

Test Report Serial Number:

Test Report Date:

Project Number:

45461491 R1.0 27 March 2019 1446

EMC Test Report - Class II Permissive Change

Applicant:

4RF Limited PO Box 13-506 Wellington 6440, New Zealand 4RF Limited 26 Glover St. Ngauranga, PO Box 13-506 Wellington 6440, New Zealand

FCC ID:

UIPSQ928M141

Product Model Number / HVIN

SQ928M141

IC Registration Number

6772A-SQ928M141

Product Name / PMN

Aprisa SR+

In Accordance With:

FCC 47 CFR Part 24 - Subpart D - Narrowband PCS

Licensed Non-Broadcast Station Transmitter (TNB)

ISED RSS-134 - 900MHz Narrowband Personal Communication Servide

PCS Narrowband (901–902 MHz, 930-931 MHz and 940–941 MHz)

Approved By:

Ben Hewson, President

Celltech Labs Inc. 21-364 Lougheed Rd. Kelowna, BC, V1X 7R8 Canada

Industry Canada

Test Lab Certificate: 2470.01

IC Registration 3874A-1

FCC Registration: CA3874

45461491 R1.0 27 March 2019

Table of Contents

1.0 DOCUMENT CONTROL	5
2.0 CLIENT AND DUT INFORMATION	6
3.0 SCOPE	7
4.0 TEST RESULT SUMMARY	
5.0 NORMATIVE REFERENCES	9
6.0 FACILITIES AND ACCREDITATIONS	10
7.0 CONDUCTED OUTPUT POWER	
8.0 OCCUPIED BANDWIDTH	
9.0 CONDUCTED SPURIOUS EMISSIONS – EMISSIONS MASK	
10.0 CONDUCTED SPURIOUS EMISSIONS TO 10 TH HARMONIC	
11.0 RADIATED OUT OF BAND SPURIOUS EMISSIONS	
APPENDIX A – TEST SETUP DRAWINGS AND EQUIPMENT	_
APPENDIX B – EQUIPMENT LIST AND CALIBRATION	80
APPENDIX C – MEASUREMENT INSTRUMENT UNCERTAINTY	81

45461491 R1.0 27 March 2019

_				_				
_		\sim	of	_		ш	~~	c
	u		OI.		w	w		

Figure A.1 – Test Setup Conducted Measurements	
Table of Plots	
Plot 7.1 – Conducted Power – 901.5MHz, 10VDC	
Plot 7.2 – Conducted Power – 901.5MHz, 13.8VDC	
Plot 7.3 – Conducted Power – 901.5MHz, 30VDC	
Plot 7.4 – Conducted Power – 930.5MHz, 10VDC	
Plot 7.5 – Conducted Power – 930.5MHz, 13.8VDC	
Plot 7.6 – Conducted Power – 930.5MHz, 30VDC	
Plot 7.7 – Conducted Power – 940.5MHz, 10VDC	
Plot 7.8 – Conducted Power – 940.5MHz, 13.8VDC	
Plot 7.9 – Conducted Power – 940.5MHz, 30VDC	20
Plot 8.1 – Occupied Bandwidth – 901.5MHz, 100kHz BW, QPSK	23
Plot 8.2 – Occupied Bandwidth – 901.5MHz, 100kHz BW, 16QAM	
Plot 8.3 – Occupied Bandwidth – 901.5MHz, 100kHz BW, 64QAM	
Plot 8.4 – Occupied Bandwidth – 930.5MHz, 100kHz BW, QPSK	
Plot 8.5 – Occupied Bandwidth – 930.5MHz, 100kHz BW, 16QAM	
Plot 8.6 – Occupied Bandwidth – 930.5MHz, 100kHz BW, 64QAM	
Plot 8.7 – Occupied Bandwidth – 940.5MHz, 100kHz BW, QPSK	
Plot 8.8 – Occupied Bandwidth – 940.5MHz, 100kHz BW, 16QAM	
Plot 8.9 – Occupied Bandwidth – 940.5MHz, 100kHz BW, 64QAM	
Diet O. 4. Emissions Most, 204 05, 400kHz DIM, ODSK	24
Plot 9.1 – Emissions Mask – 901.05, 100kHz BW, QPSK	
Plot 9.2 – Emissions Mask – 901.05, 100kHz BW, 16QAM	
Plot 9.3 – Emissions Mask – 901.05, 100kHz BW, 64QAM	
Plot 9.5 – Emissions Mask – 901.5, 100kHz BW, QPSN	
Plot 9.6 – Emissions Mask – 901.5, 100kHz BW, 16QAM	
Plot 9.7 – Emissions Mask – 901.95, 100kHz BW, 04QAW	
Plot 9.8 – Emissions Mask – 901.95, 100kHz BW, QFSK	
Plot 9.9 – Emissions Mask – 901.95, 100kHz BW, 16QAM	
Plot 9.10 – Emissions Mask – 901.93, 100kHz BW, QPSK	
Plot 9.11 – Emissions Mask – 930.05, 100kHz BW, 16QAM	
Plot 9.12 – Emissions Mask – 930.05, 100kHz BW, 10QAM	
Plot 9.13 – Emissions Mask – 930.05, 100kHz BW, QPSK	
Plot 9.14 – Emissions Mask – 930.5, 100kHz BW, Qf GR	
Plot 9.15 – Emissions Mask – 930.5, 100kHz BW, 16QAM	
Plot 9.16 – Emissions Mask – 930.95, 100kHz BW, QPSK	
Plot 9.17 – Emissions Mask – 930.95, 100kHz BW, 16QAM	
Plot 9.18 – Emissions Mask – 930.95, 100kHz BW, 10QAM	
Plot 9.19 – Emissions Mask – 930.95, 100kHz BW, QPSK	
Plot 9.20 – Emissions Mask – 940.05, 100kHz BW, 16QAM	
Plot 9.21 – Emissions Mask – 940.05, 100kHz BW, 64QAM	
Plot 9.22 – Emissions Mask – 940.05, 100kHz BW, QPSK	
Plot 9.23 – Emissions Mask – 940.5, 100kHz BW, 16QAM	
Plot 9.24 – Emissions Mask – 940.5, 100kHz BW, 10QAM	
Plot 9.25 – Emissions Mask – 940.95, 100kHz BW, QPSK	
Plot 9.26 – Emissions Mask – 940.95, 100kHz BW, 16QAM	
Plot 9.27 – Emissions Mask – 940.95, 100kHz BW, 10QAM	
TIOCOLE ETHOSIONS WIGHT STO.OO, TOOM IZ DIV, OTGANI	00

45461491 R1.0 27 March 2019

Plot 10.1 – Conducted Spurious Emissions 901.5MHz Channel, 1 – 3GHz	62
Plot 10.2 – Conducted Spurious Emissions 901.5MHz Channel, 3 – 10GHz	63
Plot 10.3 – Conducted Spurious Emissions 901.5MHz Channel, 2 nd Harmonic	64
Plot 10.4 – Conducted Spurious Emissions 901.5MHz Channel, 3 rd Harmonic	65
Plot 10.5 – Conducted Spurious Emissions 930.5MHz Channel, 1 – 3GHz	66
Plot 10.6 – Conducted Spurious Emissions 930.5MHz Channel, 3 – 10GHz	
Plot 10.7 – Conducted Spurious Emissions 930.5MHz Channel, 2 nd Harmonic	68
Plot 10.8 – Conducted Spurious Emissions 930.5MHz Channel, 3 rd Harmonic	69
Plot 10.9 – Conducted Spurious Emissions 940.5MHz Channel, 1 – 3GHz	70
Plot 10.10 – Conducted Spurious Emissions 940.5MHz Channel, 3 – 10GHz	71
Plot 10.11 – Conducted Spurious Emissions 940.5MHz Channel, 2 nd Harmonic	72
Plot 10.12 – Conducted Spurious Emissions 940.5MHz Channel, 3 rd Harmonic	73
Plot 11.1 – Radiated Out of Band Emissions, 901.5MHz Channel, 2 nd Harmonic	76
Table of Tables	
Table 7.1 - Summary of Conduct Power Massurements	21
Table 7.1 - Summary of Conduct Power Measurements Table 8.1 - Summary of Occupied Bandwidth Measurements	27
Table 0. 1 - Sulfilliary of Occupied Dandwidth Measurethells	32

Table 10 - Summary of Conducted Spurious Emissions Measurements74Table 11.1 - Summary of Radiated Out of Band Emissions Measurements77Table A.1 - Setup - Conducted Measurements Equipment78Table A.2 - Setup - Radiated Emissions Equipment79

45461491 R1.0 27 March 2019

1.0 DOCUMENT CONTROL

	Revision History						
Samples Tested By: Art Voss, P.Eng.		Date(s) of Evaluation:		15 Mar - 27 Mar, 2019			
Repo	ort Prepared By:	Art Voss, P.Eng.	Report Reviewed By:		Report Reviewed By: Ben Hewse		Ben Hewson
Report Pagarintian of Revision		Revised	Revised	Revision Date			
Revision	Description of Revision sion		Section	Ву	Nevision Date		
1.0		nitial Release	n/a	Art Voss	27 March 2019		

45461491 R1.0 27 March 2019

2.0 CLIENT AND DUT INFORMATION

Client Information					
Applicant Name	4RF Limited				
Annih ant Address (FCC)	PO Box 13-506				
Applicant Address (FCC)	Wellington 6440, New Zealand				
	26 Glover St.				
Applicant Address (ISED)	Ngauranga, PO Box 13-506				
	Wellington 6440, New Zealand				
	DUT Information				
Paris a Mantiffanta)	FCC ID: UIPSQ928M141				
Device Identifier(s):	ISED ID: 6772A-SQ928M141				
Equipment Class (FCC):	TNB - Licensed Non-Broadcast Station Transmitter				
Equipment Class (ISED):	PCS Narrowband (901–902 MHz, 930-931 MHz and 940–941 MHz)				
Device Type:	Digital Radio				
Device Model(s) / HVIN:	SQ928M141				
Device Marketing Name / PMN:	Aprisa SR+				
Firmware Version ID Number / FVIN:	-				
Host Marketing Name / HMN:	-				
Test Sample Serial No.:	T/A Sample - Identical Prototype				
Transmit Frequency Range:	901-902MHz, 930-931MHz, 940-941MHz				
Test Channels:	Programmable				
	QPSK: 37dBm				
Manuf. Max. Rated Output Power:	16 QAM: 35dBm				
	64 QAM: 34dBm				
Manuf. Max. Rated BW/Data Rate:	12.5kHz, 25kHz, 50kHz, 100kHz				
Antenna Make and Model:	n/a				
Antenna Type and Gain:	28dBi Max.				
Modulation:	QPSK, 16QAM, 64QAM				
Mode:	Half Duplex				
Emission Designator:	See Section 8.0				
DUT Power Source:	10-30VDC, 13.8 VDC External (Nominal)				
DUT Dimensions [HxWxD] (mm)	90 x 432 x 280				
Deviation(s) from standard/procedure:					
Modification of DUT:	None				
Class II Pern	nissive Change: Reference Section 3.0 Scope				

45461491 R1.0 27 March 2019

3.0 SCOPE

This Certification Report was prepared on behalf of:

4RF Limited

,(the 'Applicant"), in accordance with the applicable Federal Communications Commission (FCC) CFR 47 and Innovation, Scientific and Economic Development (ISED) Canada rules parts and regulations (the 'Rules'). The scope of this investigation was limited to only the equipment, devices and accessories (the 'Equipment') supplied by the Applicant. The tests and measurements performed on this Equipment were only those set forth in the applicable Rules and/or the Test and Measurement Standards they reference. The Rules applied and the Test and Measurement Standards used during this evaluation appear in the Normative References section of this report. The limits set forth in the technical requirements of the applicable Rules were applied to the measurement results obtained during this evaluation and ,unless otherwise noted, these limits were used as the Pass/Fail criteria. The Pass/Fail statements made in this report apply to only the tests and measurements performed on only the Equipment tested during this evaluation. Where applicable and permissible, information including test and measurement data and/or results from previous evaluations of same or similar equipment, devices and/or accessories may be cited in this report.

Application: Class II Permissive Change

This is a Class II Permissive Change to add 100kHz channel bandwidths operating in 901-902, 930-931 and 940-941MHz bands, under 47 CFR §24 Subpart D and ISED RSS-134 (SRSP-509). Channel aggregation of two 50kHz adjacent channels are permitted per 47 CFR §24.131 and ISED RSS-134 §4.1. The authorized bandwidth is 5kHz less than the total aggregated channel bandwidth, or 95kHz. This changes involves modification of the firmware only, there are no physical changes to the circuit design, PCB layout or bill of material and there are no changes to the transmitter output power.

The scope of this investigation includes:

Measurement of the transmitter output power and compare to the original filing.

Measurement of the occupied bandwidth and evaluate for compliance.

Measurement of the conducted spurious transmitter emissions and evaluate for compliance.

Measurement of the radiated spurious transmitter emissions and compare to the original filing.

I attest that the data reported herein is true and accurate within the tolerance of the Measurement Instrument Uncertainty; that all tests and measurements were performed in accordance with accepted practices or procedures; and that all tests and measurements were performed by me or by trained personnel under my direct supervision. The results of this investigation are based solely on the test sample(s) provided by the client which were not adjusted, modified or altered in any manner whatsoever, except as required to carry out specific tests or measurements. This test report has been completed in accordance with ISO/IEC 17025.

Sull Yours

Art Voss, P.Eng. Technical Manager Celltech Labs Inc.

27 March 2019

Date

45461491 R1.0 27 March 2019

4.0 TEST RESULT SUMMARY

	TEST SUMMARY							
Section	Description of Test	Procedure	Applicable Rule	Applicable Rule	Test	Result		
Section	Description of Test	Reference	Part(s) FCC	Part(s) ISED	Date	Result		
7.0	Conducted Pow er (Fundamental)	ANSI C63.10 2013 (DTS)	§2.1046	RSS-Gen	18 Mar 2019	Complies		
7.0	Conducted Fow et (Fundamental)	ANSI C63.26 2015	§24.132	RSS-134 §4.3	10 Mai 2019	Compiles		
8.0	Occupied Bandw idth	ANSI C63.10 2013 (DTS)	§2.1049	RSS-Gen	18 Mar 2019	Complies		
0.0	Occupied Baridwidth	ANSI C63.26 2015	§24.131	RSS-134 §4.1	10 Mai 2019	Compiles		
9.0	Emission Mask	ANSI C63.10 2013 (DTS)	§2.1051	RSS-Gen	19 Mar 2019	Complies		
9.0	LINSSOIT WASK	ANSI C63.26 2015	§24.133(a)(1)	RSS-134 §4.4.1	19 Wai 2019	Complics		
10.0	Conducted TX Spurious Emissions	ANSI C63.10 2013 (DTS)	§2.1051	RSS-Gen	19 Mar 2019	Complies		
10.0	Conducted 1% opunious Emissions	ANSI C63.26 2015	§24.133(a)(1)	RSS-134 §4.4.1	13 Wai 2013	Compiles		
11.0	Radiated TX Spurious Emissions	ANSI C63.4 2014	§2.1053	RSS-Gen	27 Mar 2019	Complies		
11.0	(Pre-Scan Only)	A1101 000.4 2014	32.1000	1,00-0611	27 IVIGI 2019	Complies		

Test Station Day Log							
Date	Ambient Temp	Relative Humidity	Barometric Pressure	Test Station	Tests Performed		
	(°C)	(%)	(kPa)		Section(s)		
15 Mar 2019	23.2	16	103.1	EMC	7		
18 Mar 2019	23.1	16	102.9	EMC	7,8		
19 Mar 2019	23.2	16	102.4	EMC	9		
21 Mar 2019	22.6	15	101.6	EMC	10		
22 Mar 2019	22.4	15	101.0	EMC	10		
27 Mar 2019	20.8	17	102.0	SAC	11		
28 Mar 2019	21.4	17	102.0	SAC	11		

EMC - EMC Test Bench

Bench SAC - Semi-Anechoic Chamber

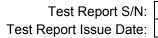
OATS - Open Area Test Site

TC - Temperature Chamber

LISN - LISN Test Area

ESD - ESD Test Bench

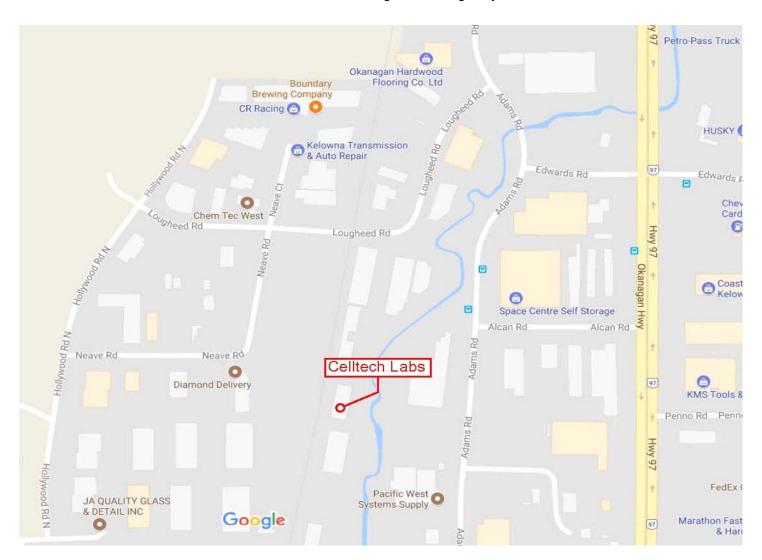
IMM - Immunity Test Area


RI - Radiated Immunity Chamber

45461491 R1.0 27 March 2019

5.0 NORMATIVE REFERENCES

		Normative References
		General Requirements for competence of testing and calibration laboratories
ANSI C63.	4:2014	Methods of Measurement of Radio-Noise Emissions from Low-Voltage
		Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.	10:2013	American National Standard of Procedures for Compliance Testing of
		Unlicensed Wireless Devices
		Procedure for Testing DTS Devices
ANSI C63.	26:2015	American National Standard for Compliance Testing of Transmitters Used in
		Licensed Radio Services
CFR Title 4	7	Code of Federal Regulations
	Title 47:	Telecommunication
	Part 2:	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
CFR Title 4	7	Code of Federal Regulations
	Title 47:	Telecommunication
	Part 24:	Personal Communication Services
	Subpart D:	Narrowband PCS
ISED		Innovation, Science and Economic Development Canada
		Spectrum Management and Telecommunications Radio Standards Specification
RSS	S-Gen Issue 5:	General Requirements and Information for the Certification of Radiocommunication Equipment
ISED		Innovation, Science and Economic Development Canada
		Spectrum Management and Telecommunications Radio Standards Specification
RS	S-134 Issue 2:	900MHz Narrowband Personal Communication Service
ISED		Innovation, Science and Economic Development Canada
		Spectrum Management and Telecommunications Radio Standards Specification
SRS	P-509 Issue 1:	Technical Requirements for Narrowband Personal Communications Services in the
		Bands 901-902 MHz, 930-931 MHz and 940-941 MHz


45461491 R1.0 27 March 2019

6.0 FACILITIES AND ACCREDITATIONS

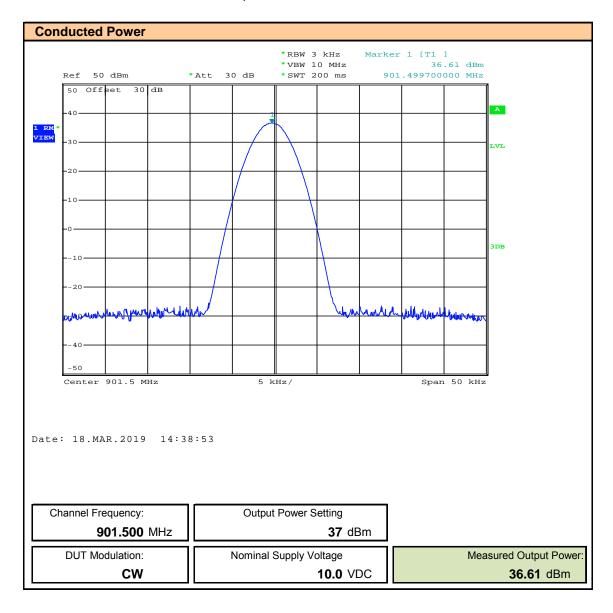
Facility and Accreditation:

The facilities used to evaluate this device outlined in this report are located at 21-364 Lougheed Road, Kelowna, British Columbia, Canada V1X7R8. The radiated emissions site (OATS) conforms to the requirements set forth in ANSI C63.4 and is filed and listed with the FCC under Test Firm Registration Number CA3874A-1 and Industry Canada under Test Site File Number IC 3874A-1. Celltech is accredited to ISO 17025, through accrediting body A2LA and with certificate 2470.01.

45461491 R1.0 27 March 2019

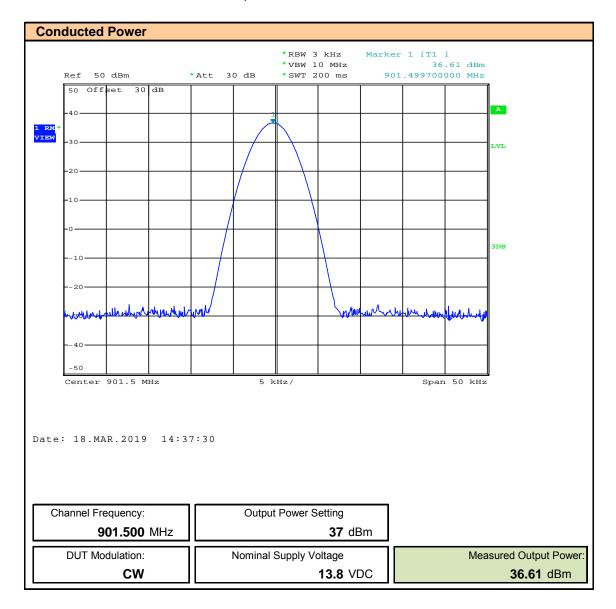
7.0 CONDUCTED OUTPUT POWER

Test Procedure						
Normative	FCC 47 CFR §2.1046, §2.1033(c)(8), §24.132, RSS-134					
Reference	ANSI C63.26					
Limits						
	§24.132 Power and antenna height limits.					
47 CFR §24	(a) Stations transmitting in the 901-902 MHz band are limited to 7 watts e.r.p.					
47 CFR 924	(c) Base stations transmitting in the 930-931 MHz and 940-941 MHz bands are limited to 3500 watts e.r.p. per authorized channel					
	4.3 Typical Output Power					
RSS-134	(a) Stations transmitting in the 901-902 MHz band and all mobile stations in the 930-931 MHz and 940-941 MHz bands are limited to 7 watts effective radiated power (ERP) (11.5 watts effective isotropic radiated power (EIRP)).					
	(b) Base stations transmitting in the 930-931 MHz and 940-941 MHz bands can be certified to any manufacturer's rated power that respects the ERP restrictions of SRSP- 509.					
General Procedure						
	5.2.1 RF power measurement instrumentation considerations					
C63.26	The DUT fundamental output power indicated in the original filing was obtained using the DUT's CW transmit mode. For the purpose of comparison, the output power was measured while the DUT was transmitting in the CW mode.					
Test Setup	Appendix A - Figure A.1					

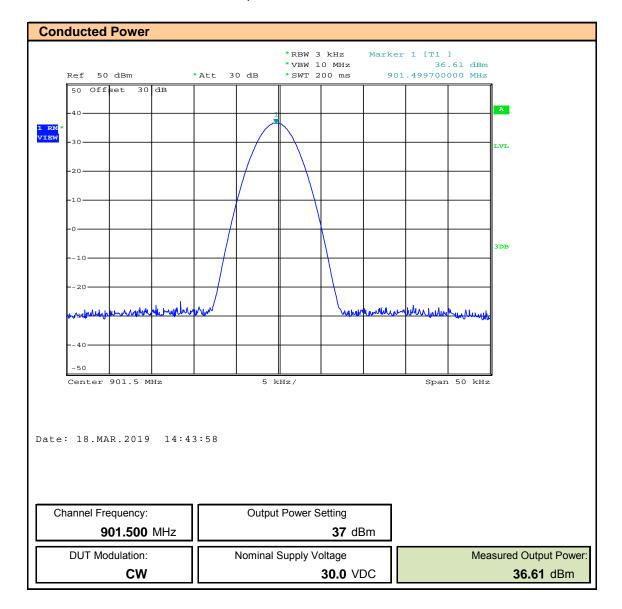

Measurement Procedure

The DUT was connected to a Spectrum Analyzer via a 30dB attenuator connected to the DUT's antenna port. The SA was set to measure RMS power. The output power of the DUT was set to the manufacturer's highest output power setting at the Mid channel of each channel band. The DUT was set to transmit unmodulated. The DUT power source was set to the DUT's minimum, nominal and maximum input supply voltage. The SA was set to Max Hold and the output power was measured using Marker Peak. The output power was measure at each input power setting in each channel band.

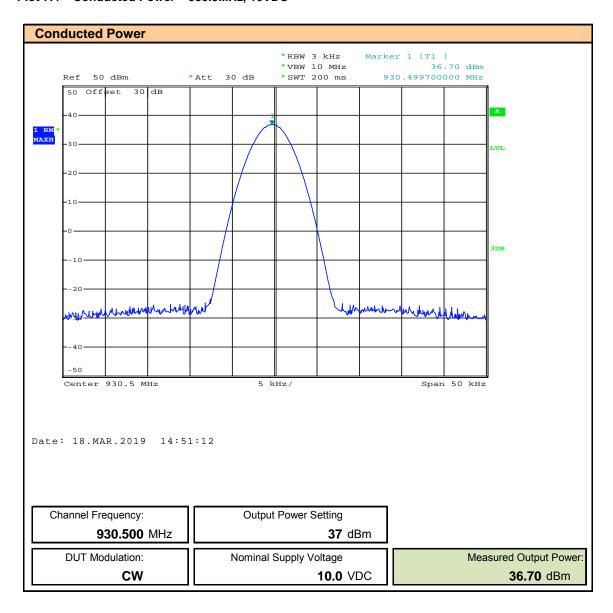
45461491 R1.0 27 March 2019


Plot 7.1 - Conducted Power - 901.5MHz, 10VDC

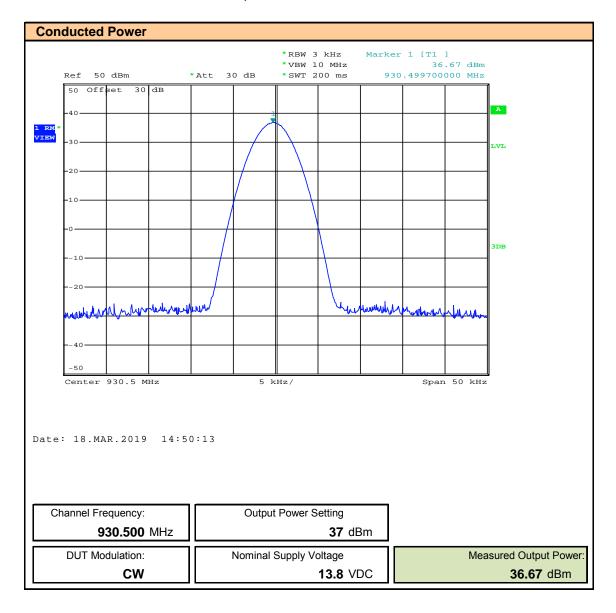
45461491 R1.0 27 March 2019


Plot 7.2 - Conducted Power - 901.5MHz, 13.8VDC

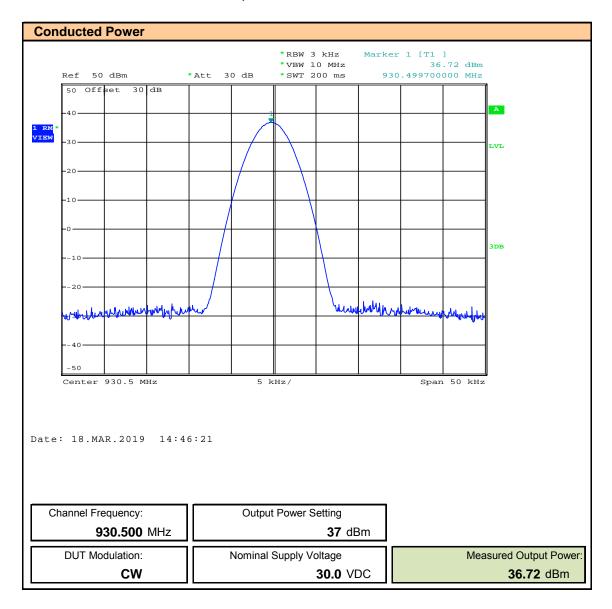
45461491 R1.0 27 March 2019


Plot 7.3 - Conducted Power - 901.5MHz, 30VDC

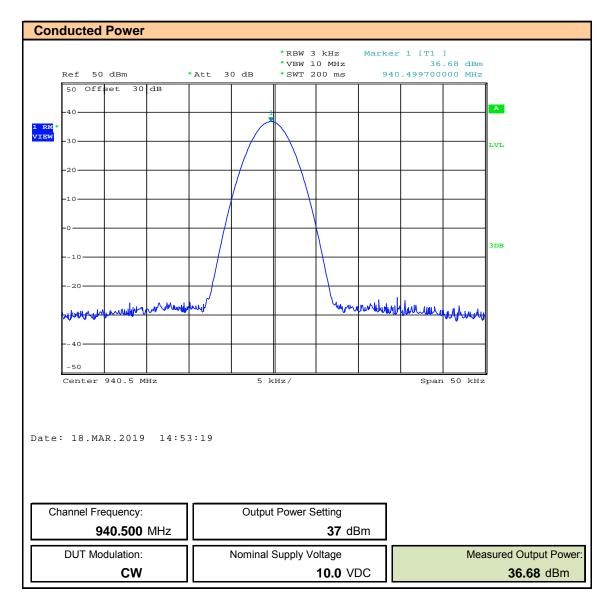
45461491 R1.0 27 March 2019


Plot 7.4 - Conducted Power - 930.5MHz, 10VDC

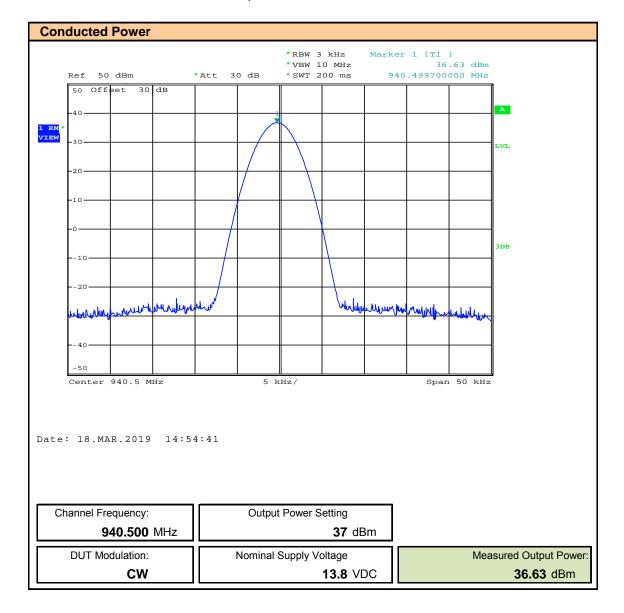
45461491 R1.0 27 March 2019


Plot 7.5 - Conducted Power - 930.5MHz, 13.8VDC

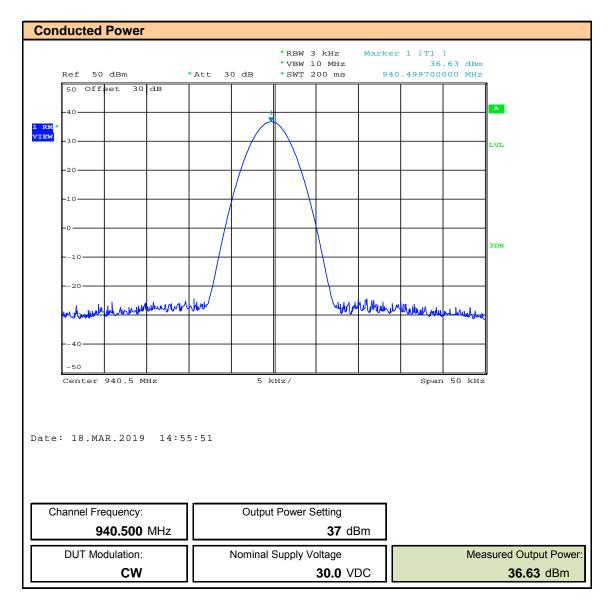
45461491 R1.0 27 March 2019


Plot 7.6 - Conducted Power - 930.5MHz, 30VDC

45461491 R1.0 27 March 2019


Plot 7.7 - Conducted Power - 940.5MHz, 10VDC

45461491 R1.0 27 March 2019


Plot 7.8 - Conducted Power - 940.5MHz, 13.8VDC

45461491 R1.0 27 March 2019

Plot 7.9 - Conducted Power - 940.5MHz, 30VDC

45461491 R1.0 27 March 2019

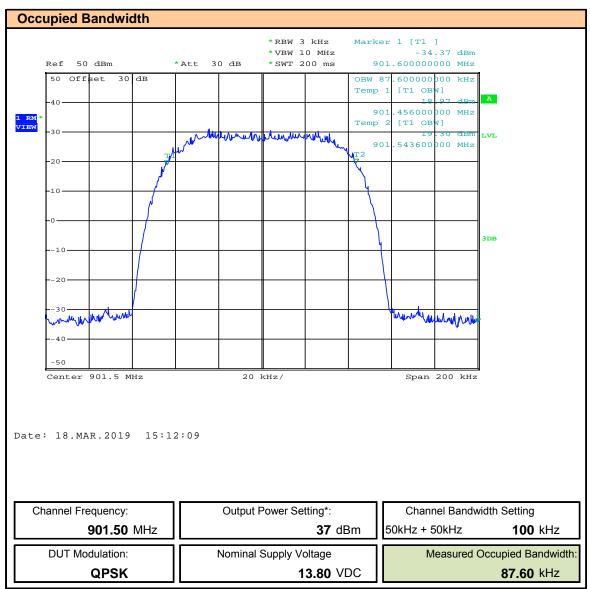
Table 7.1 - Summary of Conduct Power Measurements

Conducted Power Measurement Results							
Frequency	Modulation	Nominal Input	Power	Measured Power	Measured Power	Original	Difference
		Voltage	Setting	[E _{Meas}]	[E _{Meas}]	Filing	
(MHz)		(VDC)	(dBm)	(dBm)	(W)	(dBm)	(dB)
	01.500	10		36.61	4.58	36.8	-0.2
901.500		13.8		36.61	4.58	36.9	-0.3
		30		36.61	4.58	36.9	-0.3
		10		36.70	4.68	36.8	-0.1
930.500	CW	13.8	37	36.67	4.65	36.9	-0.2
		30		36.72	4.70	36.9	-0.2
		10		36.68	4.66	36.8	-0.1
940.500		13.8		36.63	4.60	36.9	-0.3
		30		36.63	4.60	36.9	-0.3
						Co	mplies

45461491 R1.0 27 March 2019

8.0 OCCUPIED BANDWIDTH

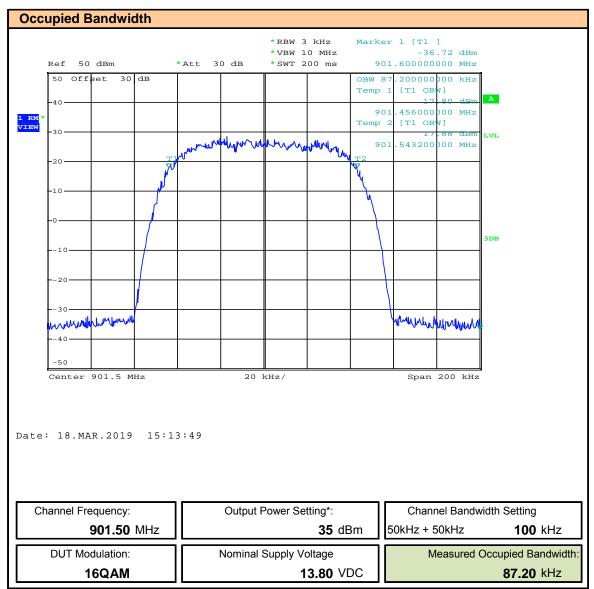
Test Procedure	
Normative	FCC 47 CFR §2.1049, §24.131, RSS-134
Reference	ANSI C63.26
Limits	
	§24.132 Power and antenna height limits.
47 CFR §24	The authorized bandwidth of narrowband PCS channels will be 10 kHz for 12.5 kHz channels and 45 kHz for 50 kHz channels. For aggregated adjacent channels, a maximum authorized bandwidth of 5 kHz less than the total aggregated channel width is permitted.
	4.1 Channel Spacings and Authorized Bandwidths
	The standard channel spacings are 12.5 and 50 kHz. The authorized bandwidth is 10 kHz for 12.5 kHz spaced channels and 45 kHz bandwidth for 50 kHz spaced channels.
RSS-134	Channel aggregation using adjacent channels is also permitted provided that it is shown in the equipment certification application that frequency spectrum efficiency is maintained by such aggregation. For aggregated channels, the authorized bandwidth is 5 kHz less than the total aggregated channel width.
General Procedure	
	5.4.4 Occupied bandwidth—Power bandwidth (99%) measurement procedure
	The OBW is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission.
	The following procedure shall be used for measuring (99%) power bandwidth:
C63.26	a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (typically a span of 1.5 × OBW is sufficient).
	b) The nominal IF filter 3 dB bandwidth (RBW) shall be in the range of 1% to 5% of the anticipated OBW, and the VBW shall be ≥ 3 × RBW.
	c) Set the reference level of the instrument as required to prevent the signal amplitude from exceeding the maximum spectrum analyzer input mixer level for linear operation.
	d) Set the detection mode to peak, and the trace mode to max-hold.
Test Setup	Appendix A - Figure A.1


Measurement Procedure

The DUT was connected to a Spectrum Analyzer via a 30dB attenuator connected to the DUT's antenna port. The SA was set to RMS Detector. The output power of the DUT was set to the manufacturer's highest output power setting at the Mid channel of each channel band. The DUT was set to transmit QPSK, 16QAM and 64QAM. The SA was set to Max Hold and set to measure the 99% Occupied Bandwidth. NOTE: The DUT automatically adjusts the transmitter output power depending on the modulation. 37dBm: QPSK, 35dBm: 16QAM, 34dBm: 64QAM.

45461491 R1.0 27 March 2019

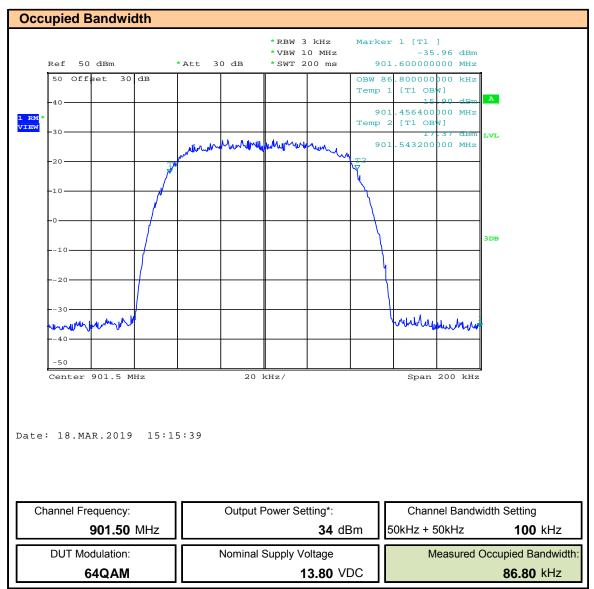
Plot 8.1 - Occupied Bandwidth - 901.5MHz, 100kHz BW, QPSK



^{*} The DUT automatically adjusts the transmit power based on modulation QPSK: 37dBm, 16QAM: 35dBm, 64QAM:, 34dBm

45461491 R1.0 27 March 2019

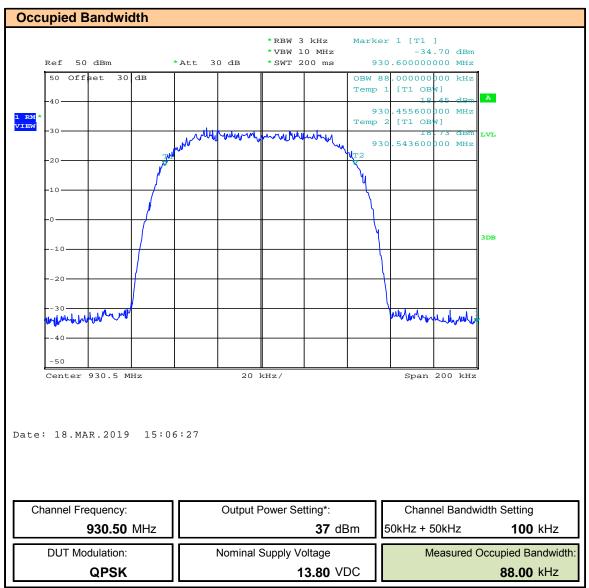
Plot 8.2 - Occupied Bandwidth - 901.5MHz, 100kHz BW, 16QAM



^{*} The DUT automatically adjusts the transmit power based on modulation QPSK: 37dBm, 16QAM: 35dBm, 64QAM:, 34dBm

45461491 R1.0 27 March 2019

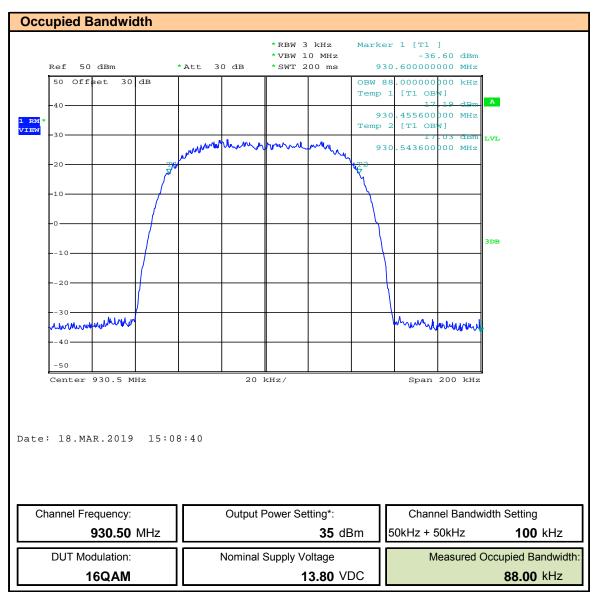
Plot 8.3 - Occupied Bandwidth - 901.5MHz, 100kHz BW, 64QAM



^{*} The DUT automatically adjusts the transmit power based on modulation QPSK: 37dBm, 16QAM: 35dBm, 64QAM:, 34dBm

45461491 R1.0 27 March 2019

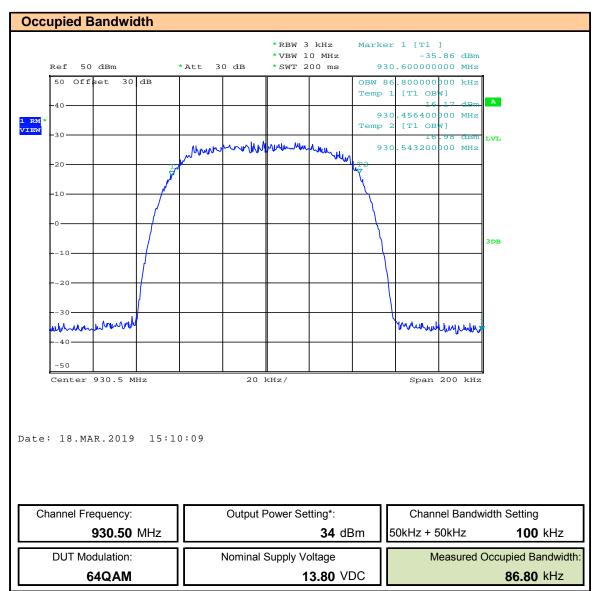
Plot 8.4 - Occupied Bandwidth - 930.5MHz, 100kHz BW, QPSK



^{*} The DUT automatically adjusts the transmit power based on modulation QPSK: 37dBm, 16QAM: 35dBm, 64QAM:, 34dBm

45461491 R1.0 27 March 2019

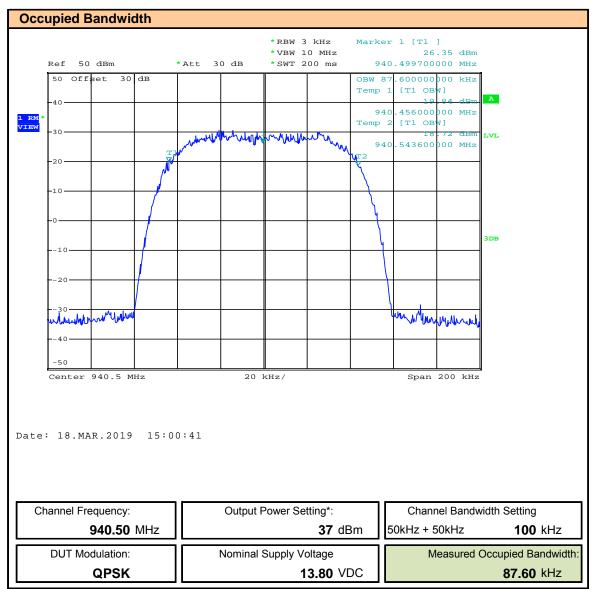
Plot 8.5 - Occupied Bandwidth - 930.5MHz, 100kHz BW, 16QAM



^{*} The DUT automatically adjusts the transmit power based on modulation QPSK: 37dBm, 16QAM: 35dBm, 64QAM:, 34dBm

45461491 R1.0 27 March 2019

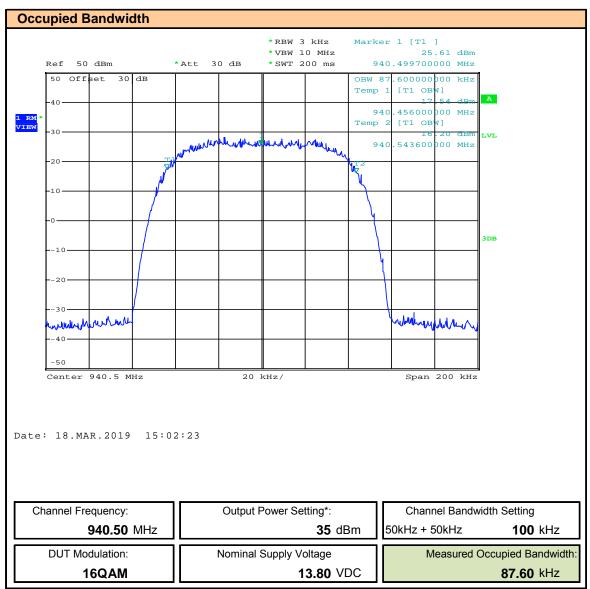
Plot 8.6 - Occupied Bandwidth - 930.5MHz, 100kHz BW, 64QAM



^{*} The DUT automatically adjusts the transmit power based on modulation QPSK: 37dBm, 16QAM: 35dBm, 64QAM:, 34dBm

45461491 R1.0 27 March 2019

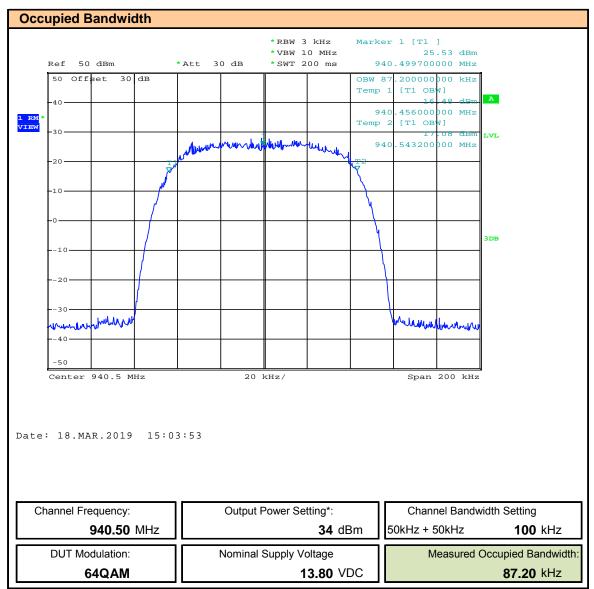
Plot 8.7 - Occupied Bandwidth - 940.5MHz, 100kHz BW, QPSK



^{*} The DUT automatically adjusts the transmit power based on modulation QPSK: 37dBm, 16QAM: 35dBm, 64QAM:, 34dBm

45461491 R1.0 27 March 2019

Plot 8.8 - Occupied Bandwidth - 940.5MHz, 100kHz BW, 16QAM



^{*} The DUT automatically adjusts the transmit power based on modulation QPSK: 37dBm, 16QAM: 35dBm, 64QAM:, 34dBm

45461491 R1.0 27 March 2019

Plot 8.9 - Occupied Bandwidth - 940.5MHz, 100kHz BW, 64QAM

^{*} The DUT automatically adjusts the transmit power based on modulation QPSK: 37dBm, 16QAM: 35dBm, 64QAM:, 34dBm

45461491 R1.0 27 March 2019

Table 8.1 - Summary of Occupied Bandwidth Measurements

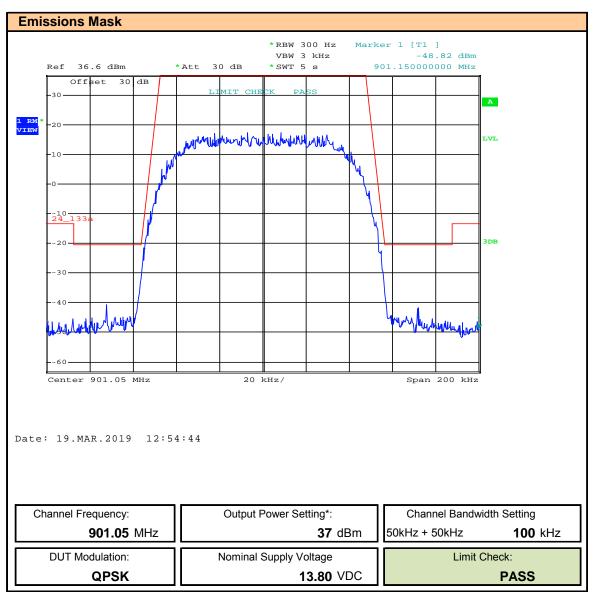
Occupied Bandwidth Measurement Results								
Frequency	DUT	Power	Measured	Authorized				
			Occupied	Bandwidth	Margin	Emission	Emission	
	Modulation	Setting	Bandwidth			Mask*	Designator	
(MHz)		(dBm)	(kHz)	(kHz)	(kHz)	IVIASK	Designator	
901.5	QPSK	37	87.6	95.0	7.4	PASS	87K6G1D	
	16QAM	35	87.2		7.8	PASS	87K2D1D	
	64QAM	34	86.8		8.2	PASS	86K8D1D	
930.5	QPSK	37	88.0		7.0	PASS	88K0G1D	
	16QAM	35	88.0		7.0	PASS	88K0D1D	
	64QAM	34	86.8		8.2	PASS	86K8D1D	
940.5	QPSK	37	87.6		7.4	PASS	87K6G1D	
	16QAM	35	87.6		7.4	PASS	87K6D1D	
	64QAM	34	87.2		7.8	PASS	87K2D1D	
Margin = Authorized BW - Measured BW								
							Complies	

^{*}See Section 9.0 For Emission Mask Data

45461491 R1.0 27 March 2019

9.0 CONDUCTED SPURIOUS EMISSIONS - EMISSIONS MASK

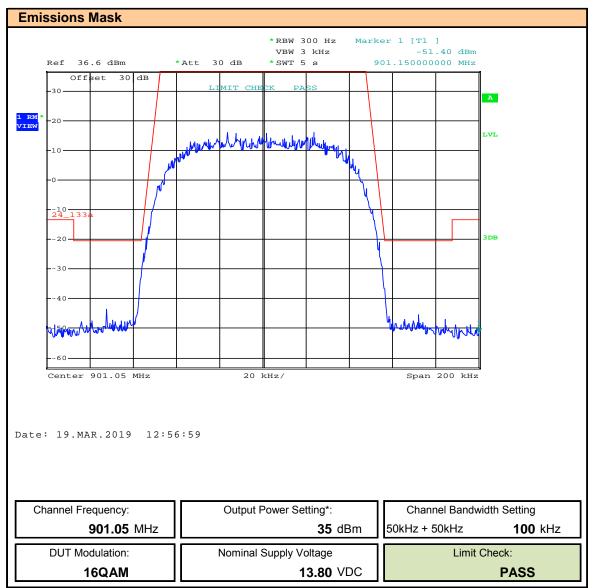
Test Procedure					
Normative	FCC 47 CFR §2.1051, §24.133, RSS-134				
Reference					
Limits					
47 CFR §24	§24.133 Emission Limits. (a) The power of any emission shall be attenuated below the transmitter power (P), as measured in accordance with §24.132(f), in accordance with the following schedule: (1) For transmitters authorized a bandwidth greater than 10 kHz: (i) On any frequency outside the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement frequency (f _d in kHz) of up to and including 40 kHz: at least 116 Log10 ((f _d + 10)/6.1) decibels or 50 plus 10 Log10 (P) decibels or 70 decibels, whichever is the lesser attenuation; (ii) On any frequency outside the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement frequency (f _d in kHz) of more than 40 kHz: at least 43 + 10 Log10 (P) decibels or 80 decibels, whichever is the lesser attenuation. (b) The measurements of emission power can be expressed in peak or average values provided they are expressed in the same parameters as the transmitter power. d) The following minimum spectrum analyzer resolution bandwidth settings will be used: 300 Hz when showing compliance with paragraphs (a)(1)(ii) and (a)(2)(ii) of this section; and 30 kHz when showing compliance with paragraphs (a)(1) (iii) and (a)(2)(ii) of this section.				
RSS-134	 4.4 Transmitter Unwanted Emissions 4.4.1 Minimum Standard for Spacings Exceeding 4.4.1 12.5 kHz (Bandwidth > 10 kHz) The power of emissions from the transmitter with modulated carrier shall be attenuated below the transmitter power (P) in accordance with the following schedule (where the displacement frequency f_d measured in kHz starts from the edge of the authorized bandwidth): (a) For f_d up to and including 40 kHz: at least 116 log10((f_d+10)/6.1) dB, or 50+10log10 (P) dB, or 70 dB, whichever is less stringent, using a spectrum analyzer of 300 Hz resolution bandwidth; (b) For f_d of more than 40 kHz: at least 43+10 log10 (P) dB, or 80 dB, whichever is less stringent, using a spectrum analyzer of 30 kHz resolution bandwidth. 				
Test Setup	Appendix A - Figure A.1				


Measurement Procedure

The DUT was connected to a Spectrum Analyzer via a 30dB attenuator connected to the DUT's antenna port. The SA was set to RMS Detector. The output power of the DUT was set to the manufacturer's highest output power setting at the Lower, Mid and Upper channel of each channel band. The DUT was set to transmit QPSK, 16QAM and 64QAM. An emissions masks was set to the limits described above. The SA was set to Max Hold with Limit Check on. NOTE: The DUT automatically adjusts the transmitter output power depending on the modulation. QPSK: 37dBm, 16QAM: 35dBm, 64QAM: 34dBm.

45461491 R1.0 27 March 2019

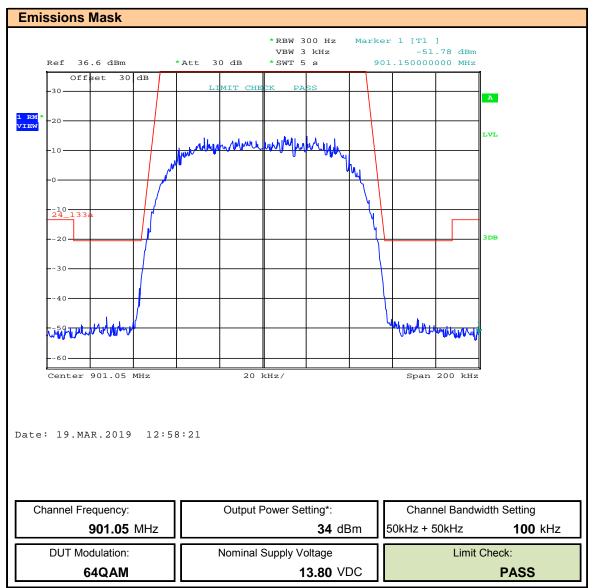
Plot 9.1 - Emissions Mask - 901.05, 100kHz BW, QPSK



^{*} The DUT automatically adjusts the transmit power based on modulation QPSK: 37dBm, 16QAM: 35dBm, 64QAM:, 34dBm

45461491 R1.0 27 March 2019

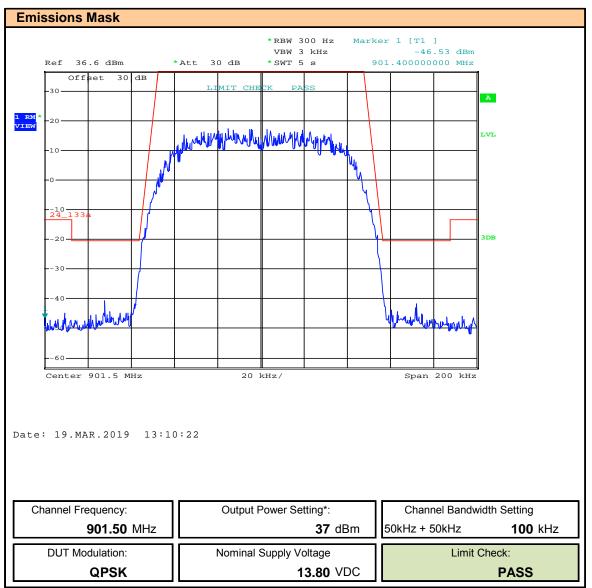
Plot 9.2 - Emissions Mask - 901.05, 100kHz BW, 16QAM



^{*} The DUT automatically adjusts the transmit power based on modulation QPSK: 37dBm, 16QAM: 35dBm, 64QAM:, 34dBm

45461491 R1.0 27 March 2019

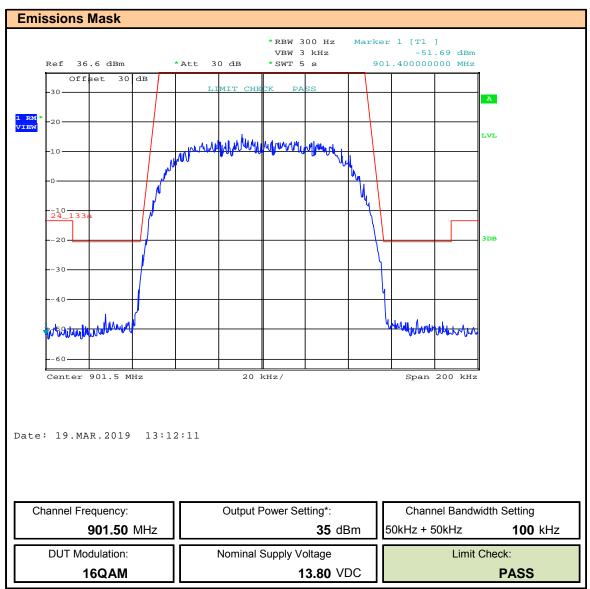
Plot 9.3 - Emissions Mask - 901.05, 100kHz BW, 64QAM



^{*} The DUT automatically adjusts the transmit power based on modulation QPSK: 37dBm, 16QAM: 35dBm, 64QAM:, 34dBm

45461491 R1.0 27 March 2019

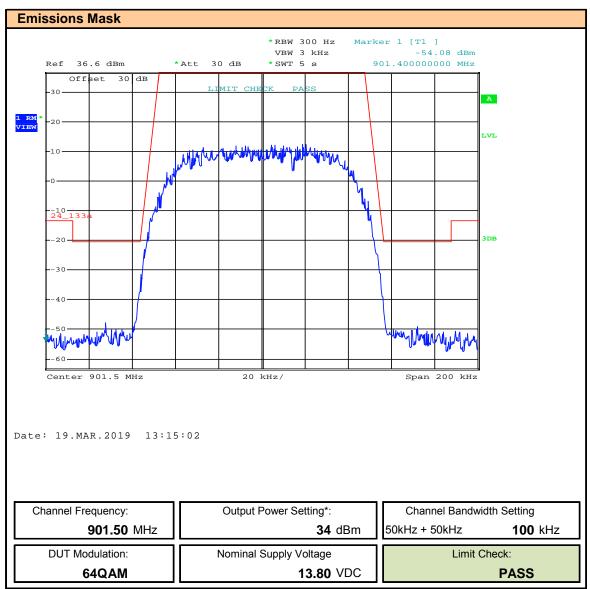
Plot 9.4 - Emissions Mask - 901.5, 100kHz BW, QPSK



^{*} The DUT automatically adjusts the transmit power based on modulation QPSK: 37dBm, 16QAM: 35dBm, 64QAM:, 34dBm

45461491 R1.0 27 March 2019

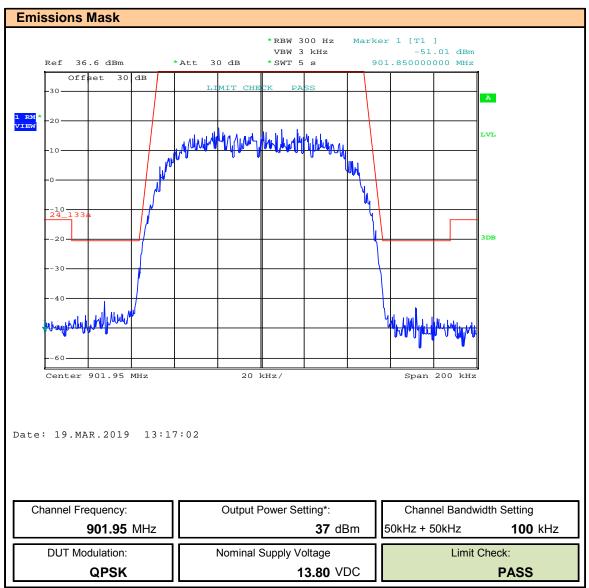
Plot 9.5 - Emissions Mask - 901.5, 100kHz BW, 16QAM



^{*} The DUT automatically adjusts the transmit power based on modulation QPSK: 37dBm, 16QAM: 35dBm, 64QAM:, 34dBm

45461491 R1.0 27 March 2019

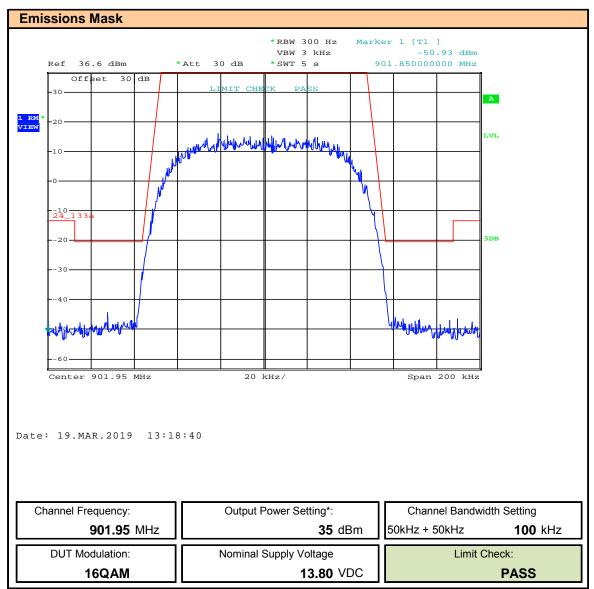
Plot 9.6 - Emissions Mask - 901.5, 100kHz BW, 64QAM



^{*} The DUT automatically adjusts the transmit power based on modulation QPSK: 37dBm, 16QAM: 35dBm, 64QAM:, 34dBm

45461491 R1.0 27 March 2019

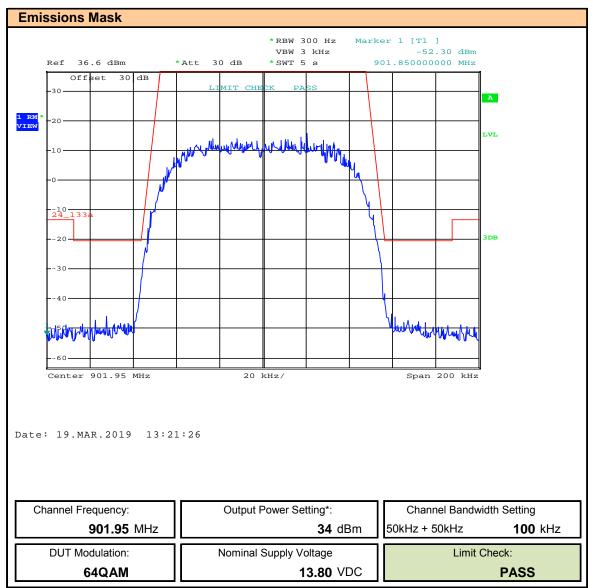
Plot 9.7 - Emissions Mask - 901.95, 100kHz BW, QPSK



^{*} The DUT automatically adjusts the transmit power based on modulation QPSK: 37dBm, 16QAM: 35dBm, 64QAM:, 34dBm

45461491 R1.0 27 March 2019

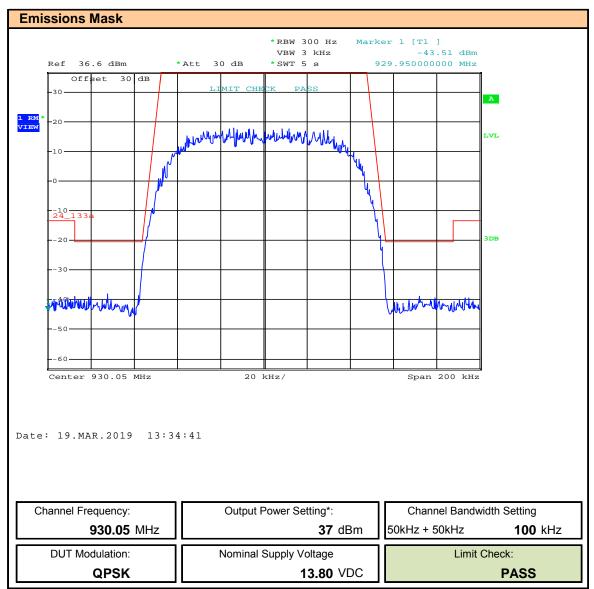
Plot 9.8 - Emissions Mask - 901.95, 100kHz BW, 16QAM



^{*} The DUT automatically adjusts the transmit power based on modulation QPSK: 37dBm, 16QAM: 35dBm, 64QAM:, 34dBm

45461491 R1.0 27 March 2019

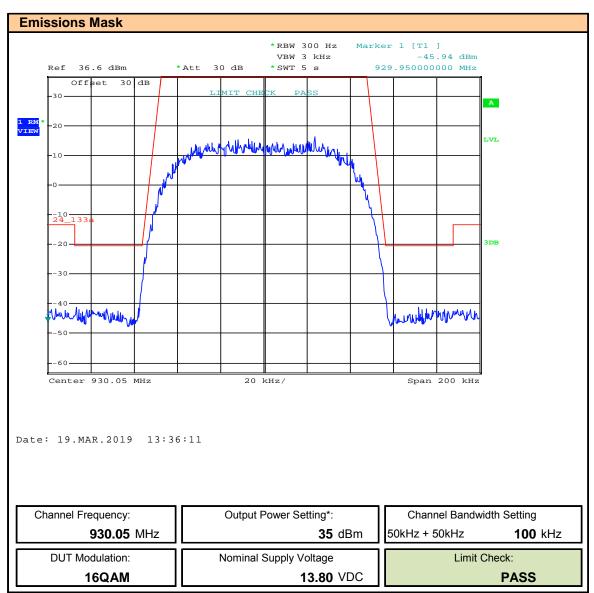
Plot 9.9 - Emissions Mask - 901.95, 100kHz BW, 64QAM



^{*} The DUT automatically adjusts the transmit power based on modulation QPSK: 37dBm, 16QAM: 35dBm, 64QAM:, 34dBm

45461491 R1.0 27 March 2019

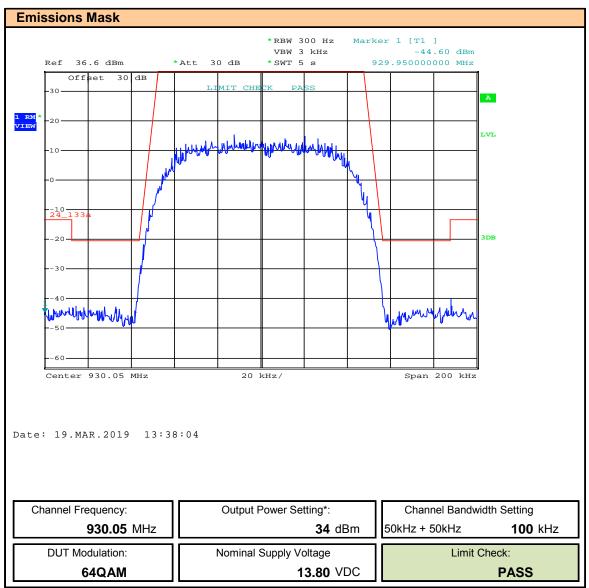
Plot 9.10 - Emissions Mask - 930.05, 100kHz BW, QPSK



^{*} The DUT automatically adjusts the transmit power based on modulation QPSK: 37dBm, 16QAM: 35dBm, 64QAM:, 34dBm

45461491 R1.0 27 March 2019

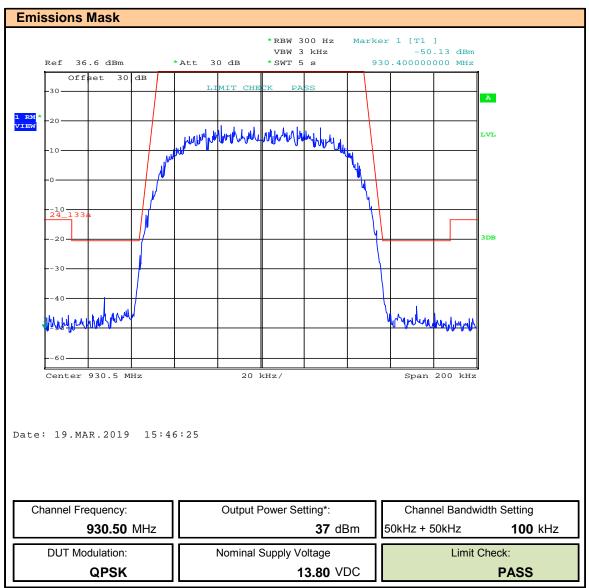
Plot 9.11 - Emissions Mask - 930.05, 100kHz BW, 16QAM



^{*} The DUT automatically adjusts the transmit power based on modulation QPSK: 37dBm, 16QAM: 35dBm, 64QAM:, 34dBm

45461491 R1.0 27 March 2019

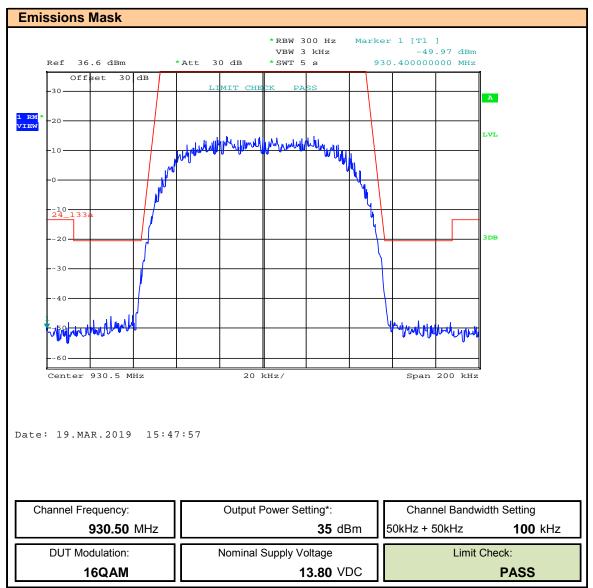
Plot 9.12 - Emissions Mask - 930.05, 100kHz BW, 64QAM



^{*} The DUT automatically adjusts the transmit power based on modulation QPSK: 37dBm, 16QAM: 35dBm, 64QAM:, 34dBm

45461491 R1.0 27 March 2019

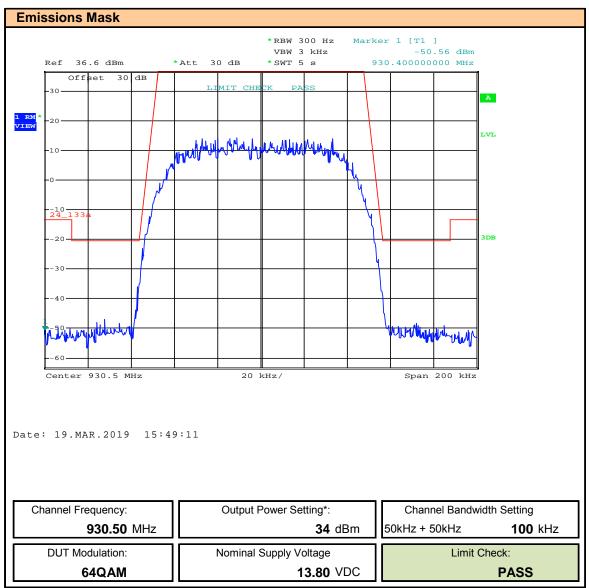
Plot 9.13 - Emissions Mask - 930.5, 100kHz BW, QPSK



^{*} The DUT automatically adjusts the transmit power based on modulation QPSK: 37dBm, 16QAM: 35dBm, 64QAM:, 34dBm

45461491 R1.0 27 March 2019

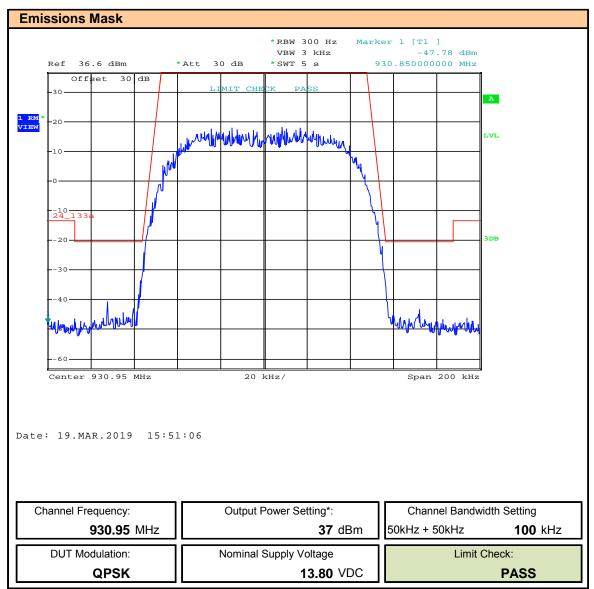
Plot 9.14 - Emissions Mask - 930.5, 100kHz BW, 16QAM



^{*} The DUT automatically adjusts the transmit power based on modulation QPSK: 37dBm, 16QAM: 35dBm, 64QAM:, 34dBm

45461491 R1.0 27 March 2019

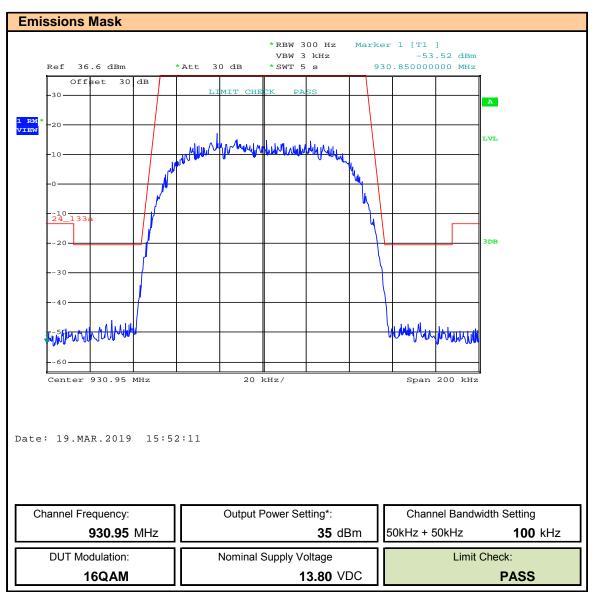
Plot 9.15 - Emissions Mask - 930.5, 100kHz BW, 64QAM



^{*} The DUT automatically adjusts the transmit power based on modulation QPSK: 37dBm, 16QAM: 35dBm, 64QAM:, 34dBm

45461491 R1.0 27 March 2019

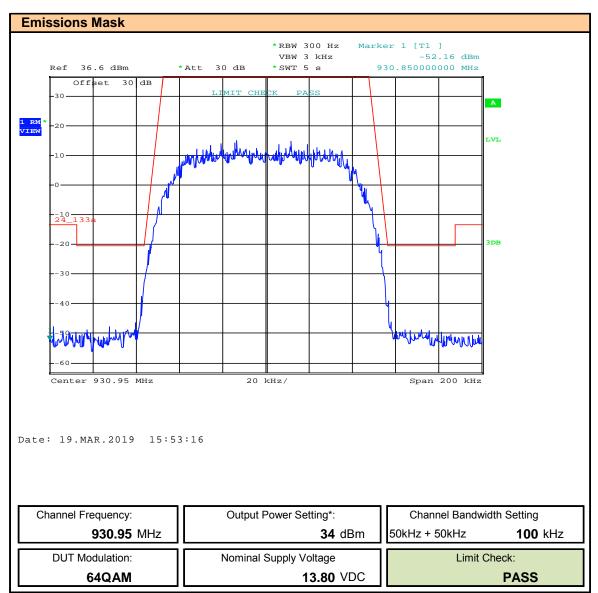
Plot 9.16 - Emissions Mask - 930.95, 100kHz BW, QPSK



^{*} The DUT automatically adjusts the transmit power based on modulation QPSK: 37dBm, 16QAM: 35dBm, 64QAM:, 34dBm

45461491 R1.0 27 March 2019

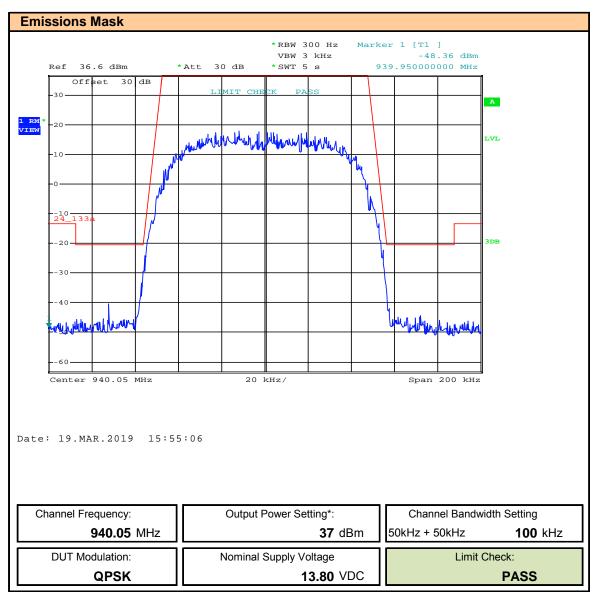
Plot 9.17 - Emissions Mask - 930.95, 100kHz BW, 16QAM



^{*} The DUT automatically adjusts the transmit power based on modulation QPSK: 37dBm, 16QAM: 35dBm, 64QAM:, 34dBm

45461491 R1.0 27 March 2019

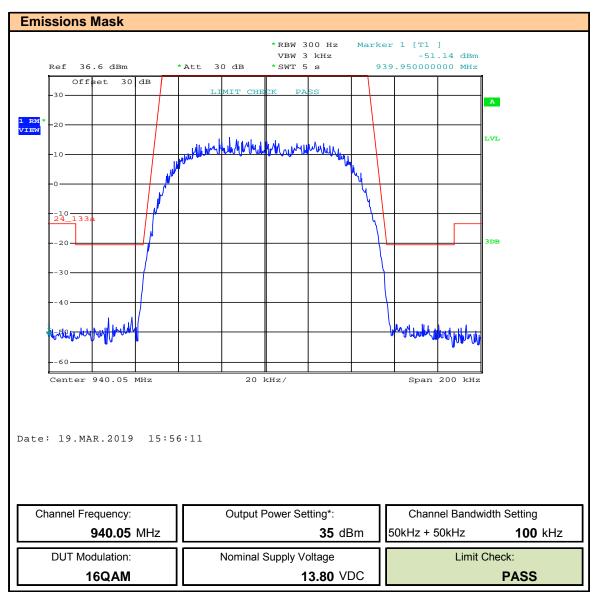
Plot 9.18 - Emissions Mask - 930.95, 100kHz BW, 64QAM



^{*} The DUT automatically adjusts the transmit power based on modulation QPSK: 37dBm, 16QAM: 35dBm, 64QAM:, 34dBm

45461491 R1.0 27 March 2019

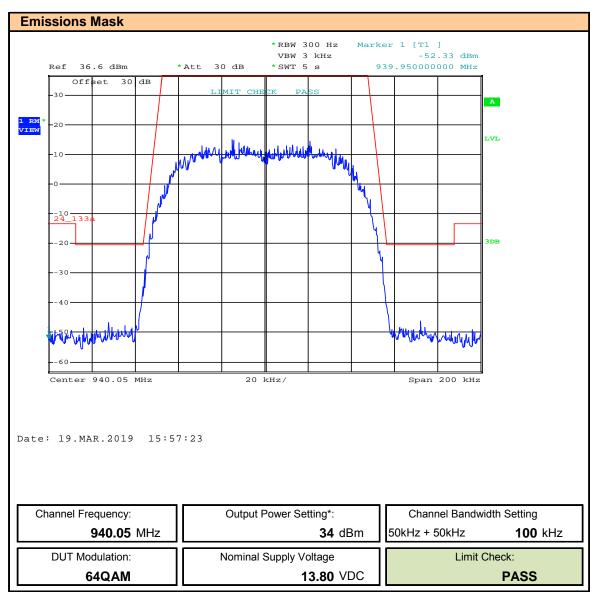
Plot 9.19 - Emissions Mask - 940.05, 100kHz BW, QPSK



^{*} The DUT automatically adjusts the transmit power based on modulation QPSK: 37dBm, 16QAM: 35dBm, 64QAM:, 34dBm

45461491 R1.0 27 March 2019

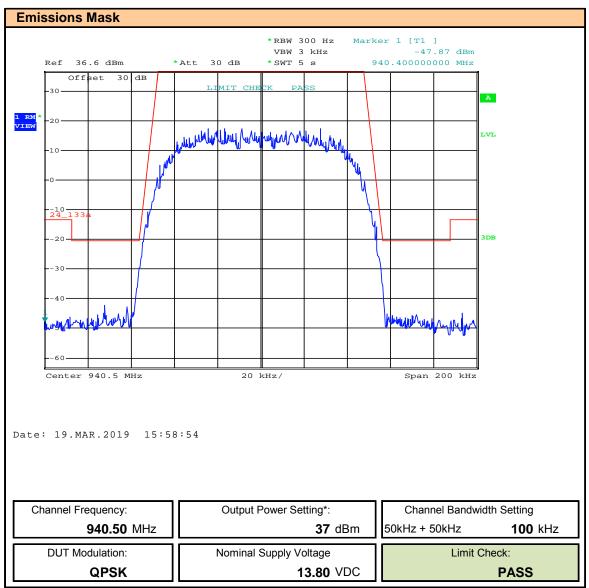
Plot 9.20 - Emissions Mask - 940.05, 100kHz BW, 16QAM



^{*} The DUT automatically adjusts the transmit power based on modulation QPSK: 37dBm, 16QAM: 35dBm, 64QAM:, 34dBm

45461491 R1.0 27 March 2019

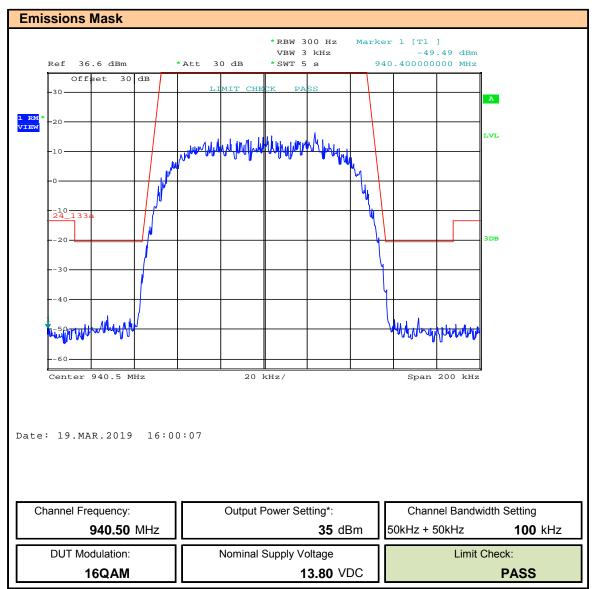
Plot 9.21 - Emissions Mask - 940.05, 100kHz BW, 64QAM



^{*} The DUT automatically adjusts the transmit power based on modulation QPSK: 37dBm, 16QAM: 35dBm, 64QAM:, 34dBm

45461491 R1.0 27 March 2019

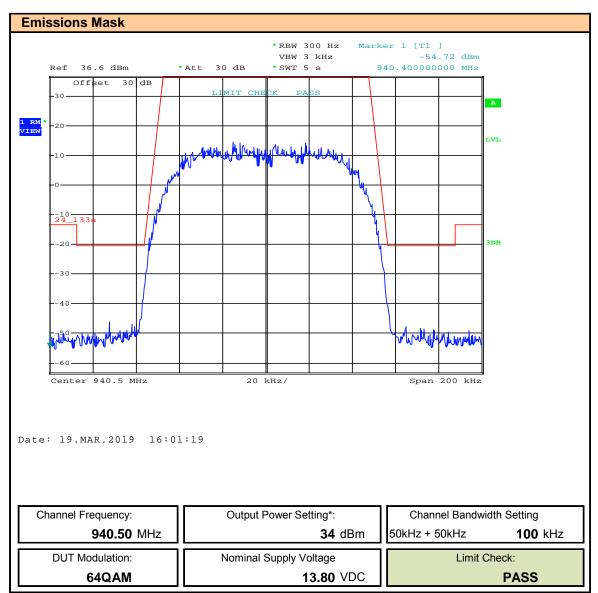
Plot 9.22 - Emissions Mask - 940.5, 100kHz BW, QPSK



^{*} The DUT automatically adjusts the transmit power based on modulation QPSK: 37dBm, 16QAM: 35dBm, 64QAM:, 34dBm

45461491 R1.0 27 March 2019

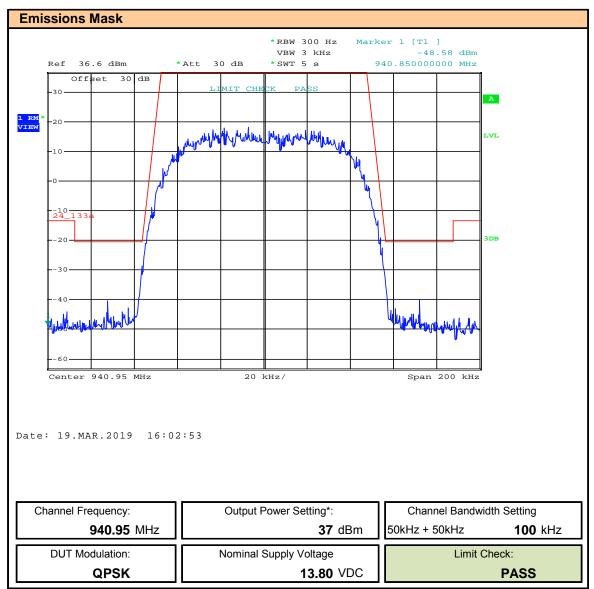
Plot 9.23 - Emissions Mask - 940.5, 100kHz BW, 16QAM



^{*} The DUT automatically adjusts the transmit power based on modulation QPSK: 37dBm, 16QAM: 35dBm, 64QAM:, 34dBm

45461491 R1.0 27 March 2019

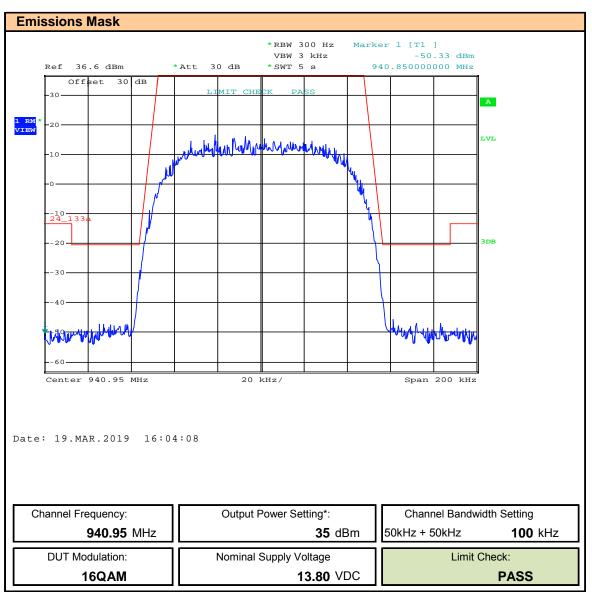
Plot 9.24 - Emissions Mask - 940.5, 100kHz BW, 64QAM



^{*} The DUT automatically adjusts the transmit power based on modulation QPSK: 37dBm, 16QAM: 35dBm, 64QAM:, 34dBm

45461491 R1.0 27 March 2019

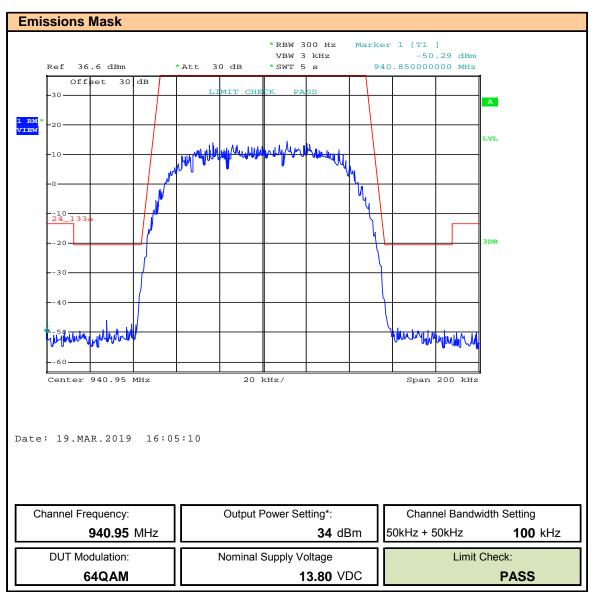
Plot 9.25 - Emissions Mask - 940.95, 100kHz BW, QPSK



^{*} The DUT automatically adjusts the transmit power based on modulation QPSK: 37dBm, 16QAM: 35dBm, 64QAM:, 34dBm

45461491 R1.0 27 March 2019

Plot 9.26 - Emissions Mask - 940.95, 100kHz BW, 16QAM



^{*} The DUT automatically adjusts the transmit power based on modulation QPSK: 37dBm, 16QAM: 35dBm, 64QAM:, 34dBm

45461491 R1.0 27 March 2019

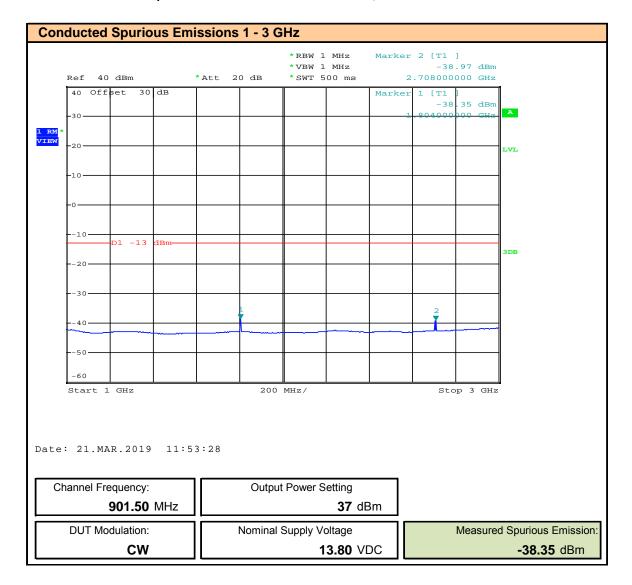
Plot 9.27 - Emissions Mask - 940.95, 100kHz BW, 64QAM

^{*} The DUT automatically adjusts the transmit power based on modulation QPSK: 37dBm, 16QAM: 35dBm, 64QAM:, 34dBm

45461491 R1.0 27 March 2019

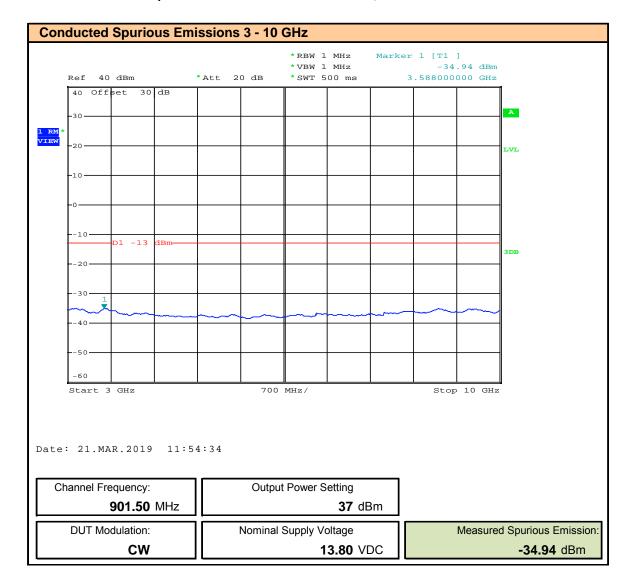
10.0 CONDUCTED SPURIOUS EMISSIONS TO 10TH HARMONIC

Test Procedure						
Normative	FCC 47 CFR §2.1051, §24.133, RSS-134					
Reference						
Limits						
47 CFR §24	\$24.133 Emission Limits. (a) The power of any emission shall be attenuated below the transmitter power (P), as measured in accordance with §24.132(f), in accordance with the following schedule: (1) For transmitters authorized a bandwidth greater than 10 kHz: (i) On any frequency outside the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement frequency (f _d in kHz) of up to and including 40 kHz: at least 116 Log10 ((f _d + 10)/6.1) decibels or 50 plus 10 Log10 (P) decibels or 70 decibels, whichever is the lesser attenuation; (ii) On any frequency outside the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement frequency (f _d in kHz) of more than 40 kHz: at least 43 + 10 Log10 (P) decibels or 80 decibels, whichever is the lesser attenuation. (b) The measurements of emission power can be expressed in peak or average values provided they are expressed in the same parameters as the transmitter power. d) The following minimum spectrum analyzer resolution bandwidth settings will be used: 300 Hz when showing compliance with paragraphs (a)(1)(i) and (a)(2)(ii) of this section; and 30 kHz when showing compliance with paragraphs (a)(1) (ii) and (a)(2)(ii) of this section.					
RSS-134	 4.4 Transmitter Unwanted Emissions 4.4.1 Minimum Standard for Spacings Exceeding 4.4.1 12.5 kHz (Bandwidth > 10 kHz) The power of emissions from the transmitter with modulated carrier shall be attenuated below the transmitter power (P) in accordance with the following schedule (where the displacement frequency f_d measured in kHz starts from the edge of the authorized bandwidth): (a) For f_d up to and including 40 kHz: at least 116 log10((f_d+10)/6.1) dB, or 50+10log10 (P) dB, or 70 dB, whichever is less stringent, using a spectrum analyzer of 300 Hz resolution bandwidth; (b) For f_d of more than 40 kHz: at least 43+10 log10 (P) dB, or 80 dB, whichever is less stringent, using a spectrum analyzer of 30 kHz resolution bandwidth. 					
Test Setup	Appendix A - Figure A.1					

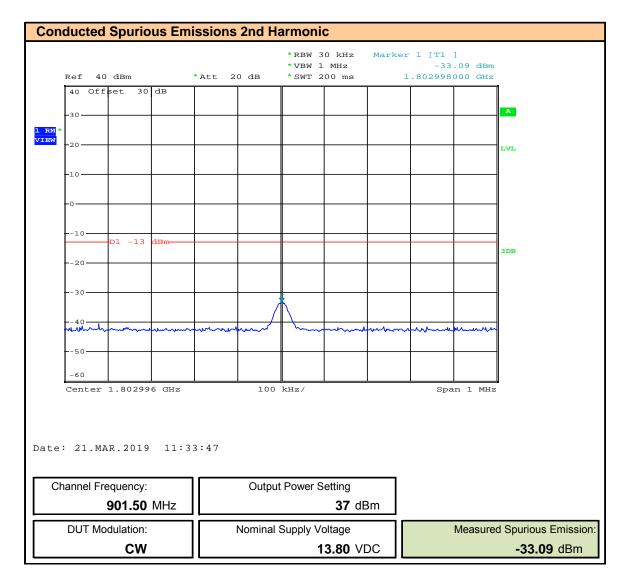

Measurement Procedure

The DUT was connected to a Spectrum Analyzer via a 30dB attenuator connected to the DUT's antenna port. The SA was set to RMS Detector. The output power of the DUT was set to the manufacturer's highest output power setting at the Mid and channel of each channel band. The DUT was set to transmit CW. An emissions limit line of -13dBm was set and the SA was set to Max Hold. The emissions level was measured using the Marker Peak function. Spurious emissions were evaluated to the 10th harmonic.

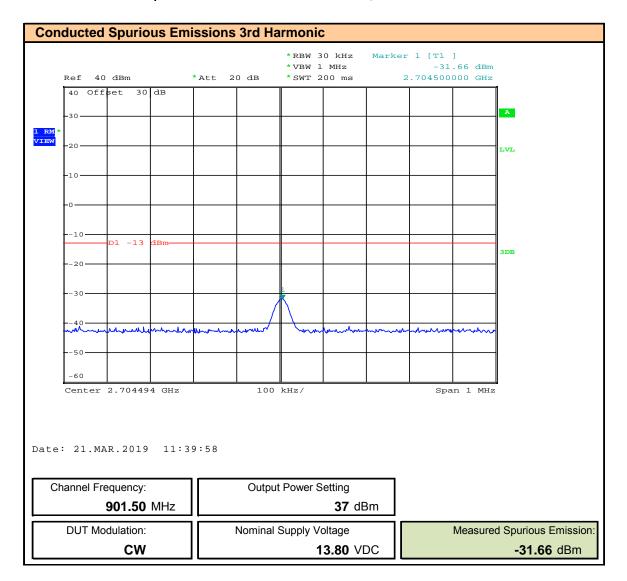
45461491 R1.0 27 March 2019


Plot 10.1 - Conducted Spurious Emissions 901.5MHz Channel, 1 - 3GHz

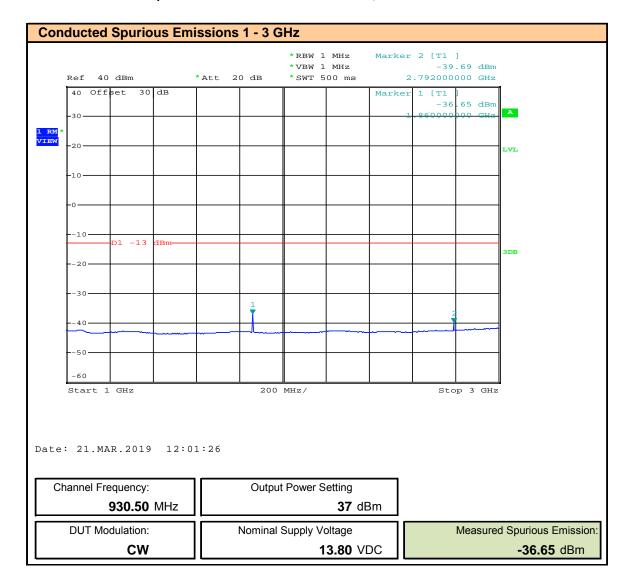
45461491 R1.0 27 March 2019


Plot 10.2 - Conducted Spurious Emissions 901.5MHz Channel, 3 - 10GHz

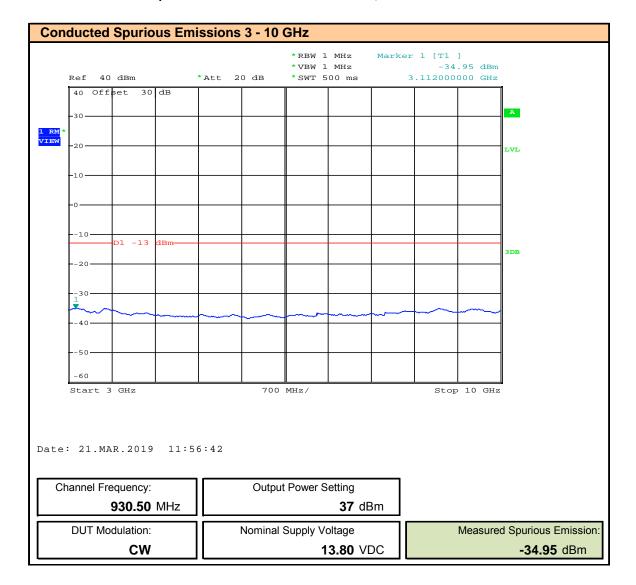
45461491 R1.0 27 March 2019


Plot 10.3 – Conducted Spurious Emissions 901.5MHz Channel, 2nd Harmonic

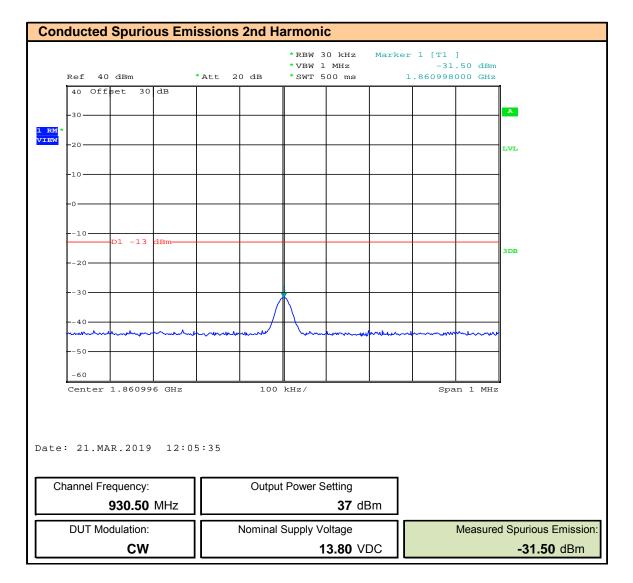
45461491 R1.0 27 March 2019


Plot 10.4 – Conducted Spurious Emissions 901.5MHz Channel, 3rd Harmonic

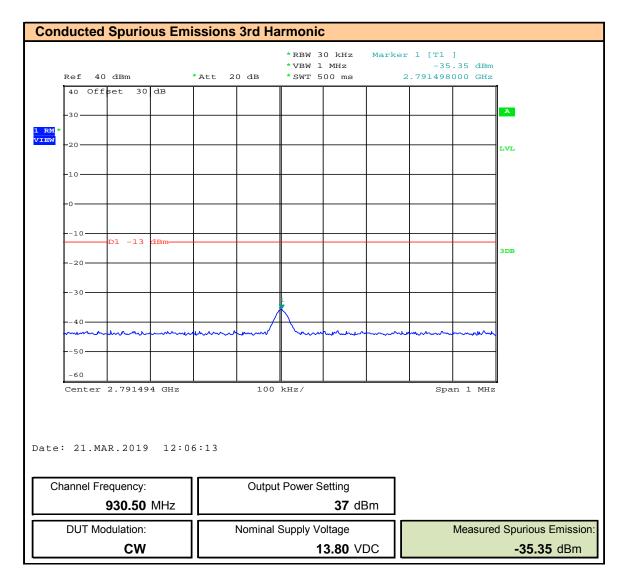
45461491 R1.0 27 March 2019


Plot 10.5 - Conducted Spurious Emissions 930.5MHz Channel, 1 - 3GHz

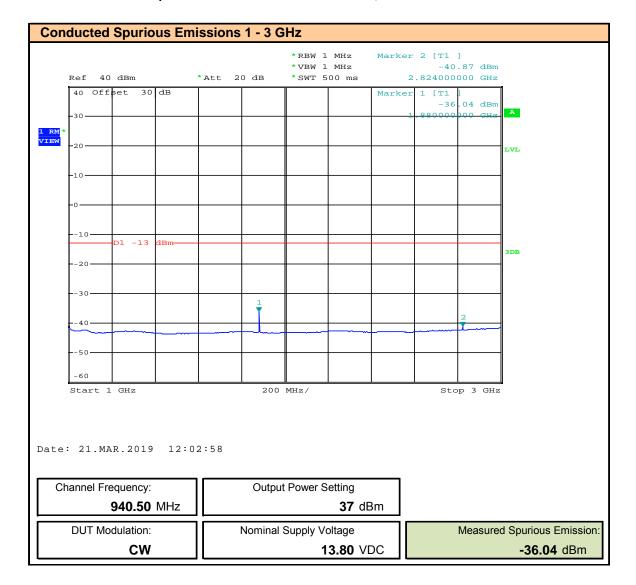
45461491 R1.0 27 March 2019


Plot 10.6 - Conducted Spurious Emissions 930.5MHz Channel, 3 - 10GHz

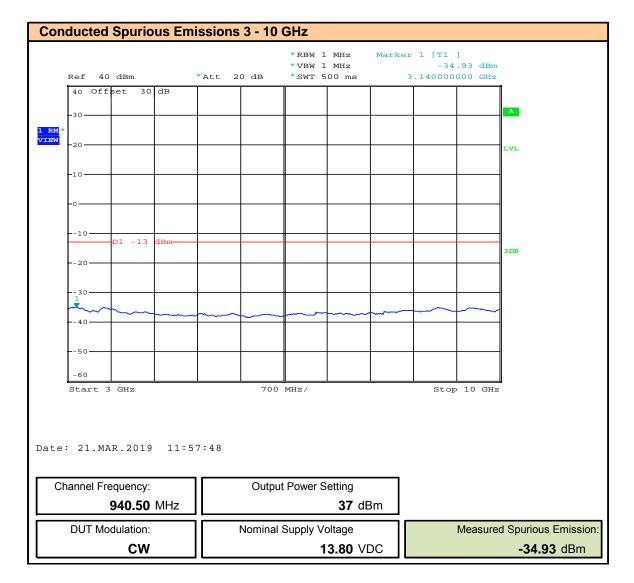
45461491 R1.0 27 March 2019


Plot 10.7 – Conducted Spurious Emissions 930.5MHz Channel, 2nd Harmonic

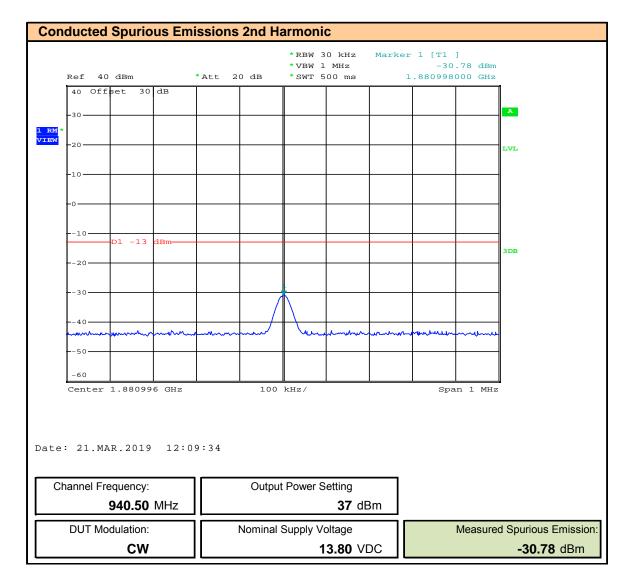
45461491 R1.0 27 March 2019


Plot 10.8 - Conducted Spurious Emissions 930.5MHz Channel, 3rd Harmonic

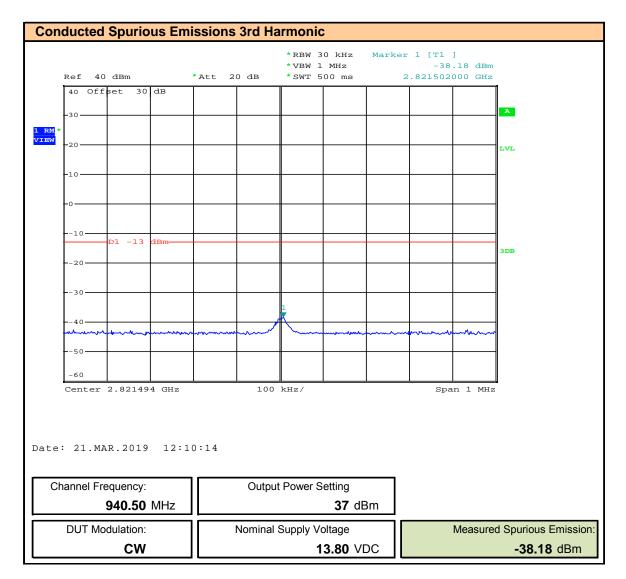
45461491 R1.0 27 March 2019


Plot 10.9 - Conducted Spurious Emissions 940.5MHz Channel, 1 - 3GHz

45461491 R1.0 27 March 2019


Plot 10.10 - Conducted Spurious Emissions 940.5MHz Channel, 3 - 10GHz

45461491 R1.0 27 March 2019


Plot 10.11 – Conducted Spurious Emissions 940.5MHz Channel, $2^{\rm nd}$ Harmonic

45461491 R1.0 27 March 2019

Plot 10.12 – Conducted Spurious Emissions 940.5MHz Channel, $\mathbf{3}^{\mathrm{rd}}$ Harmonic

45461491 R1.0 27 March 2019

Table 10 - Summary of Conducted Spurious Emissions Measurements

Conducted Spurious Emissions							
Channel	Emission		Fundamental	Out of Band			
Frequency	Frequency	DUT	Power	Emission	Attenuation	Limit	Margin
Troquency		Modulation	[P]	[P _E]			
(MHz)	(MHz)		(dBm)	(dBm)	[dB]	(dB)	(dB)
901.5	1803		36.61	-33.1	69.7		26.70
	2705		36.61	-31.7	68.3		25.27
930.5	1861	CW	36.72	-31.5	68.2	43.0	25.22
930.5	2791	CVV	36.72	-35.4	72.1	43.0	29.07
940.5	1881		36.68	-36.8	73.5		30.46
	2821		36.68	-38.2	74.9		31.86

Attenuation = P - P_E

Margin = Limit - Attenuation

Result:

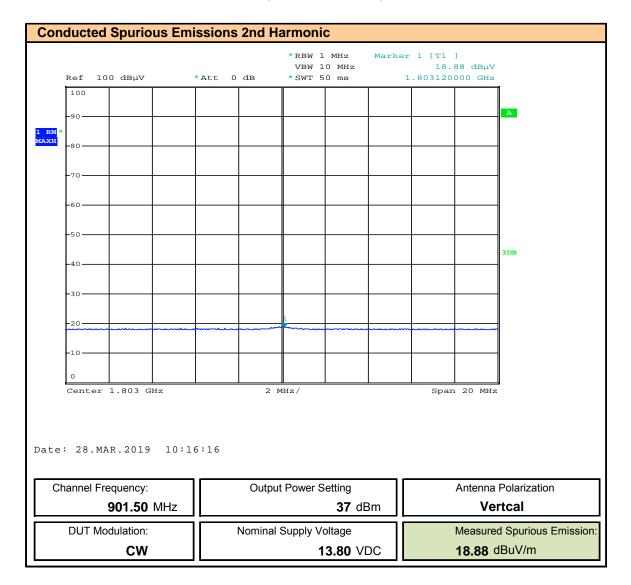
Complies

Data for fundamental and spurious emissions presented using an RMS detector.

45461491 R1.0 27 March 2019

11.0 RADIATED OUT OF BAND SPURIOUS EMISSIONS

Test Procedure Normative	FCC 47 CFR §2.1053, §24.133, RSS-134
Reference	100 47 OF R 92.1000, 924.100, ROO-104
Limits	
47 CFR §24	§24.133 Emission Limits. (a) The power of any emission shall be attenuated below the transmitter power (P), as measured in accordance with §24.132(f), in accordance with the following schedule: (1) For transmitters authorized a bandwidth greater than 10 kHz: (i) On any frequency outside the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement frequency (f _d in kHz) of up to and including 40 kHz: at least 116 Log10 ((f _d + 10)/6.1) decibels or 50 plus 10 Log10 (P) decibels or 70 decibels, whichever is the lesser attenuation; (ii) On any frequency outside the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement frequency (f _d in kHz) of more than 40 kHz: at least 43 + 10 Log10 (P) decibels or 80 decibels, whichever is the lesser attenuation. (b) The measurements of emission power can be expressed in peak or average values provided they are expressed in the same parameters as the transmitter power. d) The following minimum spectrum analyzer resolution bandwidth settings will be used: 300 Hz when showing compliance with paragraphs (a)(1)(ii) and (a)(2)(ii) of this section; and 30 kHz when showing compliance with paragraphs (a)(1) (ii) and (a)(2)(ii) of this section.
	4.4 Transmitter Unwanted Emissions
	4.4.1 Minimum Standard for Spacings Exceeding 4.4.1 12.5 kHz (Bandwidth > 10 kHz)
RSS-134	The power of emissions from the transmitter with modulated carrier shall be attenuated below the transmitter power (P) in accordance with the following schedule (where the displacement frequency f _d measured in kHz starts from the edge of the authorized bandwidth):
100-104	(a) For f_d up to and including 40 kHz: at least 116 log10((f_d +10)/6.1) dB, or 50+10log10 (P) dB, or 70 dB, whichever is less stringent, using a spectrum analyzer of 300 Hz resolution bandwidth;
	(b) For f _d of more than 40 kHz: at least 43+10 log10 (P) dB, or 80 dB, whichever is less
	stringent, using a spectrum analyzer of 30 kHz resolution bandwidth.
Test Setup	Appendix A - Figure A.2


Measurement Procedure

The DUT was placed in a semi-anechoic chamber. The SA was set to RMS Detector. The output power of the DUT was set to the manufacturer's highest output power setting at the Mid and channel of each channel band. The DUT was set to transmit CW. An emissions limit line of -13dBm was set and the SA was set to Max Hold. The emissions level was measured using the Marker Peak function. Spurious emissions were evaluated to the 10th harmonic.

45461491 R1.0 27 March 2019

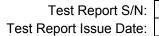
Plot 11.1 – Radiated Out of Band Emissions, 901.5MHz Channel, 2nd Harmonic

45461491 R1.0 27 March 2019

Table 11.1 – Summary of Radiated Out of Band Emissions Measurements

Conducted Spurious Emissions							
Channel	nnel Emission Fundamental Out of Band						
Frequency	Frequency	DUT Modulation	Power	Emission	Attenuation	Limit	Margin
(MHz)	(MHz)	Modulation	[P] (dBm)	[P _E] (dBm)	[dB]	(dB)	(dB)

No Emissions Detected


Attenuation = P - P_E

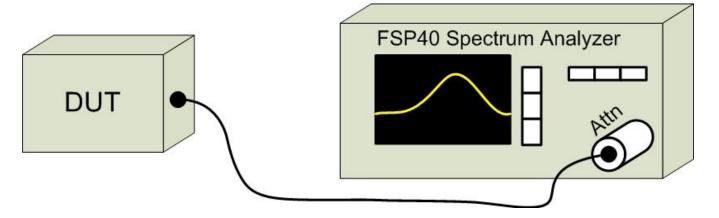
Margin = Limit - Attenuation

Result:

Complies

Data for fundamental and spurious emissions presented using an RMS detector.

45461491 R1.0 27 March 2019



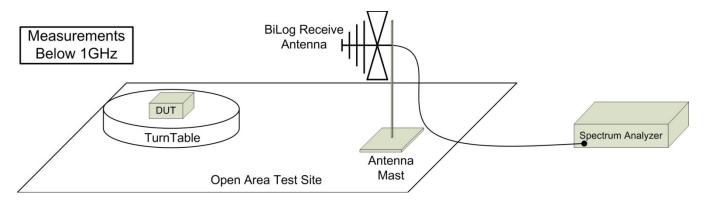
APPENDIX A – TEST SETUP DRAWINGS AND EQUIPMENT

Table A.1 – Setup - Conducted Measurements Equipment

Equipment List					
Asset Number	Manufacturer		Description		
00241	R&S	FSU40	Spectrum Analyzer		

Figure A.1 – Test Setup Conducted Measurements

45461491 R1.0 27 March 2019


Table A.2 - Setup - Radiated Emissions Equipment

Equipm	Equipment List						
Asset Number	Manufacturer	Model Number	Description				
00051	HP	8566B	Spectrum Analyzer				
00049	HP	85650A	Quasi-peak Adapter				
00047	HP	85685A	RF Preselector				
00072	EMCO	2075	Mini-mast				
00073	EMCO	2080	Turn Table				
00071	EMCO	2090	Multi-Device Controller				
00265	Miteq	JS32-00104000-58-5P	Microwave L/N Amplifier				
00241	R&S	FSU40	Spectrum Analyzer				
00050	Chase	CBL-6111A	Bilog Antenna				
00275	Coaxis	LMR400	25m Cable				
00276	Coaxis	LMR400	4m Cable				
00278	TILE	34G3	TILE Test Software				
00034	ETS	3115	Double Ridged Guide Horn				

CNR: Calibration Not Required

COU: Calibrate On Use

Figure A.2 – Test Setup Radiated Emissions Measurements

45461491 R1.0 27 March 2019

APPENDIX B - EQUIPMENT LIST AND CALIBRATION

Egi	uipment l	List						
	Asset		Model	Serial	Description	Last	Calibration	Calibration
(*)	Number	Manufacturer	Number	Number	Description	Calibrated	Interval	Due
*	00050	Chase	CBL-6111A	1607	Bilog Antenna	3 Jan 2019	Triennial	3 Jan 2022
*	00034	ETS	3115	6267	Double Ridged Guide Horn	26 Nov 2018	Triennial	26 Nov 2021
	00035	ETS	3115	6276	Double Ridged Guide Horn	2 Dec 2015	Triennial	2 Dec 2018
	00085	EMCO	6502	9203-2724	Loop Antenna	8 Jun 2016	Triennial	8 Jun 2019
	00047	HP	85685A	2837A00826	RF Preselector	23 Jun 2017	Triennial	23 Jun 2020
	00049	HP	85650A	2043A00162	Quasi-peak Adapter	23 Jun 2017	Triennial	23 Jun 2020
	00051	HP	8566B	2747A05510	Spectrum Analyzer	23 Jun 2017	Triennial	23 Jun 2020
	00223	HP	8901A	3749A07154	Modulation Analyzer	27 Dec 2017	Triennial	27 Dec 2020
	00224	HP	8903B	3729A18691	Audio Analyzer	28 Dec 2017	Triennial	28 Dec 2020
*	00241	R&S	FSU40	100500	Spectrum Analyzer	15 May 2018	Triennial	15 May 2021
*	00005	HP	8648D	3847A00611	Signal Generator	21 Jun 2017	Triennial	21 Jun 2020
	00006	R&S	SMR20	100104	Signal Generator	29 May 2017	Triennial	29 May 2020
	00243	Rigol	DS1102E	DS1ET150502164	Oscilloscope	7 Nov 2017	Triennial	7 Nov 2020
	00254	LeCroy	WM8600A	532	Oscilloscope	NCR	n/a	NCR
	00110	Gigatronics	8652A	1875801	Power Meter	29 Feb 2016	Triennial	29 Feb 2019
	00237	Gigatronics	80334A	1837001	Power Sensor	23 Jun 2014	Triennial	23 Jun 2017
	00232	ETS Lindgren	HI-6005	91440	Isotropic E-Field Probe	18 Dec 2017	Triennial	18 Dec 2020
	00003	HP	53181A	3736A05175	Frequency Counter	21 Jun 2017	Triennial	21 Jun 2020
	00257	Com-Power	LI-215A	191934	LISN	5 Jan 2018	Triennial	5 Jan 2021
	00041	AR	10W1000C	27887	Power Amplifier	NCR	n/a	NCR
	00106	AR	5SIG4	26235	Power Amplifier	NCR	n/a	NCR
	00280	AR	25A250AM6	22702	Power Amplifier	NCR	n/a	NCR
	00265	Miteq	JS32-00104000-58-5P	1939850	Microwave L/N Amplifier	COU	n/a	COU
	00071	EMCO	2090	9912-1484	Multi-Device Controller	n/a	n/a	n/a
	00072	EMCO	2075	0001-2277	Mini-mast	n/a	n/a	n/a
	00073	EMCO	2080	0002-1002	Turn Table	n/a	n/a	n/a
	00081	ESPEC	ECT-2	0510154-B	Environmental Chamber	CNR	n/a	CNR
	00234	WR	61161-378	140320430	Temp/Humidity Meter	New	Triennial	New
	00236	Nokia	-	236	ESD Table	NCR	n/a	NCR
	00255	Expert ESD	A4001	A4001-155	ESD Target	COU	n/a	COU
	00064	NARDA	3020A	n/a	Bi-Directional Coupler	COU	n/a	COU
	00263	Koaxis	KP10-1.00M-TD	263	1m Armoured Cable	COU	n/a	COU
*	00263B	Koaxis	KP10-1.00M-TD	263B	1m Armoured Cable	COU	n/a	COU
*	00264	Koaxis	KP10-7.00M-TD	264	7m Armoured Cable	COU	n/a	COU
	00275	TMS	LMR400	n/a	25m Cable	COU	n/a	COU
	00276	TMS	LMR400	n/a	4m Cable	COU	n/a	COU
	00277	TMS	LMR400	n/a	4m Cable	COU	n/a	COU
*	00278	TILE	34G3	n/a	TILE Test Software	NCR	n/a	NCR
Rer	ted Equi	pment						
+ 11.		(la a a a a a a a a a a a a	this investigation			1	l	

* Used during the course of this investigation

CNR: Calibration Not Required COU: Calibrate On Use

45461491 R1.0 27 March 2019

APPENDIX C – MEASUREMENT INSTRUMENT UNCERTAINTY

	CISPR 16-4 Measurement Uncertainty (U _{LAB})					
Th	This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence interval using a coverage factor of k=2					
	30MHz - 200MHz					
	$U_{LAB} = 5.14dB$ $U_{CISPR} = 6.3dB$					
	200MHz - 1000MHz					
	$U_{LAB} = 5.90dB$ $U_{CISPR} = 6.3dB$					
	1GHz - 6GHz					
	U _{LAB} = 4.80dB					
	6GHz - 18GHz					
	$U_{LAB} = 5.1dB$ $U_{CISPR} = 5.5dB$					
	If the calculated uncertainty \mathbf{U}_{lab} is $less$ than \mathbf{U}_{CISPR} then:					
1	Compliance is deemed to occur if NO measured disturbance exceeds the disturbance limit					
2	2 Non-Compliance is deemed to occur if ANY measured disturbance EXCEEDS the disturbance limit					
	If the calculated uncertainty U _{lab} is greater than U _{CISPR} then:					
3	Compliance is deemed to occur if NO measured disturbance, increased by (U _{lab} - U _{CISPR}), exceeds the disturbance limit					
4	Non-Compliance is deemed to occur if ANY measured disturbance, increased by (U _{lab} - U _{CISPR}), EXCEEDS the disturbance limit					