

ADDENDUM TO VULCAN PORTALS, INC. TEST REPORT FC07-070

FOR THE

ULTRA COMPACT LAPTOP, FLIPSTART E-1501A

FCC PART 22H \& 24E

TESTING

DATE OF ISSUE: DECEMBER 13, 2007

PREPARED FOR:

Vulcan Portals, Inc.
505 5th Ave. South, Ste. 900
Seattle, WA 98104
P.O. No.: 20185-01046
W.O. No.: 86709

PREPARED BY:

Mary Ellen Clayton
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338
Date of test: August 14-30, 2007

Report No.: FC07-070A

This report contains a total of 55 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

TABLE OF CONTENTS
Administrative Information 3
Approvals 3
Conditions During Testing 3
Equipment Under Test (EUT) Description 4
Equipment Under Test 4
Peripheral Devices 4
Temperature and Humidity During Testing 5
FCC 2.1033(c)(3) User's Manual 5
FCC 2.1033(c)(4) Type of Emissions 5
FCC 2.1033(c)(5) Frequency Range 5
FCC 2.1033(c)(6) Operating Power 5
FCC 2.1033(c)(8) DC Voltages 5
FCC 2.1033(c)(9) Tune-Up Procedure 5
FCC 2.1033(c)(10) Schematics and Circuitry Description 5
FCC 2.1033(c)(11) Label and Placement 5
FCC 2.1033(c)(12) Submittal Photos 5
FCC 2.1033(c)(13) Modulation Information 5
FCC 2.1033(c)(14)/2.1046 RF Power Output
FCC 2.1051/2.1053 Bandedge 28
FCC 2.1033(c)(14)/2.1053/22.917 - Field Strength of Spurious Radiation 45
FCC 2.1033(c)(14)/2.1053/24.238 - Field Strength of Spurious Radiation 48

ADMINISTRATIVE INFORMATION

DATE OF TEST: August 14-30, 2007
REPRESENTATIVE: Daniel Oar

MANUFACTURER:
Vulcan Portals, Inc.
505 5th Ave. South, Ste. 900
Seattle, WA 98104

DATE OF RECEIPT: August 14, 2007

TEST LOCATION:

CKC Laboratories, Inc.
14797 NE 95th
Redmond, WA 98052

FREQUENCY RANGE TESTED: $30 \mathrm{MHz}-20 \mathrm{GHz}$
TEST METHOD: FCC Part 22H \& 24E

PURPOSE OF TEST:

Original Report: To perform the testing of the Ultra Compact Laptop, Flipstart E-1501a with the requirements for FCC Part 22H \& 24E devices.
Addendum A: To add a statement regarding the RBW on pages 9-27.

APPROVALS

Steve Behm, Director of Engineering Services

QUALITY ASSURANCE:

Joyce Walker, Quality Assurance Administrative Manager

TEST PERSONNEL:

Ryan Rutledge, EMC Test Technologist

Katie Molina, Senior EMC Engineer/Lab
Manager

CONDITIONS DURING TESTING

No modifications to the EUT were necessary during testing.

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The customer declares that the EUT tested by CKC Laboratories was a production unit. The following model name was referenced by CKC Laboratories during testing: Flipstart E-1501s.

The model name referenced was incorrect. The proper model name should have been Flipstart E-1501a. The data sheets in Appendix B are screen captures taken at the time of testing and will reflect the wrong model number. Any differences between the names do not affect their EMC characteristics and therefore meet the level of testing equivalent to the tested model name shown on the data sheets.

EQUIPMENT UNDER TEST

Ultra Compact Laptop

Manuf:	Vulcan Portals, Inc.
Model:	Flipstart E-1501a
Serial:	MVT1-103
FCC ID:	UIQE1500

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

FlipStart Battery

Manuf:	Vulcan Portals, Inc.
Model:	E-5000
Serial:	35560035

Call box
Manuf:
Model:
8960-E5515C
Serial: GB42361377

FlipStart AC adapter

Manuf: EOS

Model: ZVC36FS12S54
Serial: 0001

Call Box Antenna
Manuf: Electro-metrics
Model: RGA-60
Serial: 6154

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within $+15^{\circ} \mathrm{C}$ and $+35^{\circ} \mathrm{C}$.
The relative humidity was between 20% and 75%.
FCC 2.1033(c)(3) USER'S MANUAL
The necessary information is contained in a separate document.

FCC 2.1033 (c)(4) TYPE OF EMISSIONS

F9W, G7W and GXW

FCC 2.1033 (c)(5) FREQUENCY RANGE
Part 22: 824 MHz - 849 MHz and Part 24: 1850 MHz - 1910 MHz
FCC 2.1033 (c)(6) OPERATING POWER
Part 22: 3.902305 Watts and Part 24: 0.36159 Watts

FCC 2.1033 (c)(8) DC VOLTAGES

The necessary information is contained in a separate document.
FCC 2.1033 (c)(9) TUNE-UP PROCEDURE
The necessary information is contained in a separate document.
FCC 2.1033(c)(10) SCHEMATICS AND CIRCUITRY DESCRIPTION
The necessary information is contained in a separate document.
FCC 2.1033(c)(11) LABEL AND PLACEMENT
The necessary information is contained in a separate document.
FCC 2.1033(c)(12) SUBMITTAL PHOTOS
The necessary information is contained in a separate document.
FCC 2.1033 (c)(13) MODULATION INFORMATION
GSM, EDGE, HSDPA, WCDMA

FCC 2.1033(c)(14)/2.1046/ RF POWER OUTPUT

Test Equipment

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Agilent E4440A	S/N: MY46186330	$10 / 03 / 2007$	$10 / 03 / 2009$	AN02872
Bothell 5m Cable Set	S/N: P05444	$04 / 26 / 2007$	$04 / 26 / 2009$	ANP05444
20' RG-214 Coax	S/N: 16	$11 / 09 / 2006$	$11 / 09 / 2008$	ANP05360
Chase BILOG	S/N: 2458	$01 / 31 / 2007$	$01 / 31 / 2009$	AN01993

Test Conditions: The EUT is placed on the wooden table on a foam spacer. Evaluation of Spurious Emissions is performed without peripherals attached to the EUT.

Test Setup Photos

Test Data

RF Output Power	EIRP Formula: $\operatorname{EIRP}=(\mathbf{E d})^{2} /(30 * \mathbf{G})$ $\mathrm{E}=$ Field strength of the measurement converted to V/m $\mathrm{d}=$ Measurement distance in meters $\mathrm{G}=$ Numerical gain of the EUT's antenna relative to Isotropic - To convert G, perform the following: $\mathrm{G}=10^{\wedge}(\mathrm{dBi} / 10)$ For ERP measurements, add 2.148 to EUT antenna's dBi value in the above equation. $\operatorname{ERP}(\mathrm{dB})=\operatorname{EIRP}(\mathrm{dB})-2.148$ Calculations below will use 2.14 to avoid rounding down Where $\mathrm{dBi}=$ EUT antenna gain above isotropic $E R P(W)=\frac{\left(10^{\frac{E R P_{d B m}}{10}}\right)}{100 n}$

RF POWER OUTPUT
FCC PART 22 \& IC RSS 132
Limit: 6.3W ERP
GSM850
Band,
GSM
Modulation

ERP POWER OUTPUT											
Vertical			Horizontal								
f (MHz)	Band- width* (MHz)	Level (W)	f (MHz)	Band- width* (MHz)	Level (W)						
824.200	3	0.678143	824.200	3	1.553536						
836.400	3	0.893967	836.400	3	3.641843						
848.800	3	1.003047	848.800	3	3.726673						
Measurement uncertainty (dB)								.673 dB			

Tested By: Ryan Rutledge
Result: Pass

GSM850 Band, EDGE12 Modulation

ERP POWER OUTPUT										
Vertical			Horizontal							
f (MHz)	Band- width* (MHz)	Level (W)	f (MHz)	Band- width* (MHz)	Level (W)					
824.200	3	0.710103	824.200	3	2.638282					
836.400	3	0.914790	836.400	3	3.902305					
848.800	3	0.980215	848.800	3	3.398766					
Measurement uncertainty (dB)							.673 dB			

Tested By: Ryan Rutledge
Result: Pass

WCDMA Band V

ERP POWER OUTPUT										
Vertical			Horizontal							
f (MHz)	Band- width (MHz)	Level* (W)	f (MHz)	Band- width* (MHz)	Level (W)					
826.400	3	0.207693	826.400	3	1.017235					
836.400	3	0.267560	836.400	3	1.040929					
846.600	3	0.025893	846.600	3	1.017235					
Measurement uncertainty (dB)							.673 dB			

Tested By: Ryan Rutledge
Result: Pass

* Due to limitations of the test equipment, readings were taken at 3 MHz Resolution Bandwidth (RBW) and corrected to the RBW \geq Emissions Bandwidth (EBW) requirement by adding the following correction factor: $10 \log$ (EBW/RBW)

WCDMA Band V, HSDPA Modulation

ERP POWER OUTPUT										
Vertical			Horizontal							
f (MHz)	Band- width (MHz)	Level* (W)	f (MHz)	Band- width* (MHz)	Level (W)					
826.400	3	0.227730	826.400	3	1.040929					
836.400	3	0.227730	836.400	3	1.280622					
846.600	3	0.255518	846.600	3	1.141356					
Measurement uncertainty (dB)							.673 dB			

Tested By: Ryan Rutledge
Result: Pass

* Due to limitations of the test equipment, readings were taken at 3 MHz Resolution Bandwidth (RBW) and corrected to the RBW \geq Emissions Bandwidth (EBW) requirement by adding the following correction factor: $10 \log$ (EBW/RBW)

RF POWER OUTPUT
FCC PART 24 \& IC RSS 133

Limit: 2W EIRP

PCS1900 Band, GSM Modulation

EIRP POWER OUTPUT									
Vertical			Horizontal						
f (MHz)	Band- iddt (MHz)	Level (W)	f (MHz)	Band- iddt * (MHz)	Level (W)				
1850.200	3	0.137	1850.200	3	0.307566				
1880.000	3	0.122444	1880.000	3	0.300565				
1909.800	3	0.143860	1909.800	3	0.329563				
Measurement uncertainty (dB)							.673 dB		

Tested By: Ryan Rutledge
Result: Pass
PCS1900 Band, EDGE12 Modulation

EIRP POWER OUTPUT					
Vertical			Horizontal		
f (MHz)	Band- width* (MHz)	Level (W)	f (MHz)	Band- width* (MHz)	Level (W)
1850.200	3	0.137	1850.200	3	0.322061
1880.000	3	0.137385	1880.000	3	0.314730
1909.800	3	0.150639	1909.800	3	0.361359
Measurement uncertainty (dB)		.673 dB			

Tested By: Ryan Rutledge
Result: Pass

WCDMA Band II

EIRP POWER OUTPUT									
Vertical			Horizontal						
f (MHz)	Band- width (MHz)	Level* (W)	f (MHz)	Band- iddth* (MHz)	Level (W)				
1852.400	3	0.072001	1852.400	3	0.247764				
1880.000	3	0.085910	1880.000	3	0.196805				
1907.600	3	0.073120	1907.600	3	0.074823				
Measurement uncertainty (dB)							.673 dB		

Tested By: Ryan Rutledge
Result: Pass

* Due to limitations of the test equipment, readings were taken at 3 MHz Resolution Bandwidth (RBW) and corrected to the RBW \geq Emissions Bandwidth (EBW) requirement by adding the following correction factor: $10 \log$ (EBW/RBW)

WCDMA Band II, HSDPA Modulation

EIRP POWER OUTPUT					
Vertical			Horizontal		
f (MHz)	Band- width (MHz)	Level* $_{(\mathrm{W})}$	f (MHz)	Band- width* (MHz)	Level (W)
1852.400	3	0.099002	1852.400	3	0.206082
1880.000	3	0.085910	1880.000	3	0.175403
1907.600	3	0.059434	1907.600	3	0.163697
Measurement uncertainty (dB)		.673 dB			

Tested By: Ryan Rutledge
Result: Pass

* Due to limitations of the test equipment, readings were taken at 3 MHz Resolution Bandwidth (RBW) and corrected to the RBW \geq Emissions Bandwidth (EBW) requirement by adding the following correction factor: $10 \log$ (EBW/RBW)

Test Location:	CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717		
Customer:	Vulcan Portals, Inc.		
Specification:	Part 22 RF Power and Block Edge Block C (Radiated)		
Work Order \#:	$\mathbf{8 6 7 0 9}$	Date:	8/15/2007
Test Type:	Radiated Scan	Time:	15:30:49
Equipment:	Ultra Compact Laptop	Sequence\#:	6
Manufacturer:	Vulcan Portals, Inc.	Tested By:	Ryan Rutledge
Model:	Flipstart E-1501s		
S/N:	MVT1-103		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Agilent E4440A	S/N: MY46186330	$10 / 03 / 2007$	$10 / 03 / 2009$	AN02872
Bothell 5m Cable Set	S/N: P05444	$04 / 26 / 2007$	$04 / 26 / 2009$	ANP05444
20' RG-214 Coax	S/N: 16	$11 / 09 / 2006$	$11 / 09 / 2008$	ANP05360
Chase BILOG	S/N: 2458	$01 / 31 / 2007$	$01 / 31 / 2009$	AN01993

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Ultra Compact Laptop*	Vulcan Portals, Inc.	Flipstart E-1501s	MVT1-103
Support Devices:			
Function	Manufacturer	Model \#	S/N
FlipStart Battery	Vulcan Portals, Inc.	E-5000	35560035
FlipStart AC adapter	EOS	ZVC36FS12S54	0001
Call box	Agilent	8960-E5515C	GB42230675
Call box antenna	Electro-metrics	RGA-60	6154

Test Conditions / Notes:

The EUT is placed on the wooden table on a foam spacer. Evaluation of RF Output Power and Band Edges is performed without peripherals attached to the EUT. Carrier/Modulation: WCDMA Band V, WCDMA. RF Output Power. RBW=3 MHz, VBW=3 MHz Band Edge RBW=120 kHz, VBW=120 kHz 100 Sweep Average, exceptions noted. $120 \mathrm{Vac}, 60 \mathrm{~Hz}, 24^{\circ} \mathrm{C}, 39 \%$ relative humidity. Due to limitations of the test equipment, readings were taken at 3 MHz Resolution Bandwidth (RBW) and corrected to the RBW \geq Emissions Bandwidth (EBW) requirement by adding the following correction factor: $10 \log$ (EBW/RBW).

Transducer Legend:

| T1 $=$ ANT AN01993 25-1000MHz |
| :--- | :--- |
| T3=CAB-ANP05360-110906 |\quad T2=CAB-ANP05444-042607-CPC3 Cable Set

Measu	ment Data:	Reading listed by margin.					Test Distance: 3 Meters			
\#	$\begin{aligned} & \text { Freq } \\ & \text { MHz } \end{aligned}$	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \text { T1 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{array}{r} \mathrm{T} 3 \\ \mathrm{~dB} \\ \hline \end{array}$	dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	Spec Margin $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ dB	Polar Ant
1	836.400 M	97.7	+22.7	+2.7	+1.8		+0.0	124.9	$134.4 \quad-9.5$ Peak Power Reading 3 MHz RBW	$\begin{gathered} \text { Horiz } \\ 226 \end{gathered}$
2	846.600 M	97.6	+22.8	+2.6	+1.8		$\begin{gathered} +0.0 \\ 4 \end{gathered}$	124.8	$\begin{array}{ll} \hline 134.4 & -9.6 \end{array}$ Peak Power Reading 3 MHz RBW	$\begin{gathered} \hline \text { Horiz } \\ 229 \end{gathered}$

3	826.400 M	97.8	+22.6	+2.6	+1.8		+0.0	124.8	134.4 Peak Power Reading 3 MHz	-9.6 RBW

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer:	Vulcan Portals, Inc.		
Specification:	Part 22 RF Power and Block Edge Block C (Radiated)		
Work Order \#:	$\mathbf{8 6 7 0 9}$	Date:	$8 / 15 / 2007$
Test Type:	Radiated Scan	Time:	14:25:04
Equipment:	Ultra Compact Laptop	Sequence\#:	5
Manufacturer:	Vulcan Portals, Inc.	Tested By:	Ryan Rutledge
Model:	Flipstart E-1501s		
S/N:	MVT1-103		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Agilent E4440A	S/N: MY46186330	$10 / 03 / 2007$	$10 / 03 / 2009$	AN02872
Bothell 5m Cable Set	S/N: P05444	$04 / 26 / 2007$	$04 / 26 / 2009$	ANP05444
20' RG-214 Coax	S/N: 16	$11 / 09 / 2006$	$11 / 09 / 2008$	ANP05360
Chase BILOG	S/N: 2458	$01 / 31 / 2007$	$01 / 31 / 2009$	AN01993

Equipment Under Test (* $\boldsymbol{\text { EUT }}$):			
Function	Manufacturer	Model \#	S/N
Ultra Compact Laptop*	Vulcan Portals, Inc.	Flipstart E-1501s	MVT1-103

Support Devices:

Function	Manufacturer	Model \#	S/N
FlipStart Battery	Vulcan Portals, Inc.	E-5000	35560035
FlipStart AC adapter	EOS	ZVC36FS12S54	0001
Call box	Agilent	8960-E5515C	GB42230675
Call box antenna	Electro-metrics	RGA-60	6154

Test Conditions / Notes:

The EUT is placed on the wooden table on a foam spacer. Evaluation of RF Output Power and Band Edges is performed without peripherals attached to the EUT. Carrier/Modulation: WCDMA Band V, HSDPA. RF Output Power. RBW $=3 \mathrm{MHz}, \mathrm{VBW}=3 \mathrm{MHz}$ Band Edge RBW $=120 \mathrm{kHz}, \mathrm{VBW}=120 \mathrm{kHz} 100$ Sweep Average, exceptions noted. $120 \mathrm{Vac}, 60 \mathrm{~Hz}, 24^{\circ} \mathrm{C}, 39 \%$ relative humidity. Due to limitations of the test equipment, readings were taken at 3 MHz Resolution Bandwidth (RBW) and corrected to the RBW \geq Emissions Bandwidth (EBW) requirement by adding the following correction factor: $10 \log$ (EBW/RBW).

Transducer Legend:

| T1 $=A N T$ AN01993 25-1000MHz |
| :--- | :--- |
| T3=CAB-ANP05360-110906 |\quad T2=CAB-ANP05444-042607-CPC3 Cable Set

Measu	ment Data:	Reading listed by margin.					Test Distance: 3 Meters				
\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
1	836.400 M	98.6	+22.7	+2.7	+1.8		+0.0	125.8	134.4 Peak Powe Reading 3 RBW	$\begin{aligned} & -8.6 \\ & \mathrm{MHz}^{-8.6} \end{aligned}$	$\begin{gathered} \text { Horiz } \\ 225 \end{gathered}$
2	846.600M	98.1	+22.8	+2.6	+1.8		$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	125.3	134.4 Peak Powe Reading 3 RBW	$\begin{aligned} & \quad-9.1 \\ & \mathrm{MHz} \end{aligned}$	$\begin{gathered} \text { Horiz } \\ 230 \end{gathered}$

3	826.400 M	97.9	+22.6	+2.6	+1.8		+0.0	124.9	134.4 Peak Power Reading 3 MHz	-9.5 RBW

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer:	Vulcan Portals, Inc.		
Specification:	Part 22 RF Power and Block Edge Block C (Radiated)		
Work Order \#:	86709	Date:	$8 / 15 / 2007$
Test Type:	Radiated Scan	Time:	$17: 36: 32$
Equipment:	Ultra Compact Laptop	Sequence\#:	7
Manufacturer:	Vulcan Portals, Inc.	Tested By:	Ryan Rutledge
Model:	Flipstart E-1501s		
S/N:	MVT1-103		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Agilent E4440A	S/N: MY46186330	$10 / 03 / 2007$	$10 / 03 / 2009$	AN02872
Bothell 5m Cable Set	S/N: P05444	$04 / 26 / 2007$	$04 / 26 / 2009$	ANP05444
20' RG-214 Coax	S/N: 16	$11 / 09 / 2006$	$11 / 09 / 2008$	ANP05360
Chase BILOG	S/N: 2458	$01 / 31 / 2007$	$01 / 31 / 2009$	AN01993

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Ultra Compact Laptop*	Vulcan Portals, Inc.	Flipstart E-1501s	MVT1-103

Support Devices:

Function	Manufacturer	Model \#	S/N
FlipStart Battery	Vulcan Portals, Inc.	E-5000	35560035
FlipStart AC adapter	EOS	ZVC36FS12S54	0001
Call box	Agilent	8960-E5515C	GB42230675
Call box antenna	Electro-metrics	RGA-60	6154

Test Conditions / Notes:

The EUT is placed on the wooden table on a foam spacer. Evaluation of RF Output Power and Band Edges is performed without peripherals attached to the EUT. Carrier/Modulation: GSM850, GSM. RF Output Power $\mathrm{RBW}=3 \mathrm{MHz}, \mathrm{VBW}=3 \mathrm{MHz}$ Band Edge $\mathrm{RBW}=120 \mathrm{kHz}, \mathrm{VBW}=120 \mathrm{kHz} 100$ Sweep Average, exceptions noted. $120 \mathrm{Vac}, 60 \mathrm{~Hz}, 24^{\circ} \mathrm{C}, 39 \%$ relative humidity. Due to limitations of the test equipment, readings were taken at 3 MHz Resolution Bandwidth (RBW) and corrected to the RBW \geq Emissions Bandwidth (EBW) requirement by adding the following correction factor: $10 \log$ (EBW/RBW).

Transducer Legend:

T1 $=A N T$ AN01993 25-1000MHz	
T3=CAB-ANP05360-110906	T2 $=$ CAB-ANP05444-042607 - CPC3 Cable Set

Measu	ment Data	Reading listed by margin.					Test Distance: 3 Meters			
\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \end{aligned}$	dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	Spec Margin $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ dB	Polar Ant
1	848.800 M	104.9	+22.9	+2.6	+1.8		$\begin{gathered} \hline+0.0 \\ 1 \end{gathered}$	132.2	$134.4 \quad-2.2$ Peak Power Reading 3 MHz RBW	$\begin{gathered} \text { Horiz } \\ 233 \end{gathered}$
2	836.400 M	104.9	+22.7	+2.7	+1.8		$\begin{gathered} +0.0 \\ 2 \end{gathered}$	132.1	$\begin{array}{ll} \hline 134.4 & -2.3 \end{array}$ Peak Power Reading 3 MHz RBW	$\begin{gathered} \text { Horiz } \\ 228 \end{gathered}$

3	824.200M	101.4	+22.6	+2.6	+1.8	$\begin{aligned} & \hline+0.0 \\ & 151 \end{aligned}$	128.4	$134.4 \quad-6.0$ Peak Power Reading 3 MHz RBW	$\begin{gathered} \text { Horiz } \\ 212 \end{gathered}$
4	848.800M	99.2	+22.9	+2.6	+1.8	$\begin{aligned} & \hline+0.0 \\ & 313 \end{aligned}$	126.5	134.4 -7.9 Peak Power Reading 3 MHz RBW	$\begin{gathered} \hline \text { Vert } \\ 201 \end{gathered}$
5	836.400M	98.8	+22.7	+2.7	+1.8	$\begin{aligned} & \hline+0.0 \\ & 309 \end{aligned}$	126.0	$134.4 \quad-8.4$ Peak Power Reading 3 MHz RBW	$\begin{array}{r} \hline \text { Vert } \\ 207 \end{array}$
6	824.200M	97.8	+22.6	+2.6	+1.8	$\begin{aligned} & \hline+0.0 \\ & 309 \end{aligned}$	124.8	134.4 -9.6 Peak Power Reading 3 MHz RBW	$\begin{gathered} \hline \text { Vert } \\ 202 \end{gathered}$
	$\begin{aligned} & \text { 824.000M } \\ & \text { Ave } \end{aligned}$	21.9	+22.6	+2.6	+1.8	$\begin{aligned} & \hline+0.0 \\ & 151 \end{aligned}$	48.9	$82.3 \quad-33.4$ Bandedge reading 100 sweep average 120 kHz RBW	$\begin{gathered} \text { Horiz } \\ 212 \end{gathered}$
	$\begin{aligned} & \text { 849.000M } \\ & \text { Ave } \end{aligned}$	16.9	+22.9	+2.6	+1.8	$\begin{gathered} \hline+0.0 \\ 1 \end{gathered}$	44.2	$82.3 \quad-38.1$ Bandedge reading 100 sweep average 120 kHz RBW	$\begin{gathered} \text { Horiz } \\ 233 \end{gathered}$
	$\begin{aligned} & \text { 824.000M } \\ & \text { Ave } \end{aligned}$			+2.6		$\begin{aligned} & \hline+0.0 \\ & 309 \end{aligned}$	43.7	$82.3 \quad-38.6$ Bandedge reading 100 sweep average 120 kHz RBW	$\begin{gathered} \hline \text { Vert } \\ 202 \end{gathered}$
	$\begin{aligned} & \text { 849.000M } \\ & \text { Ave } \end{aligned}$		+22.9	+2.6	+1.8	$\begin{aligned} & \hline+0.0 \\ & 313 \end{aligned}$	39.6	$82.3-42.7$ Bandedge reading 100 sweep average 120 kHz RBW	$\begin{gathered} \hline \text { Vert } \\ 201 \end{gathered}$

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer:	Vulcan Portals, Inc.		
Specification:	Part 22 RF Power and Block Edge Block C	(Radiated)	
Work Order \#:	86709	Date:	$8 / 15 / 2007$
Test Type:	Radiated Scan	Time:	$18: 17: 44$
Equipment:	Ultra Compact Laptop	Sequence\#:	8
Manufacturer:	Vulcan Portals, Inc.	Tested By: Ryan Rutledge	
Model:	Flipstart E-1501s		
S/N:	MVT1-103		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Agilent E4440A	S/N: MY46186330	$10 / 03 / 2007$	$10 / 03 / 2009$	AN02872
Bothell 5m Cable Set	S/N: P05444	$04 / 26 / 2007$	$04 / 26 / 2009$	ANP05444
20' RG-214 Coax	S/N: 16	$11 / 09 / 2006$	$11 / 09 / 2008$	ANP05360
Chase BILOG	S/N: 2458	$01 / 31 / 2007$	$01 / 31 / 2009$	AN01993

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Ultra Compact Laptop*	Vulcan Portals, Inc.	Flipstart E-1501s	MVT1-103

Support Devices:

Function	Manufacturer	Model \#	S/N
FlipStart Battery	Vulcan Portals, Inc.	E-5000	35560035
FlipStart AC adapter	EOS	ZVC36FS12S54	0001
Call box	Agilent	8960-E5515C	GB42230675
Call box antenna	Electro-metrics	RGA-60	6154

Test Conditions / Notes:

The EUT is placed on the wooden table on a foam spacer. Evaluation of RF Output Power and Band Edges is performed without peripherals attached to the EUT. Carrier/Modulation: GSM850, EDGE12. RF Output Power RBW $=3 \mathrm{MHz}, \mathrm{VBW}=3 \mathrm{MHz}$ Band Edge RBW $=120 \mathrm{kHz}, \mathrm{VBW}=120 \mathrm{kHz} 100$ Sweep Average, exceptions noted. $120 \mathrm{Vac}, 60 \mathrm{~Hz}, 24^{\circ} \mathrm{C}, 39 \%$ relative humidity. Due to limitations of the test equipment, readings were taken at 3 MHz Resolution Bandwidth (RBW) and corrected to the RBW \geq Emissions Bandwidth (EBW) requirement by adding the following correction factor: $10 \log$ (EBW/RBW).

Transducer Legend:

| T1 $=A N T$ AN01993 25-1000MHz |
| :--- | :--- |
| T3 $=$ CAB-ANP05360-110906 |\quad T2=CAB-ANP05444-042607- CPC3 Cable Set

Measu	ment Data:	Reading listed by margin.					Test Distance: 3 Meters			
\#	Freq MHz	$\begin{aligned} & \text { Rdng } \\ & \mathrm{dB} \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \end{aligned}$	dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	Spec Margin $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ dB	Polar Ant
1	836.400 M	105.2	+22.7	+2.7	+1.8		$\begin{gathered} +0.0 \\ 2 \end{gathered}$	132.4	$\begin{aligned} & 134.4 \\ & \text { Peak Power } \\ & \text { Reading } 3 \mathrm{MHz} \\ & \text { RBW } \end{aligned}$	$\begin{gathered} \text { Horiz } \\ 223 \end{gathered}$
2	848.800 M	104.5	+22.9	+2.6	+1.8		$\begin{gathered} +0.0 \\ 3 \end{gathered}$	131.8	$\begin{array}{ll} \hline 134.4 & -2.6 \end{array}$ Peak Power Reading 3 MHz RBW	$\begin{gathered} \text { Horiz } \\ 209 \end{gathered}$

3	824.200 M	103.7	+22.6	+2.6	+1.8	+0.0	130.7	$\quad 134.4 \quad-3.7$ Peak Power Reading 3 MHz RBW	$\begin{gathered} \text { Horiz } \\ 236 \end{gathered}$
4	848.800M	99.1	+22.9	+2.6	+1.8	$\begin{aligned} & +0.0 \\ & 313 \end{aligned}$	126.4	$\quad 134.4 \quad-8.0$ Peak Power Reading 3 MHz RBW	$\begin{gathered} \hline \text { Vert } \\ 205 \end{gathered}$
5	836.400 M	98.9	+22.7	+2.7	+1.8	$\begin{aligned} & +0.0 \\ & 314 \end{aligned}$	126.1	$\quad 134.4 \quad-8.3$ Peak Power Reading 3 MHz RBW	$\begin{gathered} \hline \text { Vert } \\ 207 \end{gathered}$
6	824.200 M	98.0	+22.6	+2.6	+1.8	$\begin{aligned} & +0.0 \\ & 309 \end{aligned}$	125.0	$\quad 134.4 \quad-9.4$ Peak Power Reading 3 MHz RBW	$\begin{array}{r} \text { Vert } \\ 205 \end{array}$
7	$849.000 \mathrm{M}$ Ave	39.5	+22.9	+2.6	+1.8	$\begin{gathered} \hline+0.0 \\ 3 \end{gathered}$	66.8	$82.3-15.5$ Bandedge reading 100 sweep average 120 kHz RBW	$\begin{gathered} \text { Horiz } \\ 209 \end{gathered}$
	$849.000 \mathrm{M}$ Ave	38.7	+22.9	+2.6	+1.8	$\begin{aligned} & +0.0 \\ & 313 \end{aligned}$	66.0	$82.3-16.3$ Bandedge reading 100 sweep average 120 kHz RBW	$\begin{gathered} \hline \text { Vert } \\ 205 \end{gathered}$
	$824.000 \mathrm{M}$ Ave	15.4	$+22.6$	+2.6	+1.8	$\begin{aligned} & +0.0 \\ & 309 \end{aligned}$	42.4	$82.3 \quad-39.9$ Bandedge reading 100 sweep average 120 kHz RBW	$\begin{gathered} \hline \text { Vert } \\ 205 \end{gathered}$
	$\begin{aligned} & \text { 824.000M } \\ & \text { Ave } \end{aligned}$	13.7	+22.6	+2.6	+1.8	+0.0	40.7	$\quad 82.3 \quad-41.6$ Bandedge reading 100 sweep average 120 kHz RBW	$\begin{gathered} \text { Horiz } \\ 236 \end{gathered}$

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer:	Vulcan Portals, Inc.	
Specification:	Part 24 RF Power and Block Edge Plot Block C (Radiated)	
Work Order \#:	$\mathbf{8 6 7 0 9}$	Date: $8 / 15 / 2007$
Test Type:	Radiated Scan	Time: 10:10:14
Equipment:	Ultra Compact Laptop	Sequence\#: 2
Manufacturer:	Vulcan Portals, Inc.	Tested By: Ryan Rutledge
Model:	Flipstart E-1501s	
S/N:	MVT1-103	

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Agilent E4440A	S/N: MY46186330	$10 / 03 / 2007$	$10 / 03 / 2009$	AN02872
60" Pasternack 40	S/N: N/A	$05 / 11 / 2006$	$05 / 11 / 2008$	AN05423
GHz Coax		$06 / 19 / 2006$	$06 / 19 / 2008$	AN05545
30' Andrews Heliax 18 GHz	S/N: N/A	$12 / 13 / 2005$	$12 / 13 / 2007$	AN01412
EMCO 3115 Horn Ant	S/N: 9606-4854	$12 / 2$		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Ultra Compact Laptop*	Vulcan Portals, Inc.	Flipstart E-1501s	MVT1-103

Support Devices:

Function	Manufacturer	Model \#	S/N
FlipStart Battery	Vulcan Portals, Inc.	E-5000	35560035
FlipStart AC adapter	EOS	ZVC36FS12S54	0001
Call box	Agilent	8960-E5515C	GB42230675
Call box antenna	Electro-metrics	RGA-60	6154

Test Conditions / Notes:

The EUT is placed on the wooden table on a foam spacer. Evaluation of RF Output Power and Band Edges is performed without peripherals attached to the EUT. IMPORTANT NOTE: Measurements performed at 2 meters. Carrier/Modulation: PCS1900, GSM. RF Output Power RBW=3 MHz, VBW=3 MHz Band Edge RBW=120 kHz, VBW $=120 \mathrm{kHz} 100$ Sweep Average, exceptions noted. $120 \mathrm{Vac}, 60 \mathrm{~Hz}, 25^{\circ} \mathrm{C}, 40 \%$ relative humidity. Due to limitations of the test equipment, readings were taken at 3 MHz Resolution Bandwidth (RBW) and corrected to the RBW \geq Emissions Bandwidth (EBW) requirement by adding the following correction factor: $10 \log$ (EBW/RBW).
Transducer Legend:

T1 $=$ CAB-ANP05545-061906	T2 $=$ ANT-AN01412-121305
T3=CAB-ANP05423-051006	

| 2 1850.200M | 96.0 | +2.0 | +26.2 | +1.9 | -4.0 | 122.1 | 130.7
 Peak Power
 Reading 3 MHz | -8.6 | Horiz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RBW | | | | | | | | | |

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer:	Vulcan Portals, Inc.	
Specification:	Part 24 RF Power and Block Edge Plot Block C (Radiated)	
Work Order \#:	86709	Date: $8 / 14 / 2007$
Test Type:	Radiated Scan	Time: $14: 41: 30$
Equipment:	Ultra Compact Laptop	Sequence\#: 1
Manufacturer:	Vulcan Portals, Inc.	Tested By: Ryan Rutledge
Model:	Flipstart E-1501s	
S/N:	MVT1-103	

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Agilent E4440A	S/N: MY46186330	$10 / 03 / 2007$	$10 / 03 / 2009$	AN02872
60" Pasternack 40	S/N: N/A	$05 / 11 / 2006$	$05 / 11 / 2008$	AN05423
GHz Coax		$06 / 19 / 2006$	$06 / 19 / 2008$	AN05545
30' Andrews Heliax 18 GHz	S/N: N/A	$12 / 13 / 2005$	$12 / 13 / 2007$	AN01412
EMCO 3115 Horn Ant	S/N: 9606-4854	$12 / 2$		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Ultra Compact Laptop*	Vulcan Portals, Inc.	Flipstart E-1501s	MVT1-103

Support Devices:

Function	Manufacturer	Model \#	S/N
FlipStart Battery	Vulcan Portals, Inc.	E-5000	35560035
FlipStart AC adapter	EOS	ZVC36FS12S54	0001
Call box	Agilent	8960-E5515C	GB42230675
Call box antenna	Electro-metrics	RGA-60	6154

Test Conditions / Notes:

The EUT is placed on the wooden table on a foam spacer. Evaluation of RF Output Power and Band Edges is performed without peripherals attached to the EUT. Carrier/Modulation: WCDMA Band II, WCDMA. RF Output Power RBW $=3 \mathrm{MHz}, \mathrm{VBW}=3 \mathrm{MHz}$ Band Edge RBW=120 kHz, VBW=120 kHz 100 Sweep Average, exceptions noted. $120 \mathrm{Vac}, 60 \mathrm{~Hz}, 25^{\circ} \mathrm{C}, 40 \%$ relative humidity. Due to limitations of the test equipment, readings were taken at 3 MHz Resolution Bandwidth (RBW) and corrected to the RBW \geq Emissions Bandwidth (EBW) requirement by adding the following correction factor: $10 \log$ (EBW/RBW).
Transducer Legend:

T1 $=$ CAB-ANP05545-061906	T2 $=$ ANT-AN01412-121305
T3=CAB-ANP05423-051006	

Measurement Data: \quad Reading listed by margin.
Test Distance: 2 Meters

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { T3 } \\ & \text { dB } \end{aligned}$	dB	$\begin{gathered} \hline \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Margin } \\ \mathrm{dB} \end{gathered}$	Polar Ant
1	1852.400M	93.3	+2.0	+26.2	+1.9		$\begin{gathered} \hline-4.0 \\ 230 \end{gathered}$	119.4	130.7 Peak Powe Reading 3 RBW	$\begin{aligned} & -11.3 \\ & \mathrm{MHz} \end{aligned}$	Horiz 104

2	1880.000M	92.3	+2.0	+26.2	+1.9	$\begin{gathered} \hline-4.0 \\ 215 \end{gathered}$	118.4	$\quad 130.7$ Peak Power Reading 3 MHz RBW	$\begin{gathered} \text { Horiz } \\ 103 \end{gathered}$
3	1880.000M	88.7	+2.0	+26.2	+1.9	$\begin{gathered} \hline-4.0 \\ 275 \end{gathered}$	114.8	$\begin{array}{ll} \hline 130.7 & -15.9 \end{array}$ Peak Power Reading 3 MHz RBW	$\begin{gathered} \hline \text { Vert } \\ 111 \end{gathered}$
	$\begin{aligned} & 1850.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	40.1	+2.0	+26.2	+1.9	$\begin{gathered} \hline-4.0 \\ 230 \end{gathered}$	66.2	$82.3-16.1$ Bandedge reading 100 sweep average 120 kHz RBW	$\begin{gathered} \text { Horiz } \\ 104 \end{gathered}$
5	1907.600M	88.0	+2.1	+26.2	+1.9	$\begin{gathered} \hline-4.0 \\ 333 \end{gathered}$	114.2	$\quad 130.7 \quad-16.5$ Peak Power Reading 3 MHz RBW	$\begin{gathered} \text { Horiz } \\ 134 \end{gathered}$
6	1907.600M	87.9	+2.1	+26.2	+1.9	$\begin{gathered} \hline-4.0 \\ 285 \end{gathered}$	114.1	$\quad 130.7 \quad-16.6$ Peak Power Reading 3 MHz RBW	$\begin{array}{r} \hline \text { Vert } \\ 133 \end{array}$
7	1852.400M	87.9	+2.0	+26.2	+1.9	$\begin{gathered} \hline-4.0 \\ 271 \end{gathered}$	114.0	$\quad 130.7 \quad-16.7$ Peak Power Reading 3 MHz RBW	$\begin{array}{r} \hline \text { Vert } \\ 146 \end{array}$
	$1910.000 \mathrm{M}$ Ave	37.6	$\overline{+2.1}$	$+26.2$	+1.9	$\begin{gathered} \hline-4.0 \\ 333 \end{gathered}$	63.8	$82.3-18.5$ Bandedge reading 100 sweep average 120 kHz RBW	Horiz 134
	$1910.000 \mathrm{M}$ Ave	37.5	+2.1	+26.2	$+1.9$	$\begin{gathered} \hline-4.0 \\ 285 \end{gathered}$	63.7	$82.3-18.6$ Bandedge reading 100 sweep average 120 kHz RBW	$\begin{gathered} \hline \text { Vert } \\ 133 \end{gathered}$
10	$\begin{aligned} & 1850.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	36.2	+2.0	+26.2	$\overline{+1.9}$	$\begin{gathered} \hline-4.0 \\ 271 \end{gathered}$	62.3	$82.3-20.0$ Bandedge reading 100 sweep average 120 kHz RBW	$\begin{gathered} \hline \text { Vert } \\ 146 \end{gathered}$

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer:	Vulcan Portals, Inc.	
Specification:	Part 24 RF Power and Block Edge Plot Block C (Radiated)	
Work Order \#:	86709	Date: $8 / 15 / 2007$
Test Type:	Radiated Scan	Time: $11: 12: 28$
Equipment:	Ultra Compact Laptop	Sequence\#: 3
Manufacturer:	Vulcan Portals, Inc.	Tested By: Ryan Rutledge
Model:	Flipstart E-1501s	
S/N:	MVT1-103	

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Agilent E4440A	S/N: MY46186330	$10 / 03 / 2007$	$10 / 03 / 2009$	AN02872
60" Pasternack 40	S/N: N/A	$05 / 11 / 2006$	$05 / 11 / 2008$	AN05423
GHz Coax		$06 / 19 / 2006$	$06 / 19 / 2008$	AN05545
30' Andrews Heliax 18 GHz	S/N: N/A	$12 / 13 / 2005$	$12 / 13 / 2007$	AN01412
EMCO 3115 Horn Ant	S/N: 9606-4854	$12 / 2$		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Ultra Compact Laptop*	Vulcan Portals, Inc.	Flipstart E-1501s	MVT1-103

Support Devices:

Function	Manufacturer	Model \#	S/N
FlipStart Battery	Vulcan Portals, Inc.	E-5000	35560035
FlipStart AC adapter	EOS	ZVC36FS12S54	0001
Call box	Agilent	8960-E5515C	GB42230675
Call box antenna	Electro-metrics	RGA-60	6154

Test Conditions / Notes:

The EUT is placed on the wooden table on a foam spacer. Evaluation of RF Output Power and Band Edges is performed without peripherals attached to the EUT. Carrier/Modulation: PCS1900, EDGE12. RF Output Power RBW $=3 \mathrm{MHz}, \mathrm{VBW}=3 \mathrm{MHz}$ Band Edge RBW $=120 \mathrm{kHz}, \mathrm{VBW}=120 \mathrm{kHz} 100$ Sweep Average, exceptions noted. $120 \mathrm{Vac}, 60 \mathrm{~Hz}, 25^{\circ} \mathrm{C}, 40 \%$ relative humidity. Due to limitations of the test equipment, readings were taken at 3 MHz Resolution Bandwidth (RBW) and corrected to the RBW \geq Emissions Bandwidth (EBW) requirement by adding the following correction factor: $10 \log$ (EBW/RBW).

Transducer Legend:

T1 $=$ CAB-ANP05545-061906	T2 $=$ ANT-AN01412-121305
T3=CAB-ANP05423-051006	

Measurement Data: \quad Reading listed by margin. Test Distance: 2 Meters

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
1	1909.800M	96.6	+2.1	+26.2	+1.9		$\begin{gathered} \hline-4.0 \\ 213 \end{gathered}$	122.8	130.7 Peak Powe Reading 3 RBW	$\begin{array}{r} -7.9 \\ \mathrm{MHz} \end{array}$	Horiz 100

2	1850.200M	96.2	+2.0	+26.2	+1.9	$\begin{gathered} \hline-4.0 \\ 208 \end{gathered}$	122.3	$\quad 130.7$ -8.4 Peak Power Reading 3 MHz RBW	$\begin{gathered} \text { Horiz } \\ 105 \end{gathered}$
3	1880.000M	96.1	+2.0	+26.2	+1.9	$\begin{gathered} \hline-4.0 \\ 214 \end{gathered}$	122.2	$\quad 130.7 \quad-8.5$ Peak Power Reading 3 MHz RBW	$\begin{gathered} \text { Horiz } \\ 101 \end{gathered}$
4	1909.800M	92.8	+2.1	+26.2	+1.9	$\begin{gathered} \hline-4.0 \\ 281 \end{gathered}$	119.0	$\begin{array}{ll} \hline 130.7 & -11.7 \end{array}$ Peak Power Reading 3 MHz RBW	$\begin{array}{r} \hline \text { Vert } \\ 133 \end{array}$
5	1880.000M	92.5	+2.0	+26.2	+1.9	$\begin{gathered} \hline-4.0 \\ 286 \end{gathered}$	118.6	$\quad 130.7$ -12.1 Peak Power Reading 3 MHz RBW	Vert
6	1850.200M	92.5	+2.0	+26.2	+1.9	$\begin{gathered} \hline-4.0 \\ 275 \end{gathered}$	118.6	$\quad 130.7$ -12.1 Peak Power Reading 3 MHz RBW	$\begin{array}{r} \hline \text { Vert } \\ 132 \end{array}$
	$\begin{aligned} & 1850.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	35.2	+2.0	+26.2	+1.9	$\begin{gathered} \hline-4.0 \\ 275 \end{gathered}$	61.3	$82.3-21.0$ Bandedge reading 100 sweep average 120 kHz RBW	$\begin{gathered} \hline \text { Vert } \\ 132 \end{gathered}$
	$1910.000 \mathrm{M}$ Ave	25.7	$+2.1$	+26.2	+1.9	$\begin{gathered} \hline-4.0 \\ 213 \end{gathered}$	51.9	$82.3-30.4$ Bandedge reading 100 sweep average 120 kHz RBW	Horiz 100
	$1910.000 \mathrm{M}$ Ave	19.8	+2.1	+26.2	+1.9	$\begin{gathered} \hline-4.0 \\ 281 \end{gathered}$	46.0	$82.3-36.3$ Bandedge reading 100 sweep average 120 kHz RBW	$\begin{gathered} \hline \text { Vert } \\ 133 \end{gathered}$
	$\begin{aligned} & 1850.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	16.4	+2.0	+26.2	$\overline{+1.9}$	$\begin{gathered} \hline-4.0 \\ 208 \end{gathered}$	42.5	$\begin{array}{ll} \hline 82.3 & -39.8 \end{array}$ Bandedge reading 100 sweep average 120 kHz RBW	$\begin{gathered} \text { Horiz } \\ 105 \end{gathered}$

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer:	Vulcan Portals, Inc.	
Specification:	Part 24 RF Power and Block Edge Plot Block C (Radiated)	
Work Order \#:	$\mathbf{8 6 7 0 9}$	Date: $8 / 15 / 2007$
Test Type:	Radiated Scan	Time: 12:08:02
Equipment:	Ultra Compact Laptop	Sequence\#: 4
Manufacturer:	Vulcan Portals, Inc.	Tested By: Ryan Rutledge
Model:	Flipstart E-1501s	
S/N:	MVT1-103	

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Agilent E4440A	S/N: MY46186330	$10 / 03 / 2007$	$10 / 03 / 2009$	AN02872
60" Pasternack 40	S/N: N/A	$05 / 11 / 2006$	$05 / 11 / 2008$	AN05423
GHz Coax		$06 / 19 / 2006$	$06 / 19 / 2008$	AN05545
30' Andrews Heliax 18 GHz	S/N: N/A	$12 / 13 / 2005$	$12 / 13 / 2007$	AN01412
EMCO 3115 Horn Ant	S/N: 9606-4854	$12 / 2$		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Ultra Compact Laptop*	Vulcan Portals, Inc.	Flipstart E-1501s	MVT1-103

Support Devices:

Function	Manufacturer	Model \#	S/N
FlipStart Battery	Vulcan Portals, Inc.	E-5000	35560035
FlipStart AC adapter	EOS	ZVC36FS12S54	0001
Call box	Agilent	8960-E5515C	GB42230675
Call box antenna	Electro-metrics	RGA-60	6154

Test Conditions / Notes:

The EUT is placed on the wooden table on a foam spacer. Evaluation of RF Output Power and Band Edges is performed without peripherals attached to the EUT. Carrier/Modulation: WCDMA Band II, HSDPA. RF Output Power RBW $=3 \mathrm{MHz}, \mathrm{VBW}=3 \mathrm{MHz}$ Band Edge RBW $=120 \mathrm{kHz}$, VBW=120 kHz 100 Sweep Average, exceptions noted. $120 \mathrm{Vac}, 60 \mathrm{~Hz}, 25^{\circ} \mathrm{C}, 40 \%$ relative humidity. Due to limitations of the test equipment, readings were taken at 3 MHz Resolution Bandwidth (RBW) and corrected to the RBW \geq Emissions Bandwidth (EBW) requirement by adding the following correction factor: $10 \log$ (EBW/RBW).
Transducer Legend:

T1 $=$ CAB-ANP05545-061906	T2 $=$ ANT-AN01412-121305
T3=CAB-ANP05423-051006	

| 2 1880.000M | 91.8 | +2.0 | +26.2 | +1.9 | -4.0 | 117.9 | 130.7
 Peak Power
 Reading 3 MHz | Horiz
 RBW |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

FCC 2.1051/2.1053 BANDEDGE
Test Equipment

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Agilent E4440A	S/N: MY46186330	$10 / 03 / 2007$	$10 / 03 / 2009$	AN02872
Bothell 5m Cable Set	S/N: P05444	$04 / 26 / 2007$	$04 / 26 / 2009$	ANP05444
20' RG-214 Coax	S/N: 16	$11 / 09 / 2006$	$11 / 09 / 2008$	ANP05360
Chase BILOG	S/N: 2458	$01 / 31 / 2007$	$01 / 31 / 2009$	AN01993

Test Conditions: The EUT is placed on the wooden table on a foam spacer. Evaluation of Spurious Emissions is performed without peripherals attached to the EUT.

Test Setup Photos

Test Plots

FCC PART 22 BANDEDGE - EDGE HORIZONTAL LOW CHANNEL 824 MHz

Ret Level 106.99 dBH V ATTEN 10 dB RES BN: 120.0 kHz VID EN: 120.0 kHz SMP: 20.0 msec Marker 1: 824.34 MHz 50.0427 dBuV Marker $2: 824.0 \mathrm{MHz} 13.6507 \mathrm{~dB} \mathrm{\mu} \mathrm{~V}$ Delta: 340.0 kHz

ES BN: 120.0 kHz VID EN: 120.0 kHz SMa 20.0 msec
Marker 1: $824.34 \mathrm{MHz} 50.0427 \mathrm{~dB} \mathrm{\mu} \mathrm{~V}$ Marker 2: $824.0 \mathrm{MHz} 13.6507 \mathrm{~dB} \mu \vee$ Delta: 340.0 kHz

——Patt 22 RF Power and Block Edge Block [(Radiated)

FCC PART 22 BANDEDGE - EDGE VERTICAL LOW CHANNEL 824 MHz

```
FCC Part 22 Bandedge_Vertical_EDGE12 Low Channel 824 MHz_RENN 120 kHz VEN 120 kHz_100 Sweep Average
Ref Level 106.99 dBu\}\mathrm{ ATTEN 10 dB
RES EN: 120.0kHz VID BN. 120.0kHz SWP: 20.0msec
Marker 1:824.3\textrm{MHz}}41.0227\textrm{dE}\mu\textrm{V}\mathrm{ Marker 2:824.0MHz 15.3827 dB }\mu\textrm{V}\mathrm{ Detta: 300.0kHz
```


- Part 22 RF Power and Block Edge Block [(Radiated]

FCC PART 22 BANDEDGE - EDGE HORIZONTAL HIGH CHANNEL 849 MHz

```
FCC Part 22 Bandedge Horizontal EDGE12 High Channel 849 MHz _RBW 120 kHz VENN 120 kHz 100 Sweep Average FCC Part 22 Bandedge_Horizortal_EDG ReI Level 106.99 dB HV ATTEN 10 dB
RES EN: 120.0 kHz VID ENV: 120.0 kHz SNP: 20.0 msec
Marker 1: 848.82 MHz 50.4137 dBuV Marker 2: \(849.0 \mathrm{MHz} 39.5457 \mathrm{~dB} \mathrm{\mu} \mathrm{~V}\) Delta: 180.0 kHz
```


FCC PART 22 BANDEDGE - EDGE VERTICAL HIGH CHANNEL 849 MHz

```
FCC Part 22 Bandedge_Vertical_EDGE12 High Channel 849 MHz _REW 120 kHz VEN 120 kHz _100 Sweep Averag Ret Level 10699 dBHV ATTEN 10 dB
RES EN: 120.0 kHz VID EN: 120.0 kHz SWP: 20.0 msec
Marker 1: \(848.82 \mathrm{MHz} 55.3177 \mathrm{~dB} \mathrm{\mu V}\) Marker 2: \(849.0 \mathrm{MHz} 38.6717 \mathrm{~dB} \mu \vee\) Delta: 180.0 kHz
```


FCC PART 22 BANDEDGE - GSM HORIZONTAL LOW CHANNEL 824 MHz

```
FCC Part 22 Bandedge Horizontal_GSM Low Channel 824 MHz RBN 120 kHz VBN 120 kHz 100 Sweep Averacg Ref Level \(106.99 \mathrm{~dB} \mathrm{NV}^{\text {AT }}\) ATEN 10 dB
RES EN: 120.0 kHz VID ENY: 120.0 kHz SMP: 20.0 msec
Marker 1: \(824.12 \mathrm{MHz} 26.9477 \mathrm{dE} \mu \vee\) Marker \(2: 824.0 \mathrm{MHz} 21.9467 \mathrm{~dB} \mu \mathrm{~V}\) Delta: 120.0 kHz
```


FCC PART 22 BANDEDGE - GSM VERTICAL
LOW CHANNEL 824 MHz

```
FCC Part 22 Bandedge_Vertical_GSM Low Channel 824 MHz _REW 120 kHz VENV 120 kHz 100 Sweep Averag Ref Level 106.99 dBHV ATTEN 10 dE
RES BN: 120.0 kHz VID EN: 120.0 kHz SWP: 20.0 msec
Marker 1: \(824.17 \mathrm{MHz} 26.6437 \mathrm{~dB} \mathrm{\mu V}\) Marker 2: \(824.0 \mathrm{MHz} 16.6617 \mathrm{dE} \mu \vee\) Delta: 170.0 kHz
```


- Part 22 RF Power and Block Edge Plot Block C (Radiated)

FCC PART 22 BANDEDGE - GSM HORIZONTAL HIGH CHANNEL 849 MHz

FCC Part 22 Bandedge_Horizontal_GSM High Channel 849 MHz_RENV 120 kHz VENN 120 kHz _ 100 Sweep Average Ref Level 106.99 dBUN ATTEN 10 dE
RES EN: 120.0 kHz VID BN: 120.0 kHz SMP: 20.0 msec
Marker 1: 848.77 MHz 29.5887 dEHV Marker 2: 849.0 MHz 16.3477 dBuV Detas: 230.0 kHz

FCC PART 22 BANDEDGE - GSM VERTICAL HIGH CHANNEL 849 MHz

FCC PART 22 BANDEDGE - HSDPA HORIZONTAL LOW CHANNEL 824 MHz

```
FCC Part 22 Bandedge Horizontal HSDPA Low Channel 824 MHz _RBN 120 kHz VBN 120 kHz 100 Sweep Averag
CC Part 22 Bandedge_Horizontal_HSD
RES EN: 120.0 kHz VID BN: 120.0 kHz SWP: 20.0 msec
Marker 1: \(826.56 \mathrm{MHz} 79.2497 \mathrm{dE} \mu \mathrm{V}\) Marker 2: \(824.0 \mathrm{MHz} 44.9807 \mathrm{~dB} \mu \mathrm{~V}\) Delta: 2.56 MHz
```


FCC PART 22 BANDEDGE - HSDPA VERTICAL
LOW CHANNEL 824 MHz

```
FCC Part 22 Bandedge_Vertical_HSDPA Low Channel 824 MHz _RBN 120 kHz VENV 120 kHz 100 Sweep Average Ref Level \(106.99 \mathrm{~dB} \mu \mathrm{~V}\) ATTEN 10 dB
RES BN: 120.0 kHz VID EN: 120.0 kHz SWP: 20.0 msec
Marker 1: \(827.28 \mathrm{MHz} 72.5687 \mathrm{dE} \mu \mathrm{V}\) Marker 2: \(824.0 \mathrm{MHz} 39.9997 \mathrm{dE} \mu \mathrm{V}\) Delta: 3.28 MHz
```


FCC PART 22 BANDEDGE - HSDPA HORIZONTAL HIGH CHANNEL 849 MHz

```
FCC Part 22 Bandedge Horizontal HSDPA High Channel 849 MHz RBNV 120 kHz VBN/ 120 kHz 100 Sweep Averaga
FCC Part 22 Bandedge Horizontal_HSD
RES EN: 120.0 kHz VID BN: 120.0 kHz ShP: 20.0 msec
Marker 1: \(845.55 \mathrm{MHz} 79.4457 \mathrm{dE} \mu \mathrm{V}\) Marker 2: \(849.0 \mathrm{MHz} 43.7407 \mathrm{~dB} \mu \mathrm{~V}\) Delta: 3.45 MHz
```


FCC PART 22 BANDEDGE - HSDPA VERTICAL HIGH CHANNEL 849 MHz

```
FCC Part 22 Bandedge Vertical HSDPA High Channel 849 MHz RBN 120 kHz VBNV 120 kHz 100 Sweep Average Ref Level 106.99 dBIN ATTEN 10 dB
RES EN: 120.0 kHz VID BN: 120.0 kHz SWP: 20.0 msec
Marker 1: \(845.75 \mathrm{MHz} 72.6117 \mathrm{dE} \mu \vee\) Marker \(2: 849.0 \mathrm{MHz} 38.5027 \mathrm{~dB} \mu \vee\) Delta: 3.25 MHz
```


FCC PART 22 BANDEDGE - WCDMA HORIZONTAL LOW CHANNEL 824 MHz

FCC Part 22 Bancedge_Horizontel_WCDMA, Low Channel 824 MHz_REVV 120 kHz VEN 120 kHz _100 Sweep Average Ref Level 106.99 dBUV ATTEN 10 dE
RES EW: 120.0 kHz YID BW: 120.0 kHz SMP: 20.0 msec
Marker 1: $827.21 \mathrm{MHz} 80.0587 \mathrm{dE} \mathrm{\mu V}$ Marker 2: $824 . \mathrm{MHz} 45.4807 \mathrm{dBHV}$ Deta: 3.21 MHz

FCC PART 22 BANDEDGE - WCDMA VERTICAL LOW CHANNEL 824 MHz

```
FCC Part 22 Bandedge_Vertical__NCDMA Low Channel 824 MHz_REW\120 kHz VENN 120 kHz_100 Sweep Average
Ref Level 106.99 dBHV ATTEN 10 dB
RES EN: 120.0kHz VID BNV:120.0kHz SWP: 20.0msec
Marker 1:826.48MHz 73.5037 dE\muV Marker 2: 824.0MHz 39.5127 dB|\V Detta: 2.48MHz
```


FCC PART 22 BANDEDGE - WCDMA HORIZONTAL HIGH CHANNEL 849 MHz

```
FCC Part 22 Bandedge_Horizortal_WCDMA High Channel 849 MHz _RENV 120 kHz VEN 120 kHz _100 Sweep Average FCC Part 22 Bandedge_Horizortal_NCD
Rei Level \(106.99 \mathrm{~dB} \mathrm{\mu} \mathrm{~V}\) ATTEN 10 dB ReI Level \(106.98 \mathrm{dE} \mu \mathrm{V}\) ATEN 120 kHz VID EN: 120.0 kHz SWP: 20.0 mse RES BN. 120.0 kHz VID ENV. 120.01 M
Marker: \(845.64 \mathrm{MHz} 79.6207 \mathrm{dE} \mu \mathrm{V}\)
```


FCC PART 22 BANDEDGE - WCDMA VERTICAL HIGH CHANNEL 849 MHz

FCC PART 24 BANDEDGE - EDGE HORIZONTAL LOW CHANNEL 1850 MHz

FCC PART 24 BANDEDGE - EDGE VERTICAL LOW CHANNEL 1850 MHz

FCC PART 24 BANDEDGE - EDGE HORIZONTAL HIGH CHANNEL 1910 MHz

```
FOC Part 24 Bandedge Horizontal EDGE12 High Channel 1910 MHz REW 120 kHz VEN/ \(120 \mathrm{kHz}-100\) Sweep Average Ret Level 106.99 dBIIV ATTEN 10 dE
RES EN: 120.0 kHz VID EN: 120.0 kHz SMP: 20.0 msec
```


FCC PART 24 BANDEDGE - EDGE VERTICAL HIGH CHANNEL 1910 MHz

```
FCC Part 24 Bandedge_Vertical_EDGE12 High Channel 1910 MHz _RENV 120 kHz VBN 120 kHz _100 Sweep Average Ref Level \(106.99 \mathrm{~dB} \mu \mathrm{~V}\) ATTEN 10 dB
RES BNV. 120.0 kHz VID ENV. 120.0 kHz SWP: 20.0 msec
Marker 1: \(1.91 \mathrm{GHz} 42.4207 \mathrm{dE} \mu \mathrm{V}\) Marker 2: \(1.91 \mathrm{GHz} 19.8327 \mathrm{~dB} \mu \mathrm{~V}\) Detta: 190.0 kHz
```


FCC PART 24 BANDEDGE - GSM HORIZONTAL LOW CHANNEL 1850 MHz

```
FCC Part 24 Bandedge Horizontal GSM Low Charnel 1850 MHz REW120 kHz VENN 120 kHz_100 Sweep Averac
Ref Level 106.99 dBIN ATTEN 10 dB
RES EN: 120.0kHz VID BNV: 120.0kHz SWP: 20.0msec
Marker 1:1.85GHz 49.5667 dEj \nuV Marker 2: 1.85GHz 12.9117 dB |V Detta: 340.0kHz
```


FCC PART 24 BANDEDGE - GSM VERTICAL
LOW CHANNEL 1850 MHz

```
FCC Part 24 Bandedge_Vertical_GSM Low Channel 1850 MHz _REN 120 kHz VEN 120 kHz 100 Sweep Average Ref Level 106.99 dEHV ATTEN 10 dB
RES BVV: 120.0 kHz VID BW: 120.0 kHz SWP: 20.0 msec
Marker 1: \(1.85 \mathrm{GHz} 43.5147 \mathrm{~dB} \mu \mathrm{~V}\) Marker 2: 1.856Hz \(10.8877 \mathrm{dE} \mu \mathrm{V}\) Detta: 340.0 kHz
```


- Part 24 RF Power and Block Edge Plot Block C (Radiated)

FCC PART 24 BANDEDGE - GSM HORIZONTAL

HIGH CHANNEL 1910 MHz

```
FCC Part 24 Bandedge Horizontal GSM High Channel 1310 MHz RBWN120 kHz VBN/ 120 kHz 100 Sweep Average
Ref Level 106.99 dBINY ATTEN 10 dE
RES EN: 120.0kHz VID BNV: 120.0kHz SWP: 20.0msec
Marker 1:1.91GHz 44.4757 dE \mu\vee Marker 2:1.91GHz 17.6557 dBu\ Detta: 240.0kHz
```


FCC PART 24 BANDEDGE - GSM VERTICAL HIGH CHANNEL 1910 MHz

```
FCC Part 24 Bandedge_Vertical_GSM High Channel 1910 MHz _REN 120 kHz VEN 120 kHz 100 Sweep Average Ref Level 106.99 dBHV ATTEN 10 dB
RES EN: 120.0 kHz VID BN: 120.0 kHz SWP: 20.0 mse
Marker \(4: 1.91 \mathrm{GHz} 45.5847 \mathrm{dE} \mu \mathrm{V}\) Marker \(2: 1.91 \mathrm{GHz} 16.0467 \mathrm{~dB} \mu \mathrm{~V}\) Detta: 260.0 kHz
```


FCC PART 24 BANDEDGE - HSDPA HORIZONTAL LOW CHANNEL 1850 MHz

```
FCC Part 24 Bandedge Horizontal HSDPA Low Channel 1850 MHz_RBW/120 kHz VEWN 120 kHz_100 Sweep Average
Ret Level 106.99 dBu\V ATTEN 10 dE
RES EN: 120.0kHz VID BW: 120.0kHz SMP: 20.0msec
Marker 1: 1.854GHz 73.8807 dE HV Marker 2:1.85GHz 39.9267 dBuV Detta: 3.89MHz
```


FCC PART 24 BANDEDGE - HSDPA VERTICAL

 LOW CHANNEL 1850 MHz

FCC PART 24 BANDEDGE - HSDPA HORIZONTAL HIGH CHANNEL 1910 MHz

```
FCC Part 24 Bandedge Horizontal HSDPA High Channel 1910 MHz REWV 120 kHz VEN 120 kHz 100 Sweep Average Ref Level 106.99 dBH JV ATTEN 10 dB
RES EN: 120.0 kHz VID BN: 120.0 kHz SMP: 20.0 msec
Marker 1: 1.909 GHz 72.4917 dEHV Marker \(2: 1.91 \mathrm{GHz} 39.9867 \mathrm{~dB} \mu \mathrm{~V}\) Delta: 900.0 kHz
```


FCC PART 24 BANDEDGE - HSDPA VERTICAL HIGH CHANNEL 1910 MHz

```
FCC Part 24 Bandedge_Vertical_HSDPA. High Channel 1910 MHz_REW120 kHz VEWN 120 kHz_100 Sweep Averag
Ret Level 106.99 dBNV ATTEN 10 dB
RES EN: 120.0kHz VID BNV: 120.0kHz SWP: 20.0msec
Marker 1:1.909GHz 67.8577 dE|V Marker 2:1.91GHz 35.9747 dB \muV Detta: 680.0kHz
```


FCC PART 24 BANDEDGE - WCDMA HORIZONTAL LOW CHANNEL 1850 MHz

```
CC Part 24 Bandedge Horizontal WCDMA Low Channel 1850 MHz RENV 120 kHz VBN 120 kHz 100 Sweep Averag Ref Level 106.99 dBH JV ATTEN 10 dB
RES EN: 120.0 kHz VID BW: 120.0 kHz SMP: 20.0 msec
Marker 1: \(1.854 \mathrm{GHz} 75.3237 \mathrm{dE} \mu \mathrm{V}\) Marker \(2: 1.85 \mathrm{GHz} 40.1047 \mathrm{~dB} \mathrm{\mu V}\) Delta: 3.96 MHz
```


FCC PART 24 BANDEDGE - WCDMA VERTICAL LOW CHANNEL 1850 MHz

```
FCC Part 24 Bandedge_Vertical_WCDMA Low Channel 1850 MHz_RBN/ 120 kHz VENN 120 kHz_100 Sweep Average
Ref Level 106.99 dBHV ATTEN }10\textrm{dB
RES EN: 120.0kHz VID BNV: 120.0\textrm{kHz SWP: 20.0msec}0
Marker 1:1.854GHz 69.3827 dE\muV Marker 2: 1.85GHz 36.1777 dBuV Delta: 3.62MHz
```


FCC PART 24 BANDEDGE - WCDMA HORIZONTAL HIGH CHANNEL 1910 MHz

```
FCC Part 24 Bandedge Horizontal WCDMA High Channel 1910 MHz RBNV 120 kHz VBW 120 kHz 100 Sweep Avera Ref Level 106.99 dBH - ATTEN 10 dB
RES BN: 120.0 kHz VID ENV. 120.0 kHz SWP: 20.0 msec
Marker 1: \(1.908 \mathrm{GHz} 70.3507 \mathrm{~dB} \mu \mathrm{~V}\) Marker 2: \(1.91 \mathrm{GHz} 37.6317 \mathrm{~dB} \mu \mathrm{~V}\) Delta: 1.74 MHz
```


FCC PART 24 BANDEDGE - WCDMA VERTICAL HIGH CHANNEL 1910 MHz

```
FCC Part 24 Bandedge_Vertical_WCDMA High Channel 1910 MHz_RENV 120 kHz VBN/ 120 kHz_100 Sweep Average
Ref Level 106.99 dBJV ATTEN 10 dB
RES ENN: 120.0\textrm{kHz VID ENV. 120.0kHz SWP: 20.0msec}
Marker 1:1.908GHz 70.0297 dE\muV Marker 2:1.91GHz 37.4717 dBu\V Delta: 1.86MHz
```


FCC 2.1033(c)(14)/2.1053/22.917 - FIELD STRENGTH OF SPURIOUS RADIATION

Test Setup Photos

Test Data Sheets

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer:	Vulcan Portals, Inc.		
Specification:	FCC Part 22.917(a) Radiated Spurious Emissions		
Work Order \#:	$\mathbf{8 6 7 0 9}$	Date:	8/20/2007
Test Type:	Radiated Scan	Time:	10:49:49
Equipment:	Ultra Compact Laptop	Sequence\#:	9
Manufacturer:	Vulcan Portals, Inc.	Tested By:	Ryan Rutledge
Model:	Flipstart E-1501s		

pstart E-1501s
S/N: MVT1-103
Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Agilent E4440A	S/N: MY46186330	$10 / 03 / 2007$	$10 / 03 / 2009$	AN02872
60" Pasternack 40 GHz Coax	S/N: N/A	$05 / 11 / 2006$	$05 / 11 / 2008$	AN05423
30' Andrews Heliax 18 GHz	S/N: N/A	$06 / 19 / 2006$	$06 / 19 / 2008$	AN05545
HP 83017A .5 - 26.5 GHz Pre-amp	S/N: 3123A00464	$10 / 03 / 2005$	$10 / 03 / 2007$	AN01271
EMCO 3115 Horn Ant	S/N: 9606-4854	$12 / 13 / 2005$	$12 / 13 / 2007$	AN01412
1 GHz HP Filter	S/N: 2	$03 / 07 / 2006$	$03 / 07 / 2008$	AN02750
Bothell 5m Cable Set	S/N: P05444	$04 / 26 / 2007$	$04 / 26 / 2009$	ANP05444
20' RG-214 Coax	S/N: 16	$11 / 09 / 2006$	$11 / 09 / 2008$	ANP05360
Chase BILOG	S/N: 2458	$01 / 31 / 2007$	$01 / 31 / 2009$	AN01993

Equipment Under Test (* $=$ EUT):

Function	Manufacturer	Model \#	S/N
Ultra Compact Laptop*	Vulcan Portals, Inc.	Flipstart E-1501s	MVT1-103

Support Devices:

Function	Manufacturer	Model \#	S/N
FlipStart Battery	Vulcan Portals, Inc.	E-5000	35560035
FlipStart AC adapter	EOS	ZVC36FS12S54	0001
Call box	Agilent	8960-E5515C	GB42230675
Call box antenna	Electro-metrics	RGA-60	6154

Test Conditions / Notes:

The EUT is placed on the wooden table on a foam spacer. Evaluation of Spurious Emissions is performed without peripherals attached to the EUT. Carrier/Modulation: GSM850, EDGE12. $30-1000 \mathrm{MHz} \mathrm{RBW}=120 \mathrm{kHz}$, VBW $=120 \mathrm{kHz}$ Quasi-peak $1-10 \mathrm{GHz} \mathrm{RBW}=1 \mathrm{MHz}, \mathrm{VBW}=1 \mathrm{MHz}$ Average $120 \mathrm{Vac}, 60 \mathrm{~Hz}, 22^{\circ} \mathrm{C}, 45 \%$ relative humidity. Test Equipment Used: $30-1000 \mathrm{MHz}$ Equipment 1, 7, 8, 9; $1-10 \mathrm{GHz}$ Equipment 1, 2, 3, 4, 5, 6.
Transducer Legend:

T1 =AMP-AN01271-100305-.5-26.5 GHz	T2=CAB-ANP05545-061906
T3=ANT-AN01412-121305	T4=CAB-ANP05423-051006
T5 =ANT AN01993 25-1000MHz	T6=CAB-ANP05444-042607 - CPC3 Cable Set
T7=CAB-ANP05360-110906	T8=Filter 1GHz HP AN02750

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

$\begin{aligned} & 112546.400 \mathrm{M} \\ & \text { Ave } \end{aligned}$	34.5	$\begin{array}{r} \hline-33.8 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.3 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+29.3 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.2 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 113 \end{aligned}$	34.9	$\quad 82.3 \quad-47.4$ High Channel Harmonic	$\begin{gathered} \text { Horiz } \\ 129 \end{gathered}$
^ 2546.480M	53.1	$\begin{array}{r} \hline-33.8 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.3 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+29.3 \\ +0.0 \end{array}$	$\begin{aligned} & +2.2 \\ & +0.4 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 113 \end{aligned}$	53.5	$\quad 82.3 \quad-28.8$ High Channel Harmonic	Horiz 129
$\begin{aligned} & 131648.400 \mathrm{M} \\ & \text { Ave } \end{aligned}$	38.8	$\begin{array}{r} \hline-34.9 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +26.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.8 \\ & +0.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 209 \end{aligned}$	34.5	$82.3 \quad-47.8$ Low Channel Harmonic	$\begin{gathered} \hline \text { Vert } \\ 108 \end{gathered}$
^ 1648.360M	57.5	$\begin{array}{r} \hline-34.9 \\ +0.0 \end{array}$	$\begin{aligned} & +2.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+26.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.8 \\ & +0.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 209 \end{aligned}$	53.2	$82.3 \quad-29.1$ Low Channel Harmonic	$\begin{gathered} \hline \text { Vert } \\ 108 \end{gathered}$
$\begin{aligned} & 151672.795 \mathrm{M} \\ & \text { Ave } \end{aligned}$	38.9	$\begin{array}{r} -34.9 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+26.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.8 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 212 \end{aligned}$	34.5	$82.3 \quad-47.8$ Mid Channel Harmonic	$\begin{array}{r} \hline \text { Vert } \\ 144 \end{array}$
^ 1672.810 M	57.5	$\begin{array}{r} \hline-34.9 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+26.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.8 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 212 \end{aligned}$	53.1	$82.3 \quad-29.2$ Mid Channel Harmonic	$\begin{array}{r} \hline \text { Vert } \\ 144 \end{array}$
$\begin{aligned} & 17 \text { 2509.180M } \\ & \text { Ave } \end{aligned}$	30.7	$\begin{array}{r} -33.9 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.3 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+29.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.2 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 29 \end{aligned}$	30.9	$82.3 \quad-51.4$ Mid Channel Harmonic	$\begin{gathered} \hline \text { Vert } \\ 120 \end{gathered}$
$\wedge 2509.238 \mathrm{M}$	47.6	$\begin{array}{r} \hline-33.9 \\ +0.0 \end{array}$	$\begin{aligned} & +2.3 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+29.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.2 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 29 \end{aligned}$	47.8	$82.3 \quad-34.5$ Mid Channel Harmonic	$\begin{gathered} \hline \text { Vert } \\ 120 \end{gathered}$
$\begin{aligned} & 192546.440 \mathrm{M} \\ & \text { Ave } \end{aligned}$	30.0	$\begin{array}{r} \hline-33.8 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.3 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+29.3 \\ +0.0 \end{array}$	$\begin{aligned} & +2.2 \\ & +0.4 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 173 \end{aligned}$	30.4	$82.3 \quad-51.9$ High Channel Harmonic	$\begin{gathered} \hline \text { Vert } \\ 127 \end{gathered}$
$\wedge 2546.500 \mathrm{M}$	47.5	$\begin{array}{r} \hline-33.8 \\ +0.0 \end{array}$	$\begin{aligned} & +2.3 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+29.3 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.2 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 173 \end{aligned}$	47.9	$\quad 82.3 \quad-34.4$ High Channel Harmonic	$\begin{gathered} \hline \text { Vert } \\ 127 \end{gathered}$
$\begin{aligned} & 21 \text { 2472.600M } \\ & \text { Ave } \end{aligned}$	29.6	$\begin{array}{r} -33.9 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.4 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+29.1 \\ +0.0 \end{array}$	$\begin{aligned} & +2.2 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 181 \end{aligned}$	29.8	$\quad 82.3 \quad-52.5$ Low Channel Harmonic	Horiz 108
^ 2472.660M	45.9	$\begin{array}{r} -33.9 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.4 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+29.1 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.2 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 181 \end{aligned}$	46.1	$82.3 \quad-36.2$ Low Channel Harmonic	$\begin{gathered} \text { Horiz } \\ 108 \end{gathered}$
$\begin{aligned} & 23 \text { 2472.620M } \\ & \text { Ave } \end{aligned}$	28.9	$\begin{array}{r} \hline-33.9 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.4 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+29.1 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.2 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 323 \end{aligned}$	29.1	$82.3 \quad-53.2$ Low Channel Harmonic	$\begin{gathered} \hline \text { Vert } \\ 108 \end{gathered}$
^ 2472.540 M	43.8	$\begin{array}{r} -33.9 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.4 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+29.1 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.2 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 323 \end{aligned}$	44.0	$82.3 \quad-38.3$ Low Channel Harmonic	$\begin{gathered} \hline \text { Vert } \\ 108 \end{gathered}$
$\begin{aligned} & 25 \text { 2509.180M } \\ & \text { Ave } \end{aligned}$		$\begin{array}{r} \hline-33.9 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.3 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+29.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.2 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 348 \end{aligned}$	28.7	$82.3 \quad-53.6$ Mid Channel Harmonic	Horiz 141
$\wedge 2509.215 \mathrm{M}$	45.2	$\begin{array}{r} \hline-33.9 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.3 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+29.2 \\ +0.0 \end{array}$	$\begin{aligned} & +2.2 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 348 \end{aligned}$	45.4	82.3 Mid Channel Harmonic	Horiz 141

FCC 2.1033(c)(14)/2.1053/24.238 - FIELD STRENGTH OF SPURIOUS RADIATION
Test Setup Photos

Test Data Sheets

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717
Customer: Vulcan Portals, Inc.
Specification: FCC Part 24.238 Radiated Spurious Emissions
Work Order \#: $86709 \quad$ Date: 8/20/2007

Test Type:
Equipment:
Manufacturer:
Model:

Radiated Scan Ultra Compact Laptop
Vulcan Portals, Inc. Flipstart E-1501s
MVT1-103

Date: 8/20/2007
Time: 16:11:32
Sequence\#: 11
Tested By: Ryan Rutledge

S/N:
Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Agilent E4440A	S/N: MY46186330	10/03/2007	10/03/2009	AN02872
60" Pasternack 40 GHz Coax	S/N: N/A	05/11/2006	05/11/2008	AN05423
30' Andrews Heliax 18 GHz	S/N: N/A	06/19/2006	06/19/2008	AN05545
HP 83017A .5-26.5 GHz Pre-amp	S/N: 3123A00464	10/03/2005	10/03/2007	AN01271
EMCO 3115 Horn Ant	S/N: 9606-4854	12/13/2005	12/13/2007	AN01412
2.8 GHz HP Filter	S/N: 2	03/07/2006	03/07/2008	AN02745
Bothell 5m Cable Set	S/N: P05444	04/26/2007	04/26/2009	ANP05444
20' RG-214 Coax	S/N: 16	11/09/2006	11/09/2008	ANP05360
Chase BILOG	S/N: 2458	01/31/2007	01/31/2009	AN01993
$12-18 \mathrm{GHz}$ Horn	S/N: 1114019	04/13/2006	04/13/2008	AN02741
120" Pasternack 40 GHz Coax	S/N: N/A	07/20/2007	07/20/2009	AN05425
120" Pasternack 40 GHz Coax	S/N: N/A	07/20/2007	07/20/2009	AN05426
$18-26 \mathrm{GHz}$ Horn	S/N: 1114018	04/14/2006	04/14/2008	AN02742

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Ultra Compact Laptop*	Vulcan Portals, Inc.	Flipstart E-1501s	MVT1-103
Support Devices:			
Function	Manufacturer	Model \#	S/N
FlipStart Battery	Vulcan Portals, Inc.	E-5000	35560035
FlipStart AC adapter	EOS	ZVC36FS12S54	0001
Call box	Agilent	8960-E5515C	GB42230675
Call box antenna	Electro-metrics	RGA-60	6154

Test Conditions / Notes:

The EUT is placed on the wooden table on a foam spacer. Evaluation of Spurious Emissions is performed without peripherals attached to the EUT. Carrier/Modulation: PCS1900, EDGE12. $30-1000 \mathrm{MHz} \mathrm{RBW}=120 \mathrm{kHz}$, VBW $=120 \mathrm{kHz}$ Quasi-peak $1-20 \mathrm{GHz} \mathrm{RBW}=1 \mathrm{MHz}, \mathrm{VBW}=1 \mathrm{MHz}$ Average $120 \mathrm{Vac}, 60 \mathrm{~Hz}, 22^{\circ} \mathrm{C}, 45 \%$ relative humidity. Test Equipment Used: 30-1000 MHz Equipment 1, 7, 8, 9; 1-12 GHz Equipment 1, 2, 3, 4, 5, 6; 12-18 GHz Equipment 1, 2, 3, 10; 18-20 GHz Equipment 1, 2, 11, 12, 13.

Transducer Legend:

T1 =AMP-AN01271-100305-.5-26.5 GHz	T2=CAB-ANP05545-061906
T3=ANT-AN01412-121305	T4=CAB-ANP05423-051006
T5 =ANT AN01993 25-1000MHz	T6=CAB-ANP05444-042607 - CPC3 Cable Set
T7=CAB-ANP05360-110906	T8=Filter 3GHz HP AN02745
T9=ANT-AN02741-041306	T10=ANT-AN02742-041406
T11=CAB-ANP05425-072007	T12=CAB-ANP05426-072007

Measurement Data: \quad Reading listed by margin.
Test Distance: 3 Meters

$\begin{aligned} & 811280.020 \mathrm{M} \\ & \text { Ave } \end{aligned}$	33.2	$\begin{array}{r} -33.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+6.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +38.4 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+4.9 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 174 \end{aligned}$	49.2	$\quad 82.3 \quad-33.1$ Mid Channel Harmonic	$\begin{array}{r} \hline \text { Vert } \\ 113 \end{array}$
$\wedge 11279.970 \mathrm{M}$	54.5	$\begin{array}{r} \hline-33.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+6.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+38.4 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+4.9 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 174 \end{aligned}$	70.5	$82.3 \quad-11.8$ Mid Channel Harmonic	$\begin{gathered} \hline \text { Vert } \\ 113 \end{gathered}$
$\begin{aligned} & 10 \quad 11101.160 \mathrm{M} \\ & \text { Ave } \end{aligned}$	31.3	$\begin{gathered} \hline-33.8 \\ +0.0 \end{gathered}$	$\begin{aligned} & \hline+5.9 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +38.3 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+4.9 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 167 \end{aligned}$	47.0	$82.3 \quad-35.3$ Low Channel Harmonic	$\begin{array}{r} \hline \text { Vert } \\ 112 \end{array}$
$\wedge 11101.170 \mathrm{M}$	50.7	$\begin{array}{r} \hline-33.8 \\ +0.0 \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +38.3 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+4.9 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 167 \end{aligned}$	66.4	$82.3 \quad-15.9$ Low Channel Harmonic	$\begin{array}{r} \hline \text { Vert } \\ 112 \end{array}$
$\begin{aligned} & 129400.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	31.8	$\begin{array}{r} \hline-33.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+5.3 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+38.4 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+4.5 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 150 \end{aligned}$	46.5	$82.3 \quad-35.8$ Mid Channel Harmonic	$\begin{array}{r} \hline \text { Vert } \\ 185 \end{array}$
$\wedge 9400.040 \mathrm{M}$	50.6	$\begin{array}{r} \hline-33.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+5.3 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+38.4 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+4.5 \\ & +0.2 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 150 \end{aligned}$	65.3	$82.3 \quad-17.0$ Mid Channel Harmonic	$\begin{gathered} \hline \text { Vert } \\ 185 \end{gathered}$
$\begin{aligned} & 14 \text { 18799.880M } \\ & \text { Ave } \end{aligned}$	28.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ +0.0 \\ -11.9 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +11.1 \\ \hline \end{array}$	$\begin{array}{r} +6.8 \\ +0.0 \\ +10.8 \end{array}$	$\begin{aligned} & +0.0 \\ & 159 \end{aligned}$	45.4	82.3 Mid Channel Harmonic	$\begin{gathered} \text { Vert } \\ 100 \end{gathered}$
$\wedge 18799.940 \mathrm{M}$	47.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ -11.9 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +11.1 \\ \hline \end{array}$	$\begin{array}{r} +6.8 \\ +0.0 \\ +10.8 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & 159 \end{aligned}$	63.8	$82.3 \quad-18.5$ Mid Channel Harmonic	$\begin{gathered} \text { Vert } \\ 100 \end{gathered}$
$\begin{aligned} & 1613160.030 \mathrm{M} \\ & \text { Ave } \end{aligned}$	47.3	$\begin{array}{r} +0.0 \\ +0.0 \\ -14.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+6.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+5.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 187 \end{aligned}$	45.2	$82.3 \quad-37.1$ Mid Channel Harmonic	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
$\wedge 13160.050 \mathrm{M}$	68.5	$\begin{array}{r} \hline+0.0 \\ +0.0 \\ -14.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+6.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+5.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 187 \end{aligned}$	66.4	$82.3 \quad-15.9$ Mid Channel Harmonic	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
$\begin{aligned} & 18 \text { 11458.840M } \\ & \text { Ave } \end{aligned}$	29.2	$\begin{array}{r} -33.7 \\ +0.0 \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +38.4 \\ +0.0 \end{array}$	$\begin{aligned} & +5.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 235 \end{aligned}$	45.1	$\quad 82.3 \quad-37.2$ High Channel Harmonic	Horiz 119
$\wedge 11458.870 \mathrm{M}$	48.2	$\begin{array}{r} \hline-33.7 \\ +0.0 \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+38.4 \\ +0.0 \end{array}$	$\begin{aligned} & +5.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 235 \end{aligned}$	64.1	$\quad 82.3 \quad-18.2$ High Channel Harmonic	$\begin{gathered} \text { Horiz } \\ 119 \end{gathered}$
$\begin{gathered} 20 \text { 13368.640M } \\ \text { Ave } \end{gathered}$	47.0	$\begin{array}{r} +0.0 \\ +0.0 \\ -14.2 \\ \hline \end{array}$	$\begin{aligned} & \hline+6.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+5.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 193 \end{aligned}$	45.0	$\quad 82.3 \quad-37.3$ High Channel Harmonic	Horiz 100
$\wedge 13368.690 \mathrm{M}$	68.2	$\begin{array}{r} +0.0 \\ +0.0 \\ -14.2 \\ \hline \end{array}$	$\begin{aligned} & +6.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+5.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 193 \end{aligned}$	66.2	$\quad 82.3 \quad-16.1$ High Channel Harmonic	Horiz 100
$\begin{aligned} & 22 \text { 19098.300M } \\ & \text { Ave } \end{aligned}$	27.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ -11.7 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +11.2 \\ \hline \end{array}$	$\begin{array}{r} +6.9 \\ +0.0 \\ +10.9 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & 162 \end{aligned}$	44.8	$\quad 82.3 \quad-37.5$ High Channel Harmonic	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
$\wedge 19098.340 \mathrm{M}$	44.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ -11.7 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +11.2 \\ \hline \end{array}$	$\begin{array}{r} +6.9 \\ +0.0 \\ +10.9 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & 163 \end{aligned}$	62.1	$\quad 82.3 \quad-20.2$ High Channel Harmonic	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$

$\begin{aligned} & 24 \text { 13368.610M } \\ & \text { Ave } \end{aligned}$	46.8	$\begin{array}{r} +0.0 \\ +0.0 \\ -14.2 \\ \hline \end{array}$	$\begin{aligned} & \hline+6.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+5.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 226 \end{aligned}$	44.8	$\quad 82.3 \quad-37.5$ High Channel Harmonic	$\begin{array}{r} \hline \text { Vert } \\ 100 \end{array}$
$\wedge 13368.660 \mathrm{M}$	68.0	$\begin{array}{r} +0.0 \\ +0.0 \\ -14.2 \end{array}$	$\begin{aligned} & \hline+6.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+5.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 226 \end{aligned}$	66.0	$\quad 82.3 \quad-16.3$ High Channel Harmonic	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
$26 \quad 34.000 \mathrm{M}$	27.3	$\begin{array}{r} +0.0 \\ +16.5 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 295 \end{aligned}$	44.7	$82.3-37.6$	$\begin{gathered} \text { Horiz } \\ 100 \end{gathered}$
$\begin{aligned} & 27 \text { 18800.190M } \\ & \text { Ave } \end{aligned}$	27.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{gathered} +0.0 \\ +0.0 \\ -11.9 \end{gathered}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +11.1 \\ \hline \end{array}$	$\begin{array}{r} +6.8 \\ +0.0 \\ +10.8 \end{array}$	$\begin{aligned} & +0.0 \\ & 150 \end{aligned}$	44.6	$\quad 82.3 \quad-37.7$ Mid Channel Harmonic	Horiz 107
$\wedge 18800.100 \mathrm{M}$	45.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{gathered} +0.0 \\ +0.0 \\ -11.9 \end{gathered}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +11.1 \end{array}$	$\begin{array}{r} +6.8 \\ +0.0 \\ +10.8 \end{array}$	$\begin{aligned} & +0.0 \\ & 150 \end{aligned}$	62.1	$82.3 \quad-20.2$ Mid Channel Harmonic	Horiz 107
$\begin{aligned} & 29 \text { 19097.740M } \\ & \text { Ave } \end{aligned}$	27.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ -11.7 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +11.2 \\ \hline \end{array}$	$\begin{array}{r} +6.9 \\ +0.0 \\ +10.9 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & 145 \end{aligned}$	44.5	$\quad 82.3 \quad-37.8$ High Channel Harmonic	$\begin{gathered} \text { Horiz } \\ 100 \end{gathered}$
$\wedge 19097.760 \mathrm{M}$	44.4	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ -11.7 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +11.2 \\ \hline \end{array}$	$\begin{array}{r} +6.9 \\ +0.0 \\ +10.9 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & 145 \end{aligned}$	61.7	$\quad 82.3 \quad-20.6$ High Channel Harmonic	Horiz 100
$\begin{aligned} & 31 \text { 18501.920M } \\ & \text { Ave } \end{aligned}$	27.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ -12.1 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +11.0 \\ \hline \end{array}$	$\begin{array}{r} +6.7 \\ +0.0 \\ +10.7 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 156 \end{aligned}$	44.2	$82.3 \quad-38.1$ Low Channel Harmonic	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
$\wedge 18501.830 \mathrm{M}$	47.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ -12.1 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +11.0 \end{array}$	$\begin{array}{r} +6.7 \\ +0.0 \\ +10.7 \end{array}$	$\begin{aligned} & +0.0 \\ & 156 \end{aligned}$	63.3	$82.3 \quad-19.0$ Low Channel Harmonic	$\begin{array}{r} \hline \text { Vert } \\ 100 \end{array}$
$\begin{aligned} & 33 \text { 18502.260M } \\ & \text { Ave } \end{aligned}$	27.7	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ -12.1 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +11.0 \\ \hline \end{array}$	$\begin{array}{r} +6.7 \\ +0.0 \\ +10.7 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & 146 \end{aligned}$	44.0	$82.3 \quad-38.3$ Low Channel Harmonic	Horiz 116
$\wedge 18502.270 \mathrm{M}$	46.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ -12.1 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +11.0 \\ \hline \end{array}$	$\begin{array}{r} +6.7 \\ +0.0 \\ +10.7 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 146 \end{aligned}$	62.4	$82.3 \quad-19.9$ Low Channel Harmonic	Horiz 116
$\begin{aligned} & 3515278.400 \mathrm{M} \\ & \text { Ave } \end{aligned}$	43.2	$\begin{array}{r} +0.0 \\ +0.0 \\ -12.8 \\ \hline \end{array}$	$\begin{aligned} & +7.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +6.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 219 \end{aligned}$	43.6	$\quad 82.3 \quad-38.7$ High Channel Harmonic	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
$\wedge 15278.460 \mathrm{M}$	65.0	$\begin{gathered} +0.0 \\ +0.0 \\ -12.8 \end{gathered}$	$\begin{aligned} & \hline+7.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+6.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 219 \end{aligned}$	65.4	$\quad 82.3 \quad-16.9$ High Channel Harmonic	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
$\begin{aligned} & 3711280.080 \mathrm{M} \\ & \text { Ave } \end{aligned}$	27.3	$\begin{array}{r} -33.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+6.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+38.4 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+4.9 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 133 \end{aligned}$	43.3	$\quad 82.3 \quad-39.0$ Mid Channel Harmonic	$\begin{gathered} \text { Horiz } \\ 133 \end{gathered}$
$\wedge 11280.070 \mathrm{M}$	45.7	$\begin{array}{r} \hline-33.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+6.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+38.4 \\ +0.0 \end{array}$	$\begin{aligned} & +4.9 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 133 \end{aligned}$	61.7	$82.3 \quad-20.6$ Mid Channel Harmonic	$\begin{gathered} \text { Horiz } \\ 133 \end{gathered}$
$\begin{aligned} & 39 \text { 9400.030M } \\ & \text { Ave } \end{aligned}$	28.4	$\begin{array}{r} -33.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+5.3 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+38.4 \\ +0.0 \end{array}$	$\begin{aligned} & +4.5 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 40 \end{aligned}$	43.1	$\quad 82.3$ Mid Channel Harmonic	$\begin{gathered} \text { Horiz } \\ 133 \end{gathered}$
$\wedge 9400.110 \mathrm{M}$	46.5	$\begin{array}{r} -33.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+5.3 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+38.4 \\ +0.0 \end{array}$	$\begin{aligned} & +4.5 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 40 \end{aligned}$	61.2	$82.3 \quad-21.1$ Mid Channel Harmonic	$\begin{gathered} \text { Horiz } \\ 133 \end{gathered}$

Page 51 of 55

| 41 9250.980M | 27.8 | -33.6 | +5.3 | +38.5 | +4.4 | +0.0 | 42.6 | 82.3 | -39.7 | Vert |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ave | | +0.0 | +0.0 | +0.0 | +0.2 | 141 | | Low Channel | 166 | |
| | | | | | | | | Harmonic | | |

$\begin{aligned} & 57 \text { 14801.660M } \\ & \text { Ave } \end{aligned}$	41.8	$\begin{array}{r} +0.0 \\ +0.0 \\ -13.5 \\ \hline \end{array}$	$\begin{aligned} & \hline+6.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+5.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 196 \end{aligned}$	41.1	$82.3 \quad-41.2$ Low Channel Harmonic	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
$\wedge 14801.670 \mathrm{M}$	63.2	$\begin{array}{r} +0.0 \\ +0.0 \\ -13.5 \\ \hline \end{array}$	$\begin{aligned} & \hline+6.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+5.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 196 \end{aligned}$	62.5	$82.3-19.8$ Low Channel Harmonic	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
$\begin{aligned} & 597639.220 \mathrm{M} \\ & \text { Ave } \end{aligned}$	28.4	$\begin{array}{r} -33.8 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+4.7 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+36.8 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+4.0 \\ & +0.1 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 133 \end{aligned}$	40.2	$82.3 \quad-42.1$ High Channel Harmonic	$\begin{gathered} \hline \text { Vert } \\ 102 \end{gathered}$
$\wedge 7639.130 \mathrm{M}$	44.4	$\begin{array}{r} -33.8 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+4.7 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +36.8 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+4.0 \\ & +0.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 133 \end{aligned}$	56.2	$\quad 82.3 \quad-26.1$ High Channel Harmonic	$\begin{array}{r} \hline \text { Vert } \\ 102 \end{array}$
$\begin{aligned} & \hline 61 \text { 16651.860M } \\ & \text { Ave } \end{aligned}$	37.8	$\begin{array}{r} \hline+0.0 \\ +0.0 \\ -11.7 \end{array}$	$\begin{aligned} & +7.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+6.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 218 \end{aligned}$	40.1	$82.3 \quad-42.2$ Low Channel Harmonic	$\begin{gathered} \text { Horiz } \\ 110 \end{gathered}$
$\wedge 16651.840 \mathrm{M}$	59.4	$\begin{array}{r} +0.0 \\ +0.0 \\ -11.7 \end{array}$	$\begin{aligned} & \hline+7.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+6.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 218 \end{aligned}$	61.7	$82.3 \quad-20.6$ Low Channel Harmonic	$\begin{gathered} \text { Horiz } \\ 110 \end{gathered}$
$63 \quad 125.900 \mathrm{M}$	26.8	$\begin{array}{r} +0.0 \\ +11.7 \end{array}$	$\begin{aligned} & +0.0 \\ & +1.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 199 \end{aligned}$	40.0	$82.3-42.3$	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
$\begin{aligned} & 64 \text { 16919.960M } \\ & \text { Ave } \end{aligned}$	36.6	$\begin{array}{r} +0.0 \\ +0.0 \\ -11.5 \\ \hline \end{array}$	$\begin{aligned} & \hline+7.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+6.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 176 \end{aligned}$	39.2	$82.3 \quad-43.1$ Mid Channel Harmonic	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
$\wedge 16920.030 \mathrm{M}$	59.3	$\begin{array}{r} +0.0 \\ +0.0 \\ -11.5 \end{array}$	$\begin{aligned} & \hline+7.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+6.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 176 \end{aligned}$	61.9	$82.3 \quad-20.4$ Mid Channel Harmonic	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
$\begin{aligned} & 66 \text { 16651.850M } \\ & \text { Ave } \end{aligned}$	36.9	$\begin{array}{r} +0.0 \\ +0.0 \\ -11.7 \\ \hline \end{array}$	$\begin{aligned} & \hline+7.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+6.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 178 \end{aligned}$	39.2	82.3 Low Channel Harmonic	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
$\wedge 16651.750 \mathrm{M}$	59.7	$\begin{array}{r} +0.0 \\ +0.0 \\ -11.7 \\ \hline \end{array}$	$\begin{aligned} & \hline+7.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+6.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 178 \end{aligned}$	62.0	$82.3 \quad-20.3$ Low Channel Harmonic	$\begin{gathered} \text { Vert } \\ 100 \end{gathered}$
$\begin{aligned} & 68 \text { 16920.000M } \\ & \text { Ave } \end{aligned}$	35.7	$\begin{array}{r} +0.0 \\ +0.0 \\ -11.5 \\ \hline \end{array}$	$\begin{aligned} & +7.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+6.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 147 \end{aligned}$	38.3	82.3 Mid Channel Harmonic	Horiz 110
$\begin{aligned} & 69 \text { 14801.600M } \\ & \text { Ave } \end{aligned}$	38.9	$\begin{array}{r} +0.0 \\ +0.0 \\ -13.5 \end{array}$	$\begin{aligned} & \hline+6.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+5.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 153 \end{aligned}$	38.2	$82.3 \quad-44.1$ Low Channel Harmonic	Horiz 110
$\wedge 14801.610 \mathrm{M}$	59.9	$\begin{array}{r} +0.0 \\ +0.0 \\ -13.5 \\ \hline \end{array}$	$\begin{aligned} & \hline+6.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+5.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 153 \end{aligned}$	59.2	$\quad 82.3 \quad-23.1$ Low Channel Harmonic	Horiz 110
$\begin{aligned} & \hline 71 \text { 12951.420M } \\ & \text { Ave } \end{aligned}$	39.9	$\begin{array}{r} +0.0 \\ +0.0 \\ -13.9 \end{array}$	$\begin{aligned} & \hline+6.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+5.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 206 \end{aligned}$	37.8	$82.3 \quad-44.5$ Low Channel Harmonic	Horiz 110
$\wedge 12951.480 \mathrm{M}$	60.6	$\begin{array}{r} +0.0 \\ +0.0 \\ -13.9 \\ \hline \end{array}$	$\begin{aligned} & \hline+6.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+5.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 206 \end{aligned}$	58.5	$\quad 82.3$ Low Channel Harmonic	Horiz 110

$\begin{gathered} 737520.000 \mathrm{M} \\ \text { Ave } \end{gathered}$	25.6	$\begin{gathered} -33.6 \\ +0.0 \end{gathered}$	$\begin{aligned} & +4.7 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+36.8 \\ +0.0 \end{array}$	$\begin{aligned} & +4.0 \\ & +0.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 151 \end{aligned}$	37.6	$82.3 \quad-44.7$ Mid Channel Harmonic	$\begin{gathered} \hline \text { Vert } \\ 179 \end{gathered}$
$\wedge 7519.910 \mathrm{M}$	41.7	$\begin{gathered} -33.6 \\ +0.0 \end{gathered}$	$\begin{aligned} & \hline+4.7 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+36.8 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+4.0 \\ & +0.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 151 \end{aligned}$	53.7	$82.3 \quad-28.6$ Mid Channel Harmonic	$\begin{gathered} \hline \text { Vert } \\ 179 \end{gathered}$
$\begin{aligned} & 755640.020 \mathrm{M} \\ & \text { Ave } \end{aligned}$	27.6	$\begin{array}{r} \hline-33.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+4.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+34.5 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+3.4 \\ & +0.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 298 \end{aligned}$	36.4	$82.3 \quad-45.9$ Mid Channel Harmonic	$\begin{gathered} \text { Horiz } \\ 148 \end{gathered}$
$\wedge 5640.010 \mathrm{M}$	44.8	$\begin{array}{r} \hline-33.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+4.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+34.5 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+3.4 \\ & +0.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 298 \end{aligned}$	53.6	$\quad 82.3 \quad-28.7$ Mid Channel Harmonic	$\begin{gathered} \text { Horiz } \\ 148 \end{gathered}$
$\begin{aligned} & \hline 77 \text { 7400.820M } \\ & \text { Ave } \end{aligned}$	24.9	$\begin{array}{r} -33.7 \\ +0.0 \end{array}$	$\begin{aligned} & +4.6 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+36.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+3.9 \\ & +0.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 142 \end{aligned}$	36.4	82.3 Low Channel Harmonic	$\begin{array}{r} \hline \text { Vert } \\ 165 \end{array}$
$\wedge 7400.900 \mathrm{M}$	40.3	$\begin{array}{r} \hline-33.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+4.6 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+36.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+3.9 \\ & +0.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 142 \end{aligned}$	51.8	$82.3 \quad-30.5$ Low Channel Harmonic	$\begin{array}{r} \hline \text { Vert } \\ 165 \end{array}$
$\begin{aligned} & 795729.420 \mathrm{M} \\ & \text { Ave } \end{aligned}$	27.4	$\begin{array}{r} \hline-33.3 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+4.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +34.5 \\ +0.0 \end{array}$	$\begin{aligned} & +3.5 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 241 \end{aligned}$	36.3	$82.3 \quad-46.0$ High Channel Harmonic	Horiz 120
$\wedge 5729.360 \mathrm{M}$	44.0	$\begin{array}{r} \hline-33.3 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+4.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +34.5 \\ +0.0 \end{array}$	$\begin{aligned} & +3.5 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 241 \end{aligned}$	52.9	$82.3 \quad-29.4$ High Channel Harmonic	$\begin{gathered} \text { Horiz } \\ 120 \end{gathered}$
$\begin{aligned} & 815550.590 \mathrm{M} \\ & \text { Ave } \end{aligned}$	27.4	$\begin{array}{r} -33.1 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+4.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+34.4 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+3.4 \\ & +0.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 293 \end{aligned}$	36.2	$82.3 \quad-46.1$ Low Channel Harmonic	$\begin{gathered} \text { Horiz } \\ 151 \end{gathered}$
$\wedge 5550.580 \mathrm{M}$	44.2	$\begin{array}{r} -33.1 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+4.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+34.4 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+3.4 \\ & +0.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 293 \end{aligned}$	53.0	$82.3 \quad-29.3$ Low Channel Harmonic	$\begin{gathered} \text { Horiz } \\ 151 \end{gathered}$
$\begin{aligned} & 83 \text { 17188.180M } \\ & \text { Ave } \end{aligned}$	33.7	$\begin{array}{r} +0.0 \\ +0.0 \\ -11.7 \\ \hline \end{array}$	$\begin{aligned} & \hline+7.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+6.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 219 \end{aligned}$	36.1	$82.3 \quad-46.2$ High Channel Harmonic	$\begin{gathered} \text { Horiz } \\ 100 \end{gathered}$
$\wedge 17188.100 \mathrm{M}$	54.0	$\begin{array}{r} +0.0 \\ +0.0 \\ -11.7 \\ \hline \end{array}$	$\begin{aligned} & \hline+7.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+6.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 219 \end{aligned}$	56.4	$82.3 \quad-25.9$ High Channel Harmonic	$\begin{gathered} \text { Horiz } \\ 100 \end{gathered}$
$\begin{aligned} & 85 \text { 17188.290M } \\ & \text { Ave } \end{aligned}$	33.7	$\begin{array}{r} +0.0 \\ +0.0 \\ -11.7 \\ \hline \end{array}$	$\begin{aligned} & \hline+7.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+6.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 176 \end{aligned}$	36.1	$\quad 82.3 \quad-46.2$ High Channel Harmonic	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
$\wedge 17188.200 \mathrm{M}$	56.8	$\begin{array}{r} +0.0 \\ +0.0 \\ -11.7 \\ \hline \end{array}$	$\begin{aligned} & \hline+7.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+6.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 176 \end{aligned}$	59.2	$\quad 82.3 \quad-23.1$ High Channel Harmonic	$\begin{array}{r} \hline \text { Vert } \\ 100 \end{array}$
$\begin{aligned} & 875550.640 \mathrm{M} \\ & \text { Ave } \end{aligned}$	27.2	$\begin{array}{r} -33.1 \\ +0.0 \end{array}$	$\begin{aligned} & +4.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +34.4 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+3.4 \\ & +0.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 269 \end{aligned}$	36.0	$82.3 \quad-46.3$ Low Channel Harmonic	$\begin{array}{r} \hline \text { Vert } \\ 153 \end{array}$
$\wedge 5550.680 \mathrm{M}$	43.9	$\begin{array}{r} \hline-33.1 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+4.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+34.4 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+3.4 \\ & +0.1 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 269 \end{aligned}$	52.7	82.3 Low Channel Harmonic	$\begin{gathered} \hline \text { Vert } \\ 153 \end{gathered}$

$\begin{aligned} & 895729.450 \mathrm{M} \\ & \text { Ave } \end{aligned}$	27.0	$\begin{array}{r} -33.3 \\ +0.0 \end{array}$	$\begin{aligned} & +4.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+34.5 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+3.5 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 180 \end{aligned}$	35.9	$\quad 82.3 \quad-46.4$ High Channel Harmonic	$\begin{gathered} \hline \text { Vert } \\ 110 \end{gathered}$
$\wedge 5729.370 \mathrm{M}$	43.4	$\begin{array}{r} -33.3 \\ +0.0 \end{array}$	$\begin{aligned} & +4.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+34.5 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+3.5 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 180 \end{aligned}$	52.3	$82.3 \quad-30.0$ High Channel Harmonic	$\begin{array}{r} \hline \text { Vert } \\ 110 \end{array}$
$\begin{aligned} & 915640.010 \mathrm{M} \\ & \text { Ave } \end{aligned}$	26.5	$\begin{array}{r} -33.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+4.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+34.5 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+3.4 \\ & +0.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 271 \end{aligned}$	35.3	$82.3 \quad-47.0$ Mid Channel Harmonic	$\begin{gathered} \hline \text { Vert } \\ 185 \end{gathered}$
$\wedge 5639.990 \mathrm{M}$	42.9	$\begin{array}{r} -33.2 \\ +0.0 \end{array}$	$\begin{aligned} & +4.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +34.5 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+3.4 \\ & +0.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 271 \end{aligned}$	51.7	82.3 Mid Channel Harmonic	$\begin{array}{r} \text { Vert } \\ 185 \end{array}$
$\begin{aligned} & 93 \text { 3819.600M } \\ & \text { Ave } \end{aligned}$	26.4	$\begin{array}{r} -33.2 \\ +0.0 \end{array}$	$\begin{aligned} & +3.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+32.1 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.8 \\ & +0.3 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 25 \end{aligned}$	31.4	$\quad 82.3 \quad-50.9$ High Channel Harmonic	$\begin{gathered} \hline \text { Vert } \\ 101 \end{gathered}$
$\wedge 3819.530 \mathrm{M}$	44.6	$\begin{array}{r} \hline-33.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+3.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+32.1 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.8 \\ & +0.3 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 25 \end{aligned}$	49.6	$\quad 82.3 \quad-32.7$ High Channel Harmonic	$\begin{gathered} \hline \text { Vert } \\ 101 \end{gathered}$
$\begin{aligned} & 95 \text { 3819.620M } \\ & \text { Ave } \end{aligned}$	25.6	$\begin{array}{r} -33.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+3.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +32.1 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.8 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 291 \end{aligned}$	30.6	$82.3 \quad-51.7$ High Channel Harmonic	$\begin{gathered} \text { Horiz } \\ 119 \end{gathered}$
$\wedge 3819.580 \mathrm{M}$	41.9	$\begin{array}{r} -33.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+3.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+32.1 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.8 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 291 \end{aligned}$	46.9	$\quad 82.3 \quad-35.4$ High Channel Harmonic	$\begin{gathered} \text { Horiz } \\ 119 \end{gathered}$
$\begin{aligned} & 973700.400 \mathrm{M} \\ & \text { Ave } \end{aligned}$	25.4	$\begin{array}{r} -33.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+3.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+31.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.7 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 148 \end{aligned}$	29.9	$82.3 \quad-52.4$ Low Channel Harmonic	$\begin{gathered} \hline \text { Vert } \\ 130 \end{gathered}$
$\wedge 3700.410 \mathrm{M}$	44.5	$\begin{array}{r} -33.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+3.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+31.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.7 \\ & +0.3 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 148 \end{aligned}$	49.0	$82.3 \quad-33.3$ Low Channel Harmonic	$\begin{array}{r} \hline \text { Vert } \\ 130 \end{array}$
$\begin{aligned} & 99 \text { 3759.920M } \\ & \text { Ave } \end{aligned}$	24.9	$\begin{array}{r} -33.2 \\ +0.0 \end{array}$	$\begin{aligned} & +3.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+31.9 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.8 \\ & +0.3 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 95 \end{aligned}$	29.7	$\quad 82.3$ Mid Channel Harmonic	$\begin{array}{r} \hline \text { Vert } \\ 130 \end{array}$
$\wedge 3759.960 \mathrm{M}$	42.1	$\begin{array}{r} \hline-33.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+3.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+31.9 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.8 \\ & +0.3 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 95 \end{aligned}$	46.9	$82.3 \quad-35.4$ Mid Channel Harmonic	$\begin{array}{r} \hline \text { Vert } \\ 130 \end{array}$
$\begin{aligned} & 101 \text { 3760.020M } \\ & \text { Ave } \end{aligned}$	24.8	$\begin{array}{r} -33.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+3.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+31.9 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.8 \\ & +0.3 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 93 \end{aligned}$	29.6	$82.3 \quad-52.7$ Mid Channel Harmonic	$\begin{gathered} \text { Horiz } \\ 165 \end{gathered}$
$\wedge 3759.940 \mathrm{M}$	41.9	$\begin{array}{r} -33.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+3.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+31.9 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.8 \\ & +0.3 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 93 \end{aligned}$	46.7	$82.3 \quad-35.6$ Mid Channel Harmonic	Horiz 165
$\begin{aligned} & 1033700.420 \mathrm{M} \\ & \text { Ave } \end{aligned}$	24.8	$\begin{array}{r} -33.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+3.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+31.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.7 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 128 \end{aligned}$	29.3	$82.3 \quad-53.0$ Low Channel Harmonic	Horiz 122
$\wedge 3700.440 \mathrm{M}$	40.8	$\begin{array}{r} -33.2 \\ +0.0 \end{array}$	$\begin{aligned} & +3.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+31.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.7 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 128 \end{aligned}$	45.3	$82.3 \quad-37.0$ Low Channel Harmonic	$\begin{gathered} \text { Horiz } \\ 122 \end{gathered}$

Page 55 of 55

