Rhein Tech Laboratories, Inc. 360 Herndon Parkway Suite 1400 Herndon, VA 20170 http://www.rheintech.com Client: 4RF Communications Model: Aprisa SR SRN400-000 FCC ID: UIPSRN0400012A Standards: FCC Part 90 Report #: 2011198

Appendix J: Manual

Please refer to the following pages.

User Manual

Copyright

Copyright © 2011 4RF Communications Ltd. All rights reserved.

This document is protected by copyright belonging to 4RF Communications Ltd and may not be reproduced or republished in whole or part in any form without the prior written permission of 4RF Communications Ltd.

Trademarks

Aprisa and the 4RF logo are trademarks of 4RF Communications Limited.

Windows is a registered trademark of Microsoft Corporation in the United States and other countries. Java and all Java-related trademarks are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. All other marks are the property of their respective owners.

Disclaimer

Although every precaution has been taken preparing this information, 4RF Communications Ltd assumes no liability for errors and omissions, or any damages resulting from use of this information. This document or the equipment may change, without notice, in the interests of improving the product.

RoHS and WEEE compliance

The Aprisa SR is fully compliant with the European Commission's RoHS (Restriction of Certain Hazardous Substances in Electrical and Electronic Equipment) and WEEE (Waste Electrical and Electronic Equipment) environmental directives.

Restriction of hazardous substances (RoHS)

The RoHS Directive prohibits the sale in the European Union of electronic equipment containing these hazardous substances: lead, cadmium, mercury, hexavalent chromium, polybrominated biphenyls (PBBs), and polybrominated diphenyl ethers (PBDEs).

4RF Communications has worked with its component suppliers to ensure compliance with the RoHS Directive which came into effect on the 1st July 2006.

End-of-life recycling programme (WEEE)

The WEEE Directive concerns the recovery, reuse, and recycling of electronic and electrical equipment. Under the Directive, used equipment must be marked, collected separately, and disposed of properly.

4RF Communications has instigated a programme to manage the reuse, recycling, and recovery of waste in an environmentally safe manner using processes that comply with the WEEE Directive (EU Waste Electrical and Electronic Equipment 2002/96/EC).

4RF Communications invites questions from customers and partners on its environmental programmes and compliance with the European Commission's Directives (sales@4RF.com).

Compliance General

The Aprisa SR digital radio predominantly operates within frequency bands that require a site license be issued by the radio regulatory authority with jurisdiction over the territory in which the equipment is being operated.

It is the responsibility of the user, before operating the equipment, to ensure that where required the appropriate license has been granted and all conditions attendant to that license have been met.

Changes or modifications not approved by the party responsible for compliance could void the user's authority to operate the equipment.

Equipment authorizations sought by 4RF Communications are based on the Aprisa SR radio equipment being installed at a fixed location and operated in point-to-multipoint or point-to-point mode within the environmental profile defined by EN 300 019, Class 3.4. Operation outside these criteria may invalidate the authorizations and / or license conditions.

The term 'Radio' with reference to the Aprisa SR User Manual, is a generic term for one end station of a point-to-multipoint Aprisa SR network and does not confer any rights to connect to any public network or to operate the equipment within any territory.

Compliance ETSI

The Aprisa SR radio is designed to comply with the European Telecommunications Standards Institute (ETSI) specifications as follows:

Radio performance EN 300 113-2

EMC EN 301 489 Parts 1 & 5 Environmental EN 300 019, Class 3.4

Safety EN 60950-1:2006

Frequency band	Channel size	Power input	Notified body
136-174 MHz	12.5 kHz, 25 kHz	12 VDC	
400-470 MHz	12.5 kHz, 25 kHz	12 VDC	

RF Exposure Warning

WARNING:

The installer and / or user of Aprisa SR radios shall ensure that a separation distance as given in the following table is maintained between the main axis of the terminal's antenna and the body of the user or nearby persons.

Minimum separation distances given are based on the maximum values of the following methodologies:

- 1. Maximum Permissible Exposure non-occupational limit (B or general public) of 47 CFR 1.1310 and the methodology of FCC's OST/OET Bulletin number 65.
- 2. Reference levels as given in Annex III, European Directive on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz) (1999/519/EC). These distances will ensure indirect compliance with the requirements of EN 50385:2002.

Frequency (MHz)	Maximum Power (dBm)	Maximum Antenna Gain (dBi)	Minimum Separation Distance (m)
136	+ 37	15	2.5
174	+ 37	15	2.5
330	+ 37	15	2.5
400	+ 37	15	2.5
470	+ 37	15	2.3
520	+ 37	15	2.2
850	+ 37	28	7.7
960	+ 37	28	7.2

Contents

1.	Getting Started	11
2.	Introduction	13
	About This Manual	13
	What It Covers	
	Who Should Read It	
	Contact Us.	
	What's in the Box	
	Aprisa SR Accessory Kit	
	Aprisa SR CD Contents	
	Software	
	Documentation	
	Documentation	. 17
3.	About the Radio	15
	The 4RF Aprisa SR Radio	.15
	Product Overview	.16
	Network Coverage and Capacity	.16
	Remote Messaging	.16
	Repeater Messaging	.17
	Product Features	.18
	Functions	
	Performance	
	Usability	
	Architecture	
	Product Operation	
	Physical Layer	
	Data Link Layer / MAC layer	
	Channel access	
	Hop by Hop Transmission	
	Network Layer	
	Packet Routing	
	Security	
	Interfaces	
	Antenna Interface	
	Ethernet Interface	
	USB Interfaces	
	RS-232 Interface	
	Front Panel Connections	
	LED Display Panel	
	Normal Operation	
	Software Upgrade	
	Test Mode	.26

4.	Product Options	Z/
	Dual Antenna Port	27
	Protected Station	
	Operation	
	Configuration Management	
	Switch Over	79
	Switching Criteria	29
	Hardware Manual Lock	
	Remote Control	
	Installation	
	Mounting	
	Cabling	
	Power	
	Maintenance	
	Changing the Protected Station IP Addresses	
	Protected Station Software Upgrade	
	Replacing a Protected Station Faulty Radio	
	Setting the Software Manual Lock	
	Spares	
	Replacing a Faulty Protection Switch	
	Data Driven Protected Station	
	Operation	
	Switch Over	
	Configuration Management	
	Installation	
	Mounting	
	Cabling	
	Power	
	1 OWC1	50
5.	Implementing the Network	39
	Network Topologies	
	Point-To-Point Network	
	Point-to-Multipoint Network	
	Point-to-Multipoint with Repeater 1	
	Point-to-Multipoint with Repeater 2	
	Initial Network Deployment	
	Install the Base Station	
	Installing the Remote Stations	
	Network Changes	
	Adding a Repeater Station	
	Adding a Remote Station	
	Adding a remote station	4 1

6.	Preparation	43
	Bench Setup	43
	Path Planning	
	Antenna Selection and Siting	
	Base or Repeater Station	
	Remote Station	
	Antenna Siting	
	Coaxial Feeder Cables	
	Linking System Plan	
	Site Requirements	
	Power Supply	
	Equipment Cooling	
	Earthing and Lightning Protection	
	Feeder Earthing	
	Radio Earthing	
7.	Installing the Radio	50
	Mounting	50
	Required Tools	
	DIN Rail Mounting	
	Rack Shelf Mounting	
	Wall Mounting	
	Installing the Antenna and Feeder Cable	
	Connecting the Power Supply	
	External Power Supplies	
	Spare Fuses	
	Additional Spare Fuses	

8.	Managing the Radio	. 5	/
	SuperVisor	5	7
	Connecting to SuperVisor		
	Management PC Connection		
	PC Settings for SuperVisor		
	Login to SuperVisor		
	Logout of SuperVisor		
	SuperVisor Screen Layout		
	SuperVisor Menu		
	SuperVisor Menu Access		
	SuperVisor Menu Items		
	Network Status		
	Terminal		
	Radio		
	Ethernet		
	Security		
	Maintenance		
	Events		
	Parameters		
	Command Line Interface		
	Connecting to the Management Port		
	CLI Commands		
	Viewing the CLI Terminal Summary		
	Changing the Radio IP Address with the CLI		
	In-Service Commissioning		
	Before You Start		
	What You Will Need		
	Antenna Alignment		
	Aligning the Antennas		
	Augunig the Automica		Ŭ
9.	Maintenance	13	9
	Radio Software Upgrade	14	.0
	Upgrade Process		
	Software Downgrade		
10.	Interface Connections	14	2
	RJ-45 Connector Pin Assignments	14	2
	Ethernet Interface Connections	14	2
	RS-232 Serial Interface Connections	14	3
	Protection Switch Remote Control Connections	14	.3
11.	Alarm Types and Sources	14	4
	Alarm Types	14	.4
	Alarm Events		
	Informational Events		

12.	Specifications	148
	RF Specifications	148
	Channel Sizes	
	Transmitter	
	Receiver	
	Modem	
	Data Payload Security	
	Interface Specifications	
	Ethernet Interface	
	RS-232 Asynchronous Interface	152
	Protection Switch Specifications	152
	Power Specifications	153
	Power Supply	
	Power Consumption	
	Power Dissipation	
	General Specifications	
	Environmental	
	Mechanical	
	ETSI compliance	155
13.	Product End Of Life	156
	End-of-Life Recycling Programme (WEEE)	156
	The WEEE Symbol Explained	156
	WEEE Must Be Collected Separately	
	YOUR ROLE in the Recovery of WEEE	
	EEE Waste Impacts the Environment and Health	156
14.	Abbreviations	157
15.	Index	158

1. Getting Started

This section is an overview of the steps required to commission an Aprisa SR radio network in the field:

Phase 1:	Pre-installation	
1.	Confirm path planning.	Page 44
2.	Ensure that the site preparation is complete:	Page 47
	Power requirements.	
	Tower requirements.	
	Environmental considerations, for example, temperature control.	
	Mounting space.	

Phase 2:	Installing the radios	
1.	Mount the radio.	Page 50
2.	Connect earthing to the radio.	Page 49
3.	Confirm that the: • Antenna is mounted and visually aligned. • Feeder cable is connected to the antenna. • Feeder connections are tightened to recommended level. • Tower earthing is complete.	
4.	Install lightning protection.	Page 49
5.	Connect the coaxial jumper cable between the lightning protection and the radio antenna port.	Page 53
6.	Connect the power to the radio.	Page 54

Phase 3:	Establishing the link		
1.	If radio's IP address is not the default IP address (169.254.50.10 with a subnet mask of 255.255.0.0) and you don't know the radio's IP address, see 'Command Line Interface' on page 131.		
2.	Connect the Ethernet cable between the radio's Ethernet port and the PC.		
3.	Confirm that the PC IP settings are correct for the Ethernet connection: IP address Subnet mask Gateway IP address	Page 59	
4.	Open a web browser and login to the radio.	Page 63	
5.	Set or confirm the RF characteristics: TX and RX frequencies TX output power	Page 79	
6.	Compare the actual RSSI to the expected RSSI value (from your path planning).		
7.	Fine-align the antennas.	Page 138	
8.	Confirm that the radio is operating correctly; the OK, DATA, CPU and RF LEDs are light green (the AUX LED will be off).		

2. Introduction

About This Manual

What It Covers

This user manual describes how to install and configure an Aprisa SR point-to-multipoint digital radio network.

It specifically documents an Aprisa SR radio running system software version 1.3.4.

It is recommended that you read the relevant sections of this manual before installing or operating the radios.

Who Should Read It.

This manual has been written for professional field technicians and engineers who have an appropriate level of education and experience.

Contact Us

If you experience any difficulty installing or using Aprisa SR after reading this manual, please contact Customer Support or your local 4RF representative.

Our area representative contact details are available from our website:

4RF Communications Ltd

26 Glover Street, Ngauranga

PO Box 13-506

Wellington 6032

New Zealand

E-mail support@4rf.com
Web site www.4rf.com
Telephone +64 4 499 6000
Facsimile +64 4 473 4447
Attention Customer Services

What's in the Box

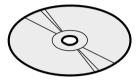
Inside the box you will find:

- One Aprisa SR radio fitted with a power connector.
- One Aprisa SR Accessory kit containing the following:

Aprisa SR CD

Aprisa SR Quick Start Guide

Management Cable


Aprisa SR Accessory Kit

The accessory kit contains the following items:

Aprisa SR Quick Start Guide

Aprisa SR CD

Management Cable
USB Cable USB A to USB micro B, 1m

Aprisa SR CD Contents

The Aprisa SR CD contains the following:

Software

- The latest version of the radio software (see 'Radio Software Upgrade' on page 140).
- USB Serial Driver.
- Web browsers Mozilla Firefox and Internet Explorer are included for your convenience.
- Adobe[™] Acrobat® Reader® which you need to view the PDF files on the Aprisa SR CD.

Documentation

- User manual an electronic (PDF) version for you to view online or print.
- Product collateral application overviews, product description, quick start guide, case studies, software release notes and white papers.

3. About the Radio

The 4RF Aprisa SR Radio

The 4RF Aprisa SR is a point-to-multipoint digital radio providing secure narrowband wireless data connectivity for SCADA, infrastructure and telemetry applications.

The radios carry a combination of serial packet data and Ethernet data between the Base Station, Repeater Stations and Remote Stations.

The Aprisa SR is configurable as a point-to-multipoint Base Station, a Remote Station or a Repeater Station.

Product Overview

Network Coverage and Capacity

In a simple point-to-multipoint network, an Aprisa SR, configured as a Base Station, will communicate with multiple remote units in a given coverage area. With a link range of up to 60 km a typical deployment will have 30 - 50 Remote Stations attached to the Base Station. However, geographic features, such as hills, mountains, trees and foliage, or other path obstructions, such as buildings, tend to limit radio coverage. Additionally, geography may reduce network capacity at the edge of the network where errors may occur and require retransmission. However, the Aprisa SR uses Forward Error Correction (FEC) which greatly improves the sensitivity performance of the radio resulting in less retries and minimal reduction in capacity.

Ultimately, the overall performance of any specific network will be defined by a range of factors including the geographic location, the number of Remote Stations in the Base Station coverage area and the traffic profile across the network. Effective network design will distribute the total number of Remote Stations across the available Base Stations to ensure optimal geographic coverage and network capacity.

Remote Messaging

Base Stations are fitted with omni-directional antennas and the Remote Stations use directional Yagi antennas for higher gain. On start-up the Base Station transmits a registration message which is recognized by the Remote Stations which respond with their own registration message. This allows the Base Station to record the details of all the Remote Stations active in the network.

There are two message types in the Aprisa SR network, **broadcast** messages and **unicast** messages. Broadcast messages are transmitted by the Base Station to the Remote Stations and **unicast** messages are transmitted by the Remote Station to the Base Station.

All the Remote Stations, within the coverage area, will receive the messages broadcast from the Base Station, but only the radio the message is intended for will action the message. Only the Base Station can receive the unicast messages transmitted from the Remote Station. Unicast messages are ignored by other Remote Stations which may be able to receive them. The Aprisa SR network is not designed for Remote Stations to communicate with other Remote Stations.

Repeater Messaging

The Aprisa SR uses a routed protocol throughout the network whereby messages contain source and destination addresses. Upon registration, the radios populate an internal neighbor table to identify the radios in the network. The Remote Stations will register with a Base Station, or a repeater, and the repeater registers with a Base Station. In networks with a repeater, the repeater must register with the Base Station before the remotes can register with the repeater.

Additionally, all messages contain a 'message type' field in the header and messages are designated as either a 'broadcast' message, originating from a Base Station, or a 'unicast' message, originating from a Remote Station.

In a network with a repeater, or multiple repeaters, the Base Station broadcasts a message which contains a message type, a source address and a destination address. The repeater receives the message and recognizes it is a broadcast message, from the message type and source address and re-broadcasts the message across the network. All Remote Stations in the coverage area will receive the message but only the radio with the destination address will act upon the message.

Similarly, the Remote Station will send a unicast message which contains a message type (unicast) a source address and a destination address (the Base Station). The repeater will receive this message; recognize the message type and source address and forward it to the destination address.

It is this methodology which prevents repeater-repeater loops. If there is repeater (A) which, in some circumstances, is able to pick up the RF signal from another repeater (B), it will not forward the message as it will only forward broadcast messages from the Base Station (recognized by the source address). For unicast messages the repeater (A) will recognize that the message (from repeater (B)) is not from a remote with which it has an association and similarly ignore the message.

Product Features

Functions

- Point-to-Point (PTP) or Point-to-Multipoint (PMP) operation half duplex.
- Licensed frequency bands:

VHF 136-174 MHz UHF 400-470 MHz

• Channel sizes:

12.5 kHz 25 kHz

- Typical deployment of 30 Remote Stations from one Base Station with a practical limit of a few hundred Remote Stations.
- Dual antenna port option for external duplexers or filters (half duplex operation)
- Ethernet data interface plus RS-232 asynchronous data interface.
- Data encryption and authentication.
- Radio and user interface redundancy (provided with Aprisa SR Protected Station).
- Complies with international standards, including ETSI RF, EMC, safety and environmental standards.

Performance

- Long distance operation.
- High transmit power.
- Low noise receiver.
- Forward Error Correction.
- Electronic tuning over the frequency band.
- Thermal management for high power over a wide temperature range.

Usability

- Configuration / diagnostics via front panel Management Port USB interface, Ethernet interface.
- Remote station configuration / diagnostics over the radio link.
- LED display for on-site diagnostics.
- Firmware upgrade and diagnostic reporting via the Host Port USB flash drive.
- Simple installation with integrated mounting holes for wall, DIN rail and rack shelf mounting.

Architecture

Product Operation

There are three components to the wireless interface: the Physical Layer (PHY), the Data Link Layer (DLL) and the Network Layer. These three layers are required to transport data across the wireless channel in the Point-to-Multipoint (PMP) configuration. The Aprisa SR DLL is largely based on the 802.15.4 MAC layer using a proprietary implementation.

Physical Layer

The Aprisa SR PHY uses a one or two frequency ½ duplex transmission mode which eliminates the need for a duplexer. However, a Dual Antenna port option is available for separate transmit and receive antenna connection to support external duplexers or filters (half duplex operation).

Remote nodes are predominantly in receive mode with only sporadic bursts of transmit data. This reduces power consumption.

The Aprisa SR is a packet based radio. Data is sent over the wireless channel in discrete packets / frames, separated in time. The PHY demodulates data within these packets with coherent detection.

The Aprisa SR PHY provides carrier, symbol and frame synchronisation predominantly through the use of preambles. This preamble prefixes all packets sent over the wireless channel which enables fast synchronisation.

Data Link Layer / MAC layer

The Aprisa SR PHY enables multiple users to be able to share a single wireless channel; however a DLL is required to manage data transport. The two key components to the DLL are channel access and hop by hop transmission.

Channel access

The Aprisa SR radio has two modes of channel access, Access Request and Listen Before Send.

Access Mode	Function
Access Request	Channel access scheme where the base stations controls the communication on the channel. Remotes ask for access to the channel, and the base station grants access if the channel is not occupied.
Listen Before Send	Channel access scheme which consists of base station controlled scheduling with remote station access using an access request / access grant (AR/AG) scheme.

Access Request

This scheme is particularly suited to digital SCADA systems where all data flows through the base station. In this case it is important that the base station has contention-free access as it is involved in every transaction. The channel access scheme assigns the base station as the channel access arbitrator and therefore inherently it has contention-free access to the channel. This means that there is no possibility of contention on data originating from the base station. As all data flows to or from the base station, this significantly improves the robustness of the system.

All data messages are controlled via the AG (access grant) control message and therefore there is no possibility of contention on the actual end user data. If a remote station accesses the channel, the only contention risk is on the AR (access request) control message. These control messages are designed to be as short as possible and therefore the risk of collision of these control messages is significantly reduced. Should collisions occur these are resolved using a random back off and retry mechanism.

As the base station controls all data transactions multiple applications can be effectively handled, including a mixture of polling and report by exception.

Listen Before Send

The Listen Before Send channel access scheme is realized using Carrier Sense Multiple Access (CSMA). In this mode, a pending transmission requires the channel to be clear. This is determined by monitoring the channel for other signals for a set time prior to transmission. This results in reduced collisions and improved channel capacity.

There are still possibilities for collisions with this technique e.g. if two radios simultaneously determine the channel is clear and transmit at the same time. In this case an acknowledged transaction may be used. The transmitter requests an ACK to ensure that the transmission has been successful. If the transmitter does not receive an ACK, then random backoffs are used to reschedule the next transmission.

There are a number of parameters that can be altered for the channel access such as back off times, number of retries etc. To enable the most efficient use of the channel these parameters will differ for each network (largely dependent on number of radios in the network).

Hop by Hop Transmission

Hop by Hop Transmission is realized in the Aprisa SR by adding a MAC address header to the packet. For 802.15.4, there are 2 addresses, the source and destination addresses.

Network Layer

Packet Routing

Packet routing is realized in the Aprisa SR by adding a network address header to the packet. This contains source and destination addresses. For the Network Layer, there are 2 addresses, the address of the originating radio and the address of the terminating radio (i.e. end to end network). This is required for routing packets across multiple hops e.g. PMP with repeaters.

The Aprisa SR uses an automated method for performing address assignment and routing information.

There are two types of packets: unicast and broadcast. Only the Base Station sends broadcasts which are received by all Remote Stations. User packets are not interpreted as the radio link is transparent.

Traffic

Data originating on the Base Station is broadcast to all Repeater Stations and Remote Stations.

Data originating on a Remote Station is unicast to the Base Station only. This can be via multiple Repeater Stations.

Data originating on a Repeater Station is unicast to the Base Station only.

Data originating on a serial port is terminated on a serial port and data originating on an Ethernet port is terminated on an Ethernet port only.

User Traffic

User traffic is prioritized depending on the Serial and Ethernet Data Priority options (see 'Serial > Advanced' on page 91 and 'Ethernet > Advanced' on page 98).

If the Serial and Ethernet Data Priority options are equal, then first come first served is invoked.

Repeater stations repeat traffic also on a first come first served basis.

Management Traffic

Ethernet Management Traffic has the same priority as Ethernet User Traffic but if the radio is not licensed for Ethernet, the Ethernet Data Priority is set to Low.

Security

The Aprisa SR provides security features to implement the key recommendations for industrial control systems. The security provided builds upon the best in class from multiple standards bodies, including:

- IEC/TR 62443 (TC65) 'Industrial Communications Networks Network and System Security'.
- IEC/TS 62351 (TC57) 'Power System Control and Associated Communications Data and Communication Security'.

The security features implemented are:

- Licensed radio spectrum protects against interference.
- Proprietary physical layer protocol and modified MAC layer protocol based on standardized IEEE 802.15.4.
- Data payload security:
 - CCM Counter with CBC-MAC integrity (NIST special publication 800-38C).
- Data encryption:

Counter Mode Encryption (CTR) using Advanced Encryption Standard (AES).

• Data authentication:

Cipher Block Chaining Message Authentication Code (CBC-MAC) using Advanced Encryption Standard (AES).

- Secured management interface protects configuration.
- Address filtering enables traffic source authorization.

Interfaces

Antenna Interface

Single Antenna Option

• 1 x TNC, 50 ohm, female connector

Dual Antenna Port Option

• 2 x TNC, 50 ohm, female connectors

Ethernet Interface

2 x ports 10/100 base-T Ethernet layer 2 switch using RJ-45.
 Used for Ethernet user traffic and product management.

USB Interfaces

- 1 x Management Port using USB micro type B connector.
 Used for product configuration with the Command Line Interface (CLI).
- 1 x Host Port using USB standard type A connector.
 Used for software upgrade and diagnostic reporting.

RS-232 Interface

1x RS-232 asynchronous port using RJ-45 connector.
 Used for RS-232 async user traffic only.

Front Panel Connections

All connections to the radio are made on the front panel.

The functions of the connectors are (from left to right):

Designator	Description
A1 / A2	The A1, A2 are alarm connections are used in the Protected Station.
10 - 30 VDC; 3A	+10 to +30 VDC (negative ground) DC power input using Phoenix Contact 4 pin male screw fitting connector.
	AC/DC and DC/DC power supplies are available as accessories (see 'External Power Supplies' on page 54).
ETHERNET 1	Integrated 10Base-T/100Base-TX layer-2 Ethernet switch using RJ-45 connector.
	Used for Ethernet user traffic and product management (see 'Ethernet > Port Setup' on page 93).
ETHERNET 2	Integrated 10Base-T/100Base-TX layer-2 Ethernet switch using RJ-45 connector.
	Used for Ethernet user traffic and product management (see 'Ethernet > Port Setup' on page 93).
MGMT	Management Port using USB micro type B connector.
	Used for product configuration with the Command Line Interface.
	(see 'Connecting to the Management Port' on page 131).
•	Host Port using USB standard type A connector.
· 🖫	Used for software upgrade and diagnostic reporting.
	(see 'Radio Software Upgrade' on page 140 and 'Maintenance > General' on page 111).
SERIAL	RS-232 traffic interface using a RJ-45 connector.
	Used for RS-232 async user traffic only (see 'Serial' on page 88).
ANT	TNC, 50 ohm, female connector for connection of antenna
(Antenna connector)	feeder cable (see 'Coaxial Feeder Cables' on page 47).

LED Display Panel

The Aprisa SR has an LED Display panel which provides on-site alarms / diagnostics without the need for PC.

Normal Operation

In normal radio operation, the LEDs indicate the following conditions:

	OK	DATA	CPU	RF	AUX
Solid Red	Alarm present with severity Critical, Major and Minor			RF path fail	
Flashing Red				Radio not connected to a Base Station	
Solid Orange	Alarm present with Warning Severity		Standby radio in Protected Station		
Flashing Orange		Tx Data or Rx Data on the USB management or data port	Device detect on the USB host port	RF path TX is active	Diagnostics Function Active
Flashing Green		Tx Data or Rx Data on the serial port		RF path RX is active	
Solid Green	Power on and functions OK and no alarms	All interface ports are OK	Processor Block is OK and Active radio in Protected Station	RF path is OK	

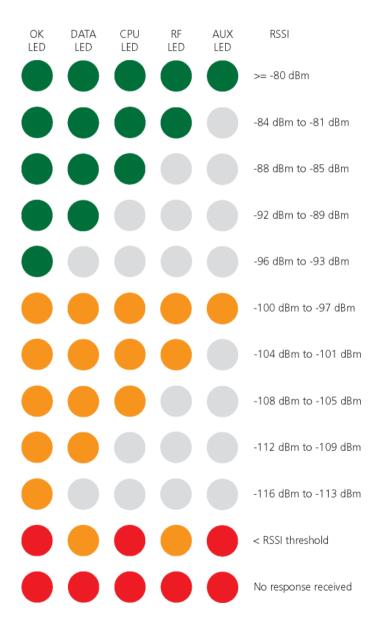
LED Colour	Severity
Green	No alarm - information only
Orange	Warning alarm
Red	Critical, major or minor alarm

Software Upgrade

During a software upgrade, the LEDs indicate the following conditions:

- Software upgrade started the OK LED flashes orange.
- Software upgrade progress indicated by running AUX to DATA LEDs.
- Software upgrade completed successfully the OK LED solid orange.
- Software upgrade failed any LED flashing red during the upgrade.

Test Mode


Remote Station and Repeater Station radios have a Test Mode which presents a real time visual display of the RSSI on the LED Display panel. This can be used to adjust the antenna for optimum signal strength (see 'Maintenance > Test Mode' on page 115 for Test Mode options).

To enter Test Mode, press and hold the ENTER button on the radio LED panel until all the LEDs flash green (about 3 - 5 seconds).

Note: The response time is variable and can be up to 5 seconds.

To exit Test Mode, press and hold the ENTER button until all the LEDs flash red (about 3 - 5 seconds).

The RF LED will be green if the network is operating correctly.

4. Product Options

Dual Antenna Port

The standard Aprisa SR uses a one or two frequency $\frac{1}{2}$ duplex transmission mode which eliminates the need for a duplexer. However, a dual antenna port option is available for separate transmit and receive antenna connection to support external duplexers or filters. The transmission remains half duplex.

Option Example

Part Number

Single Antenna Port

APSR-N400-012-<u>SO</u>-12-ETAA

Dual Antenna Port

APSR-N400-012-<u>DO</u>-12-ETAA

Protected Station

The Aprisa SR Protected Station provides radio and user interface protection for Aprisa SR radios when configured as a Base Station. The RF ports and interface ports from two standard Aprisa SR Radios are switched to the standby radio if there is a failure in the active radio.

Option Example Part Number

Aprisa SR Radio APSR-N400-012-SO-12-ETAA

Aprisa SR Protected Station APSR-R400-012-SO-12-ETAA

The Aprisa SR Protected Station is comprised of an Aprisa SR Protection Switch and two standard Aprisa SR radios. The Aprisa SR radios can be any of the currently available Aprisa SR radio frequency bands, channel sizes or single / dual antenna port options.

By default, the Aprisa SR Protected Station is configured with the left hand radio (A) designated as the primary radio and the right hand radio (B) designated as the secondary radio.

Each radio is configured with its own unique IP and MAC address and the address of the partner radio.

On power-up, the primary radio will assume the active role and the secondary radio will assume the standby role. If, for some reason, only one radio is powered on it will automatically assume the active role.

Operation

In normal operation, the active radio carries all RS-232 serial and Ethernet traffic over the radio link and the standby radio is unused with its transmitter turned off. Both radios are continually monitored for correct operation and alarms are raised if an event occurs.

The active radio sends regular 'keep alive' messages to the standby radio to indicate it is operating correctly. In the event of a failure on the active radio, the RF link and user interface traffic is automatically switched to the standby radio.

The failed radio can then be replaced in the field without interrupting user traffic (see 'Replacing a Protected Station Faulty Radio' on page 33).

Configuration Management

The active and standby radios are separately managed by SuperVisor via the Local and Partner IP addresses. Changes to the configuration in one radio must be reflected in the partner radio.

Changes to the Network Table are automatically synchronized from the active radio to the standby radio but the Network Table is only visible on the active radio. This synchronization does not occur if the Hardware Manual Lock is active.

Switch Over

The switch over to the standby radio can be initiated automatically, on fault detection, or manually via the Hardware Manual Lock switch on the Protection Switch or the Software Manual Lock from SuperVisor. Additionally, it is possible to switch over the radios remotely without visiting the station site, via the remote control connector on the front of the Protection Switch.

On detection of an alarm fault the switch over time is less than 0.5 seconds. Some alarms may take up to 5 seconds to be detected.

The Protection Switch has a switch guard mechanism to prevent protection switch oscillation. This guard time will block another switch over with 20 seconds of the previous switch over. At the end of the guard time period, the switching criteria will be evaluated and any protection switch will occur immediately if necessary.

Switching Criteria

The Protected Station will switch over operation from the active to the standby radio if any of the configurable alarm events occur or if there is a loss of the 'keep alive' signal from the active radio.

It is possible to configure the alarm events which will trigger the switch over. It is also possible to prevent an alarm event triggering a switch over through the configuration of blocking criteria.

Any of the following alarm events can be set to trigger or prevent switching from the active radio to the standby radio (see 'Events > Events Setup' on page 126).

- PA current
- Tx reverse power
- Thermal shutdown
- Rx CRC errors
- Ethernet port 1 no receive data
- Ethernet port 1 data transmit errors
- Ethernet port 2 data receive errors
- Serial port no receive data
- Component failure
- Configuration not supported

- Tx AGC
- Temperature threshold
- RSSI threshold
- RF no receive data
- Ethernet port 1 data receive errors
- Ethernet port 2 no receive data
- Ethernet port 2 data transmit errors
- Serial port data receive errors
- Calibration failure

Switch over will not occur if there is a power failure or an active alarm event is detected on the standby radio which has been configured as a 'blocking criteria'. Switch over will be initiated once either of these conditions is rectified, i.e. power is restored or the alarm is cleared.

Hardware Manual Lock

The Hardware Manual Lock switch on the Protection Switch provides a manual override of the active / standby radio.

When this lock is activated, the selected radio (A or B) becomes the active radio regardless of the Software Manual Lock and the current switching or block criteria.

When the lock is deactivated (set to the Auto position), the protection will become automatic and switching will be governed by normal switching and blocking criteria.

The state of the lock is indicated by the three LEDs on the Protection Switch:

A LED Orange	Manual Lock asserted and radio A is active
B LED Orange	Manual Lock asserted and radio B is active
Auto LED Green	Manual Lock is in Auto position

Only one of three LEDs will be active at a time.

The Protection Switch also has a Software Manual Lock (see 'Lock Active' on page 119). The Hardware Manual Lock takes precedence over Software Manual Lock if both diagnostic functions are activated i.e. if the Software Manual Lock is set to 'Primary' and the Hardware Manual Lock set to 'Secondary', the system will set the Secondary radio to Active.

When a Hardware Manual Lock is deactivated (set to the Auto position), the Software Manual Lock is reevaluated and locks set appropriately.

Remote Control

The switch over to the standby radio can be initiated via the Remote Control connector on the front of the Protection Switch. This control will only operate if the Hardware Manual Lock switch is set to the Auto position.

The inputs are logic inputs with 220 Ω pullup to +5 VDC. They require a pull down to ground to activate the control. The ground potential is available on the connector (see 'Protection Switch Remote Control Connections' on page 143).

Installation

Mounting

The Aprisa SR Protected Station is designed to mount in a standard 19 inch rack.

Cabling

The Aprisa SR Protected Station is delivered pre-cabled with power, interface, management and RF cables.

The set of interconnect cables is available as a spare part (see 'Spares' on page 34).

Power

A +10.5 to +30 V DC external power source must be connected to both the A and B Phoenix Contact 2 pin male power connectors. The maximum combined power consumption is 35 Watts.

Maintenance

Changing the Protected Station IP Addresses

To change the IP address of a Protected Station radio:

- 1. Using the Hardware Manual Lock switch, force the primary radio to active.
- 2. Change the IP address of either or both radios.
- 3. Change the Partner IP address of either or both radios.
- 4. Set the Hardware Manual Lock switch to the Auto position.

Protected Station Software Upgrade

The Protected Station software upgrade can be achieved without disruption to traffic.

Assuming the Primary radio is active and the Secondary radio is standby

- 1. Using the Hardware Manual Lock switch, force the primary radio to active.
- 2. Carefully remove the Host Port USB cable connecting the secondary radio to the Protection Switch and insert the USB flash drive with the new software release into the secondary radio Host Port ...
- 3. Power cycle the secondary radio. The radio will be upgraded with the new software.
- 4. When the secondary radio upgrade is completed, remove the USB flash drive, restore the Host Port USB cable to Protection Switch, power cycle the secondary radio and wait for it to become standby.
- 5. Using the Hardware Manual Lock switch, force the secondary radio to active.
- 6. Carefully remove the Host Port USB cable connecting the primary radio to the Protection Switch and insert the USB flash drive with the new software release into the primary radio Host Port .
- 7. Power cycle the primary radio. The radio will be upgraded with the new software.
- 8. When the primary radio upgrade is completed, remove the USB flash drive, restore the Host Port USB cable to Protection Switch, power cycle the primary radio and wait for it to become standby.
- 9. Set the Hardware Manual Lock switch to the Auto position. The secondary radio will remain active and the primary radio will remain standby. To set the primary radio to active, use the hardware lock switch to select the primary radio and wait for it to become active, then set the hardware manual lock switch to the Auto position.

Replacing a Protected Station Faulty Radio

Replacing a faulty radio in a Protected Station can be achieved without disruption to traffic.

Assuming that the primary radio is active and the secondary radio is faulty and needs replacement:

- 1. Ensure the replacement radio has the same version of software installed as the primary radio. If necessary, upgrade the software in the replacement radio.
- 2. Set the RF Interface MAC Address (see 'Maintenance > Advanced' on page 121). This MAC address is present on chassis label.
- 3. Using SuperVisor > Maintenance > Advanced 'Save Configuration to USB' and 'Restore Configuration from USB' operation, clone the primary radio's configuration to the replacement radio.
- 4. Configure the replacement radio as the secondary radio and setup the other protection parameters (see 'Terminal > Operating Mode' on page 76).
- 5. Using the Hardware Manual Lock switch, force the primary radio to active.
- 6. Carefully remove the faulty radio from the protection switch and install the replacement radio.
- 7. Power on the replacement radio and wait for it to become standby.
- 8. Set the Hardware Manual Lock switch to the Auto position.

Setting the Software Manual Lock

To make changes remotely to the Protected Station radios, the Software Manual Lock must be set to prevent switch-over while making the changes (see 'Lock Active' on page 119). This procedure should be followed when making changes that may interrupt traffic or cause a trigger a switch condition.

This procedure assumes that the Hardware Manual Lock is set to the Auto position, and there are no active switching alarm conditions:

- 1. Login to the primary radio (left hand radio A by default).
- 2. Set the Software Manual Lock (Lock Active To) to Primary. The primary radio will become active i.e. traffic will be switched to the primary radio.
- 3. Login to the secondary radio (right hand radio B by default).
- 4. Set the Software Manual Lock (Lock Active To) to Primary. This will prevent the secondary radio from becoming active.
- 5. Make the changes to the secondary radio if required.
- 6. Set the secondary radio Software Manual Lock (Lock Active To) to Automatic.
- 7. Login to the primary radio (left hand radio A by default).
- 8. Set the Software Manual Lock (Lock Active To) to Secondary. This will prevent the primary radio from becoming active.

Note: The Primary radio will become 'Standby' and the Secondary radio will become 'Active'.

- 9. Make the changes to the primary radio if required.
- 10. Set the primary radio Software Manual Lock (Lock Active To) to Automatic.

Spares

The Aprisa SR Protection Switch is available as a spare part. This spare includes the protection switch and 2 sets of Protection Switch interconnect cables (one set is 7 cables).

Part Number Part Description

APSP-SPSW 4RF Spare, Aprisa SR, Protection Switch

The set of interconnect cables is available as a spare part (set of 7 cables).

Part Number Part Description

APSP-SPSC-XS7 4RF Spare, Aprisa SR, Protection Switch Cables, Set Of 7

Replacing a Faulty Protection Switch

Note: Replacing a faulty Protection Switch will disrupt traffic.

Move the radios, the interconnect cables, the interface cables and the power cables to the replacement Protection Switch.

On both Protected Station radios:

- 1. Power on the radio and wait for it to become ready.
- 2. Using SuperVisor > Maintenance > Advanced, enter the RF Interface MAC address shown on the Protection Switch label (see 'RF Interface MAC address' on page 122).
- 3. Using SuperVisor > Maintenance > Advanced, Decommission the node (see 'Decommission Node' on page 122) and then Discover the Nodes (see 'Discover Nodes' on page 122).

Ensure that the Hardware Manual Lock switch is set to the Auto position.

The Aprisa SR Protected Station is now ready to operate.

Data Driven Protected Station

The Aprisa SR Data Driven Protected Station provides radio and RS-232 serial port user interface protection for Aprisa SR radios when configured as a Base Station.

Option Example

Aprisa SR Radio (Dual Antenna Port option)

Aprisa SR Data Driven Protected Station

Part Number

APSR-<u>N</u>400-012-DO-12-ETAA APSR-D400-012-DO-12-ETAA

The Aprisa SR Data Driven Protected Station shown is comprised of two standard Aprisa SR dual antenna port option radios and two external duplexers mounted on 19" rack mounting shelves.

The Aprisa SR radios can be any of the currently available Aprisa SR radio frequency bands, channel sizes or single / dual antenna port options.

By default, the Aprisa SR Data Driven Protected Station is configured with the left hand radio (A) designated as the primary radio and the right hand radio (B) designated as the secondary radio.

Each radio is configured with its own unique IP and MAC address and the address of the partner radio.

On power-up, the primary radio will assume the active role and the secondary radio will assume the standby role. If, for some reason, only one radio is powered on it will automatically assume the active role.

Operation

The active radio is determined explicitly by which radio receives data on its RS-232 serial port input from the interface.

The active radio carries all RS-232 serial traffic over its radio link and the standby radio is unused with its transmitter turned off.

If data is received on the RS-232 serial port interface input of the standby radio, it will immediately become the active radio and the radio which was active will become the standby radio.

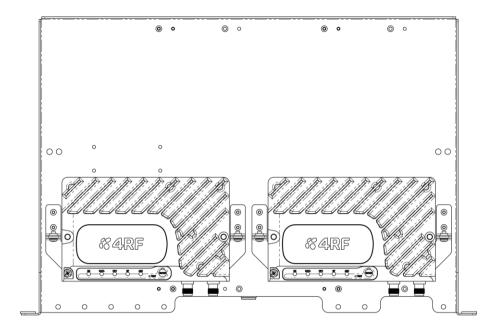
Switch Over

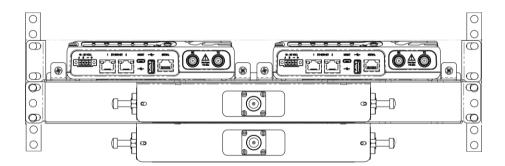
The active radio is determined explicitly by which radio receives data on its RS-232 serial port.

The switching and blocking criteria used for the standard Protected Station do not apply. This means that events and alarms on the unit are not used as switching criteria.

Configuration Management

The active and standby radios are separately managed by SuperVisor via the Local and Partner IP addresses. Changes to the configuration in one radio must be reflected in the partner radio.


Changes to the Network Table are automatically synchronized from the active radio to the standby radio but the Network Table is only visible on the active radio.



Installation

Mounting

The Aprisa SR Data Driven Protected Station is designed to mount in a standard 19" rack on two 1U rack mounting shelves.

Cabling

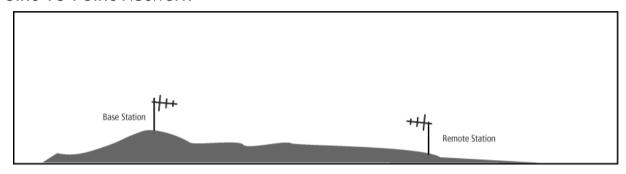
The Aprisa SR Data Driven Protected Station is delivered with the radios, duplexers, rack mounting shelves and RF cables.

Note: The picture demonstrates the RF cabling but the product is delivered with the cables separately packaged.

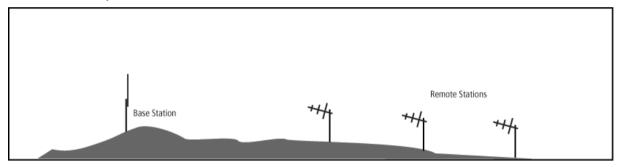
The set of interconnect cables is available as a spare part.

Power

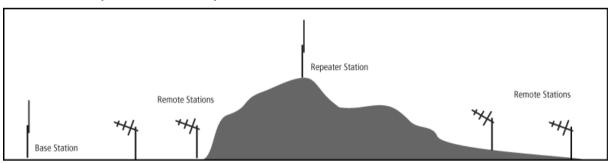
A +10.5 to +30 V DC external power source must be connected to both the A and B Phoenix Contact 4 pin male power connectors. The maximum combined power consumption is 35 Watts.

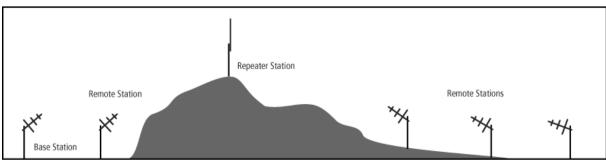


Implementing the Network


Network Topologies

The following are examples of typical Network Topologies:


Point-To-Point Network


Point-to-Multipoint Network

Point-to-Multipoint with Repeater 1

Point-to-Multipoint with Repeater 2

Initial Network Deployment

Install the Base Station

To install the Base Station in your FAN (Field Area Network):

- 1. Install the Base Station radio (see 'Installing the Radio' on page 50).
- 2. Set the radio Network ID (FAN) to a unique ID in your entire network (see 'Terminal > Device' on page
- 3. Set the radio IP address (see 'Terminal > Device' on page 74).
- 4. Set the radio frequencies to the frequencies you wish to operate from (see 'Radio > Basic' on page
- 5. Set the radio operating mode to 'Base Station' (see 'Terminal > Operating Mode' on page 76).
- 6. Set the radio security settings (see 'Security > Settings' on page 104).

Installing the Remote Stations

To install the Remote Stations in your FAN:

- 1. Install the Remote Station radio (see 'Installing the Radio' on page 50).
- 2. Set the radio Network ID (FAN) to the same ID as the other stations in the FAN (see 'Terminal > Device' on page 74).
- 3. Set the radio IP address (see 'Terminal > Device' on page 74).
- 4. Set the radio frequencies to the Base Station / Repeater Station frequencies you wish to operate from (see 'Radio > Basic' on page 79).
- 5. Set the radio operating mode to 'Remote Station' (see 'Terminal > Operating Mode' on page 76).
- 6. Set the radio security settings to the same as the Base Station (see 'Security > Settings' on page 104).

The Base Station will automatically allocate a node address to the new Remote Station.

Install a Repeater Station

To install a Repeater Station in your FAN:

- 1. Install the Repeater Station radio (see 'Installing the Radio' on page 50).
- 2. Set the radio Network ID (FAN) to the same ID as the other stations in the FAN (see 'Terminal > Device' on page 74).
- 3. Set the radio IP address (see 'Terminal > Device' on page 74).
- 4. Set the radio frequencies to Base Station frequencies you wish to operate from (see see 'Radio > Basic' on page 79).
- 5. Set the radio operating mode to 'Repeater Station' (see 'Terminal > Operating Mode' on page 76).
- 6. Set the radio security settings to the same as the Base Station (see 'Security > Settings' on page 104).
- 7. Increase the radio network radius by one on all stations in the FAN (see 'Terminal > Device' on page 74).

The Base Station will automatically allocate a node address to the new Repeater Station.

Network Changes

Adding a Repeater Station

To add a Repeater Station to your FAN:

- 1. Install the Repeater Station radio (see 'Installing the Radio' on page 50).
- 2. Set the radio Network ID (FAN) to the same ID as the other stations in the FAN (see 'Terminal > Device' on page 74).
- 3. Set the radio IP address (see 'Terminal > Device' on page 74).
- 4. Set the radio frequencies to the Base Station frequencies you wish to operate from (see 'Radio > Basic' on page 79).
- 5. Set the radio operating mode to 'Repeater Station' (see 'Terminal > Operating Mode' on page 76).
- 6. Increase the radio network radius by one on all stations in the FAN (see 'Terminal > Device' on page 74).

The Base Station will automatically allocate a node address to the new Repeater Station.

To remove a Repeater Station from your FAN:

- 1. Turn the power off on the Remote Station radios operating from the Repeater Station radio you wish to remove.
- 2. Turn the power off on the Repeater Station radio you wish to remove.
- 3. Decrease the network radius by one on all stations in the FAN (see 'Terminal > Device' on page 74).

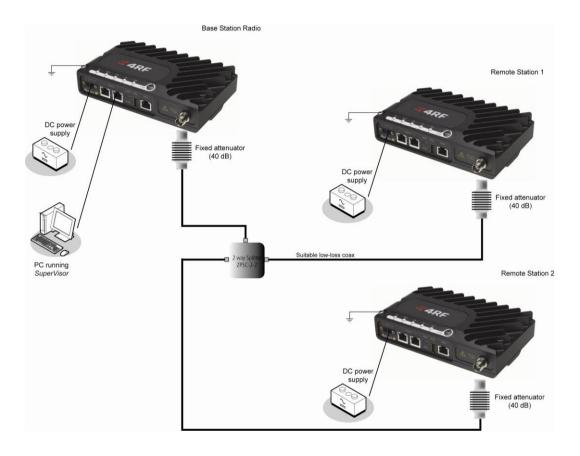
Adding a Remote Station

To add a Remote Station to your FAN:

- 1. Install the Remote Station radio (see 'Installing the Radio' on page 50).
- 2. Set the radio Network ID (FAN) to the same ID as the other stations in the FAN (see 'Terminal > Device' on page 74).
- 3. Set the radio IP address (see 'Terminal > Device' on page 74).
- 4. Set the radio frequencies to the Base Station / Repeater Station frequencies you wish to operate from (see 'Radio > Basic' on page 79).
- 5. Set the radio operating mode to 'Remote Station' (see 'Terminal > Operating Mode' on page 76).

The Base Station will automatically allocate a node address to the new Remote Station.

To remove a Remote Station from your FAN:


1. Turn the power off on the Remote Station radio you wish to remove. This is the only action that is required.

6. Preparation

Bench Setup

Before installing the links in the field, it is recommended that you bench-test the links. A suggested setup for basic bench testing is shown below:

When setting up the equipment for bench testing, note the following:

- Earthing each radio should be earthed at all times. The radio earth point should be connected to a protection earth.
- Attenuators In a bench setup, there should be 60 80 dB at up to 1 GHz of 50 ohm coaxial attenuation, capable of handling the transmit power of +37 dBm (5 W) between the radios' antenna connectors.
- Splitter If more than two radios are required in your bench setup, a multi-way splitter is required. The diagram shows a two way splitter.
 - This splitter should be 50 ohm coaxial up to 1 GHz and capable of handling the transmit power of +37 dBm (5 W).
- Cables use double-screened coaxial cable that is suitable for use up to 1 GHz at ≈ 1 metre.

CAUTION: Do not apply signals greater than +10 dBm to the antenna connection as they can damage the receiver.

Path Planning

The following factors should be considered to achieve optimum path planning:

- Antenna Selection and Siting.
- Coaxial Cable Selection.
- Linking System Plan.

Antenna Selection and Siting

Selecting and siting antennas are important considerations in your system design.

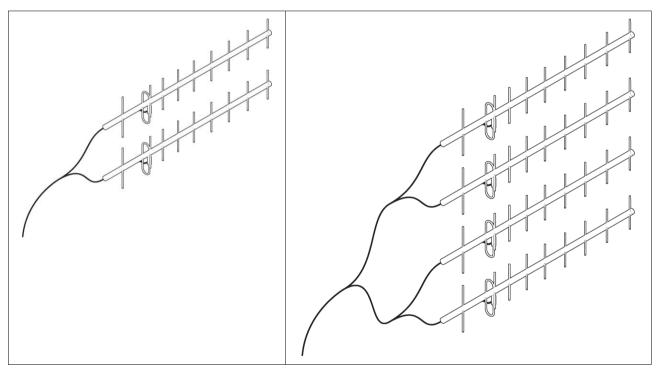
The antenna choice for the site is determined primarily by the frequency of operation and the gain required to establish reliable links.

Base or Repeater Station

The predominant antenna for a Base Station or a Repeater Station is an omni-directional collinear gain antenna.

Omni Directional Collinear Antennas

II.	Factor	Explanation
	Frequency	Often used in 380-530 MHz bands
	Gain	Varies with size (5 dBi to 8 dBi typical)
	Wind loading	Minimal
	Tower aperture required	Minimal
	Size	Range from 2 m to 3 m length
	Polarization	Vertical
1-1 - 1-1-		


Remote Station

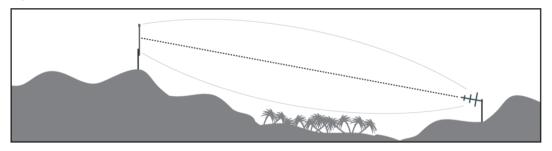
There are two main types of directional antenna that are commonly used for Remote Stations, Yagi and corner reflector antennas.

Yagi Antennas

1	Factor	Explanation
	Frequency	Often used in 350-600 MHz bands
	Gain	Varies with size (typically 11 dBi to 16 dBi)
	Stackable gain increase	2 Yagi antennas (+ 2.8 dB) 4 Yagi antennas (+ 5.6 dB)
	Size	Range from 0.6 m to 3 m in length
1	Front to back ratio	Low (typically 18 to 20 dB)

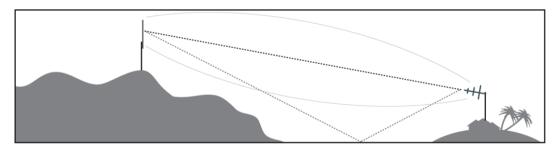
It is possible to increase the gain of a Yagi antenna installation by placing two or more of them in a stack. The relative position of the antennas is critical.

Example of stacked antennas


Corner Reflector Antennas

	Factor	Explanation
	Frequency	Often used in 330-960 MHz bands
	Gain	Typically 12 dBi
	Size	Range from 0.36 m to 0.75 m in length
	Front to back ratio	High (typically 30 dB)
	Beamwidth	Broad (up to 60°)
U		

Antenna Siting


When siting antennas, consider the following points:

• A site with a clear line of sight to the remote radio is recommended. Pay particular attention to trees, buildings, and other obstructions close to the antenna site.

Example of a clear line-of-sight path

Any large flat areas that reflect RF energy along the link path, for instance, water, could cause
multipath fading. If the link path crosses a feature that is likely to cause RF reflections, shield the
antenna from the reflected signals by positioning it on the far side of the roof of the equipment
shelter or other structure.

Example of a mid-path reflection path

- The antenna site should be as far as possible from other potential sources of RF interference such as electrical equipment, power lines and roads.
- The antenna site should be as close as possible to the equipment shelter.

Note: Wide angle and zoom photographs taken at the proposed antenna location (looking down the proposed path), can be useful when considering the best mounting positions.

Coaxial Feeder Cables

To ensure maximum performance, it is recommended that you use good quality low-loss coaxial cable for all feeder runs. When selecting a coaxial cable consider the following:

Factor	Effect
Attenuation	Short cables and larger diameter cables have less attenuation
Cost	Smaller diameter cables are cheaper
Ease of installation	Easier with smaller diameter cables or short cables

For installations requiring long feeder cable runs, use the LCF78, LCF12 or CNT-400 feeder cable or equivalent:

Part Number	Part Description	Specification
RFS LCF78 50JA	Feeder Cable, 7/8', CELLFLEX, Low Loss, Std, /m, MOQ 50	Low loss 7/8' (22.2 mm) feeder cable Bending radius of 125 mm min Attenuation of 2.5 dB / 100m @ 450 MHz
RFS LCF12 50J	Feeder Cable, 1/2', CELLFLEX, Low Loss, Std, /m, MOQ 50	Low loss 0.5' (12.7 mm) feeder cable Bending radius of 125 mm min Attenuation of 4.7 dB / 100m @ 450 MHz
RFI CNT 400	Feeder, CNT-400, 10.8mm, Double Shielded Solid Polyethylene	Low loss 0.4' (10.8 mm) feeder cable UV protected black Polyethylene, bonded AL tape outer conductor Bending radius of 30 mm min Attenuation of 8.8 dB / 100m @ 450 MHz

For installations requiring short feeder cable runs, use the RFI 8223 feeder cable or equivalent:

Part Number	Part Description	Specification
RFI 8223	Feeder, RG 223 5.4mm d, Double Shielded Solid Polyethylene	Bending radius of 20 mm min Attenuation of 30.5 dB / 100m @ 450 MHz

When running cables:

- Run coaxial feeder cable from the installation to the antenna, ensuring you leave enough extra cable at each end to allow drip loops to be formed.
- Terminate and ground the feeder cables in accordance with the manufacturers' instructions. Bond the outer conductor of the coaxial feeder cables to the base of the tower mast.

Linking System Plan

All of the above factors combine in any proposed installation to create a Linking System Plan. The Linking System Plan predicts how well the radios will perform after it is installed.

Use the outputs of the Linking System Plan during commissioning to confirm the radios have been installed correctly and that it will provide reliable service.

Site Requirements

Power Supply

Ensure a suitable power supply is available for powering the radio.

The nominal input voltage for a radio is +13.8 VDC (negative earth) with an input voltage range of +10 to +30 VDC. The maximum power input is 30 W.

WARNING:

Before connecting power to the radio, ensure that the radio is grounded via the negative terminal of the DC power connection.

Equipment Cooling

If the Aprisa SR is operated in an environment where the ambient temperature exceeds 50°C, the Aprisa SR convection air flow over the heat sinks must be considered.

The environmental operating conditions are as follows:

Operating temperature $-40 \text{ to } +70^{\circ} \text{ C}$ Storage temperature $-40 \text{ to } +80^{\circ} \text{ C}$

Humidity Maximum 95% non-condensing

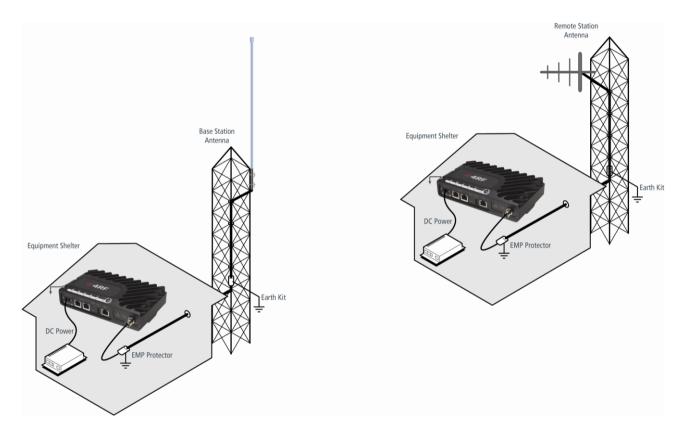
WARNING:

If the Aprisa SR is operated in an environment where the ambient temperature exceeds 50°C, the Aprisa SR must be installed within a restricted access location to prevent human contact with the enclosure heatsink.

Earthing and Lightning Protection

WARNING:

Lightning can easily damage electronic equipment.


To avoid this risk, install primary lightning protection devices on any interfaces that are reticulated in the local cable network.

You should also install a coaxial surge suppressor on the radio antenna port.

Feeder Earthing

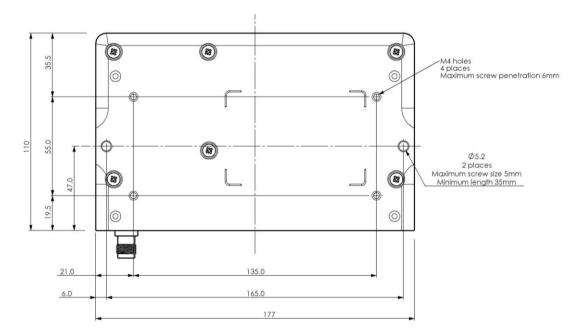
Earth the antenna tower, feeders and lightning protection devices in accordance with the appropriate local and national standards. The diagram below shows the minimum requirements.

Use grounding kits as specified or supplied by the coaxial cable manufacturer to properly ground or bond the cable outer.

Radio Earthing

The Aprisa SR has an earth connection point on the top left of the enclosure. A M4 8mm pan pozi machine screw and a M4 lock washer is supplied fitted to the radio. This can be used to earth the enclosure to a protection earth.

7. Installing the Radio


CAUTION:

You must comply with the safety precautions in this manual or on the product itself.

4RF Communications does not assume any liability for failure to comply with these precautions.

Mounting

The Aprisa SR has four threaded holes (M4) in the enclosure base and two holes (5.2 mm) through the enclosure for mounting.

Mounting options include:

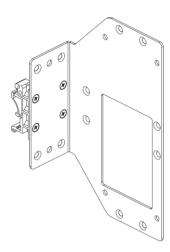
- DIN rail mounting with the Aprisa SR DIN Rail Mounting Bracket.
- Rack shelf mounting.
- Wall mounting.
- Outdoor enclosure mounting.

WARNING:

If the Aprisa SR is operated in an environment where the ambient temperature exceeds 50° C, the Aprisa SR must be installed within a restricted access location to prevent human contact with the enclosure heatsink.

Required Tools

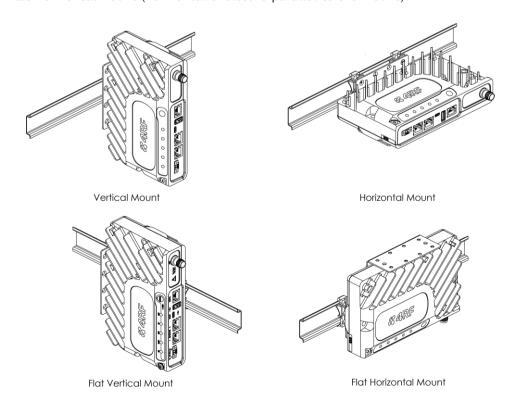
No special tools are needed to install the radio.



DIN Rail Mounting

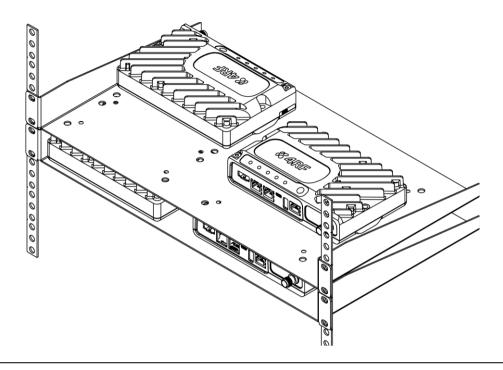
The Aprisa SR has an optional accessory part to enable the mounting on a standard DIN rail:

Part Number **Part Description**


APSA-MBRK-DIN 4RF Aprisa SR Acc, Mounting, Bracket, DIN Rail

The Aprisa SR is mounted into the DIN rail mounting bracket using the four M4 threaded holes in the Aprisa SR enclosure base. Four 8 mm M4 pan pozi machine screws are supplied with the bracket.

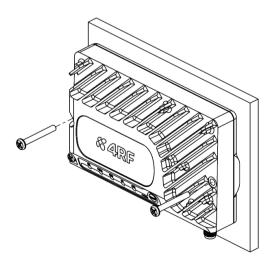
The Aprisa SR DIN rail mounting bracket can be mounted in four positions on a horizontal DIN rail:


- Vertical Mount (vertical enclosure perpendicular to the mount).
- Horizontal Mount (horizontal enclosure perpendicular to the mount).
- Flat Vertical Mount (vertical enclosure parallel to the mount).
- Flat Horizontal Mount (horizontal enclosure parallel to the mount).

The DIN rail mounting bracket has two clips which are positioned to allow for the four mounting positions.

Rack Shelf Mounting

The Aprisa SR can be mounted on a rack mount shelf using the four M4 threaded holes in the Aprisa SR enclosure base. The following picture shows Aprisa SR mounted on 1 RU rack mounted shelves.



WARNING:

If the Aprisa SR is operated in an environment where the ambient temperature exceeds 50° C, the Aprisa SR convection air flow over the heat sinks must be considered.

Wall Mounting

The Aprisa SR can be mounted on a wall using the two holes through the enclosure (5.2 mm diameter). Typically, M5 screws longer than 35 mm would be used.

Installing the Antenna and Feeder Cable

Carefully mount the antenna following the antenna manufacturers' instructions. Run feeder cable from the antenna to the radio location.

Lightning protection must be incorporated into the antenna system (see 'Earthing and Lightning Protection' on page 49).

WARNING:

When the link is operating, there is RF energy radiated from the antenna. Do not stand in front of the antenna while the radio is operating (see the 'RF Exposure Warning' on page 3).

Fit the appropriate male or female connector (usually N-type) to the antenna feeder at the antenna end. Carefully follow the connector manufacturers' instructions.

Securely attach the feeder cable to the mast and cable trays using cable ties or cable hangers. Follow the cable manufacturer's recommendations about the use of feeder clips, and their recommended spacing.

Connect the antenna and feeder cable. Weatherproof the connection with a boot, tape or other approved method.

The Aprisa SR antenna connection is a TNC female connector so the feeder / jumper must be fitted with a TNC male connector.

If a jumper is used between the feeder and the radio, connect a coaxial surge suppressor or similar lightning protector between the feeder and jumper cables (or at the point where the cable enters the equipment shelter). Connect the feeder cable to the antenna port on the radio.

Earth the case of the lightning protector to the site Lightning Protection Earth.

The Aprisa SR has an earth connection point on the top left of the enclosure. A M4 8mm pan pozi machine screw and a M4 lock washer is supplied fitted to the radio. This can be used to earth the enclosure to a protection earth.

Connecting the Power Supply

The nominal input voltage for a radio is +13.8 VDC (negative earth) with an input voltage range of +10 to +30 VDC. The maximum power input is 30 W.

The power connector required is a Phoenix Contact 4 pin female screw fitting part MC 1.5/ 4-STF-3.5.

This connector is supplied fitted to the radio.

The negative supply of the Aprisa SR power connection is internally connected to the Aprisa SR enclosure. Power must be supplied from a Negative Earthed power supply.

Wire your power source to power connector and plug the connector into the radio. The connector screws can be fastened to secure the connector.

Additional Phoenix Contact 4 pin female power connectors can be ordered from 4RF:

Part Number	Part Description
APSA-CPH4-FEM-01	4RF Aprisa SR Acc, Connector, Phoenix 4 pin, Female, 1 item

Turn your power source on.

All the radio LEDs will flash orange for one second and then the OK, DATA and CPU LEDs will light green, the RF LED will light orange and the AUX LED will be off.

The Aprisa SR radio is ready to operate.

The RF LED will light green when the radio is registered with the FAN.

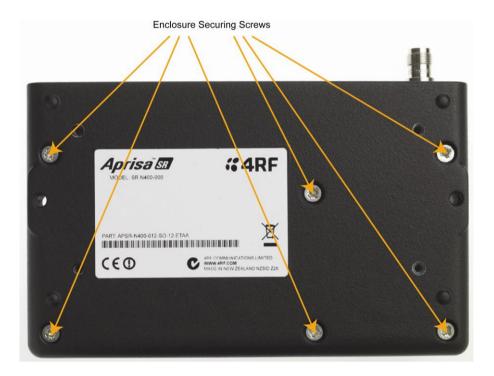
If the LEDs fail to light, carefully check the supply polarity. If the power supply connections have been accidentally reversed, internal fuses will have blown to protect the unit.

Spare fuses are contained within the radio, see 'Spare Fuses' on page 55 for instructions on how to locate and replace the fuses.

External Power Supplies

The following external power supplies are available from 4RF as accessories:

Part Number	Part Description
APSA-P230-030-24-TS	4RF Aprisa SR Acc, PSU, 230 VAC, 30W, 24 VDC, -10 to +60C $$
APSA-P230-048-24-TE	4RF Aprisa SR Acc, PSU, 230 VAC, 48W, 24 VDC, -20 to +75C
APSA-P230-060-24-TS	4RF Aprisa SR Acc, PSU, 230 VAC, 60W, 24 VDC, -10 to +60C
APSA-P48D-050-24-TA	4RF Aprisa SR Acc, PSU, 48 VDC, 50W, 24 VDC, 0 to +50C



Spare Fuses

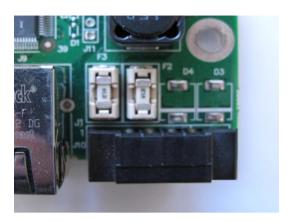
The Aprisa SR PBA contains two fuses in the power input with designators F2 and F3. Both the positive and negative power connections are fused. The fuse type is a Littelfuse 0453005 with a rating of 5 A, 125 V, very fast acting.

To replace the fuses:

- 1. Remove the input power and antenna cable.
- 2. Unscrew the enclosure securing screws (posi 2).

2. Separate the enclosure halves.

CAUTION: Antistatic precautions must be taken as the internal components are static sensitive.


3. Access the enclosure spare fuses under the plastic cap.

4. Replace the two fuses.

5. Close the enclosure and tighten the screws.

Note: Is it critical that the screws are re-tightened to 1 Nm. The transmitter adjacent channel performance can be degraded if the screws are not tightened correctly.

Additional Spare Fuses

Additional spare fuses can be ordered from 4RF:

Part Number Part Description

APSA-FNAN-453-05-02 4RF Aprisa SR Acc, Fuse, Nano SMF, 453 Series, 5A, 2 items

8. Managing the Radio

SuperVisor

The Aprisa SR contains an embedded web server application (SuperVisor) to enable element management with any major web browser (such as Mozilla Firefox, Microsoft® Internet Explorer).

SuperVisor enables operators to configure and manage the Aprisa SR Base Station radio and repeater / Remote Station radios over the radio link.

The key features of SuperVisor are:

- Manage the entire FAN (Field Area Network) from the Base Station connection.
- View and set standard radio configuration parameters, including frequencies, transmit power, channel access, serial, Ethernet and USB port settings.
- Set radio operating mode, whether Base Station, Remote Station or Repeater Station.
- Set and view security parameters.
- Display performance and alarm information, including RSSI, alarm status, time-stamped events, and alarm parameters.

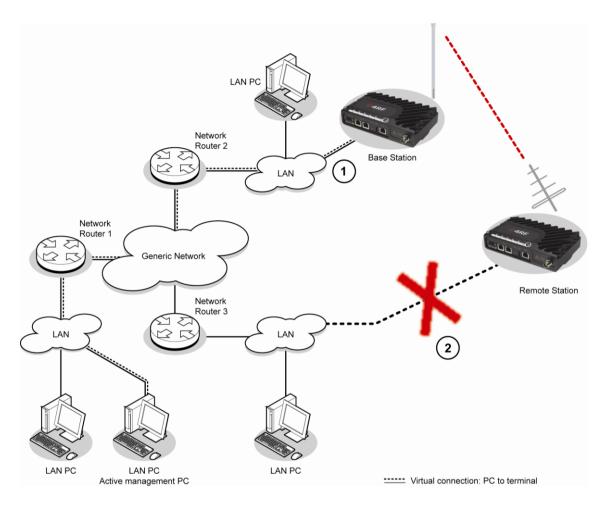
Connecting to SuperVisor

The predominant management connection to the Aprisa SR radio is with an Ethernet interface using standard IP networking. There should be only one Ethernet connection from any radio in the FAN to the management network.

The Aprisa SR has a factory default IP address of 169.254.50.10 with a subnet mask of 255.255.0.0. This is an IPv4 Link Local (RFC3927) address which simplifies the connection to a PC.

Each radio in the FAN must be set up with a unique IP address on the same subnet.

The Aprisa SR Protected Station radio A (left radio) has a factory default IP address of 169.254.50.10 and radio B (right radio) has a factory default IP address of 169.254.50.20, both with a subnet mask of 255.255.0.0.


To change the Aprisa SR IP address:

- Set up your PC for a compatible IP address e.g. 169.254.50.1 with a subnet mask of 255.255.0.0.
- Connect your PC network port to one of the Aprisa SR Ethernet ports.
- Open a browser and enter http:// 169.254.50.10.
- Login to the radio with the default Username 'admin' and Password 'admin'.
- Change the IP address to conform to the network plan in use.

Management PC Connection

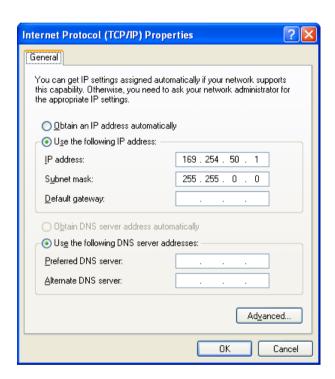
The active management PC must only have one connection to the FAN as shown by path \odot . There should not be any alternate path that the active management PC can use via an alternate router or alternate LAN that would allow the management traffic to be looped as shown by path \odot .

When logging into a FAN, it is important to understand the relationship between the Local Radio and the Remote Radios.

The Local Radio is the radio that your IP network is physically connected to.

- If the Local Radio is a Base Station, SuperVisor manages the Base Station and all the Repeater Stations and Remote Stations in the FAN.
- If the Local Radio is a Remote Station or Repeater Station, SuperVisor only manages the Remote / Repeater Station radio logged into.

PC Settings for SuperVisor

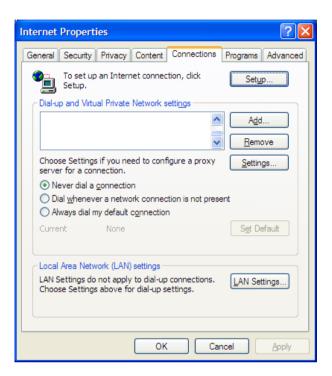

To change the PC IP address:

If your PC has previously been used for other applications, you may need to change the IP address and the subnet mask settings. You will require Administrator rights on your PC to change these.

Windows XP example: Configure IP settings

- 1. Open the 'Control Panel'.
- 2. Open 'Network Connections' and right click on the 'Local Area Connection' and select 'Properties'.
- 3. Click on the 'General' tab.
- 4. Click on 'Internet Protocol (TCP/IP)' and click on properties.
- 5. Enter the IP address and the subnet mask (example as shown).
- 6. Click 'OK' then close the Control Panel.

If the radio is on a different subnet from the network the PC is on, set the PC default gateway address to the network gateway address which is the address of the router used to connect the subnets (for details, consult your network administrator).



To change the PC connection type:

If your PC has previously been used with Dial-up connections, you may need to change your PC Internet Connection setting to 'Never dial a connection'.

Windows XP example: Configure Windows to Never Dial a Connection

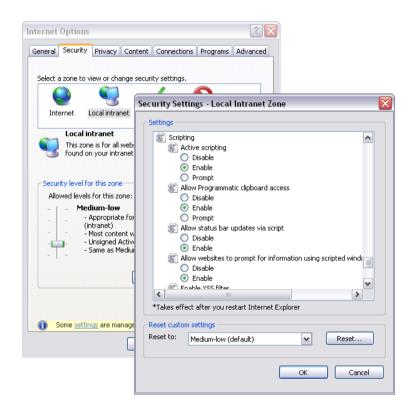
- 1. Open 'Internet Options' and click on the 'Connections' tab.
- 2. Click the 'Never dial a connection' option.
- 3. Click 'OK' then close the Control Panel.

To change the PC pop-up status:

Some functions within SuperVisor require Pop-ups enabled e.g. saving a MIB

Windows Internet Explorer example:

- 1. Open the 'Control Panel'.
- 2. Open the menu item Tools > Internet Options and click on the 'Privacy' tab.
- 3. Click on 'Settings'.
- 4. Set the 'Address of Web site to allow' to the radio address or set the 'Filter Level' to 'Low: Allow Popups from secure sites' and close the window.
- 5. Click 'OK' then close the Control Panel.



To enable JavaScript in the web browser:

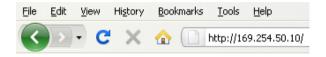
Some functions within SuperVisor require JavaScript in the web browser to be enabled.

Windows Internet Explorer example:

- 1. Open Internet Explorer.
- 2. Open the menu item Tools > Internet Options and click on the 'Security' tab.
- 3. Click on 'Local Intranet'.
- 4. Click on 'Custom Level'.
- 5. Scroll down until you see section labeled 'Scripting'.
- 6. Under 'Active Scripting', select 'Enable'.
- 7. Click 'OK'.

Login to SuperVisor

The maximum number of concurrent users that can be logged into a radio is 6.


If SuperVisor is inactive for a period defined by the Inactivity Timeout option on page 111, the radio will automatically logout the user.

To login to SuperVisor:

1. Open your web browser and enter the IP address of the radio.

Note: If you haven't assigned an IP address to the radio, use the factory default IP address of 169.254.50.10 with a subnet mask of 255.255.0.0.

If you don't know the IP address of the radio, you can determine it using the Command Line Interface (see 'Command Line Interface' on page 131).

Note: The Aprisa SR has a Self Signed security certificate which may cause the browser to prompt a certificate warning. It is safe to ignore the warning and continue. The valid certificate is 'Issued By: 4RF-APRISA' which can be viewed in the browser.

2. Login with the Username and Password assigned to you.

Note: If unique usernames and passwords have not yet been configured, use the default username 'admin' and password 'admin'.

Important: After you login for the very first time, it is recommended that you change the default admin password for security reasons (see 'Changing Passwords' on page 103).

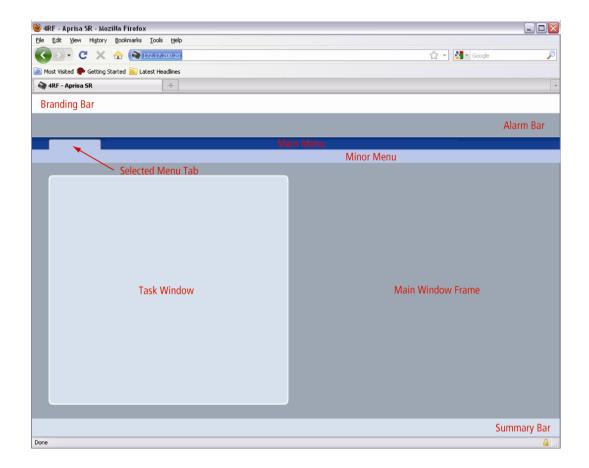
If the login is successful, the opening screen will be displayed.

Logout of SuperVisor

As the maximum number of concurrent users that can be logged into a radio is 6, not logging out correctly can restrict access to the radio until after the timeout period (30 minutes).

Logging out from a radio will logout all users logged in with the same username.

If the SuperVisor window is closed without logging out, the radio will automatically log the user out after a timeout period of 3 minutes.


To logout of SuperVisor:

Click on the 'Logout' button on the Summary Bar.

SuperVisor Screen Layout

The following shows the components of the SuperVisor screen layout:

SuperVisor Branding Bar

The branding bar at the top of the SuperVisor frame shows the branding of SuperVisor on the left and the product branding on the right.

SuperVisor Alarm Bar

The alarm bar shows the name of the radio terminal that SuperVisor is logged into (the local radio) on the left.

If the local radio is a Base Station, the screen shows the name of the current Remote / Repeater station (the remote radio) on the right. SuperVisor manages all the Repeater Stations and Remote Stations in the FAN.

If the local radio is a Remote Station or Repeater Station, the screen shows the name of the Remote / Repeater station on the left. The right side of the Alarm Bar will be blank. SuperVisor manages only the Remote / Repeater Station logged into.

The LED alarm indicators reflect the status of the front panel LEDs on the radio.

SuperVisor Summary Bar

Ready	Radio: BaseStation	Logout ADMIN

The summary bar at the bottom of the screen shows:

Position	Function
Left	Busy - SuperVisor is busy retrieving data from the radio that SuperVisor is logged into.
	Ready - SuperVisor is ready to manage the radio.
Middle	Displays the name of the radio terminal that SuperVisor is currently managing.
Right	The access level logged into SuperVisor. This label also doubles as the SuperVisor logout button.

SuperVisor Parameter Settings

Changes to parameters settings have no effect until the 'Save' button is clicked.

Click the 'Save' button to apply the changes or 'Cancel' button to restore the current value.

SuperVisor Menu

The following is a list of SuperVisor top level menu items for both the Local Terminal and Remote Terminals:

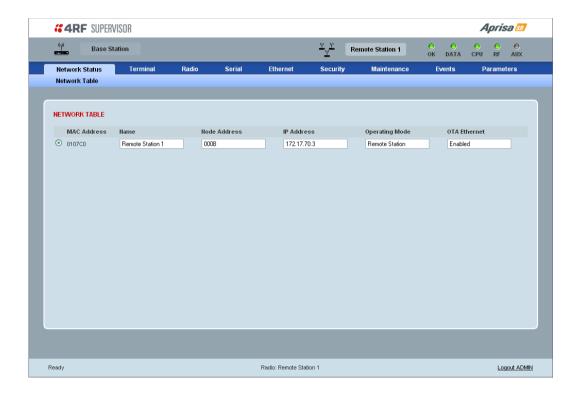
Local Terminal	Remote Terminal
	Network Status
Terminal	Terminal
Radio	Radio
Serial	Serial
Ethernet	Ethernet
Security	Security
Maintenance	Maintenance
Events	Events
Parameters	Parameters

SuperVisor Menu Access

The SuperVisor menu has varying access levels dependant on the login User Privileges.

The following is a list of SuperVisor menu items versus user privileges:

Menu Item	View	Technician	Engineer	Admin
Terminal > Summary	Read-Only	Read-Only	Read-Only	Read-Only
Terminal > Device Settings	No Access	Read-Write	Read-Write	Read-Write
Terminal > Operating Mode	No Access	Read-Write	Read-Write	Read-Write
Terminal > Protection	No Access	Read-Write	Read-Write	Read-Write
Radio > Summary	Read-Only	Read-Only	Read-Only	Read-Only
Radio > Basic	No Access	Read-Write	Read-Write	Read-Write
Radio > Channel Access	No Access	Read-Write	Read-Write	Read-Write
Serial > Summary	Read-Only	Read-Only	Read-Only	Read-Only
Serial > Port Settings	No Access	Read-Write	Read-Write	Read-Write
Serial > Flow Control	No Access	Read-Write	Read-Write	Read-Write
Serial > Advanced	No Access	No Access	Read-Write	Read-Write
Ethernet > Summary	Read-Only	Read-Only	Read-Only	Read-Only
Ethernet > Port Setup	No Access	Read-Write	Read-Write	Read-Write
Ethernet > Controller Setup	No Access	Read-Write	Read-Write	Read-Write
Ethernet > L2 Filtering	No Access	No Access	Read-Write	Read-Write
Ethernet > Advanced	No Access	No Access	Read-Write	Read-Write
Security > Summary	Read-Only	Read-Only	Read-Only	Read-Only
Security > Users	No Access	No Access	No Access	Read-Write
Security > Settings	No Access	No Access	Read-Write	Read-Write
Security > SNMP	No Access	No Access	Read-Write	Read-Write
Maintenance > Summary	Read-Only	Read-Only	Read-Only	Read-Only
Maintenance > General	No Access	Read-Write	Read-Write	Read-Write
Maintenance > Upgrade	No Access	No Access	Read-Write	Read-Write
Maintenance > Test Mode	No Access	Read-Write	Read-Write	Read-Write
Maintenance > Defaults	No Access	No Access	No Access	Read-Write
Maintenance > Protection	No Access	Read-Write	No Access	Read-Write
Maintenance > Licence	No Access	No Access	Read-Write	Read-Write
Maintenance > Advanced	No Access	No Access	Read-Write	Read-Write
Events > Alarm Summary	Read-Only	Read-Only	Read-Only	Read-Only
Events > Event History	Read-Only	Read-Only	Read-Only	Read-Only
Events > Events Setup	No Access	No Access	Read-Write	Read-Write
Events > Traps Setup	No Access	No Access	Read-Write	Read-Write
Events > Defaults	No Access	No Access	Read-Write	Read-Write
Parameters > Summary	No Access	No Access	Read-Write	Read-Write



SuperVisor Menu Items

The following SuperVisor menu item descriptions assume full access 'Admin' user privileges:

Network Status

Network Status > Network Table

NETWORK TABLE

This Network Table is only available when the local radio is the Base Station i.e. SuperVisor is logged into the Base Station.

To manage a remote / Repeater Station with SuperVisor:

Click on the radio button of the required station. The remaining menu items then apply to the selected radio.

Terminal

Terminal > Summary

TERMINAL SUMMARY

This page displays the current settings for the Terminal parameters.

HARDWARE INFORMATION

Radio Serial Number

This parameter displays the Serial Number of the radio (shown on the enclosure label).

Sub-Assembly Serial Number

This parameter displays the Serial Number of the printed circuit board assembly (shown on the PCB label).

Active SW Version

This parameter displays the version of the software currently operating the radio.

Standby SW Version

This parameter displays the version of the newly uploaded software.

If the Standby SW Version shown is 'No Standby', then no new software has been uploaded.

If the Standby SW Version shown is a version number e.g. 1.0.0, then new software has been uploaded in to the Aprisa SR but has not been activated (see 'Maintenance > Upgrade' on page 114).

OPFRATING SUMMARY

Operating Mode

This parameter displays the current operating Mode i.e. if the radio is operating as a Base Station, Repeater Station or Remote Station.

Interface Mode

This parameter displays the Interfaces available for traffic on the radio (see 'Maintenance > Licence' on page 120).

TX Frequency (MHz)

This parameter displays the current Transmit Frequency in MHz.

TX Power (dBm)

This parameter displays the current Transmit Power in dBm.

RX Frequency (MHz)

This parameter displays the current Receive Frequency in MHz.

Channel Width (kHz)

This parameter displays the current Channel Width in kHz.

Network ID (Field Area Network)

This parameter is the network ID of this Base Station node and its Remote / Repeater Stations in the FAN. The entry is four hex chars (not case sensitive).

Node Address

The Node Address of the Base Station is 0000.

If the Node Address shown is FFFE, this radio is a Remote Station or Repeater Station but has not been registered with the Base Station.

The Base Station will automatically allocate a Node Address to all its registered Repeater Station and Remote Station radios. This address can be between 0001 and F000.

Network Radius

This parameter displays the maximum number of hops in this network.

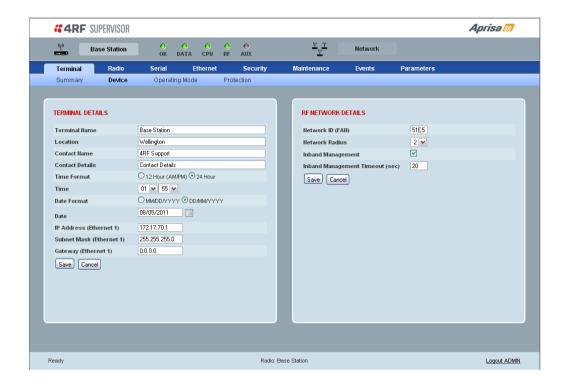
Inband Management

This parameter displays the status of the Inband Management option.

Inband Management Timeout (sec)

This parameter displays the number of seconds that the Base Station waits for a response from a Remote or Repeater Station before aborting the Inband Management request.

Protection Type


The Protection Type shows if this radio is part of an Aprisa SR Protected Station.

Active Unit

The Active Unit shows which radio is currently carrying traffic, the Primary radio or the Secondary radio.

Terminal > Device

TERMINAL DETAILS

The data entry in the next four fields can be up to 40 characters but cannot contain invalid characters. A popup warns of the invalid characters:

- 1. Enter the Terminal Name.
- 2. Enter the Location of the radio.
- 3. Enter a Contact Name. The default value is 'support@4RF.com'.
- 4. Enter the Contact Details.
- 5. Set the Time, Date Format and Date. This information is controlled from a software clock.
- 6. Set the static IP Address of the radio assigned by your site network administrator using the standard format xxx.xxx.xxx. The default IP address is in the range 169.254.50.10.
- 7. Set the Subnet Mask of the radio using the standard format xxx.xxx.xxx. The default subnet mask is 255.255.0.0.
- 8. Set the Gateway address of the radio, if required, using the standard format xxx.xxx.xxx. The default Gateway is 0.0.0.0.

RE NETWORK DETAILS

Network ID (FAN)

This parameter sets the network ID of this Base Station node and its Remote / Repeater Stations in the FAN. The entry is four hexadecimal chars (not case sensitive). The default setting is CAFE.

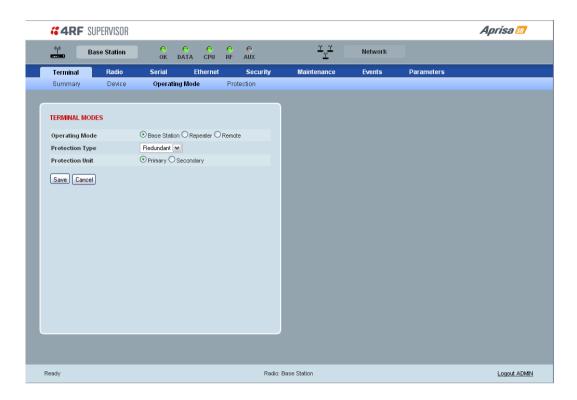
Network Radius

This parameter sets the maximum number of hops in this network e.g. if the Network Radius is set to 2, a message from that node will only pass 2 hops before it is blocked. The default setting is 1.

All stations in the FAN should be set to the same value.

Inband Management

This parameter sets the Inband Management option.


If the Inband Management option is enabled, SuperVisor operating on a Base Station can also manage all the Remote / Repeater Stations in the FAN.

Inband Management Timeout (sec)

This parameter sets the Inband Management timeout period. This determines the time the Base Station waits for a response from a Remote or Repeater Station before aborting the Inband Management request. The default setting is 10 seconds.

Terminal > Operating Mode

TERMINAL MODES

Operating Mode

The Operating Mode can be set to Base Station, Repeater Station or Remote Station. The default setting is Remote Station.

Protection Type

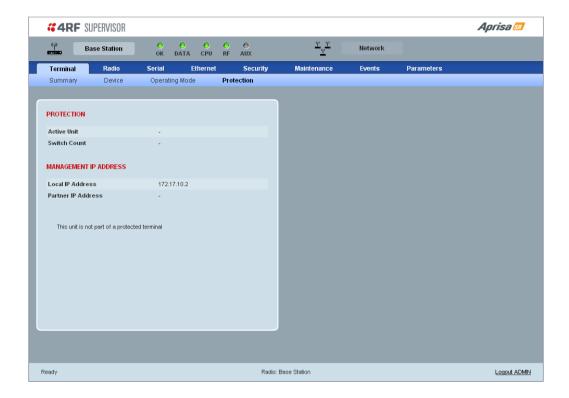
The Protection Type defines if a radio is a stand-alone radio or part of an Aprisa SR Protected Station. The default setting is None.

Protection Type	Function
None	The SR radio is stand alone radio (not part of an Aprisa SR Protected Station).
Redundant	The SR radio is part of an Aprisa SR Protected Station
Serial Data Driven Switching	The SR radio is part of an Aprisa SR Data Driven Protected Station

Protection Unit

The Protection Unit defines if this radio is the primary radio or secondary radio in a Protected Station.

One radio in the Protected Station is set to Primary and the other radio to Secondary.


It is recommended that radio A (the left radio) be configured as the Primary and that radio B (the right radio) be configured as the Secondary. The default setting is Primary.

This menu item is only applicable if this radio is part of an Aprisa SR Protected Station.

Terminal > Protection

This menu item is only applicable if this radio is part of an Aprisa SR Protected Station.

PROTECTION

Active Unit

The Active Unit shows which radio is currently carrying traffic, the Primary radio or the Secondary radio.

Switch Count

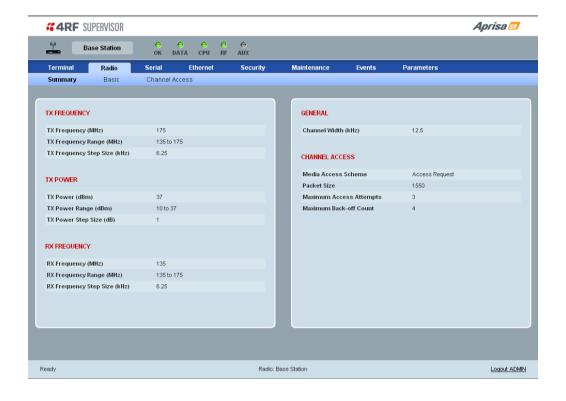
The Switch Count shows the number of protections switch-overs since the last radio reboot (volatile).

MANAGEMENT IP ADDRESS

Local IP Address

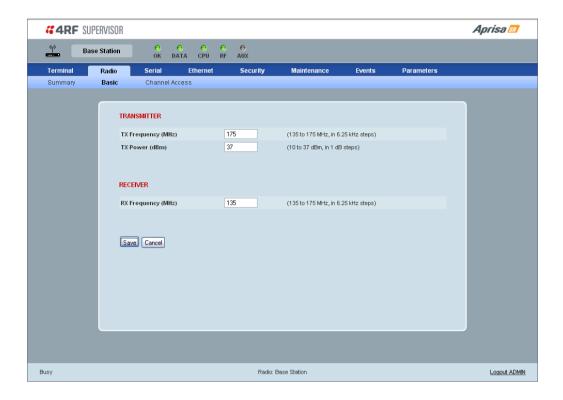
The Local IP Address shows the IP address of this radio.

Partner IP Address


The Partner IP Address shows the IP address of the other radio in the Protected Station.

Radio

Radio > Summary


This page displays the current settings for the Radio parameters.

Radio > Basic

Note: Transmit frequency, transmit power and channel size would normally be defined by a local regulatory body and licensed to a particular user. Refer to your site license details when setting these fields.

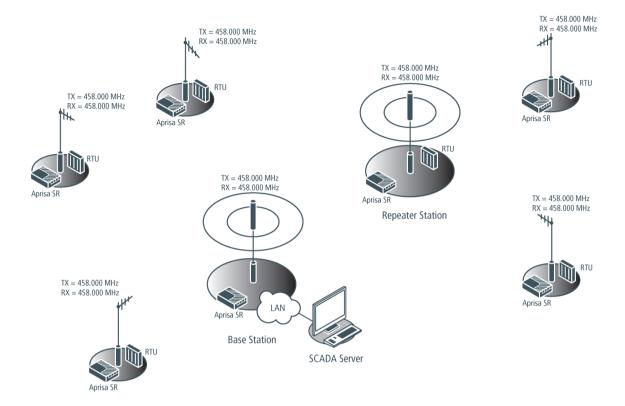
RF SETTINGS

Important:

- 1. Changing the Remote / Repeater Station frequencies will disable all management communication to the Remote / Repeater Stations but then by changing the Base Station to match the Remote / Repeater Stations, the radio links will be restored as will the management communication.
- 2. Enter the TX frequency and the RX frequency and then click 'Save'. This is to prevent remote management communication from being lost before both frequencies have been changed in the Remote Stations.

TX and RX Frequencies.

The TX and RX frequencies entered must be within the frequency tuning range of the product frequency band and will be automatically resolved to the synthesizer step size for the frequency band e.g. an ETSI 400 MHz band frequency entry of 458,004,000 Hz will be changed to 458,006,250 Hz (see 'Frequency Bands' on page 148). The default setting is 400,000,000 Hz.

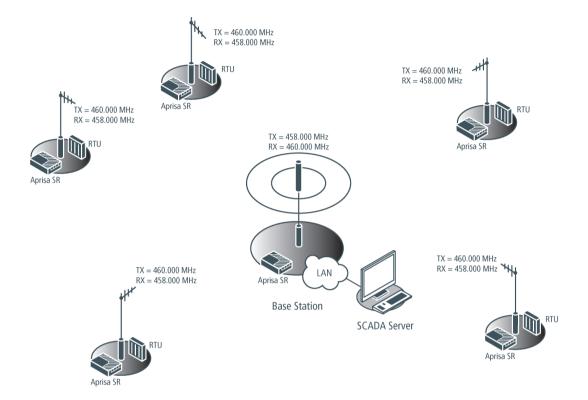

The TX and RX frequencies can be single frequency ½ duplex or dual frequency ½ duplex. Dual frequency ½ duplex is often used for reasons of:

- Channel Planning.
- Network Efficiencies.
- Regulatory rules.

Single Frequency Operation

The TX and RX frequencies of the Base Station, Repeater Station and all the Remote Stations are on the same frequency.

To change the TX and RX frequencies:


- Change the TX and RX frequencies of the Remote Stations operating from the Repeater Station to the new frequency. The radio links to these Remote Stations will fail.
- Change the TX and RX frequencies of the Repeater Station operating from the Base Station to the new frequency. The radio links to the Repeater Station and its Remote Stations will fail.
- Change the TX and RX frequencies of the Remote Stations operating from the Base Station to the new frequency. The radio links to these Remote Stations will fail.
- Change the TX and RX frequencies of the Base Station to the new frequency. The radio links to all stations will restore.

Dual Frequency No Repeater

The TX frequency of all the Remote Stations matches the RX frequency of the Base Station.

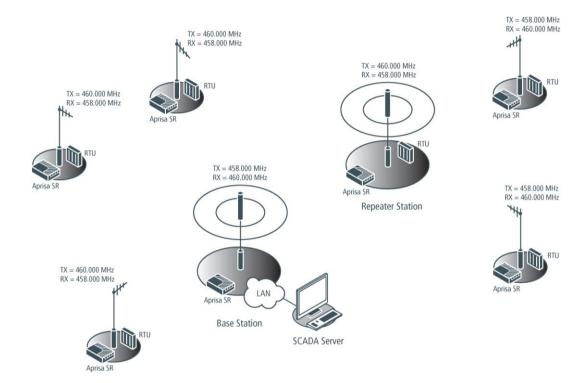
The RX frequency of all the Remote Stations matches the TX frequency of the Base Station.

To change the TX and RX frequencies:

- For all the Remote Stations, change the RX frequency to frequency A and the TX frequency to frequency B. The radio links to the Remote Stations will fail.
- For the Base Station, change the TX frequency to frequency A and the RX frequency to frequency B. The radio links to the Remote Stations will restore.

Dual Frequency with Repeater

The TX frequency of the Remote Stations associated with the Base Station matches the RX frequency of the Base Station.


The TX frequency of the Repeater Station associated with the Base Station matches the RX frequency of the Base Station.

The TX frequency of the Remote Stations associated with the Repeater Station matches the RX frequency of the Repeater Station.

The RX frequency of the Remote Stations associated with the Base Station matches the TX frequency of the Base Station.

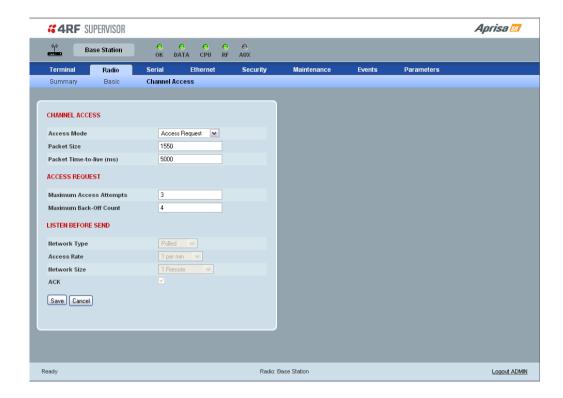
The RX frequency of the Repeater Station associated with the Base Station matches the TX frequency of the Base Station.

The RX frequency of the Remote Stations associated with the Repeater Station matches the TX frequency of the Repeater Station.

To change the TX and RX frequencies:

- For all the Remote Stations operating from the Repeater Station, change the RX frequency to frequency A and the TX frequency to frequency B. The radio links to these Remote Stations will fail.
- For the Repeater Station, change the TX frequency to frequency A and the RX frequency to frequency B.
- For the Base Station, change the RX frequency to frequency A and the TX frequency to frequency B. The radio links to the Remote Stations operating from the Repeater Station will restore.
- For all the Remote Stations operating from the Base Station, change the TX frequency to frequency A and the RX frequency to frequency B.

Transmit power


The transmitter power is the power measured at the antenna output port when transmitting. The transmitter power has a direct impact on the radio power consumption (see 'Power Consumption' on page 153) and 'Save' the change.

The default setting is +37 dBm.

Note: The Aprisa SR transmitter contains power amplifier protection which allows the antenna to be disconnected from the antenna port without product damage.

Radio > Channel Access

CHANNEL ACCESS

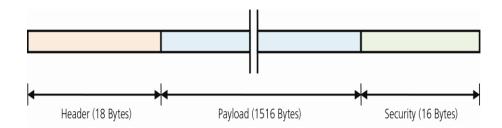
Access Mode

This parameter sets the Media Access Control (MAC) used by the radio for over the air communication.

Access Mode	Function
Access Request	This mode is a general purpose access method for high and low load networks
Listen Before Send	This mode is optimised for low load networks and repeated networks

The default setting is Access Request.

Packet Size (Bytes)


This parameter sets the maximum over-the-air packet size in bytes. A smaller maximum Packet Size is beneficial when many Remote Stations or Repeater Stations are trying to access the channel. The default setting is 1550 Bytes.

As radios dispatched from the factory have a Packet Size set to the maximum value of 1550 bytes, if a new radio is installed in an existing Field Access Network (FAN), the Packet Size <u>must</u> be changed to ensure it is the same value for all radios in the FAN. The new radio will not register an existing FAN if the Packet Size is not the same as the other radios in the FAN.

Note that this includes the wireless protocol header (18 to 20 Bytes) and security payload (0 to 16 Bytes). The length of the security header depends on the level of security selected.

An example wireless protocol frame structure is illustrated below. This uses maximum security of 16 Bytes. The length of the header varies depending on whether the user data must be segmented. User data will be segmented if it is larger than the wireless packet payload length. In this case, this limit is 213 Bytes. If the user data packet is larger than this, then the header increases to 20 Bytes to account for the transport of the required segmentation and reassembly data.

Note that when the security setting is 0, the maximum user data transfer over-the-air is 1516 Bytes.

When encryption is enabled, the entire packet of user data (payload) is encrypted. If authentication is being used, the security frame will be added (up to 16 bytes). The wireless protocol header is then added which is proprietary to the Aprisa SR. This is not encrypted.

Packet Time to Live (ms)

This parameter sets the time a packet is allowed to live in the system before being dropped if it cannot be transmitted over the air.

The default setting is 5000 ms.

ACCESS REQUEST

Maximum Access Attempts

This parameter sets the maximum number of attempts the MAC will try to acquire the channel for the packet to be transmitted before it is dropped.

The default setting is 3.

Maximum Back-Off Count

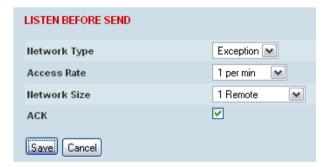
This parameter sets the random back-off period before the MAC tries to acquire the channel to transmit a packet.

The default setting is 4.

LISTEN BEFORE SEND

When the Access Mode is set for Listen Before Send, the Listen Before Send parameters can be set:

Network Type


This parameter sets the operating mechanism used in the FAN:

Network Type	Function
Polled	The SR radio network is part of a polling system e.g. if a SCADA master station is set up to periodically poll remote terminal units (RTUs).
	Channel access for data traffic in this case is completely controlled by the external SCADA master.
Exception	The Base Station and all remote and Repeater Stations can send traffic asynchronously.

The default setting is Polled.

All Channel Access parameters are calculated and set automatically for the network topology and the size of packet that is being transmitted. This improves channel utilization if there are variable size packets on the network.

When the Network Type is set for Exception, the Access Rate and Network Size parameters can be set:

Access Rate

This parameter defines the rate at which the channel is accessed by remote or Repeater Stations. It is an approximation of the traffic rates on the FAN.

The default setting is 1 per min.

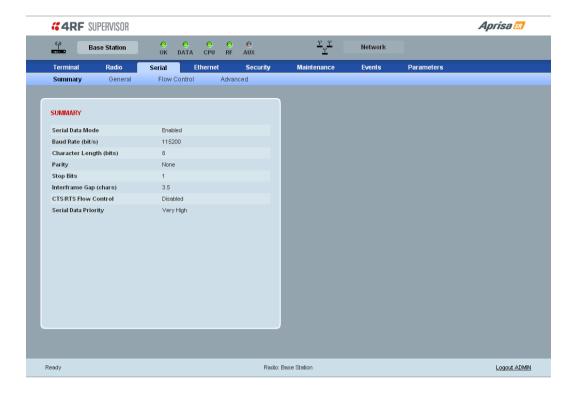
Network Size

This parameter defines the number of scope of the FAN e.g. 2-10 Remotes. This enables the Channel Access parameters to be optimized for the network topology.

The default setting is 1 remote.

ACK

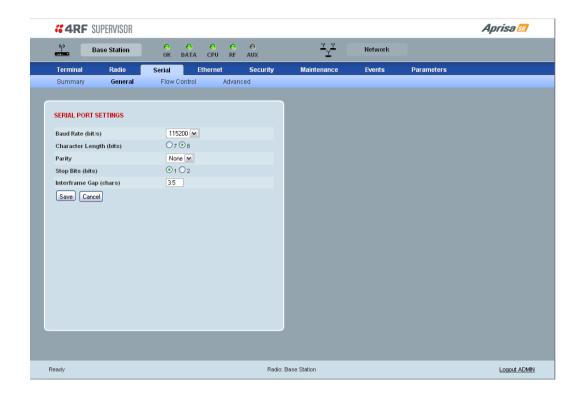
This parameter determines if unicast requests from the Remote Station are acknowledged by the Base Station. Receiving acknowledgments increases reliability of transport but reduces available channel capacity so if application has the capability to handle lost or duplicate messages, the ACK should be disabled.


When enabled, the transmitter requests an ACK to ensure that the transmission has been successful. If the transmitter does not receive an ACK, then random back-offs are used to reschedule the next transmission.

The default setting is enabled.

Serial

Serial > Summary



SUMMARY

This page displays the current settings for the Serial interface parameters.

Serial > General

SERIAL PORT SETTINGS

Baud Rate (bit/s)

The baud rate can be set to 300, 1200, 2400, 4800, 9600, 19200, 38400, 57600 or 115200 bit/s. The default setting is 115200 bit/s.

Character Length (bits)

The character length can be set to 7 or 8 bits. The default setting is 8 bits.

Parity

The parity can be set to Even, Odd or None. The default setting is None.

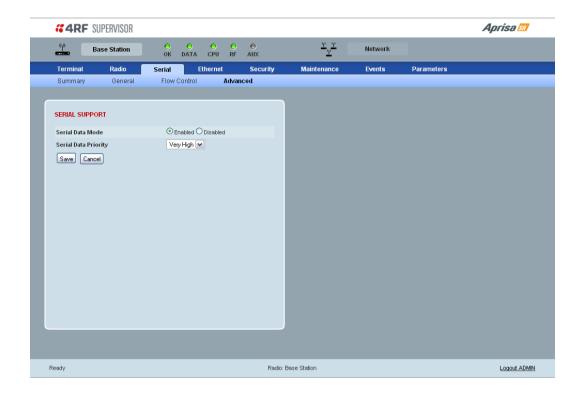
Stop Bits (bits)

The stop bits can be set to 1 or 2 bits. The default setting is 1 bit.

Inter-Frame Gap (chars)

This parameter defines the gap between successive serial data frames. It is used to delimit the serial data to define the end of a packet. The Inter-Frame Gap limits are 0.5 to 16 chars. The default setting is 3.5 chars.

Serial > Flow Control


CTS / RTS Status

The CTS / RTS Status can be set to enabled or disabled. The default setting is Disabled.

CTS / RTS Status	Function
Enabled	CTS / RTS hardware flow control between the DTE and the Aprisa SR radio port (DCE) is enabled.
	If the Aprisa SR buffer is full, the CTS goes OFF.
	In the case of radio link failure the signal goes to OFF (-ve) state.
Disabled	The Aprisa SR radio port (DCE) CTS is in a permanent ON (+ve) state. This does not go to OFF if the radio link fails.

Serial > Advanced

SERIAL SUPPORT

Serial Data Mode

The Serial Data Mode can be set to Enabled or Disabled. The default setting is Enabled.

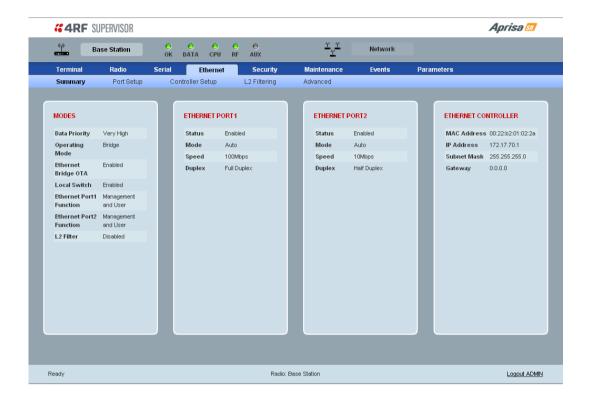
Serial Data Mode	Function
Enabled	Enables serial data communication over the radio link.
Disabled	Disables serial data communication over the radio link.

Serial Data Priority

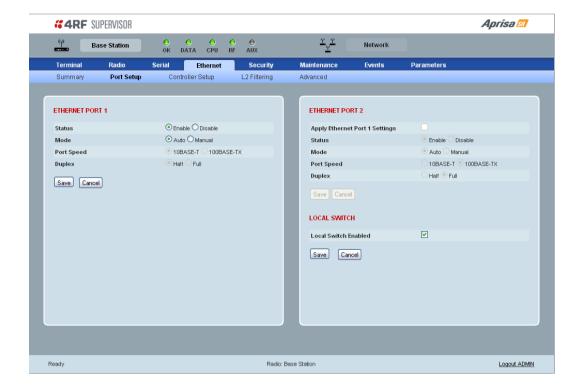
The Serial Data Priority controls the priority of the serial traffic relative to the Ethernet traffic. If equal priority is required to Ethernet traffic, this setting must be the same as the Ethernet Data Priority setting.

The serial data priority can be set to Very High, High, Medium and Low. The default setting is Very High.

A queuing system is used to prioritize traffic from the serial and Ethernet interfaces for over the air transmission. A weighting may be given to each data type and this is used to schedule the next transmission over the air e.g. if there are pending data packets in multiple buffers but serial data has a higher weighting it will be transmitted first. The serial buffer is 20 serial packets (1 packet can be up to 512 bytes).


There are four priority queues in the Aprisa SR: Very High, High, Medium and Low. Data is added to one of these queues depending on the priority setting. Data leaves the queues from highest priority to lowest: the Very High queue is emptied first, followed by High then Medium and finally Low.

Ethernet


Ethernet > Summary

This page displays the current settings for the Ethernet interface parameters.

Ethernet > Port Setup

ETHERNET PORT 1

Status

The Ethernet port status can be set to enabled or disabled. The default setting is enabled.

Ethernet Data Mode	Function
Enabled	Enables Ethernet data communication over the radio link.
Disabled	Disables Ethernet data communication over the radio link.

Mode

The Ethernet port mode can be set to Auto or Manual. The default setting is Auto.

Auto provides auto selection of Ethernet Port Speed and Ethernet Duplex.

If Ethernet port mode of Manual is selected, the Ethernet Port Speed and Ethernet Duplex can be set.

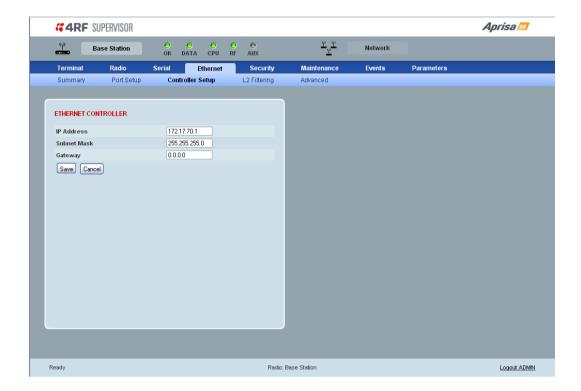
ETHERNET PORT 2

If this radio is part of a Protected Station, these parameters cannot be changed.

Apply Ethernet Port 1 Settings option (Ethernet Port 2 pane only)

If you require Ethernet Port 2 settings to be the same as Ethernet Port 1, tick the checkbox.

LOCAL SWITCH


Local Switch option (Ethernet Port 2 pane only)

This parameter sets the Local Switch option. The default setting is Enabled.

Local Switch	Function
Enabled	Ethernet traffic is switched locally between the two Ethernet ports and communicated over the radio link.
Disabled	Ethernet traffic is only communicated over the radio link.

Ethernet > Controller Setup

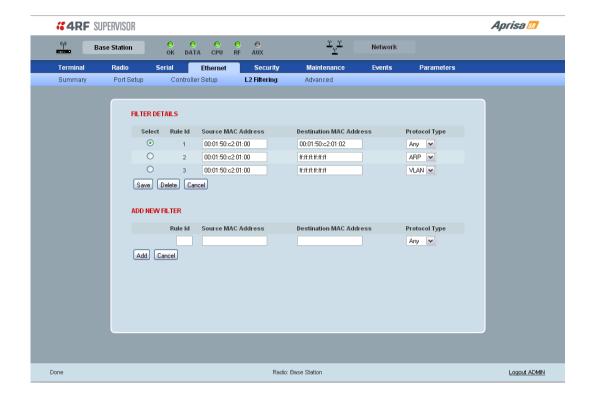
ETHERNET CONTROLLER

IP Address

Set the static IP Address of the radio assigned by your site network administrator using the standard format xxx.xxx.xxx.xxx. The default IP address is in the range 169.254.50.10.

Subnet Mask

Set the Subnet Mask of the radio using the standard format xxx.xxx.xxx. The default subnet mask is 255.255.0.0.


Gateway

Set the Gateway address of the radio, if required, using the standard format xxx.xxx.xxx. The default Gateway is 0.0.0.0.

These settings are the same as setting the parameters in 'Terminal > Device' on page 74.

Ethernet > L2 Filtering

FILTER DETAILS

L2 Filtering provides the ability to filter radio link traffic based on specified Layer 2 MAC addresses.

Traffic originating from specified Source MAC Addresses destined for specified Destination MAC Addresses that meets the protocol type criteria will be transmitted over the radio link.

Traffic that does not meet the filtering criteria will not be transmitted over the radio link.

If the Source MAC Address is set to 'FF:FF:FF:FF:FF:FF', traffic will be accepted from any source MAC address.

If the Destination MAC Address is set to 'FF:FF:FF:FF:FF:FF; traffic will be delivered to any destination MAC address.

Protocol Type

This parameter sets the Ethernet Type accepted ARP, VLAN, IPv4, IPv6 or ANY type.

Example:

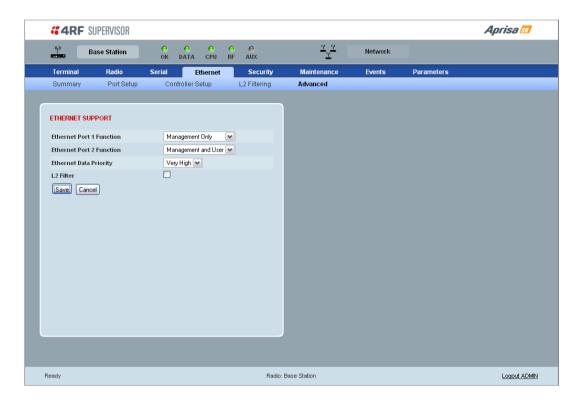
In the screen shot, the rules are configured in the Base Station which controls the radio link traffic from Base Station to remote / Repeater Stations.

Traffic from a device with the MAC address 00:01:50:c2:01:00 is forwarded over the radio link if it meets the criteria:

- Rule 1 If the Ethernet Type is ARP going to any destination MAC address or
- Rule 2 If the Ethernet Type is ANY and the destination MAC address is 01:00:50:c2:01:02 or
- Rule 3 If the Ethernet Type is VLAN tagged packets going to any destination MAC address

Special L2 Filtering Rules:

Unicast Only Traffic


This L2 filtering allows for Unicast only traffic and drop broadcast and multicast traffic. This filtering is achieved by adding the two rules:

Rule	Source MAC Address	Destination MAC Address	Protocol Type
Allow ARPS	FF:FF:FF:FF:FF	FF:FF:FF:FF:FF	ARP
Allow Unicasts from ANY source	FF:FF:FF:FF:FF	FE:FF:FF:FF:FF	ANY

Ethernet > Advanced

This screen is only available if the Ethernet traffic option has been licenced (see 'Maintenance > Licence' on page 120).

ETHERNET SUPPORT

There must always be an Ethernet port available for management, so both Ethernet ports cannot be set to User Only.

Ethernet Port 1 Function

This parameter sets the use for the Ethernet port 1. The default setting is Management Only.

Ethernet Port Function	Function
Management Only	The Ethernet port is only used for management of the FAN.
Management and User	The Ethernet port is used for management of the FAN and User traffic over the radio link.
User Only	The Ethernet port is only used for User traffic over the radio link.

Ethernet Port 2 Function

This parameter sets the use for the Ethernet port 2. The default setting is User Only.

Ethernet Port Function	Function
Management Only	The Ethernet port is only used for management of the FAN.
Management and User	The Ethernet port is used for management of the FAN and User traffic over the radio link.
User Only	The Ethernet port is only used for User traffic over the radio link. This option is not available if this radio is part of a Protected Station.

Ethernet Data Priority

The Ethernet Data Priority controls the priority of the Ethernet traffic relative to the serial traffic. If equal priority is required to serial traffic, this setting must be the same as the Serial Data Priority setting

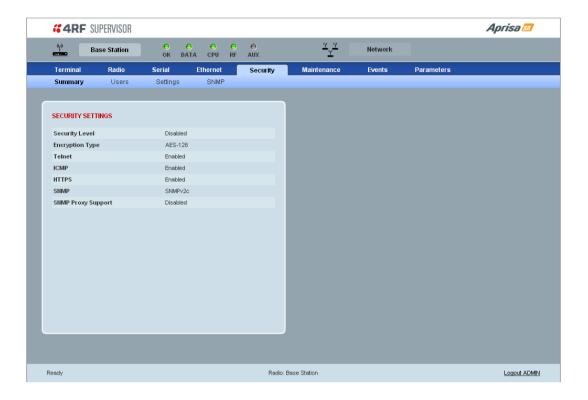
The Ethernet Data Priority can be set to Very High, High, Medium and Low. The default setting is Very High.

A queuing system is used to prioritize traffic from the serial and Ethernet interfaces for over the air transmission. A weighting may be given to each data type and this is used to schedule the next transmission over the air e.g. if there are pending data packets in multiple buffers but serial data has a higher weighting it will be transmitted first. The Ethernet buffer is 10 Ethernet packets (1 packet can be up to Ethernet MTU, 1500 bytes).

There are four priority queues in the Aprisa SR: Very High, High, Medium and Low. Data is added to one of these queues depending on the priority setting. Data leaves the queues from highest priority to lowest: the Very High queue is emptied first, followed by High then Medium and finally Low.

L2 Filter

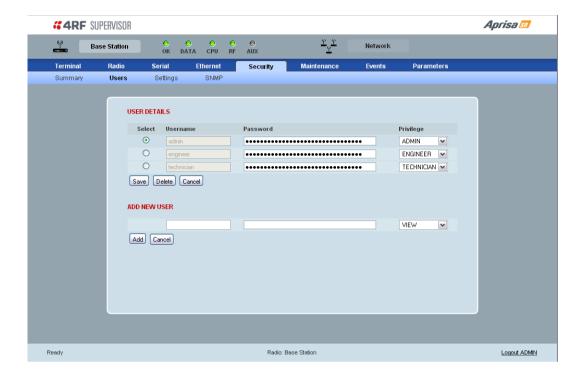
This parameter enables / disables L2 Filtering. The default setting is disabled.


If L2 Filtering is enabled, the filters defined in Ethernet > L2 Filtering become active.

If L2 Filtering is disabled, the filters defined in Ethernet > L2 Filtering have no effect.

Security

Security > Summary



SECURITY SETTINGS

This page displays the current settings for the Security parameters.

Security > Users

Note: You must login with 'admin' privileges to add, disable, delete a user or change a password.

USER DETAILS

Shows a list of the current users setup in the radio.

ADD NFW USFR

1. Enter the Username.

A username can be up to 32 characters but cannot contain back slashes, forward slashes, spaces, tabs, single or double quotes. Usernames are case sensitive.

2. Enter the Password.

A password can be up to 32 characters but cannot contain back slashes, forward slashes, spaces, tabs, single or double quotes. Passwords are case sensitive.

Good password policy:

- contains at least eight characters, and
- contains at least one upper case letter, and
- contains at least one lower case letter, and
- contains at least one digit or another character such as <code>!@#\$%^&()</code>{}[<>..., and
- is not a term in a familiar language or jargon, and
- is not identical to or derived from the accompanying account name, from personal characteristics or from information from one's family/social circle, and
- is easy to remember, for instance by means of a key sentence, and
- can be typed in fluently.

3. Select the User Privileges

There are four pre-defined User Privilege settings to allocate access rights to users. These user privileges have associated default usernames and passwords of the same name.

The default login is 'admin'.

This login has full access to all radio parameters including the ability to add and change users. There can only be a maximum of two usernames with admin privileges and the last username with admin privileges cannot be deleted.

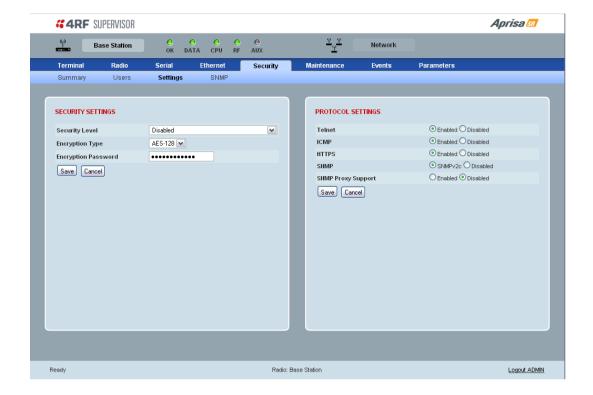
User Privilege	Default Username	Default Password	User Privileges
View	view	view	Users in this group can only view the summary pages.
Technician	technician	technician	Users in this group can view and edit parameters except Security > Users, Security > Settings and Advanced settings.
Engineer	engineer	engineer	Users in this group can view and edit parameters except Security > Users.
Admin	admin	admin	Users in this group can view and edit all parameters.

See 'SuperVisor Menu Access' on page 68 for the list of SuperVisor menu items versus user privileges.

4. Click 'Add'

To delete a user:

- 1. Select Terminal Settings > Security > Users
- 2. Click on the Select button for the user you wish to delete.
- 3. Click 'Delete


To change a Password:

- 1. Select Terminal Settings > Security > Users
- 2. Click on the Select button for the user you wish to change the Password.
- 3. Enter the Password.

A password can be up to 32 characters but cannot contain back slashes, forward slashes, spaces, tabs, single or double quotes.

Security > Settings

SECURITY SETTINGS

The Security Level, Encryption Type and Encryption Password must be the same on all radios in the FAN.

Security Level

This parameter sets the security level to one of the values in the following table. The default setting is disabled.

Security Level
disabled (No encryption and no Message Authentication Code)
AES Encryption + CCM Authentication 128 bit
AES Encryption + CCM Authentication 64 bit
AES Encryption + CCM Authentication 32 bit
AES Encryption only
CCM Authentication 128 bit
CCM Authentication 64 bit
CCM Authentication 32 bit

Encryption Type

This parameter sets the Encryption Type to AES128, AES192 or AES256. The default setting is AES128.

The higher the encryption type the better the security.

Encryption Password

This parameter sets the Encryption password. This is used to create the AES encryption key.

Good password policy:

- contains at least eight characters, and
- contains at least one upper case letter, and
- contains at least one lower case letter, and
- contains at least one digit or another character such as !@#\$%^&(){}[]<>..., and
- is not a term in a familiar language or jargon, and
- is not identical to or derived from the accompanying account name, from personal characteristics or from information from one's family/social circle, and
- is easy to remember, for instance by means of a key sentence, and
- can be typed in fluently.

PROTOCOL SETTINGS

Telnet option

This parameter option determines if you can manage the radio via a Telnet session. The default setting is disabled.

ICMP option (Internet Control Message Protocol)

This parameter option determines whether the radio will respond to a ping. The default setting is enabled.

HTTPS option

This parameter option determines if you can manage the radio via a HTTPS session (via a Browser). The default setting is enabled.

SNMP option

This parameter option determines if you can manage the radio via SNMP. The default setting is SNMPv2c.

SNMP Proxy Support

This parameter option enables an SNMP proxy server in the Base Station. This proxy server reduces the radio link traffic during SNMP communication to Remote / Repeater Stations. This option applies to the Base Station only. The default setting is disabled.

This option can also be used if the radio has Serial Only interfaces.

SNMP Manager Setup

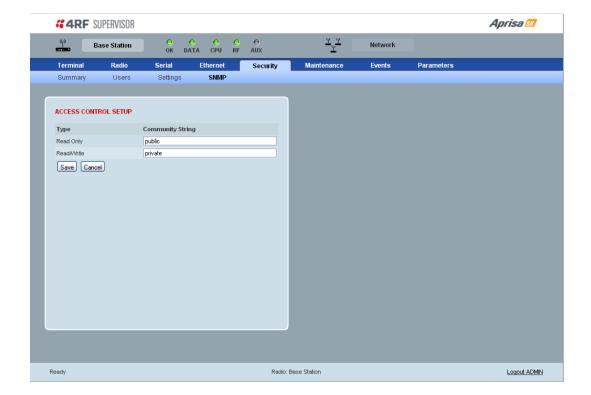
The SNMP manager community strings must be setup to access the Base Station and Remote / Repeater Stations.

To access the Base Station, a community string must be setup on the SNMP manager the same as the community string setup on the radio (see 'Security > SNMP' on page 107).

To access the Remote / Repeater Stations, the community strings must be setup on the SNMP manager in the format:

ccccccc:bbbbb

Where:


cccccccc is the community string of the Base Station

and

bbbbbb is the last 3 bytes of the remote station MAC address (see 'Network Status > Network Table' on page 69).

Security > SNMP

In addition to web-based management (SuperVisor), the FAN can also be managed using the Simple Network Management Protocol (SNMP). MIB files are supplied, and these can be used by a dedicated SNMP Manager, such as Castle Rock's SNMPc, to access most of the radio's configurable parameters.

For communication between the SNMP manager and the radio, Access Controls and Community strings must be set up as described in the following sections.

A SNMP Community String is used to protect against unauthorized access (similar to a password). The SNMP agent (radio or SNMP manager) will check the community string before performing the task requested in the SNMP message.

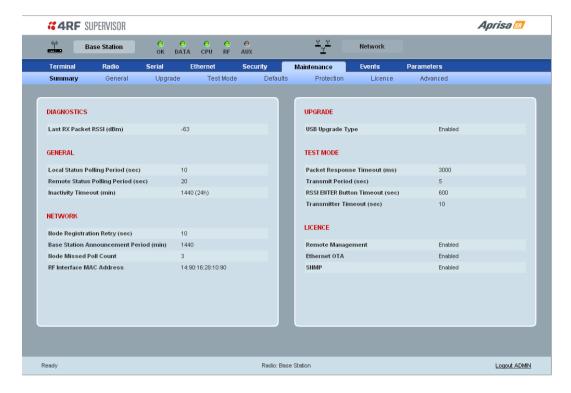
ACCESS CONTROL SETUP

A SNMP Access Control is the IP address of the radio used by an SNMP manager or any other SNMP device to access the radio. The Aprisa SR allows access to the radio from any IP address.

Read Only

The default Read Only community string is public.

Read Write


The default ReadWrite community string is private.

Maintenance

Maintenance > Summary

This page displays the current settings for the Maintenance parameters.

DIAGNOSTICS

Last RX Packet RSSI (dBm)

This parameter displays the receiver RSSI reading taken from the last data packet received.

GENERAL

Local Status Polling Period (sec)

This parameter displays the rate at which SuperVisor refreshes the Local Radio alarm LED states and RSSI value.

Remote Status Polling Period (sec)

This parameter displays the rate at which SuperVisor refreshes the Remote Radio alarm LED states and RSSI value.

Inactivity Timeout (min)

This parameter displays the period of user inactivity before SuperVisor automatically logs out of the radio.

NFTWORK

Node Registration Retry (sec)

This parameter displays the Base Station poll time at startup or the Remote / Repeater Station time between retries until registered.

Base Station Announcement Period (min)

This parameter displays the period between Base Station polls post startup. The default setting is 1440 minutes.

Node Missed Poll Count

This parameter displays the number of times the Base Station attempts to poll the FAN at startup or if a duplicate IP is detected when a Remote / Repeater Station is replaced.

RF Interface MAC address

This parameter displays the RF Interface MAC address when the radio is part of a Protected Station.

UPGRADE

USB Upgrade

This parameter displays the USB upgrade status.

TEST MODE

Packet Response Timeout (ms)

This parameter displays the time Test Mode waits for a response from the Base Station before it times out and retries.

Transmit Period (sec)

This parameter displays the time between Test Mode requests to the Base Station.

Response Timeout (ms)

This parameter sets the time Test Mode waits for a response from the Base Station before it times out and retries. The default setting is 3000 ms.

RSSI Enter Button Timeout (sec)

This parameter displays the Test Mode timeout period. The radio will automatically exit Test Mode after the Timeout period.

Transmitter Timeout (sec)

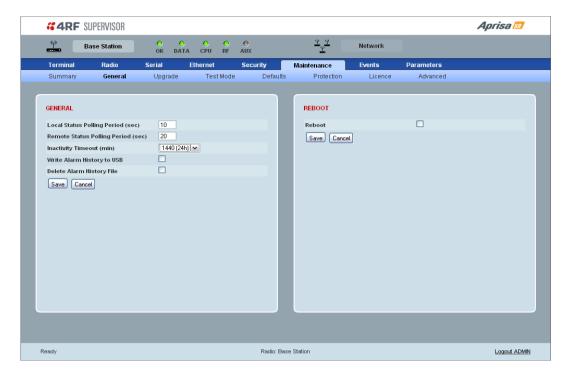
This parameter displays the transmitter Test Mode timeout period. The radio will automatically exit the transmitter Test Mode after the Timeout period.

LICENCE

Remote Management

This parameter displays if Remote Management is enabled or disabled.

Ethernet OTA (over the air)


This parameter displays if Ethernet traffic is enabled or disabled.

SNMP Management

This parameter displays if SNMP management is enabled or disabled.

Maintenance > General

GENERAL

Local Status Polling Period (sec)

This parameter sets the rate at which SuperVisor refreshes the Local Radio alarm LED states and RSSI value. The default setting is 10 seconds.

Remote Status Polling Period (sec)

This parameter sets the rate at which SuperVisor refreshes the Remote Radio alarm LED states and RSSI value. To avoid problems when managing Aprisa SR Networks, ensure that the Remote Polling Period is set to be longer than the Inband Management Timeout (set on page 74). The default setting is 20 seconds.

Inactivity Timeout (min)

This parameter sets the period of user inactivity before SuperVisor automatically logs out of the radio. The default setting is 15 minutes.

Write Alarm History to USB

This parameter when enabled writes the alarm history file to a USB flash drive into the Host Port • ...

The file is a space delimited text file with a file name in the format 'alarm_ipaddress_date,time e.g. 'alarm_172.17.10.17_2000-01-13,17.13.45.txt'.

The maximum number of event entries that can be stored is 1500 alarms.

The following table is an example of the alarm history file generated:

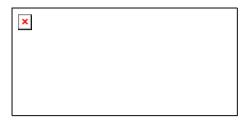
Index	Event Name	Severity	State	Time	Additional Information
1	softwareStartUp	information	0	2011-05-08,12:26:31.0	Power on Reset
2	softwareStartUp	information	0	2011-05-08,12:56:33.0	Power on Reset
3	protPeerCommunicationsLost	major	1	2011-05-08,12:56:39.0	Ethernet Comm Lost with Peer
4	protSwitchOccurred	information	0	2011-05-08,12:56:39.0	Keepalive missed from Active
5	protPeerCommunicationsLost	cleared	2	2011-05-08,12:56:40.0	Alarm Cleared
6	rfNoReceiveData	warning	1	2011-05-08,12:56:53.0	RF No Rx Data for 6 seconds
7	eth2NoRxData	warning	1	2011-05-08,12:57:03.0	ETH2 has not received data for 21 seconds
8	rfNoReceiveData	cleared	2	2011-05-08,12:57:05.0	
9	rfNoReceiveData	warning	3	2011-05-08,12:57:12.0	RF No Rx Data for 6 seconds
10	rfNoReceiveData	cleared	4	2011-05-08,12:57:23.0	
11	serialNoRxData	warning	1	2011-05-08,12:57:25.0	Serial has not received data for 44 seconds
12	rfNoReceiveData	warning	5	2011-05-08,12:57:29.0	RF No Rx Data for 6 seconds
13	rfNoReceiveData	cleared	6	2011-05-08,12:57:59.0	

State

The State column is an indication of whether the event is active or not. An even number indicates an inactive state while an odd number indicates an active state.

The AUX LED will flash orange while the file is copying to the USB flash drive.

Delete Alarm History file


This parameter when activated deletes the alarm history file stored in the radio.

REBOOT

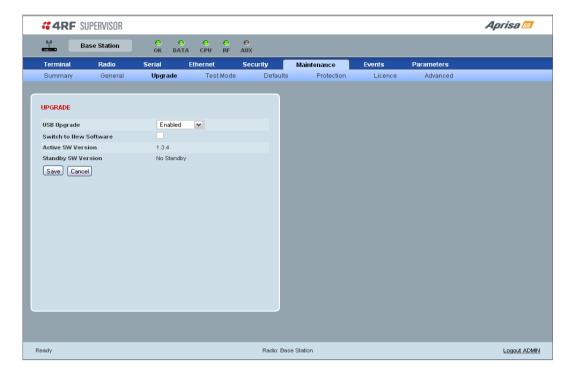
To reboot the radio:

- 1. Select Maintenance > General.
- 2. Tick the 'Reboot' checkbox.

3. Click 'Save' to apply the changes or 'Cancel' to restore the current value.

4. Click 'OK' to reboot the radio or 'Cancel' to abort.

All the radio LEDS will flash repeatedly for 1 second.


The radio will be operational again in about 10 seconds.

The OK, DATA, and CPU LEDS will light green and the RF LED will be green if the network is operating correctly.

5. Login to SuperVisor.

Maintenance > Upgrade

UPGRADE

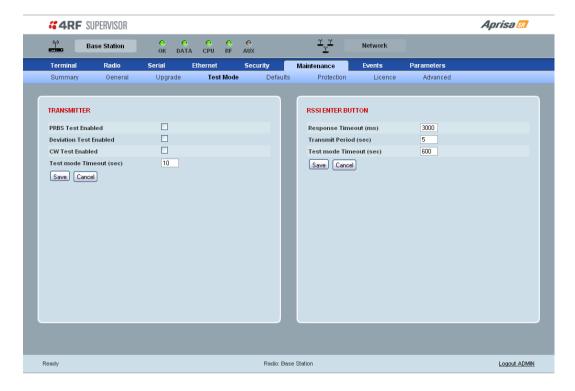
USB Upgrade

This parameter sets the USB upgrade status to one of the values in the following table. The default setting is enabled.

USB Upgrade Status	Function
Disabled	New software will not be uploaded from a USB flash drive into the Aprisa SR.
Enabled	New software can be uploaded from a USB flash drive in to the Aprisa SR and will be activated automatically.
Authenticate	New software can be uploaded from a USB flash drive in to the Aprisa SR but will not be activated.
	The 'Switch to new Software' option is used to manually authenticate the new uploaded software.

To authenticate the new uploaded software:

- 1. Select Terminal Settings > Maintenance > Upgrade.
- 2. Tick the 'Switch to new Software' checkbox.


3.

The following parameters are show:

Parameter	Function
Active Software Version	This displays the version of software currently operating the radio.
Standby SW Version	If new software has been uploaded to the radio but not activated, this field displays the version of software uploaded awaiting activation.

Maintenance > Test Mode

TRANSMITTER

PRBS Test Enabled

When active, the transmitter outputs a continuous PRBS signal. This can be used for evaluating the output spectrum of the transmitter and verifying adjacent channel power and spurious emission products.

Deviation Test Enabled

When active, the transmitter outputs a sideband tone at the deviation frequency used by the CPFSK modulator. This can be used to evaluate the local oscillator leakage and sideband rejection performance of the transmitter.

CW Test Enabled

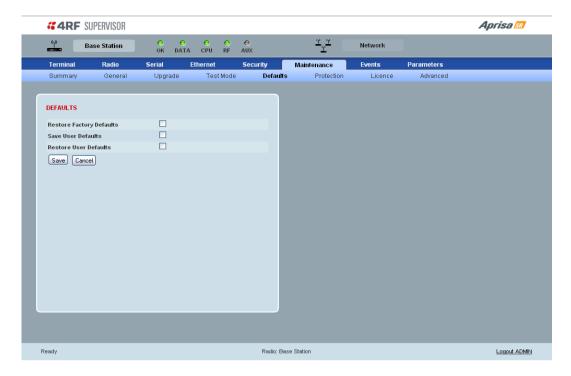
When active, the transmitter outputs a continuous wave signal. This can be used to verify the frequency stability of the transmitter.

RSSI ENTER BUTTON

Response Timeout (ms)

This parameter sets the time Test Mode waits for a response from the Base Station before it times out and retries. The default setting is 3000 ms.

Transmit Period (sec)


This parameter sets the time between Test Mode requests to the Base Station. The default setting is 5 seconds.

Test Mode Timeout (sec)

This parameter sets the Test Mode timeout period. The radio will automatically exit Test Mode after the Timeout period. The default setting is 600 seconds.

Maintenance > Defaults

DEFAULTS

The Maintenance Defaults page is only available for the local terminal.

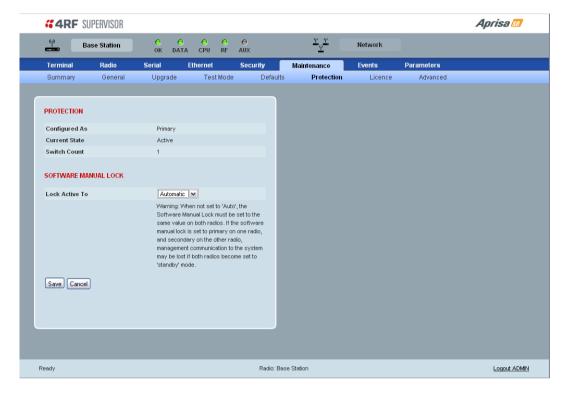
Restore Factory Defaults

When activated, all radio parameters will be set to the factory default values. This includes resetting the radio IP address to the default of 169.254.50.10.

Note: Take care using this command.

Save User Defaults

When activated, all current radio parameter settings will be saved to non-volatile memory within the radio.


Restore User Defaults

When activated, all radio parameters will be set to the settings previously saved using 'Save User Defaults'.

Maintenance > Protection

The Maintenance Protection screen is only applicable when the radio is part of a Protected Station.

PROTECTION

Configured as

The 'Configured As' shows if this radio is configured as the primary radio or the secondary radio.

Current State

The 'Current State' shows if this radio is currently Active or Standby.

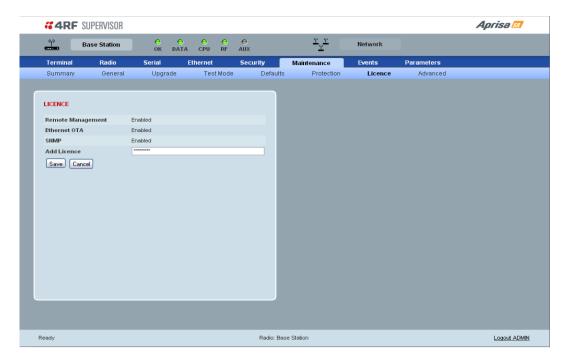
Switch Count

The 'Switch Count' shows the number of protections switch-overs since the last radio reboot (volatile).

SOFTWARE MANUAL LOCK

The software Manual Lock is a software implementation of the Hardware Manual Lock switch on the Protection Switch. The Software Manual Lock is intended to be used when making changes to the Protected Station remotely via SuperVisor, to prevent the Protected Station from switching as a result of the changes being made. See 'Setting the Software Manual Lock' on page 33 for a recommended process to follow to make remote configuration changes.

Lock Active To


This parameter sets the Protection Switch Software Manual Lock. The Software Manual Lock only operates if the Hardware Manual Lock is deactivated (set to the Auto position).

Option	Function
Automatic	The protection is automatic and switching will be governed by normal switching and blocking criteria.
Primary	The primary radio will become active i.e. traffic will be switched to the primary radio.
Secondary	The secondary radio will become active i.e. traffic will be switched to the secondary radio.

Warning: If the Software Manual Lock is set to Primary or Secondary, the Software Manual Lock must be set to the same value on both Protected Station radios. If the Software Manual Lock is set to primary on one radio, and secondary on the other radio, management communication to the radios may be lost if both radios become set to 'standby' mode.

Maintenance > Licence

LICENCE

Fully Featured Radio

When a fully featured Aprisa SR radio is purchased (indicated by the \underline{AA}), it contains the licences which activate Remote Management, Ethernet Traffic, and SNMP Management e.g. :

Part Number Part Description

APSR-N400-012-SO-12-ETAA 4RF Aprisa SR, BR, 400-470 MHz, 12.5 kHz, SO, 12 VDC, ET, AA

Serial Only Radio

If a Serial Only Aprisa SR radio is purchased (indicated by the A1), Ethernet Traffic is not enabled.

Part Number Part Description

APSR-N400-012-SO-12-ETA1 4RF Aprisa SR, BR, 400-470 MHz, 12.5 kHz, SO, 12 VDC, ET, A1

A Feature Licence can be purchased to enable Ethernet Traffic.

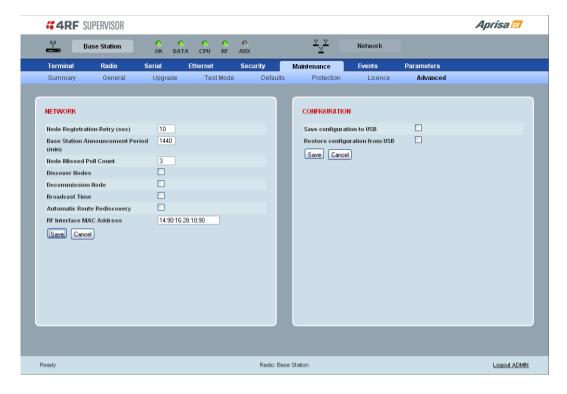
Feature Licences

Feature Licences enable features if they were not purchased initially.

One license key is required per feature and per radio serial number.

Part Number Part Description

APSA-LSRF-FET 4RF Aprisa SR Acc, Licence, Feature, Ethernet Traffic


When Ethernet traffic is enabled, the Ethernet port status must be set to enabled to allow Ethernet data communication over the radio link (see 'Ethernet > Port Setup' on page 93).

Remote Management and SNMP management

In this software version, Remote Management and SNMP management are enabled by default.

Maintenance > Advanced

NETWORK

Node Registration Retry (sec)

This parameter sets the Base Station poll time at startup or the Remote / Repeater Station time between retries until registered. The default setting is 10 seconds.

Base Station Announcement Period (min)

This parameter sets the period between Base Station polls post startup. The default setting is 1440 minutes.

When a new Base Station powers on, it announces its presence and each remote that receives the announcement message will be advised that a new Base Station is present and that they should reregister. This allows the new Base Station to populate its Network Table, with knowledge of the nodes in the network.

If, during this initial period, there is some temporary path disturbance to one or more remotes, they may miss the initial announcement messages and be left unaware of the Base Station change. For this reason, the Base Station must periodically send out announcement messages to pick up any stray nodes and the period of these messages is the Base Station Announcement Period.

Setting this parameter to 0 will stop further announcement messages being transmitted.

Node Missed Poll Count

This parameter sets the number of times the Base Station attempts to poll the FAN at startup or if a duplicate IP is detected when a Remote / Repeater Station is replaced. The default setting is 3.

Discover Nodes

This parameter when activated triggers the Base Station to poll the FAN with Node Missed Poll Count and Node Registration Retry values.

Decommission Node

This parameter when activated resets the FAN registrations to remove the entire FAN from service.

Note: Take care using this option.

Broadcast Time

This parameter when activated sends the Base Station Date / Time setting to all the Remote and Repeater Stations in the FAN and sets their Date / Time. This option applies to the Base Station only.

Automatic Route Rediscovery

This parameter enables the radio to transmit route discovery messages when packets are unacknowledged.

When enabled, unacknowledged unicast packets are converted into uni-broadcast messages and sent through the network. All nodes see the message and populate their routing tables accordingly.

When the destination node is reached, it sends a route response message via the shortest path. The intermediate nodes see this message and populate their routing tables in the reverse direction, thus reestablishing the route.

The default setting is enabled.

RF Interface MAC address

This parameter is only applicable when the radio is part of a Protected Station.

This RF Interface MAC address is used to define the MAC address of the Protection Switch. This address is entered into both Protected Station radios in the factory.

If a replacement Protection Switch is installed, the replacement unit MAC address must be entered in both radios (see 'Replacing a Faulty Protection Switch' on page 34).

The Protection Switch RF Interface MAC address is shown on the Protection Switch label:

CONFIGURATION

Save Configuration to USB

This parameter saves all user configuration settings to a binary encrypted file on the USB root directory with filename of asrcfg_1.3.4. Some parameters are not saved e.g. security passwords, licence keys etc.

Restore Configuration from USB

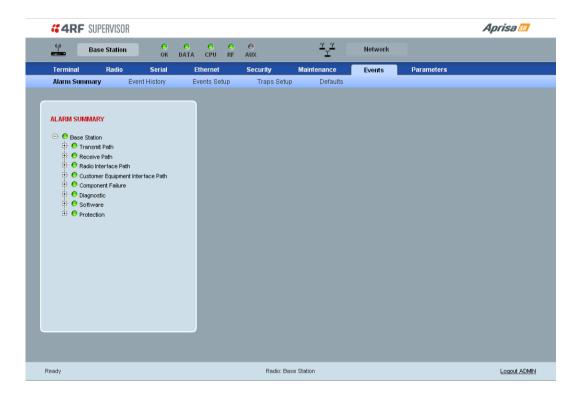
This parameter restores all user configuration settings from a binary encrypted file on the USB root directory with filename of asrcfg_1.3.4.

NOTE: Activating this function will over-write all existing configuration settings in the radio (except for the non-saved settings e.g. security passwords, licence keys etc).

Events

There are two types of events that can be generated on the Aprisa SR radio. These are:

1. Alarm Events

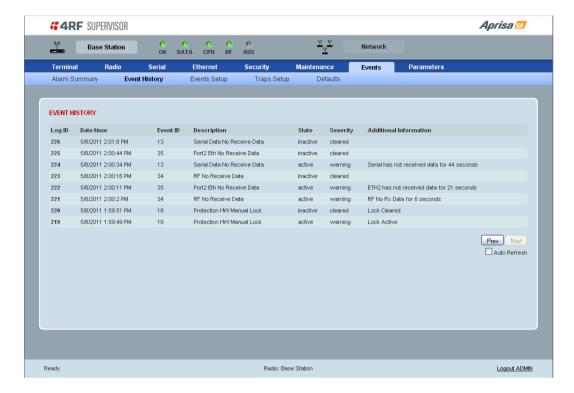

Alarm Events are generated to indicate a problem on the radio.

2. Informational Events

Informational Events are generated to provide information on key activities that are occurring on the radio. These events do not indicate an alarm on the radio and are used to provide information only.

See 'Alarm Types and Sources' on page 144 for a complete list of events.

Events > Alarm Summary


ALARM SUMMARY

The Alarm Summary is a display tree that displays the current states of all radio alarms. The alarm states refresh automatically every 12 seconds.

LED Colour	Severity
Green	No alarm
Orange	Warning alarm
Red	Critical, major or minor alarm

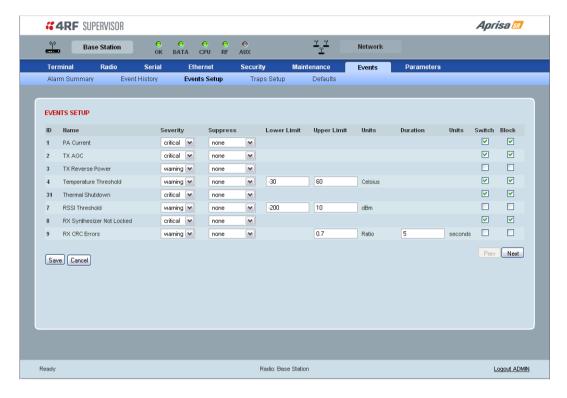
Events > Event History

EVENT HISTORY

The last 1500 events are stored in the radio. The complete event list can be downloaded to a USB flash drive (see 'Write Alarm History to USB' on page 112).

The Event History can display the last 50 events stored in the radio in blocks of 8 events.

The Next button will display the next page of 8 events and the Prev button will display the previous page of 8 events. Using these buttons will disable Auto Refresh to prevent data refresh and page navigation contention.


The last 50 events stored in the radio are also accessible via an SNMP command.

Auto Refresh

The Event History page selected will refresh automatically every 12 seconds if the Auto Refresh is ticked.

Events > Events Setup

EVENTS SETUP

Alarm event parameters can be configured for all alarm events (see 'Alarm Events' on page 144).

Severity

The Severity parameter sets the alarm severity.

Severity	Function
Critical	The Critical severity level indicates that a service affecting condition has occurred and an immediate corrective action is required. Such a severity can be reported, for example, when a managed object becomes totally out of service and its capability must be restored.
Major	The Major severity level indicates that a service affecting condition has developed and an urgent corrective action is required. Such a severity can be reported, for example, when there is a severe degradation in the capability of the managed object and its full capability must be restored.
Minor	The Minor severity level indicates the existence of a non-service affecting fault condition and that corrective action should be taken in order to prevent a more serious (for example, service affecting) fault.
	Such a severity can be reported, for example, when the detected alarm condition is not currently degrading the capacity of the managed object.
Warning	The Warning severity level indicates the detection of a potential or impending service affecting fault, before any significant effects have been felt. Action should be taken to further diagnose (if necessary) and correct the problem in order to prevent it from becoming a more serious service affecting fault.
Information	No problem indicated - purely information

Suppress

The Suppress parameter determines if the action taken by an alarm.

Suppress	Function
None	Alarm triggers an event trap and is logged in the radio
Traps	Alarm is logged in the radio but does not trigger an event trap
Traps and Log	Alarm neither triggers an event trap nor is logged in the radio

Lower Limit / Upper Limit

Threshold alarm events have lower and upper limit settings. The alarm is activated if the current reading is outside the limits.

Example: 9 RX CRC Errors

The Upper Limit is set to 0.7 and the Duration is set to 5 seconds.

If in any 5 second period, the total number of errored packets divided by the total number of received packets exceeds 0.7, the alarm will activate.

Units (1)

The Units parameter shows the unit for the Lower Limit and Upper Limit parameters.

Duration

The Duration parameter determines the period to wait before an alarm is raised if no data is received.

Units (2)

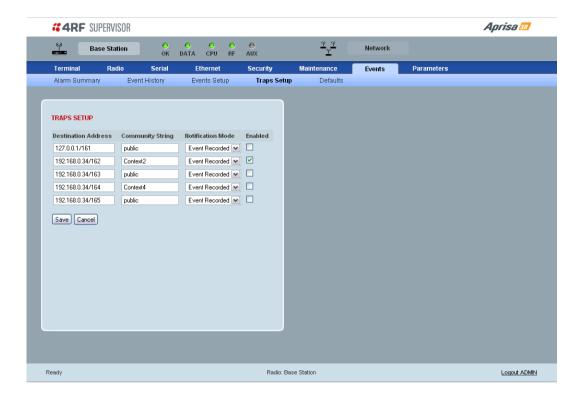
The Units parameter shows the unit for the Duration parameters.

Switch

The Switch parameter determines if the alarm when active causes a switch over of the Protection Switch.

This parameter is only applicable when the radio is part of a Protected Station.

Block


The Block parameter determines if the alarm is prevented from causing a switch over of the Protection Switch.

This parameter is only applicable when the radio is part of a Protected Station.

The Next button will display the next page of 8 alarm events and the Prev button will display the previous page of 8 alarm events.

Events > Traps Setup

TRAPS SETUP

All events can generate traps. The types of traps that are supported are defined in the 'Notification Mode'.

Destination Address

An SNMP Trap Destination is the IP address of a station running an SNMP manager.

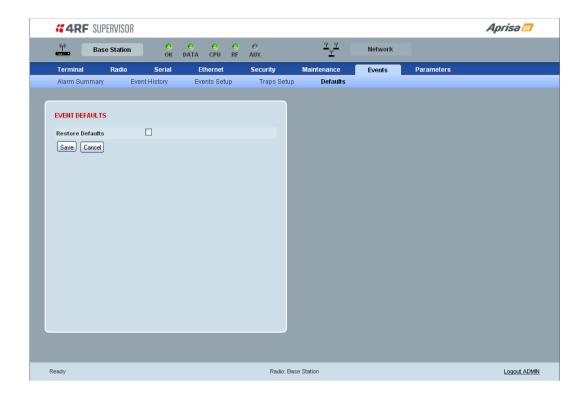
Community String

A community string is sent with the IP address for security. The default community string is 'public'.

Notification Mode

The Notification Mode defines when an event related trap is sent.

Notification Mode	Function
None	No event related traps are sent.
Event Recorded	When an event is recorded in the event history log, a trap is sent.
Event Updated	When an event is updated in the event history log, a trap is sent.
All Events	When an event is recorded or updated in the event history log, a trap is sent.

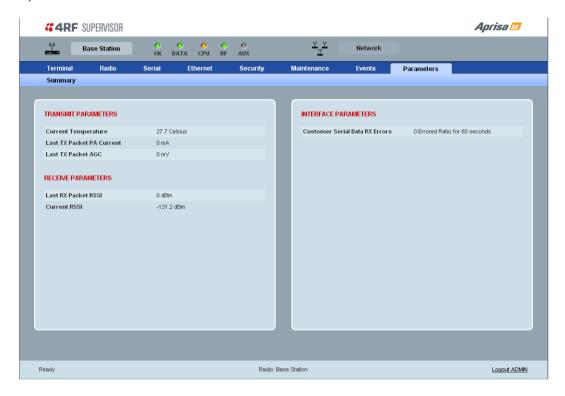

Enabled

The Enabled parameter determines if the entry is used.

Events > Defaults

EVENT DEFAULTS

Restore Defaults


This parameter when activated restores all configured event parameters using 'Events > Events Setup' to the factory default settings.

Parameters

Parameters > Summary

The Parameters Summary screen is a dynamic page that will display the parameters associated with the active alarms, set on 'Events > Events Setup' on page 126. This screen is an example only showing some monitored parameters with active alarms.

The following is a list of alarm events that are monitored:

Monitored Parameter	Unit	Scale Factor	Event ID	Event Display Text
Current Temperature	Celsius	10	4	Temperature Threshold
Last RX Packet RSSI	dBm	10	7	RSSI Threshold
Last Sample RX CRC Error	Ratio	100	9	RX CRC Errors
Last Sample RF RX Data	Count	1	34	RF No Receive Data
Last Sample Eth1 RX Data	Count	1	10	Port 1 Eth No Receive Data
Customer Eth1 Data RX Errors	Ratio	100	11	Port 1 Eth Receive Errors
Customer Eth1 Data TX Errors	Ratio	100	12	Port 1 Eth Transmit Errors
Last Sample Eth2 RX Data	Count	1	35	Port 2 Eth No Receive Data
Customer Eth2 Data RX Errors	Ratio	100	36	Port 2 Eth Receive Errors
Customer Eth2 Data TX Errors	Ratio	100	37	Port 2 Eth Transmit Errors
Last Sample Serial RX Data	Count	1	13	Serial Data No Receive Data
Customer Serial Data RX Errors	Ratio	100	14	Serial Data Receive Errors
Last TX Packet PA Current	mA	1	None	
Last TX Packet AGC	mV	1	None	
Last TX Packet Reverse Power	dB	10	None	
Current RSSI	dBm	10	None	

If an associated alarm event occurs, the Parameters table will display the current value for that parameter. The refresh time is 12 seconds.

Command Line Interface

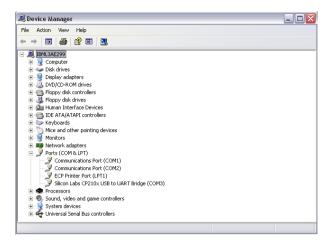
The Aprisa SR has a Command Line Interface (CLI) which provides basic product setup and configuration. This can be useful if you need to confirm the radio's IP address, for example.

You can password-protect the Command Line Interface to prevent unauthorized users from modifying radio settings.


This interface can be accessed via an Ethernet Port (RJ-45) or the Management Port (USB micro type B).

Connecting to the Management Port

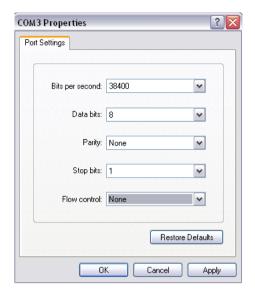
A USB Cable USB A to USB micro B, 1m is provided with each radio.


- 1. Connect the USB A to your computer USB port and the USB micro B to the management port of the Aprisa SR (MGMT).
- 2. Unzip and install the USB Serial Driver CP210x_VCP_Win2K_XP_S2K3.zip on your computer. This file is on the Information and setup CD supplied with the radio.

- 3. Go to your computer device manager (Control Panel > System > Hardware > Device Manager)
- 4. Click on 'Ports (COM & LPT)'

5. Make a note of the COM port which has been allocated to the 'Silicon Labs CP210x USB to UART Bridge' (COM3 in the example below)

- 6. Open HyperTerminal Session (Start > All Programs > Accessories > Communications > HyperTerminal)
- 7. Enter a name for the connection (Aprisa SR CLI for example) and click OK.


8. Select the COM port from the Connect Using drop-down box that was allocated to the UART USB.

9. Set the COM port settings as follows:

- 10. Click OK. The HyperTerminal window will open.
- 11. Press the Enter key to initiate the session.
- 12. Login to the Aprisa SR CLI with a default Username 'admin' and Password 'admin'.

The top level CLI menu is shown:

```
Login: admin
Password: ******
CLI user admin last login: 2011/01/01 15:17:04 from 127.0.0.1
MPA APRISASR-MIB-4RF >>?
adduser browser cd clear
debug deleteuser editpasswd edituser
list logout ls pwd
set who
MPA APRISASR-MIB-4RF >>
                                                                                                                                                                                                              config
                                                                                                                                                                                                             get
reboot
```


CLI Commands

To enter a CLI command:

- 1. Type the first few characters of the command and hit Tab. This auto completes the command.
- 2. Enter the command string and enter.

Note: The CLI commands are case sensitive.

The top level CLI command list is displayed by typing a ? at the command prompt.

The following is a list of the top level CLI commands and their usage:

CLI Command	Usage		
adduser	adduser [-g <password aging="">] [-a <account aging="">] [-i <role>] <username> <userpassword></userpassword></username></role></account></password>		
browser	browser <state(str)></state(str)>		
cd	cd <changemode(str)></changemode(str)>		
clear	Clears the screen		
config	config userdefault save restore factorydefault restore		
deleteuser	deleteuser <username></username>		
editpasswd	editpasswd <oldpassword> <newpassword></newpassword></oldpassword>		
edituser	edituser [-p <password>] [-g <password aging="">] [-a <account aging="">] [-i]</account></password></password>		

get	get [-m <mib name="">] [-n <module name="">] <attribute name=""> [indexes]</attribute></module></mib>			
list	list <tablename></tablename>			
logout	Logs out from the CLI			
	Lists the settings for:			
	(-) EthernetAdvanced			
	(-) EthernetControllers			
	(-) EthernetPorts			
	(-) EthL2FilterTable			
	(-) MaintenanceAdvanced			
	(-) MaintenanceDefaults			
	(-) MaintenanceGeneral			
	(-) MaintenanceLicence			
	(-) MaintenanceTestmode			
ls	(-) MaintenanceUpgrade			
	(+) NetworkTable			
	(-) RadioChannelAccess			
	(-) RadioRfSettings			
	(-) SecuritySettings			
	(+) SecurityUserTable			
	(-) SerialAdvanced			
	(-) SerialFlowControl			
	(-) SerialPortSettings			
	(-) TerminalDetails			
	(-) TerminalOperatingMode			
reboot	Reboots the radio			
set	set [-m <mib name="">] [-n <module name="">] <attribute name=""> <attribute set="" td="" v]<=""></attribute></attribute></module></mib>			
who	Shows the users currently logged into the radio			

Viewing the CLI Terminal Summary

At the command prompt, type 'ls Terminal'

Changing the Radio IP Address with the CLI

At the command prompt, type 'set termEthController1IpAddress xxx.xxx.xxx.xxx'

In-Service Commissioning

Before You Start

When you have finished installing the hardware, RF and the traffic interface cabling, the system is ready to be commissioned. Commissioning the radio is a simple process and consists of:

- 1. Powering up the radios.
- 2. Configuring all radios in the FAN using SuperVisor.
- 3. Aligning the antennas.
- 4. Testing that the links are operating correctly.
- 5. Connecting up the client or user interfaces.

What You Will Need

- Appropriately qualified commissioning staff at both ends of each link.
- Safety equipment appropriate for the antenna location at both ends of each link.
- Communication equipment, that is, mobile phones or two-way radios.
- SuperVisor software running on an appropriate laptop, computer, or workstation at the Base Station radio.
- Tools to facilitate loosening and re-tightening the antenna pan and tilt adjusters.
- Predicted receiver input levels and fade margin figures from the radio link budget.

Antenna Alignment

A Base Station omni directional collinear antenna has a vertical polarization. The Remote Station yagi antennas must also have vertical polarization.

Aligning the Antennas

Align the Remote Station yagi antennas by making small adjustments while monitoring the RSSI. The Aprisa SR has a Test Mode which presents a real time visual display of the RSSI on the front panel LEDs. This can be used to adjust the antenna for optimum signal strength (see 'Test Mode' on page 26).

Note: Low gain antennas need less adjustment in elevation as they are simply aimed at the horizon. They should always be panned horizontally to find the peak signal.

1. Press and hold the ENTER button on the radio LED panel until all the LEDs flash green (about 3 - 5 seconds).

Note: The time for the LEDs to display the RSSI result is variable, depending on the network traffic, and can be up to 5 seconds. Small antenna adjustments should be made and then wait for the display to refresh.

The RSSI poll refresh rate can be set with the SuperVisor command 'Transmit Period' (see 'Maintenance > Test Mode' on page 115).

- 2. Move the antenna through a complete sweep horizontally (pan). Note down the RSSI reading for all the peaks in RSSI that you discover in the pan.
- 3. Move the antenna to the position corresponding to the maximum RSSI value obtained during the pan. Move the antenna horizontally slightly to each side of this maximum to find the two points where the RSSI drops slightly.
- 4. Move the antenna halfway between these two points and tighten the clamp.
- 5. If the antenna has an elevation adjustment, move the antenna through a complete sweep (tilt) vertically. Note down the RSSI reading for all the peaks in RSSI that you discover in the tilt.
- 6. Move the antenna to the position corresponding to the maximum RSSI value obtained during the tilt. Move the antenna slightly up and then down from the maximum to find the two points where the RSSI drops slightly.
- 7. Move the antenna halfway between these two points and tighten the clamp.
- 8. Recheck the pan (steps 2-4) and tighten all the clamps firmly.
- 9. To exit Test Mode, press and hold the ENTER button until all the LEDs flash red (about 3 5 seconds).

9. Maintenance

There are no user-serviceable components within the radio.

All hardware maintenance must be completed by 4RF or an authorized service centre.

Do not attempt to carry out repairs to any boards or parts.

Return all faulty radios to 4RF or an authorized service centre.

For more information on maintenance and training, please contact 4RF Customer Services at support@4rf.com.

CAUTION: Electro Static Discharge (ESD) can damage or destroy the sensitive electrical components in the radio.

Radio Software Upgrade

The Aprisa SR radio software can be upgraded simply by plugging a USB flash drive containing the new software into the USB A host port on the Aprisa SR front panel.

The software upgrade procedure is different for an Aprisa SR Protected Station (see 'Protected Station Software Upgrade' on page 32).

Note: If a radio has been configured for a Protection Type of 'Redundant' (see 'Terminal > Protection' on page 77), and that radio is no longer part of a Protected Station, the Protection Type must be changed to 'None' before the radio software upgrade can be achieved.

Upgrade Process

To minimize disruption of link traffic and prevent your radios from being rendered inoperative, please follow the procedures described in this section together with any additional information or instructions supplied with the upgrade package.

The radio software must be identical on all radios in the FAN.

To upgrade the Aprisa SR radio software:

- 1. Check that the SuperVisor USB Upgrade setting is set to 'Enabled' (see 'Maintenance > Upgrade' on page 114).
- 2. Unzip the software release files in to the <u>root directory</u> of a USB flash drive.
- 3. Power off the Aprisa SR and insert the USB flash drive into the Host Port ...
- 4. Power on the Aprisa SR.
- 5. The software upgrade process is complete when the OK LED lights solid orange. This can take about 2

The software will have loaded in to the radio Standby SW location.

- 6. Remove the USB flash drive from the Host Port ...
- 7. Power cycle the Aprisa SR.

Login in to the radio being upgraded and view the Active and Standby SW version (see 'Summary' on page 70).

If the upgrade process was successful, the Active SW Version will show the new software version and the Standby SW Version will be shown as 'No Standby'.

If the upgrade process did not start, the Aprisa SR could already be operating on the version of software on the USB flash drive. This will be indicated by flashing OK LED and then the OK, DATA and CPU will light steady green.

If the radio is not operating on the new software (after the power cycle), it could be caused by the SuperVisor USB Upgrade setting set to 'Authenticate' (see 'Maintenance > Upgrade' on page 114).

The new software will have uploaded in to the Aprisa SR but will not have activated. The new software version will be displayed in the Standby SW version.

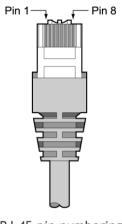
In this case, go to SuperVisor 'Maintenance > Upgrade' on page 114 and tick the 'Switch to new Software' checkbox and click 'Save' to apply the changes.

If any Display Panel LED flashes red or is steady red during the upgrade process, it indicates that the upgrade has failed. This could be caused by incorrect files on the USB flash drive or a radio hardware failure.

To view the uploaded software version:

Select Terminal Settings > Terminal > Summary

The version of the uploaded software will be displayed in the 'Standby SW Version field.


Software Downgrade

Radio software can also be downgraded if required. This may be required if a new radio is purchased for an existing network which is operating on an earlier software release.

The downgrade process is the same as the upgrade process.

10. Interface Connections

RJ-45 Connector Pin Assignments

RJ-45 pin numbering

Ethernet Interface Connections

Pin number	Pin function	Direction	TIA-568A wire colour
1	Transmit	Output	Green/white
2	Transmit	Output	Green
3	Receive	Input	Orange/white
4	Not used		Blue
5	Not used		Blue/white
6	Receive	Input	Orange
7	Not used		Brown/white
8	Not used		Brown

RJ-45 connector LED indicators			
LED Status Explanation			
Green	On	Ethernet signal received	
Green	Flashing	Indicates data traffic present on the interface	

Note: Do not connect Power over Ethernet (PoE) connections to the Aprisa SR Ethernet ports as this will damage the port.

RS-232 Serial Interface Connections

The RS-232 Serial Interface is always configured as a DCE:

RJ45 Pin Number	Pin Function	Direction	TIA-568A Wire Colour
1	RTS	Input	Green / white
2	DTR	Input	Green
3	TXD	Input	Orange / white
4	Ground		Blue
5	DCD	Output	Blue / white
6	RXD	Output	Orange
7	DSR	Output	Brown / white
8	CTS	Output	Brown

Protection Switch Remote Control Connections

1 2 3 4

Pin Number	1	2	3	4
Function	A radio active	Ground	B radio active	Ground

11. Alarm Types and Sources

Alarm Types

There are three types of alarm event configuration types:

1. Threshold Type

These alarm events have lower and upper limits. An alarm is raised if current reading is outside the limits. Note: the limits for PA Current, TX AGC, TX Reverse Power and Thermal shutdown are not user configurable.

2. Error Ratio Type

This is the ratio of bad packets vs total packets in the defined sample duration.

For Serial, it is the ratio of bad characters vs total characters in the duration seconds. An alarm is raised if current error ratio is greater than the configured ratio. The error ratio is configured in 'Upper Limit' field and accepts value between 0 and 1. Monitoring of these events can be disabled by setting the duration parameter to 0.

3. Sample Duration Type

Used for No Receive data events type. An alarm is raised if no data is received in the defined sample duration. Monitoring of these events can be disabled by setting the duration parameter to 0.

See 'Events > Events Setup' on page 126 for setup of alarm thresholds / sample durations etc.

Alarm Events

Transmitter Alarms

Event ID	Event Display Text	Default Severity	Configuration Type	Function
1	PA Current	critical(1)	Threshold Type	Alarm to indicate that the current drawn by the transmitter power amplifier is outside defined limits.
2	TX AGC	critical(1)	Threshold Type	Alarm to indicate that the variable gain control of the transmitter is outside defined limits.
3	TX Reverse Power	warning(4)	Threshold Type	Alarm to indicate that the antenna is not connected to the radio
4	Temperature Threshold	warning(4)	Threshold Type	Alarm to indicate that the transmitter temperature is outside defined limits.
31	Thermal Shutdown	critical(1)	Threshold Type	Alarm to indicate that the transmitter has shutdown due to excessively high temperature.

Receiver Alarms

Event ID	Event Display Text	Default Severity	Configuration Type	Function
7	RSSI Threshold	warning(4)	Threshold Type	Alarm to indicate that the receiver RSSI reading taken on the last packet received is outside defined limits.
8	RX Synthesizer Not Locked	critical(1)	Not Configurable	Alarm to indicate that the receiver Synthesizer is not locked on the RF received signal.
9	RX CRC Errors	warning(4)	Error Ratio Type	Alarm to indicate that the data received on the RF path contains errors at a higher rate than the defined error rate threshold.

Radio Interface Path Alarms

Event ID	Event Display Text	Default Severity	Configuration Type	Function
34	RF No Receive Data	warning(4)	Sample Duration Type	Alarm to indicate that there is no data received on the RF path in the defined duration period.

Customer Equipment Interface Path Alarms

Event ID	Event Display Text	Default Severity	Configuration Type	Function
10	Port 1 Eth No Receive Data	warning(4)	Sample Duration Type	Alarm to indicate that Ethernet port 1 has no received input signal in the defined duration period.
11	Port 1 Eth Data Receive Errors	warning(4)	Error Ratio Type	Alarm to indicate that Ethernet port 1 received input signal contains errors at a higher rate than the defined error rate threshold.
12	Port 1 Eth Data Transmit Errors	warning(4)	Error Ratio Type	Alarm to indicate that Ethernet port 1 transmitted output signal contains errors at a higher rate than the defined error rate threshold.
35	Port 2 Eth No Receive Data	warning(4)	Sample Duration Type	Alarm to indicate that Ethernet port 2 has no received input signal in the defined duration period.
36	Port 2 Eth Data Receive Errors	warning(4)	Error Ratio Type	Alarm to indicate that Ethernet port 2 received input signal contains errors at a higher rate than the defined error rate threshold.
37	Port 2 Eth Data Transmit Errors	warning(4)	Error Ratio Type	Alarm to indicate that Ethernet port 2 transmitted output signal contains errors at a higher rate than the defined error rate threshold.
13	Serial Data No Receive Data	warning(4)	Sample Duration Type	Alarm to indicate that the RS-232 port has no received input signal in the defined duration period.
14	Serial Data Receive Errors	warning(4)	Error Ratio Type	Alarm to indicate that the RS-232 port received input signal contains errors at a higher rate than the defined error rate threshold.

Component Failure Alarms

Event ID	Event Display Text	Default Severity	Configuration Type	Function
16	Component Failure	major(2)	Not Configurable	Alarm to indicate that a hardware component has failed.

Diagnostic Alarms

Event ID	Event Display Text	Default Severity	Configuration Type	Function
17	Protection Sw Manual Lock	warning(4)	Not Configurable	Alarm to indicate that the Protection Switch Software Manual Lock has been activated.
18	Protection Hw Manual Lock	warning(4)	Not Configurable	Alarm to indicate that the Protection Switch Hardware Manual Lock has been activated.

Software Alarms

Event ID	Event Display Text	Default Severity	Configuration Type	Function
20	Calibration Failure	major(2)	Not Configurable	Alarm to indicate that the RF calibration has failed.
21	Configuration Not Supported	major(2)	Not Configurable	Alarm to indicate that a configuration has entered that is invalid.
32	Network Configuration Warning	warning(4)	Not Configurable	Alarm to indicate a network configuration problem e.g. duplicate IP address.
39	Software Restart Required	warning(4)	Not Configurable	Alarm to indicate that a configuration has changed that requires a software reboot.

Protection Alarms

Event ID	Event Display Text	Default Severity	Configuration Type	Function
23	Protection Peer Comms Lost	major(2)	Not Configurable	Alarm to indicate that the standby radio has lost communication with the active radio.

Informational Events

Event ID	Event Display Text	Default Severity	Function
26	User authentication succeeded	information(5)	Event to indicate that a user is successfully authenticated on the radio during login. The information on the user that was successfully authenticated is provided in the eventHistoryInfo object of the Event History Log.
27	User authentication failed	information(5)	Event to indicate that a user has failed to be authenticated on the radio during login. The information on the user that was unsuccessfully authenticated is provided in the eventHistoryInfo object of the Event History Log.
28	Protection switch failed	information(5)	Event to indicate that a protection switch over cannot occur for some reason. The reason for the failure to switch is described in the eventHistoryInfo object of the Event History Log.
29	Software Watchdog Expired	information(5)	Event to indicate that a software watchdog occurred on the radio. Any information relevant to the cause of the watchdog is provided in the eventHistoryInfo object of the Event History Log.
30	Software Start Up	information(5)	Event to indicate that the radio software has started. Any information relevant to the software start up is provided in the eventHistoryInfo object of the Event History Log.
33	Protection Switch Occurred	information(5)	Event to indicate that a protection switch over occurs for some reason. The reason for the switch over is described in the eventHistoryInfo object of the Event History Log.

12. Specifications

RF Specifications ETSI Compliant

Frequency Bands

Broadcast Band	Frequency Band	Frequency Tuning Range	Synthesizer Step Size
VHF	136 MHz	136-174 MHz	3.125 kHz
UHF	400 MHz	400-470 MHz	6.250 kHz

Channel Sizes

Channel Size	Gross Radio Capacity
12.5 kHz	9.6 kbit/s
25 kHz	19.2 kbit/s

Transmitter

Transmit Power output	0.01 to 5.0 W (+10 to +3	37 dBm, in 1 dB steps)
Transient adjacent channel power	< - 50 dBc	
Spurious emissions	< - 37 dBm	
Attack time	< 1.5 ms	
Release time	< 1.5 ms	
Data turnaround time	< 10 ms	
Frequency stability	± 1 ppm	
Frequency aging	< 1 ppm / annum	
Synthesizer lock time	< 1.5 ms (5 MHz step)	
	12.5 kHz	25 kHz
Adjacent channel power	< - 60 dBc	< - 55 dBc

Note: The Aprisa SR transmitter contains power amplifier protection which allows the antenna to be disconnected from the antenna port without product damage.

Receiver

		12.5 kHz	25 kHz
Receiver sensitivity	BER < 10 ⁻²	-117 dBm	-114 dBm
	BER < 10 ⁻³	-114 dBm	-111 dBm
	BER < 10 ⁻⁶	-110 dBm	-107 dBm
Adjacent channel selectivity		> 60 dB	> 45 dB
Co-channel rejection		> -12 dB	

Intermodulation response rejection	> 70 dB
Blocking or desensitization	> 90 dB
Spurious response rejection	> 75 dB

Modem

Modulation	4-CPFSK
Forward Error Correction	¾ trellis code

Data Payload Security

Data payload security	CCM* Counter with CBC-MAC
Data encryption	Counter Mode Encryption (CTR) using Advanced Encryption Standard (AES) 128, 192 or 256
Data authentication	Cipher Block Chaining Message Authentication Code (CBC-MAC) using Advanced Encryption Standard (AES) 128, 192 or 256

Interface Specifications

Ethernet Interface

The Aprisa SR radio features an integrated 10Base-T/100Base-TX layer-2 Ethernet switch.

To simplify network setup, each port supports auto-negotiation and auto-sensing MDI/MDIX. Operators can select from the following preset modes:

- Auto negotiate
- 10Base-T half or full duplex
- 100Base-TX half or full duplex

The switch is IEEE 802.3-compatible. It passes VLAN tagged traffic.

General	Interface	RJ-45 x 2 (Integrated 2-port switch)
	Cabling	CAT-5 UTP, supports auto MDIX (Standard Ethernet)
	Maximum line length	100 metres on cat-5 or better
	Bandwidth allocation	The Ethernet capacity maximum is determined by the available radio link capacity.
	Maximum transmission unit	Option setting of 1522 or 1536 octets
	Address table size	1024 MAC addresses
	Ethernet mode	10Base-T or 100Base-TX Full duplex or half duplex (Auto-negotiating and auto-sensing)
Diagnostics	Left Green LED	Off: no Ethernet signal received On: Ethernet signal received
	Right Green LED	Off: Indicates no data traffic present on the interface Flashing: Indicates data traffic present on the interface

Note: Do not connect Power over Ethernet (PoE) connections to the Aprisa SR Ethernet ports as this will damage the port.

RS-232 Asynchronous Interface

The Aprisa SR radio's ITU-T V.24 compliant RS-232 interface is configured as a Cisco® pinout DCE. The interface terminates to a DTE using a straight-through cable or to a DCE with a crossover cable (null modem).

The interface uses two handshaking control lines between the DTE and the DCE.

General	Interface	ITU-T V.24 / EIA/TIA RS-232E
	Interface direction	DCE only
	Maximum line length	10 metres
Async parameters	Standard mode data bits	7 or 8 bits
	Standard mode parity	Configurable for None, Even or Odd
	Standard mode stop bits	1 or 2 bits
	Interface baud rates	300, 1200, 2400, 4800, 9600, 19200, 38400, 57600 and 115200 bit/s
Control signals	DCE to DTE	CTS, RTS, DSR, DTR

Protection Switch Specifications

RF Insertion Loss	< 0.5 dB
Remote Control inputs	Logic 200 ohms pullup to +5 VDC

Power Specifications

Power Supply

Aprisa SR Radio

Nominal voltage	+13.8 VDC (negative earth)
Input voltage range	+10 to +30 VDC
Maximum power input	30 W
Connector	Phoenix Contact 4 pin male screw fitting MC 1.5/ 4-GF-3.5

Aprisa SR Protected Station

Nominal voltage	+13.8 VDC (negative earth)
Input voltage range	+10 to +30 VDC
Maximum power input	35 W
Connector	2x Phoenix Contact 2 pin male screw fitting MC 1.5/ 2-GF-3.5

Aprisa SR Data Driven Protected Station

Nominal voltage	+13.8 VDC (negative earth)
Input voltage range	+10 to +30 VDC
Maximum power input	35 W
Connector	2x Phoenix Contact 4 pin male screw fitting MC 1.5/ 2-GF-3.5

Power Consumption

Aprisa SR Radio

Mode	Power Consumption
Transmit / Receive	< 22.5 W for 5W transmit power
	< 15.0 W for 1W transmit power
Receive only	< 6 W full Ethernet traffic activity
	< 4.5 W no Ethernet traffic activity

Aprisa SR Protected Station and Aprisa SR Data Driven Protected Station

Mode	Power Consumption
Transmit / Receive	< 31 W for 5W transmit power
	< 23.5 W for 1W transmit power
Receive only	< 14.5 W full Ethernet traffic activity
	< 11.5 W no Ethernet traffic activity

Power Dissipation

Aprisa SR Radio

Transmit Power	Power Dissipation
1W transmit power	< 14.0 W
5W transmit power	< 17.5 W

Aprisa SR Protected Station and Aprisa SR Data Driven Protected Station

Transmit Power	Power Dissipation
1W transmit power	< 22.5 W
5W transmit power	< 26.0 W

General Specifications

Environmental

Operating temperature range	- 40 to + 70° C
Storage temperature range	- 40 to + 80° C
Operating humidity	Maximum 95% non-condensing
Acoustic noise emission	No audible noise emission

Mechanical

Aprisa SR Radio

Dimensions	Width 177 mm Depth 110 mm (126 mm with TNC connector) Height 41.5 mm	
Weight	720 g	
Colour	Matt black	
Mounting	Wall (2 x M5 screws) Rack shelf (2 x M4 screws) DIN rail bracket	

Aprisa SR Protected Station

Dimensions	Width 430 mm
	Depth 220 mm (incl interconnect cables)
	Height 90 mm
Weight	4.46 kg
Colour	Matt black
Mounting	Rack mount (2 x M4 screws)

ETSI compliance

	12.5 kHz	25 kHz
Radio	EN 300 113	EN 302 561
EMI / EMC	EN 301 489 Parts 1 & 5	
Safety	EN 60950	
Environmental	ETS 300 019 Class 3.4	

13. Product End Of Life

End-of-Life Recycling Programme (WEEE)

The WEEE Directive concerns the recovery, reuse, and recycling of electronic and electrical equipment. Under the Directive, used equipment must be marked, collected separately, and disposed of properly.

4RF Communications has implemented an end-of-life recycling programme to manage the reuse, recycling, and recovery of waste in an environmentally safe manner using processes that comply with the WEEE Directive (EU Waste Electrical and Electronic Equipment 2002/96/EC).

The WEEE Symbol Explained

This symbol appears on Electrical and Electronic Equipment (EEE) as part of the WEEE (Waste EEE) directive. It means that the EEE may contain hazardous substances and must not be thrown away with municipal or other waste.

WEEE Must Be Collected Separately

You must not dispose of electrical and electronic waste with municipal and other waste. You must separate it from other waste and recycling so that it can be easily collected by the proper regional WEEE collection system in your area.

YOUR ROLE in the Recovery of WEEE

By separately collecting and properly disposing of WEEE, you are helping to reduce the amount of WEEE that enters the waste stream.

One of the aims of the WEEE directive is to divert EEE away from landfill and encourage recycling. Recycling EEE means that valuable resources such as metals and other materials (which require energy to source and manufacture) are not wasted. Also, the pollution associated with accessing new materials and manufacturing new products is reduced.

EEE Waste Impacts the Environment and Health

Electrical and electronic equipment (EEE) contains hazardous substances which have potential effects on the environment and human health. If you want environmental information on the Aprisa SR radio, contact us (on page 13).

14. Abbreviations

AES Advanced Encryption Standard **SWR** AGC Automatic Gain Control TCP/IP Transmission Protocol **BER** Bit Error Rate **TCXO** CBC Cipher Block Chaining **TFTP** CCMCounter with CBC-MAC integrity **TMR** Trunk Mobile Radio DCE Data Communications Equipment TX Transmitter DTE Data Radio Equipment UTP **EMC** Electro-Magnetic Compatibility **EMI** Electro-Magnetic Interference

VCO **ESD** Electro-Static Discharge

ETSI European Telecommunications Standards

FW **Firmware** HW Hardware

IF Intermediate Frequency

IΡ Internet Protocol 1/0 Input/Output

Institute

ISP Internet Service Provider

kbit/s Kilobits per second

kHz Kilohertz

LAN Local Area Network LED Light Emitting Diode

mA Milliamps

MAC Media Access Control

MAC Message Authentication Code

Mbit/s Megabits per second

MHz Megahertz

MIB Management Information Base **MTBF** Mean Time Between Failures

MTTR Mean Time To Repair

ms milliseconds

NMS Network Management System

FAN Field Area Network PC Personal Computer **PCA** Printed Circuit Assembly **PLL** Phase Locked Loop

Parts Per Million ppm **PMR** Public Mobile Radio RF Radio Frequency

RoHS Restriction of Hazardous Substances **RSSI** Received Signal Strength Indication

RX Receiver

SNMP Simple Network Management Protocol

SNR Signal to Noise Ratio Standing Wave Ratio

Control Protocol/Internet

Temperature Compensated Crystal Oscillator

Trivial File Transfer Protocol

Unshielded Twisted Pair

VAC Volts AC

Voltage Controlled Oscillator

VDC

WEEE Waste Electrical and Electronic Equipment

15. Index

A		J	
access rights	101	Java	
accessory kit	14	requirement for	14
antennas			
aligning	138	L	
installing	53	Pake dan arata atta	40
selection and siting	44	lightning protection	49
siting	46	linking system plan	47
attenuators	43	logging in	(2
		SuperVisor	63
В		logging out	
	43	SuperVisor	64
bench setup	43		
		M	
С		maintenance summary	108
cabling		mounting kit	14
accessory kit	14	3	
coaxial feeder	43, 47	0	
CD contents	14	O	
		operating temperature	48
E		Р	
earthing	43, 47, 49		
environmental requirements	48	passwords	
		changing	103
F		path planning	44
		path propagation calculator	44
feeder cables	47	pinouts	
front panel		Ethernet	142
connections	24	RS-232 Serial	143
test mode	26	power supply	48
Н		R	
hardware		radio	
accessory kit	14	earthing	43, 49
installing	53	logging into	63
humidity	48	logging out	64
•		operating temperature	48
I		rebooting	113
•		storage temperature	48
in-service commissioning	137	rebooting the radio	113
interface connections	142	RS-232	
Ethernet	142	serial data	89
RS-232 Serial	143	RS-232 Serial interface	88
		interface connections for	143

port settings for	89
RSSI aligning the antenna	as 138
test mode	26
cese mode	20
S	
security	
settings	104, 107, 124, 128, 129
summary	100
security users	
user privileges	101
SuperVisor	
logging into	63
logging out	64
PC settings for	59
Т	
temperature	48
tools	50
U	
users	
adding	102
changing passwords	103
deleting	103
user details	101
user privilege	102
W	
WEEE	156