact Laptop*	Vulcan Portals, Inc.	Flipstart E-1501s	MVT1-103

Support Devices:				
Function	Manufacturer	Model #	S/N	
FlipStart Battery	Vulcan Portals, Inc.	E-5000	35560035	
FlipStart AC adapter	EOS	ZVC36FS12S54	0001	
Call box	Agilent	8960-E5515C	GB42230675	
Call box antenna	Electro-metrics	RGA-60	6154	

Test Conditions / Notes:

The EUT is placed on the wooden table on a foam spacer. Evaluation of RF Output Power and Band Edges is performed without peripherals attached to the EUT. Carrier/Modulation: PCS1900, EDGE12. RF Output Power RBW=3 MHz, VBW=3 MHz Band Edge RBW=120 kHz, VBW=120 kHz 100 Sweep Average, exceptions noted. 120Vac, 60 Hz, 25°C, 40 % relative humidity. Due to limitations of the test equipment, readings were taken at 3 MHz Resolution Bandwidth (RBW) and corrected to the RBW \geq Emissions Bandwidth (EBW) requirement by adding the following correction factor: 10 log (EBW/RBW).

T1=CAB-ANP05545-061906	T2=ANT-AN01412-121305
T3=CAB-ANP05423-051006	

<i>Measurement Data:</i> Reading listed by margin.			argin.		Те	est Distance	e: 2 Meters	5			
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	1909.800M	96.6	+2.1	+26.2	+1.9		-4.0	122.8	130.7	-7.9	Horiz
							213		Peak Powe	er	100
									Reading 3	MHz	
									RBW		

2 1850.200M	96.2	+2.0	+26.2	+1.9	-4.0 208	122.3	130.7 -8.4 Peak Power Reading 3 MHz RBW	Horiz 105
3 1880.000M	96.1	+2.0	+26.2	+1.9	-4.0 214	122.2	130.7 -8.5 Peak Power Reading 3 MHz RBW	Horiz 101
4 1909.800M	92.8	+2.1	+26.2	+1.9	-4.0 281	119.0	130.7 -11.7 Peak Power Reading 3 MHz RBW	Vert 133
5 1880.000M	92.5	+2.0	+26.2	+1.9	-4.0 286	118.6	130.7 -12.1 Peak Power Reading 3 MHz RBW	Vert 153
6 1850.200M	92.5	+2.0	+26.2	+1.9	-4.0 275	118.6	130.7 -12.1 Peak Power Reading 3 MHz RBW	Vert 132
7 1850.000M Ave	35.2	+2.0	+26.2	+1.9	-4.0 275	61.3	82.3 -21.0 Bandedge reading 100 sweep average 120 kHz RBW	Vert 132
8 1910.000M Ave	25.7	+2.1	+26.2	+1.9	-4.0 213	51.9	82.3 -30.4 Bandedge reading 100 sweep average 120 kHz RBW	Horiz 100
9 1910.000M Ave	19.8	+2.1	+26.2	+1.9	-4.0 281	46.0	82.3 -36.3 Bandedge reading 100 sweep average 120 kHz RBW	Vert 133
10 1850.000M Ave	16.4	+2.0	+26.2	+1.9	-4.0 208	42.5	82.3 -39.8 Bandedge reading 100 sweep average 120 kHz RBW	Horiz 105

Customer: Specification:	Vulcan Portals, Inc. Part 24 RF Power and Block Edge Plot Bloc	ck C (Radiate	ed)
Work Order #:	86709	Date:	8/15/2007
Test Type:	Radiated Scan	Time:	12:08:02
Equipment:	Ultra Compact Laptop	Sequence#:	4
Manufacturer:	Vulcan Portals, Inc.	Tested By:	Ryan Rutledge
Model:	Flipstart E-1501s		
S/N:	MVT1-103		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4440A	S/N: MY46186330	10/03/2007	10/03/2009	AN02872
60" Pasternack 40	S/N: N/A	05/11/2006	05/11/2008	AN05423
GHz Coax				
30' Andrews Heliax	S/N: N/A	06/19/2006	06/19/2008	AN05545
18 GHz				
EMCO 3115 Horn	S/N: 9606-4854	12/13/2005	12/13/2007	AN01412
Ant				

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Ultra Compact Laptop*	Vulcan Portals, Inc.	Flipstart E-1501s	MVT1-103

Support Devices:				
Function	Manufacturer	Model #	S/N	
FlipStart Battery	Vulcan Portals, Inc.	E-5000	35560035	
FlipStart AC adapter	EOS	ZVC36FS12S54	0001	
Call box	Agilent	8960-E5515C	GB42230675	
Call box antenna	Electro-metrics	RGA-60	6154	

Test Conditions / Notes:

The EUT is placed on the wooden table on a foam spacer. Evaluation of RF Output Power and Band Edges is performed without peripherals attached to the EUT. Carrier/Modulation: WCDMA Band II, HSDPA. RF Output Power RBW=3 MHz, VBW=3 MHz Band Edge RBW=120 kHz, VBW=120 kHz 100 Sweep Average, exceptions noted. 120Vac, 60 Hz, 25°C, 40 % relative humidity. Due to limitations of the test equipment, readings were taken at 3 MHz Resolution Bandwidth (RBW) and corrected to the RBW \geq Emissions Bandwidth (EBW) requirement by adding the following correction factor: 10 log (EBW/RBW).

T1=CAB-ANP05545-061906	T2=ANT-AN01412-121305
T3=CAB-ANP05423-051006	

<i>Measurement Data:</i> Reading listed by margin.				Те	est Distanc	e: 2 Meters	5				
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
	1 1852.400M	92.5	+2.0	+26.2	+1.9		-4.0	118.6	130.7	-12.1	Horiz
						214 Peak Power			103		
Reading 3 MHz											
									RBW		

2 1880.000M	91.8	+2.0	+26.2	+1.9	-4.0 225	117.9	130.7 -12.8 Peak Power Reading 3 MHz RBW	Horiz 100
3 1907.600M	91.4	+2.1	+26.2	+1.9	-4.0 212	117.6	130.7 -13.1 Peak Power Reading 3 MHz RBW	Horiz 100
4 1852.400M	89.3	+2.0	+26.2	+1.9	-4.0 273	115.4	130.7 -15.3 Peak Power Reading 3 MHz RBW	Vert 128
5 1880.000M	88.7	+2.0	+26.2	+1.9	-4.0 264	114.8	130.7 -15.9 Peak Power Reading 3 MHz RBW	Vert 124
6 1910.000M Ave	40.0	+2.1	+26.2	+1.9	-4.0 212	66.2	82.3 -16.1 Bandedge reading 100 sweep average 120 kHz RBW	Horiz 100
7 1850.000M Ave	39.9	+2.0	+26.2	+1.9	-4.0 214	66.0	82.3 -16.3 Bandedge reading 100 sweep average 120 kHz RBW	Horiz 103
8 1907.600M	87.0	+2.1	+26.2	+1.9	-4.0 279	113.2	130.7 -17.5 Peak Power Reading 3 MHz RBW	Vert 107
9 1850.000M Ave	36.3	+2.0	+26.2	+1.9	-4.0 273	62.4	82.3 -19.9 Bandedge reading 100 sweep average 120 kHz RBW	Vert 128
10 1910.000M Ave	36.0	+2.1	+26.2	+1.9	-4.0 279	62.2	82.3 -20.1 Bandedge reading 100 sweep average 120 kHz RBW	Vert 107

FCC 2.1051/2.1053 BANDEDGE

Test Equipment

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4440A	S/N: MY46186330	10/03/2007	10/03/2009	AN02872
Bothell 5m Cable Set	S/N: P05444	04/26/2007	04/26/2009	ANP05444
20' RG-214 Coax	S/N: 16	11/09/2006	11/09/2008	ANP05360
Chase BILOG	S/N: 2458	01/31/2007	01/31/2009	AN01993

Test Conditions: The EUT is placed on the wooden table on a foam spacer. Evaluation of Spurious Emissions is performed without peripherals attached to the EUT.

Test Setup Photos

Test Plots

FCC PART 22 BANDEDGE - EDGE HORIZONTAL LOW CHANNEL 824 MHz

FCC PART 22 BANDEDGE - EDGE VERTICAL LOW CHANNEL 824 MHz

FCC PART 22 BANDEDGE - EDGE HORIZONTAL HIGH CHANNEL 849 MHz

FCC PART 22 BANDEDGE - EDGE VERTICAL HIGH CHANNEL 849 MHz

FCC PART 22 BANDEDGE - GSM HORIZONTAL LOW CHANNEL 824 MHz

FCC PART 22 BANDEDGE - GSM VERTICAL LOW CHANNEL 824 MHz

FCC PART 22 BANDEDGE - GSM HORIZONTAL HIGH CHANNEL 849 MHz

FCC PART 22 BANDEDGE - GSM VERTICAL HIGH CHANNEL 849 MHz

FCC PART 22 BANDEDGE - HSDPA HORIZONTAL LOW CHANNEL 824 MHz

FCC PART 22 BANDEDGE - HSDPA VERTICAL LOW CHANNEL 824 MHz

FCC PART 22 BANDEDGE - HSDPA HORIZONTAL HIGH CHANNEL 849 MHz

FCC PART 22 BANDEDGE - HSDPA VERTICAL HIGH CHANNEL 849 MHz

FCC PART 22 BANDEDGE - WCDMA HORIZONTAL LOW CHANNEL 824 MHz

FCC PART 22 BANDEDGE - WCDMA VERTICAL LOW CHANNEL 824 MHz

FCC PART 22 BANDEDGE - WCDMA HORIZONTAL HIGH CHANNEL 849 MHz

FCC PART 22 BANDEDGE - WCDMA VERTICAL HIGH CHANNEL 849 MHz

FCC PART 24 BANDEDGE - EDGE HORIZONTAL LOW CHANNEL 1850 MHz

FCC PART 24 BANDEDGE - EDGE VERTICAL LOW CHANNEL 1850 MHz

FCC PART 24 BANDEDGE - EDGE HORIZONTAL HIGH CHANNEL 1910 MHz

FCC PART 24 BANDEDGE - EDGE VERTICAL HIGH CHANNEL 1910 MHz

FCC PART 24 BANDEDGE - GSM HORIZONTAL LOW CHANNEL 1850 MHz

FCC PART 24 BANDEDGE - GSM VERTICAL LOW CHANNEL 1850 MHz

FCC PART 24 BANDEDGE - GSM HORIZONTAL HIGH CHANNEL 1910 MHz

FCC PART 24 BANDEDGE - GSM VERTICAL HIGH CHANNEL 1910 MHz

FCC PART 24 BANDEDGE - HSDPA HORIZONTAL LOW CHANNEL 1850 MHz

FCC PART 24 BANDEDGE - HSDPA VERTICAL LOW CHANNEL 1850 MHz

FCC PART 24 BANDEDGE - HSDPA HORIZONTAL HIGH CHANNEL 1910 MHz

FCC PART 24 BANDEDGE - HSDPA VERTICAL HIGH CHANNEL 1910 MHz

FCC PART 24 BANDEDGE - WCDMA HORIZONTAL LOW CHANNEL 1850 MHz

FCC PART 24 BANDEDGE - WCDMA VERTICAL LOW CHANNEL 1850 MHz

FCC PART 24 BANDEDGE - WCDMA HORIZONTAL HIGH CHANNEL 1910 MHz

FCC PART 24 BANDEDGE - WCDMA VERTICAL HIGH CHANNEL 1910 MHz

FCC 2.1033(c)(14)/2.1053/22.917 - FIELD STRENGTH OF SPURIOUS RADIATION

Test Setup Photos

Test Data Sheets

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer: Specification:	Vulcan Portals, Inc. FCC Part 22.917(a) Radiated Spurious Em	issions	
Work Order #:	86709	Date:	8/20/2007
Test Type:	Radiated Scan	Time:	10:49:49
Equipment:	Ultra Compact Laptop	Sequence#:	9
Manufacturer:	Vulcan Portals, Inc.	Tested By:	Ryan Rutledge
Model:	Flipstart E-1501s		
S/N:	MVT1-103		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4440A	S/N: MY46186330	10/03/2007	10/03/2009	AN02872
60" Pasternack 40 GHz Coax	S/N: N/A	05/11/2006	05/11/2008	AN05423
30' Andrews Heliax 18 GHz	S/N: N/A	06/19/2006	06/19/2008	AN05545
HP 83017A .5 - 26.5 GHz Pre-a	mp S/N: 3123A00464	10/03/2005	10/03/2007	AN01271
EMCO 3115 Horn Ant	S/N: 9606-4854	12/13/2005	12/13/2007	AN01412
1 GHz HP Filter	S/N: 2	03/07/2006	03/07/2008	AN02750
Bothell 5m Cable Set	S/N: P05444	04/26/2007	04/26/2009	ANP05444
20' RG-214 Coax	S/N: 16	11/09/2006	11/09/2008	ANP05360
Chase BILOG	S/N: 2458	01/31/2007	01/31/2009	AN01993
Equipment Under Test (* = EU	U T):			
Function Ma	nufacturer	Model #	S/N	
Ultra Compact Laptop* Vu	lcan Portals. Inc.	Flipstart E-1501s	MVT1-1	.03

Support Devices:

Function	Manufacturer	Model #	S/N
FlipStart Battery	Vulcan Portals, Inc.	E-5000	35560035
FlipStart AC adapter	EOS	ZVC36FS12S54	0001
Call box	Agilent	8960-E5515C	GB42230675
Call box antenna	Electro-metrics	RGA-60	6154

Test Conditions / Notes:

The EUT is placed on the wooden table on a foam spacer. Evaluation of Spurious Emissions is performed without peripherals attached to the EUT. Carrier/Modulation: GSM850, EDGE12. 30 - 1000 MHz RBW=120 kHz, VBW=120 kHz Quasi-peak 1 - 10 GHz RBW=1 MHz, VBW=1 MHz Average 120Vac, 60 Hz, 22°C, 45% relative humidity. Test Equipment Used: 30 - 1000 MHz Equipment 1, 7, 8, 9; 1 - 10 GHz Equipment 1, 2, 3, 4, 5, 6.

T1=AMP-AN01271-1003055-26.5 GHz	T2=CAB-ANP05545-061906
T3=ANT-AN01412-121305	T4=CAB-ANP05423-051006
T5=ANT AN01993 25-1000MHz	T6=CAB-ANP05444-042607 - CPC3 Cable Set
T7=CAB-ANP05360-110906	T8=Filter 1GHz HP AN02750

Measu	rement Data:	R	Reading listed by margin.				Test Distance: 3 Meters				
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	Τ7	T8					
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	124.720M	27.6	+0.0	+0.0	+0.0	+0.0	+0.0	40.9	82.3	-41.4	Vert
			+11.7	+1.1	+0.5	+0.0	123				100
2	125.900M	26.8	+0.0	+0.0	+0.0	+0.0	+0.0	40.0	82.3	-42.3	Vert
			+11.7	+1.0	+0.5	+0.0	85				100
3	1648.410M	42.5	-34.9	+2.0	+26.2	+1.8	+0.0	38.2	82.3	-44.1	Horiz
	Ave		+0.0	+0.0	+0.0	+0.6	203		Low Chan	nel	102
									Harmonic		
^	1648.480M	61.3	-34.9	+2.0	+26.2	+1.8	+0.0	57.0	82.3	-25.3	Horiz
			+0.0	+0.0	+0.0	+0.6	203		Low Chan	nel	102
									Harmonic		
5	1672.795M	41.9	-34.9	+2.0	+26.2	+1.8	+0.0	37.5	82.3	-44.8	Horiz
	Ave		+0.0	+0.0	+0.0	+0.5	211		Mid Chani	nel	100
									Harmonic		
^	1672.725M	61.4	-34.9	+2.0	+26.2	+1.8	+0.0	57.0	82.3	-25.3	Horiz
			+0.0	+0.0	+0.0	+0.5	211		Mid Chani	nel	100
									Harmonic		
7	1697.640M	41.7	-34.9	+2.0	+26.2	+1.8	+0.0	37.3	82.3	-45.0	Horiz
	Ave		+0.0	+0.0	+0.0	+0.5	219		High Chan	inel	100
									Harmonic		
^	1697.580M	60.3	-34.9	+2.0	+26.2	+1.8	+0.0	55.9	82.3	-26.4	Horiz
			+0.0	+0.0	+0.0	+0.5	219		High Chan	inel	100
									Harmonic		
9	1697.600M	40.5	-34.9	+2.0	+26.2	+1.8	+0.0	36.1	82.3	-46.2	Vert
	Ave		+0.0	+0.0	+0.0	+0.5	272		High Chan	inel	100
									Harmonic		
^	1697.610M	59.0	-34.9	+2.0	+26.2	+1.8	+0.0	54.6	82.3	-27.7	Vert
			+0.0	+0.0	+0.0	+0.5	272		High Chan	nel	100
									Harmonic		

11 2546.400M	34.5	-33.8	+2.3	+29.3	+2.2	+0.0	34.9	82.3 -47.4	Horiz
Ave		+0.0	+0.0	+0.0	+0.4	113		High Channel	129
								Harmonic	
^ 2546.480M	53.1	-33.8	+2.3	+29.3	+2.2	+0.0	53.5	82.3 -28.8	Horiz
		+0.0	+0.0	+0.0	+0.4	113		High Channel	129
								Harmonic	
13 1648.400M	38.8	-34.9	+2.0	+26.2	+1.8	+0.0	34.5	82.3 -47.8	Vert
Ave		+0.0	+0.0	+0.0	+0.6	209		Low Channel	108
								Harmonic	
^ 1648.360M	57.5	-34.9	+2.0	+26.2	+1.8	+0.0	53.2	82.3 -29.1	Vert
		+0.0	+0.0	+0.0	+0.6	209		Low Channel	108
								Harmonic	
15 1672.795M	38.9	-34.9	+2.0	+26.2	+1.8	+0.0	34.5	82.3 -47.8	Vert
Ave		+0.0	+0.0	+0.0	+0.5	212		Mid Channel	144
								Harmonic	
^ 1672.810M	57.5	-34.9	+2.0	+26.2	+1.8	+0.0	53.1	82.3 -29.2	Vert
		+0.0	+0.0	+0.0	+0.5	212		Mid Channel	144
17 8500 1000 5				• • •				Harmonic	
17 2509.180M	30.7	-33.9	+2.3	+29.2	+2.2	+0.0	30.9	82.3 -51.4	Vert
Ave		+0.0	+0.0	+0.0	+0.4	29		Mid Channel	120
A 2500 2201 (47.6	22.0		100.0	10.0		47.0	Harmonic	X 7 /
^ 2509.238M	47.6	-33.9	+2.3	+29.2	+2.2	+0.0	47.8	82.3 -34.5	Vert
		+0.0	+0.0	+0.0	+0.4	29		Mid Channel	120
10 2546 44014	20.0	22.0	12.2	100.2	12.2		20.4	Harmonic	N <i>T</i> 4
19 2546.440M	30.0	-33.8	+2.3	+29.3	+2.2	+0.0	30.4	82.3 -51.9	Vert
Ave		+0.0	+0.0	+0.0	+0.4	1/3		High Channel	127
A 2546 500M	175	22.0	10.0	120.2	12.2		17.0	Harmonic	V
~ 2546.500M	47.5	-33.8	+2.3	+29.3	+2.2	+0.0	47.9	82.3 -34.4	vert
		+0.0	+0.0	+0.0	± 0.4	1/3		High Channel	127
21 2472 (00)4	20.6	22.0	12.4	1 20.1	12.2		20.9	Harmonic 92.2 52.5	Hamin
21 24/2.000M	29.0	-33.9	+2.4	+29.1	+2.2	± 0.0	29.8	82.3 -32.3 Low Channel	H0FIZ
Ave		± 0.0	± 0.0	± 0.0	+0.4	181		Low Channel Harmonia	108
△ 2472.660M	45.0	22.0	±2.4	⊥ 20.1	<u>⊥</u> 2 2	+0.0	46.1	<u>82.2</u> 26.2	Uoriz
24/2.000M	43.9	-55.9	+2.4 +0.0	+29.1 +0.0	+2.2	+0.0 191	40.1	02.3 -30.2	100
		10.0	10.0	10.0	+0.4	101		Harmonic	108
23 2472 620M	28.0	_33.0	+2.4	+20.1	+2.2	+0.0	20.1	82.3 _53.2	Vert
Δve	20.9	+0.0	+2.4	+29.1 +0.0	+2.2 +0.4	323	29.1	Low Channel	108
Ave.		10.0	10.0	10.0	10.4	525		Harmonic	100
^ 2472 540M	43.8	_33.9	+2 4	+29.1	+2.2	+0.0	44.0	82.3 -38.3	Vert
24/2.540141	45.0	+0.0	+0.0	+0.0	+0.4	323	0	Low Channel	108
		0.0	. 0.0	0.0	· 0.7	525		Harmonic	100
25 2509 180M	28.5	-33.9	+2.3	+29.2	+2.2	+0.0	28 7	82.3 -53.6	Horiz
Ave	-0.0	+0.0	+0.0	+0.0	+0.4	348	_0.7	Mid Channel	141
*		0.0	0.0	0.0	0.1			Harmonic	
^ 2509.215M	45.2	-33.9	+2.3	+29.2	+2.2	+0.0	45.4	82.3 -36.9	Horiz
		+0.0	+0.0	+0.0	+0.4	348		Mid Channel	141
						-		Harmonic	
£									

FCC 2.1033(c)(14)/2.1053/24.238 - FIELD STRENGTH OF SPURIOUS RADIATION

Test Setup Photos

Test Data Sheets

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer:	Vulcan Portals, Inc.		
Specification:	FCC Part 24.238 Radiated Spuri	ious Emissions	
Work Order #:	86709	Date:	8/20/2007
Test Type:	Radiated Scan	Time:	16:11:32
Equipment:	Ultra Compact Laptop	Sequence#:	11
Manufacturer:	Vulcan Portals, Inc.	Tested By:	Ryan Rutledge
Model:	Flipstart E-1501s		
S/N:	MVT1-103		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4440A	S/N: MY46186330	10/03/2007	10/03/2009	AN02872
60" Pasternack 40 GHz Coax	S/N: N/A	05/11/2006	05/11/2008	AN05423
30' Andrews Heliax 18 GHz	S/N: N/A	06/19/2006	06/19/2008	AN05545
HP 83017A .5 - 26.5 GHz Pre-amp	S/N: 3123A00464	10/03/2005	10/03/2007	AN01271
EMCO 3115 Horn Ant	S/N: 9606-4854	12/13/2005	12/13/2007	AN01412
2.8 GHz HP Filter	S/N: 2	03/07/2006	03/07/2008	AN02745
Bothell 5m Cable Set	S/N: P05444	04/26/2007	04/26/2009	ANP05444
20' RG-214 Coax	S/N: 16	11/09/2006	11/09/2008	ANP05360
Chase BILOG	S/N: 2458	01/31/2007	01/31/2009	AN01993
12-18 GHz Horn	S/N: 1114019	04/13/2006	04/13/2008	AN02741
120" Pasternack 40 GHz Coax	S/N: N/A	07/20/2007	07/20/2009	AN05425
120" Pasternack 40 GHz Coax	S/N: N/A	07/20/2007	07/20/2009	AN05426
18-26 GHz Horn	S/N: 1114018	04/14/2006	04/14/2008	AN02742

Function	Manufacturer	Model #	S/N
Ultra Compact Laptop*	Vulcan Portals, Inc.	Flipstart E-1501s	MVT1-103
Support Devices:			
Function	Manufacturer	Model #	S/N
FlipStart Battery	Vulcan Portals, Inc.	E-5000	35560035
FlipStart AC adapter	EOS	ZVC36FS12S54	0001
Call box	Agilent	8960-E5515C	GB42230675
Call box antenna	Electro-metrics	RGA-60	6154

Equipment Under Test (* = EUT):

Test Conditions / Notes:

The EUT is placed on the wooden table on a foam spacer. Evaluation of Spurious Emissions is performed without peripherals attached to the EUT. Carrier/Modulation: PCS1900, EDGE12. 30 - 1000 MHz RBW=120 kHz, VBW=120 kHz Quasi-peak 1 - 20 GHz RBW=1 MHz, VBW=1 MHz Average 120Vac, 60 Hz, 22°C, 45% relative humidity. Test Equipment Used: 30 - 1000 MHz Equipment 1, 7, 8, 9; 1 - 12 GHz Equipment 1, 2, 3, 4, 5, 6; 12 - 18 GHz Equipment 1, 2, 3, 10; 18 - 20 GHz Equipment 1, 2, 11, 12, 13.

Transducer Legend:	
T1=AMP-AN01271-1003055-26.5 GHz	T2=CAB-ANP05545-061906
T3=ANT-AN01412-121305	T4=CAB-ANP05423-051006
T5=ANT AN01993 25-1000MHz	T6=CAB-ANP05444-042607 - CPC3 Cable Set
T7=CAB-ANP05360-110906	T8=Filter 3GHz HP AN02745
T9=ANT-AN02741-041306	T10=ANT-AN02742-041406
T11=CAB-ANP05425-072007	T12=CAB-ANP05426-072007

Reading listed by margin.				Test Distance: 3 Meters					
Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	T5	T6	Τ7	T8					
	Т9	T10	T11	T12					
dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
56.9	+0.0	+7.8	+0.0	+6.3	+0.0	59.5	82.3	-22.8	Horiz
	+0.0	+0.0	+0.0	+0.0	147		Mid Chani	nel	110
	-11.5						Harmonic		
35.2	-33.7	+5.9	+38.4	+5.0	+0.0	51.1	82.3	-31.2	Vert
	+0.0	+0.0	+0.0	+0.3	169		High Chan	inel	126
							Harmonic		
56.2	-33.7	+5.9	+38.4	+5.0	+0.0	72.1	82.3	-10.2	Vert
	+0.0	+0.0	+0.0	+0.3	169		High Chan	inel	126
							Harmonic		
35.4	-33.7	+5.4	+38.3	+4.6	+0.0	50.3	82.3	-32.0	Vert
	+0.0	+0.0	+0.0	+0.3	226		High Chan	nel	108
							Harmonic		
54.9	-33.8	+5.4	+38.3	+4.6	+0.0	69.7	82.3	-12.6	Vert
	+0.0	+0.0	+0.0	+0.3	226		High Chan	inel	108
							Harmonic		
34.5	-33.7	+5.4	+38.3	+4.6	+0.0	49.4	82.3	-32.9	Horiz
	+0.0	+0.0	+0.0	+0.3	91		High Chan	inel	117
							Harmonic		
53.5	-33.8	+5.4	+38.3	+4.6	+0.0	68.3	82.3	-14.0	Horiz
	+0.0	+0.0	+0.0	+0.3	91		High Chan	inel	117
							Harmonic		
	Rdng dBμV 56.9 35.2 56.2 35.4 54.9 34.5 53.5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Reading listed by margin.RdngT1T2T3T5T6T7T9T10T11dB μ VdBdBdB56.9+0.0+7.8+0.0+0.0+0.0+0.0+0.0-11.5-35.2-33.7+5.935.2-33.7+5.9+38.4+0.0+0.0+0.056.2-33.7+5.9+38.4+0.0+0.0+0.035.4-33.7+5.4+38.3+0.0+0.0+0.054.9-33.8+5.4+38.3+0.0+0.0+0.0+0.034.5-33.7+5.4+38.3+0.0+0.0+0.0+0.053.5-33.8+5.4+38.3+0.0+0.0+0.0+0.0	Reading listed by margin.RdngT1T2T3T4T5T6T7T8T9T10T11T12dB μ VdBdBdBdB56.9 $+0.0$ $+7.8$ $+0.0$ $+6.3$ $+0.0$ $+0.0$ $+0.0$ $+0.0$ $+0.0$ -11.5 -35.2 -33.7 $+5.9$ $+38.4$ $+5.0$ 35.2 -33.7 $+5.9$ $+38.4$ $+5.0$ $+0.0$ $+0.0$ $+0.0$ $+0.0$ $+0.3$ 56.2 -33.7 $+5.9$ $+38.4$ $+5.0$ $+0.0$ $+0.0$ $+0.0$ $+0.0$ $+0.3$ 35.4 -33.7 $+5.4$ $+38.3$ $+4.6$ $+0.0$ $+0.0$ $+0.0$ $+0.0$ $+0.3$ 34.5 -33.7 $+5.4$ $+38.3$ $+4.6$ $+0.0$ $+0.0$ $+0.0$ $+0.0$ $+0.3$ 53.5 -33.8 $+5.4$ $+38.3$ $+4.6$ $+0.0$ $+0.0$ $+0.0$ $+0.0$ $+0.3$	Reading listed by margin.ToRdngT1T2T3T4DistT5T6T7T8T9T10T11T12dB μ VdBdBdBdBdBTable56.9+0.0+7.8+0.0+6.3+0.0+0.0+0.0+0.0+0.0+0.0+0.0147-11.5-11.5-11.5-11.5-11.535.2-33.7+5.9+38.4+5.0+0.0-56.2-33.7+5.9+38.4+5.0+0.0+0.0+0.0+0.0+0.0+0.316935.4-33.7+5.4+38.3+4.6+0.0-54.9-33.8+5.4+38.3+4.6+0.0-54.9-33.8+5.4+38.3+4.6+0.0-53.5-33.8+5.4+38.3+4.6+0.0+0.0+0.0+0.0+0.0+0.391	Test DistanceRdngT1T2T3T4DistCorrT5T6T7T8T9T10T11T12dB μ VdBdBdBdBdBdBTabledB μ V/m56.9+0.0+7.8+0.0+6.3+0.059.5+0.0+0.0+0.0+0.0+0.0147-11.5-35.2-33.7+5.9+38.4+5.0+0.056.2-33.7+5.9+38.4+5.0+0.051.1+0.0+0.0+0.0+0.0+0.316972.156.2-33.7+5.9+38.4+5.0+0.050.3+0.0+0.0+0.0+0.322650.335.4-33.7+5.4+38.3+4.6+0.069.7+0.0+0.0+0.0+0.322651.149.4+0.0+0.0+0.0+0.39149.4+0.0+0.0+0.0+0.39153.5-33.8+5.4+38.3+4.6+0.068.3+0.0+0.0+0.0+0.39168.3	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Test Distance: 3 Meters: Rdng T1 T2 T3 T4 Dist Corr Spec Margin T5 T6 T7 T8 Spec Margin dBµV dB dB dB dB dB Table dBµV/m dBµV/m dB 56.9 +0.0 +7.8 +0.0 +6.3 +0.0 59.5 82.3 -22.8 +0.0 +0.0 +0.0 +0.0 +0.0 147 Mid Channel -11.5 - - Harmonic Harmonic - 35.2 -33.7 +5.9 +38.4 +5.0 +0.0 51.1 82.3 -31.2 +0.0 +0.0 +0.0 +0.0 +0.3 169 High Channel Harmonic 56.2 -33.7 +5.9 +38.4 +5.0 +0.0 50.3 82.3 -32.0 40.0 +0.0 +0.0 +0.0 50.3 82.3 <td< td=""></td<>

8 11280.020M	33.2	-33.7	+6.0	+38.4	+4.9	+0.0	49.2	82.3 -33.1	Vert
Ave		+0.0	+0.0	+0.0	+0.4	174		Mid Channel	113
								Harmonic	
^ 11279.970M	54.5	-33.7	+6.0	+38.4	+4.9	+0.0	70.5	82.3 -11.8	Vert
		+0.0	+0.0	+0.0	+0.4	174		Mid Channel	113
								Harmonic	
10_11101.160M	31.3	-33.8	+5.9	+38.3	+4.9	+0.0	47.0	82.3 -35.3	Vert
Ave		+0.0	+0.0	+0.0	+0.4	167		Low Channel	112
		0.0	0.0	0.0	0			Harmonic	
^ 11101 170M	50.7	-33.8	+5.9	+38.3	+4 9	+0.0	66.4	82.3 -15.9	Vert
11101.170101	50.7	+0.0	+0.0	+0.0	+0.4	167	00.1	Low Channel	112
		0.0	0.0	0.0		107		Harmonic	112
12 9400 000M	31.8	-33.7	+5.3	+38.4	+4 5	+0.0	46.5	82.3 -35.8	Vert
Δve	51.0	+0.0	+0.0	+0.0	+0.2	150	H0.5	Mid Channel	185
Ave		10.0	10.0	10.0	10.2	150		Harmonic	105
△ 0400 040M	50.6	22.7	+5.3	+38 /	+4.5	+0.0	65.3	82.3 17.0	Vort
9400.040IVI	50.0	-33.7	+ 0.0	+ 38.4	+4.5	150	05.5	Mid Channel	185
		10.0	10.0	+0.0	10.2	150		Harmonia	105
14 18700 880M	28.6	+0.0	+0.0	+0.0	+6.8	+0.0	15 1	82.2 26.0	Vort
14 10/99.000M	28.0	+0.0	+0.0	+0.0	+0.8	150	43.4	Mid Channel	100
Ave		+0.0 ⊥0.0	+0.0	± 11.1	+0.0 +10.9	139		Uarmonia	100
△ 19700 040M	47.0	+0.0	-11.9	+11.1	+10.8		(2.0		Vont
18/99.940M	47.0	+0.0	+0.0	+0.0	+0.8	+0.0	03.8	82.3 -18.3	vert
		+0.0	+0.0	+0.0	+0.0	159		Mid Channel	100
16 10160 00014	47.0	+0.0	-11.9	+11.1	+10.8		45.0	Harmonic	X 7 /
16 13160.030M	47.3	+0.0	+6.4	+0.0	+5.5	+0.0	45.2	82.3 -37.1	Vert
Ave		+0.0	+0.0	+0.0	+0.0	187		Mid Channel	100
		-14.0						Harmonic	
^ 13160.050M	68.5	+0.0	+6.4	+0.0	+5.5	+0.0	66.4	82.3 -15.9	Vert
		+0.0	+0.0	+0.0	+0.0	187		Mid Channel	100
		-14.0						Harmonic	
18 11458.840M	29.2	-33.7	+5.9	+38.4	+5.0	+0.0	45.1	82.3 -37.2	Horiz
Ave		+0.0	+0.0	+0.0	+0.3	235		High Channel	119
								Harmonic	
^ 11458.870M	48.2	-33.7	+5.9	+38.4	+5.0	+0.0	64.1	82.3 -18.2	Horiz
		+0.0	+0.0	+0.0	+0.3	235		High Channel	119
								Harmonic	
20 13368.640M	47.0	+0.0	+6.7	+0.0	+5.5	+0.0	45.0	82.3 -37.3	Horiz
Ave		+0.0	+0.0	+0.0	+0.0	193		High Channel	100
		-14.2						Harmonic	
^ 13368.690M	68.2	+0.0	+6.7	+0.0	+5.5	+0.0	66.2	82.3 -16.1	Horiz
		+0.0	+0.0	+0.0	+0.0	193		High Channel	100
		-14.2						Harmonic	
22 19098.300M	27.5	+0.0	+0.0	+0.0	+6.9	+0.0	44.8	82.3 -37.5	Vert
Ave		+0.0	+0.0	+0.0	+0.0	162		High Channel	100
		+0.0	-11.7	+11.2	+10.9			Harmonic	
^ 19098.340M	44.8	+0.0	+0.0	+0.0	+6.9	+0.0	62.1	82.3 -20.2	Vert
		+0.0	+0.0	+0.0	+0.0	163		High Channel	100
		+0.0	-11.7	+11.2	+10.9	-		Harmonic	
1					• • •			··· · ·	

24 13368.610M	46.8	+0.0	+6.7	+0.0	+5.5	+0.0	44.8	82.3 -37.5	Vert
Ave		+0.0	+0.0	+0.0	+0.0	226		High Channel	100
		-14.2						Harmonic	
^ 13368.660M	68.0	+0.0	+6.7	+0.0	+5.5	+0.0	66.0	82.3 -16.3	Vert
		+0.0	+0.0	+0.0	+0.0	226		High Channel	100
		-14.2						Harmonic	
26 34.000M	27.3	+0.0	+0.0	+0.0	+0.0	+0.0	44.7	82.3 -37.6	Horiz
		+16.5	+0.6	+0.3	+0.0	295			100
27 18800.190M	27.8	+0.0	+0.0	+0.0	+6.8	+0.0	44.6	82.3 -37.7	Horiz
Ave		+0.0	+0.0	+0.0	+0.0	150		Mid Channel	107
		+0.0	-11.9	+11.1	+10.8			Harmonic	
^ 18800.100M	45.3	+0.0	+0.0	+0.0	+6.8	+0.0	62.1	82.3 -20.2	Horiz
		+0.0	+0.0	+0.0	+0.0	150		Mid Channel	107
		+0.0	-11.9	+11.1	+10.8			Harmonic	
29 19097.740M	27.2	+0.0	+0.0	+0.0	+6.9	+0.0	44.5	82.3 -37.8	Horiz
Ave		+0.0	+0.0	+0.0	+0.0	145		High Channel	100
		+0.0	-11.7	+11.2	+10.9	-		Harmonic	
^ 19097 760M	44 4	+0.0	+0.0	+0.0	+6.9	+0.0	61 7	82.3 -20.6	Horiz
190971700112		+0.0	+0.0	+0.0	+0.0	145	0117	High Channel	100
		+0.0	-117	+11.2	+10.9	1.0		Harmonic	100
31 18501 920M	27.9	+0.0	+0.0	+0.0	+6.7	+0.0	44.2	82.3 -38.1	Vert
Ave	21.9	+0.0	+0.0	+0.0	+0.0	156	11.2	Low Channel	100
1100		+0.0	-12.1	+11.0	+10.7	100		Harmonic	100
^ 18501 830M	47.0	+0.0	+0.0	+0.0	+6.7	+0.0	63.3	82.3 _10.0	Vert
10501.0501	т7.0	+0.0	+0.0	+0.0	+0.7	156	05.5	Low Channel	100
		+0.0	-12.1	+11.0	+10.0	150		Harmonic	100
33 18502 260M	27.7	+0.0	+0.0	+0.0	+6.7	+0.0	44.0	82.3 _38.3	Horiz
Δνο	21.1	+0.0	+0.0	+0.0	+0.7	1/6	44.0	I ow Channel	116
Ave		+0.0	-12.1	+11.0	+10.0	140		Harmonic	110
^ 18502 270M	46.1	+0.0	+0.0	+0.0	+6.7	+0.0	62.4	82.3 _10.0	Horiz
10502.270101	40.1	+0.0	+0.0	+0.0	+0.7	146	02.4	I ow Channel	116
		+0.0	-12.1	+11.0	+10.0	140		Harmonic	110
25 15278 400M	12.2		-12.1	+11.0	+10.7	+0.0	12.6	82.2 29.7	Vort
55 15278.4001vi	43.2	+0.0 +0.0	+7.2 +0.0	+0.0 +0.0	+0.0	+0.0	45.0	02.3 -30.7 Uigh Channal	100
Ave		+0.0	+0.0	± 0.0	± 0.0	219		High Chaliner	100
∧ 15079 460M	65.0	-12.0	17.2		16.0		65 1	82.2 16.0	Vort
132/8.400101	03.0	+0.0	+1.2	± 0.0	± 0.0	± 0.0	03.4	82.3 -10.9	100
		+0.0	± 0.0	± 0.0	± 0.0	219		High Channel	100
27 11290 090M	27.2	-12.0	16.0	120 /	14.0		12.2	82.2 20.0	Horiz
57 11280.080W	27.5	-33.7	+0.0	+38.4	+4.9	± 0.0	45.5	02.5 -59.0 Mid Channal	122
Ave		± 0.0	± 0.0	± 0.0	+0.4	133		Mild Chaliner	155
△ 11000.070M	15 7	22.7	16.0	120 1	+4.0		(17		Hamim
^ 11280.070M	45.7	-33./	+6.0	+38.4	+4.9	+0.0	61./	82.3 -20.0	HOFIZ
		+0.0	+0.0	+0.0	+0.4	155			155
20.0400.02015	20.4	22.7	15.0	120.4	14.5		42.1		II. '
39 9400.030M	28.4	-33.7	+5.3	+38.4	+4.5	+0.0	43.1	82.5 -39.2 Mid Changel	Horiz
Ave		+0.0	+0.0	+0.0	+0.2	40			155
A 0400 11015	16 -	22.7		100.1			(1.0	Harmonic	
^ 9400.110M	46.5	-33.7	+5.3	+38.4	+4.5	+0.0	61.2	82.3 -21.1	Horiz
		+0.0	+0.0	+0.0	+0.2	40		Mid Channel	133
								Harmonic	

41 9250.980M	27.8	-33.6	+5.3	+38.5	+4.4	+0.0	42.6	82.3 -39.7	Vert
Ave		+0.0	+0.0	+0.0	+0.2	141		Low Channel	166
								Harmonic	
^ 9250.890M	45.9	-33.6	+5.3	+38.5	+4.4	+0.0	60.7	82.3 -21.6	Vert
		+0.0	+0.0	+0.0	+0.2	141		Low Channel	166
								Harmonic	
43 12951.440M	44.6	+0.0	+6.4	+0.0	+5.4	+0.0	42.5	82.3 -39.8	Vert
Ave		+0.0	+0.0	+0.0	+0.0	161		Low Channel	100
		-13.9						Harmonic	
^ 12951.480M	65.8	+0.0	+6.4	+0.0	+5.4	+0.0	63.7	82.3 -18.6	Vert
		+0.0	+0.0	+0.0	+0.0	161		Low Channel	100
		-13.9						Harmonic	
45 11101.200M	26.7	-33.8	+5.9	+38.3	+4.9	+0.0	42.4	82.3 -39.9	Horiz
Ave		+0.0	+0.0	+0.0	+0.4	130		Low Channel	112
								Harmonic	
^ 11101.110M	45.0	-33.8	+5.9	+38.3	+4.9	+0.0	60.7	82.3 -21.6	Horiz
		+0.0	+0.0	+0.0	+0.4	130		Low Channel	112
								Harmonic	
47 15039.990M	42.4	+0.0	+7.0	+0.0	+5.9	+0.0	42.3	82.3 -40.0	Vert
Ave		+0.0	+0.0	+0.0	+0.0	218		Mid Channel	100
		-13.0						Harmonic	
^ 15040.080M	64.0	+0.0	+7.0	+0.0	+5.9	+0.0	63.9	82.3 -18.4	Vert
		+0.0	+0.0	+0.0	+0.0	218		Mid Channel	100
		-13.0						Harmonic	
49 13160.010M	44.3	+0.0	+6.4	+0.0	+5.5	+0.0	42.2	82.3 -40.1	Horiz
Ave		+0.0	+0.0	+0.0	+0.0	191		Mid Channel	110
		-14.0						Harmonic	
^ 13160.030M	65.4	+0.0	+6.4	+0.0	+5.5	+0.0	63.3	82.3 -19.0	Horiz
		+0.0	+0.0	+0.0	+0.0	191		Mid Channel	110
		-14.0						Harmonic	
51 15278.430M	41.4	+0.0	+7.2	+0.0	+6.0	+0.0	41.8	82.3 -40.5	Horiz
Ave		+0.0	+0.0	+0.0	+0.0	204		High Channel	100
		-12.8						Harmonic	
^ 15278.460M	63.0	+0.0	+7.2	+0.0	+6.0	+0.0	63.4	82.3 -18.9	Horiz
		+0.0	+0.0	+0.0	+0.0	204		High Channel	100
		-12.8						Harmonic	
53 15040.070M	41.9	+0.0	+7.0	+0.0	+5.9	+0.0	41.8	82.3 -40.5	Horiz
Ave		+0.0	+0.0	+0.0	+0.0	153		Mid Channel	110
		-13.0						Harmonic	
^ 15040.000M	63.3	+0.0	+7.0	+0.0	+5.9	+0.0	63.2	82.3 -19.1	Horiz
		+0.0	+0.0	+0.0	+0.0	153		Mid Channel	110
		-13.0						Harmonic	
55 9251.000M	26.9	-33.6	+5.3	+38.5	+4.4	+0.0	41.7	82.3 -40.6	Horiz
Ave		+0.0	+0.0	+0.0	+0.2	125		Low Channel	113
								Harmonic	
^ 9251.010M	44.3	-33.6	+5.3	+38.5	+4.4	+0.0	59.1	82.3 -23.2	Horiz
		+0.0	+0.0	+0.0	+0.2	125		Low Channel	113
						-		Harmonic	-

57 14801.660M	41.8	+0.0	+6.9	+0.0	+5.9	+0.0	41.1	82.3 -41.2	Vert
Ave		+0.0	+0.0	+0.0	+0.0	196		Low Channel	100
		-13.5						Harmonic	
^ 14801.670M	63.2	+0.0	+6.9	+0.0	+5.9	+0.0	62.5	82.3 -19.8	Vert
		+0.0	+0.0	+0.0	+0.0	196		Low Channel	100
		-13.5						Harmonic	
59 7639.220M	28.4	-33.8	+4.7	+36.8	+4.0	+0.0	40.2	82.3 -42.1	Vert
Ave		+0.0	+0.0	+0.0	+0.1	133		High Channel	102
								Harmonic	
^ 7639.130M	44.4	-33.8	+4.7	+36.8	+4.0	+0.0	56.2	82.3 -26.1	Vert
		+0.0	+0.0	+0.0	+0.1	133		High Channel	102
								Harmonic	
61 16651.860M	37.8	+0.0	+7.8	+0.0	+6.2	+0.0	40.1	82.3 -42.2	Horiz
Ave		+0.0	+0.0	+0.0	+0.0	218		Low Channel	110
		-11.7						Harmonic	
^ 16651.840M	59.4	+0.0	+7.8	+0.0	+6.2	+0.0	61.7	82.3 -20.6	Horiz
		+0.0	+0.0	+0.0	+0.0	218		Low Channel	110
		-11.7						Harmonic	
63 125.900M	26.8	+0.0	+0.0	+0.0	+0.0	+0.0	40.0	82.3 -42.3	Vert
		+11.7	+1.0	+0.5	+0.0	199			100
64 16919.960M	36.6	+0.0	+7.8	+0.0	+6.3	+0.0	39.2	82.3 -43.1	Vert
Ave		+0.0	+0.0	+0.0	+0.0	176		Mid Channel	100
		-11.5						Harmonic	
^ 16920.030M	59.3	+0.0	+7.8	+0.0	+6.3	+0.0	61.9	82.3 -20.4	Vert
		+0.0	+0.0	+0.0	+0.0	176		Mid Channel	100
		-11.5						Harmonic	
66 16651.850M	36.9	+0.0	+7.8	+0.0	+6.2	+0.0	39.2	82.3 -43.1	Vert
Ave		+0.0	+0.0	+0.0	+0.0	178		Low Channel	100
		-11.7						Harmonic	
^ 16651.750M	59.7	+0.0	+7.8	+0.0	+6.2	+0.0	62.0	82.3 -20.3	Vert
		+0.0	+0.0	+0.0	+0.0	178		Low Channel	100
		-11.7						Harmonic	
68 16920.000M	35.7	+0.0	+7.8	+0.0	+6.3	+0.0	38.3	82.3 -44.0	Horiz
Ave		+0.0	+0.0	+0.0	+0.0	147		Mid Channel	110
		-11.5						Harmonic	
69 14801.600M	38.9	+0.0	+6.9	+0.0	+5.9	+0.0	38.2	82.3 -44.1	Horiz
Ave		+0.0	+0.0	+0.0	+0.0	153		Low Channel	110
		-13.5						Harmonic	
^ 14801.610M	59.9	+0.0	+6.9	+0.0	+5.9	+0.0	59.2	82.3 -23.1	Horiz
		+0.0	+0.0	+0.0	+0.0	153		Low Channel	110
		-13.5						Harmonic	
71 12951.420M	39.9	+0.0	+6.4	+0.0	+5.4	+0.0	37.8	82.3 -44.5	Horiz
Ave		+0.0	+0.0	+0.0	+0.0	206		Low Channel	110
		-13.9						Harmonic	
^ 12951.480M	60.6	+0.0	+6.4	+0.0	+5.4	+0.0	58.5	82.3 -23.8	Horiz
		+0.0	+0.0	+0.0	+0.0	206		Low Channel	110
		-13.9						Harmonic	

73 7520.000M	25.6	-33.6	+4.7	+36.8	+4.0	+0.0	37.6	82.3 -44.7	Vert
Ave		+0.0	+0.0	+0.0	+0.1	151		Mid Channel	179
								Harmonic	
^ 7519.910M	41.7	-33.6	+4.7	+36.8	+4.0	+0.0	53.7	82.3 -28.6	Vert
		+0.0	+0.0	+0.0	+0.1	151		Mid Channel	179
								Harmonic	
75 5640.020M	27.6	-33.2	+4.0	+34.5	+3.4	+0.0	36.4	82.3 -45.9	Horiz
Ave		+0.0	+0.0	+0.0	+0.1	298		Mid Channel	148
								Harmonic	
^ 5640.010M	44.8	-33.2	+4.0	+34.5	+3.4	+0.0	53.6	82.3 -28.7	Horiz
		+0.0	+0.0	+0.0	+0.1	298		Mid Channel	148
								Harmonic	
77 7400.820M	24.9	-33.7	+4.6	+36.6	+3.9	+0.0	36.4	82.3 -45.9	Vert
Ave		+0.0	+0.0	+0.0	+0.1	142		Low Channel	165
								Harmonic	
^ 7400.900M	40.3	-33.7	+4.6	+36.6	+3.9	+0.0	51.8	82.3 -30.5	Vert
		+0.0	+0.0	+0.0	+0.1	142		Low Channel	165
								Harmonic	
79 5729.420M	27.4	-33.3	+4.0	+34.5	+3.5	+0.0	36.3	82.3 -46.0	Horiz
Ave		+0.0	+0.0	+0.0	+0.2	241		High Channel	120
								Harmonic	
^ 5729.360M	44.0	-33.3	+4.0	+34.5	+3.5	+0.0	52.9	82.3 -29.4	Horiz
		+0.0	+0.0	+0.0	+0.2	241		High Channel	120
								Harmonic	
81 5550.590M	27.4	-33.1	+4.0	+34.4	+3.4	+0.0	36.2	82.3 -46.1	Horiz
Ave		+0.0	+0.0	+0.0	+0.1	293		Low Channel	151
								Harmonic	
^ 5550.580M	44.2	-33.1	+4.0	+34.4	+3.4	+0.0	53.0	82.3 -29.3	Horiz
		+0.0	+0.0	+0.0	+0.1	293		Low Channel	151
								Harmonic	
83 17188.180M	33.7	+0.0	+7.8	+0.0	+6.3	+0.0	36.1	82.3 -46.2	Horiz
Ave		+0.0	+0.0	+0.0	+0.0	219		High Channel	100
		-11.7						Harmonic	
^ 17188.100M	54.0	+0.0	+7.8	+0.0	+6.3	+0.0	56.4	82.3 -25.9	Horiz
		+0.0	+0.0	+0.0	+0.0	219		High Channel	100
		-11.7						Harmonic	
85 17188.290M	33.7	+0.0	+7.8	+0.0	+6.3	+0.0	36.1	82.3 -46.2	Vert
Ave		+0.0	+0.0	+0.0	+0.0	176		High Channel	100
		-11.7						Harmonic	
^ 17188.200M	56.8	+0.0	+7.8	+0.0	+6.3	+0.0	59.2	82.3 -23.1	Vert
		+0.0	+0.0	+0.0	+0.0	176		High Channel	100
		-11.7						Harmonic	
87 5550.640M	27.2	-33.1	+4.0	+34.4	+3.4	+0.0	36.0	82.3 -46.3	Vert
Ave		+0.0	+0.0	+0.0	+0.1	269		Low Channel	153
								Harmonic	
^ 5550.680M	43.9	-33.1	+4.0	+34.4	+3.4	+0.0	52.7	82.3 -29.6	Vert
		+0.0	+0.0	+0.0	+0.1	269		Low Channel	153
								Harmonic	
*									

89 5729.450M	27.0	-33.3	+4.0	+34.5	+3.5	+0.0	35.9	82.3 -46.4	Vert
Ave		+0.0	+0.0	+0.0	+0.2	180		High Channel	110
								Harmonic	
^ 5729.370M	43.4	-33.3	+4.0	+34.5	+3.5	+0.0	52.3	82.3 -30.0	Vert
		+0.0	+0.0	+0.0	+0.2	180		High Channel	110
								Harmonic	
91 5640.010M	26.5	-33.2	+4.0	+34.5	+3.4	+0.0	35.3	82.3 -47.0	Vert
Ave		+0.0	+0.0	+0.0	+0.1	271		Mid Channel	185
								Harmonic	
^ 5639.990M	42.9	-33.2	+4.0	+34.5	+3.4	+0.0	51.7	82.3 -30.6	Vert
		+0.0	+0.0	+0.0	+0.1	271		Mid Channel	185
								Harmonic	
93 3819.600M	26.4	-33.2	+3.0	+32.1	+2.8	+0.0	31.4	82.3 -50.9	Vert
Ave		+0.0	+0.0	+0.0	+0.3	25		High Channel	101
								Harmonic	
^ 3819.530M	44.6	-33.2	+3.0	+32.1	+2.8	+0.0	49.6	82.3 -32.7	Vert
		+0.0	+0.0	+0.0	+0.3	25		High Channel	101
								Harmonic	
95 3819.620M	25.6	-33.2	+3.0	+32.1	+2.8	+0.0	30.6	82.3 -51.7	Horiz
Ave		+0.0	+0.0	+0.0	+0.3	291		High Channel	119
								Harmonic	
^ 3819.580M	41.9	-33.2	+3.0	+32.1	+2.8	+0.0	46.9	82.3 -35.4	Horiz
		+0.0	+0.0	+0.0	+0.3	291		High Channel	119
								Harmonic	
97 3700.400M	25.4	-33.2	+3.0	+31.7	+2.7	+0.0	29.9	82.3 -52.4	Vert
Ave		+0.0	+0.0	+0.0	+0.3	148		Low Channel	130
								Harmonic	
^ 3700.410M	44.5	-33.2	+3.0	+31.7	+2.7	+0.0	49.0	82.3 -33.3	Vert
		+0.0	+0.0	+0.0	+0.3	148		Low Channel	130
								Harmonic	
99 3759.920M	24.9	-33.2	+3.0	+31.9	+2.8	+0.0	29.7	82.3 -52.6	Vert
Ave		+0.0	+0.0	+0.0	+0.3	95		Mid Channel	130
								Harmonic	
^ 3759.960M	42.1	-33.2	+3.0	+31.9	+2.8	+0.0	46.9	82.3 -35.4	Vert
		+0.0	+0.0	+0.0	+0.3	95		Mid Channel	130
								Harmonic	
101 3760.020M	24.8	-33.2	+3.0	+31.9	+2.8	+0.0	29.6	82.3 -52.7	Horiz
Ave		+0.0	+0.0	+0.0	+0.3	93		Mid Channel	165
								Harmonic	
^ 3759.940M	41.9	-33.2	+3.0	+31.9	+2.8	+0.0	46.7	82.3 -35.6	Horiz
		+0.0	+0.0	+0.0	+0.3	93		Mid Channel	165
								Harmonic	
103 3700.420M	24.8	-33.2	+3.0	+31.7	+2.7	+0.0	29.3	82.3 -53.0	Horiz
Ave		+0.0	+0.0	+0.0	+0.3	128		Low Channel	122
								Harmonic	
^ 3700.440M	40.8	-33.2	+3.0	+31.7	+2.7	+0.0	45.3	82.3 -37.0	Horiz
		+0.0	+0.0	+0.0	+0.3	128		Low Channel	122
								Harmonic	