Prediction of MPE Limit 47 CFR § 2.1091/ § 2.1093

$$S_{20} = \frac{P_A G_N}{4\pi R_{20}^2}$$

$$S_{C} = \frac{P_{A}G_{N}}{4\pi R_{C}^{2}}$$

$$R_{c} = \sqrt{\frac{P_{A}G_{N}}{4\pi S_{I}}}$$

$$S_L = \frac{180}{f^2} (mW/cm^2)$$

 S_{20} = Power Density of the Device at 20cm

 S_L = Power Density Limit

 S_C = Power Density of the Device at the Compliance Distance R_C

 $R_{20} = 20 \text{cm}$

R_c = Minimum Distance to the Radiating Element to Meet Compliance

 P_T = Power Input to Antenna

 P_A = Adjust Power

 G_N = Numeric Gain of the Antenna

f = Transmit Frequency

Transmit Duty Cycle = 100%

Use Group = General Popuation

Transmit Duty Cycle:	100.00	(%)
Tx Frequency (f):	174.00	(MHz)
RF Power at Antenna Input Port (P _T):	5000.00	(mW)
Antenna Gain:	15.00	(dBi)
Numeric Antenna Gain (G _N):	31.62	(numeric)
Cable or Other Loss:	0.00	(dB)
Duty Cycle/Loss Adjusted Power (P _A):	5000.00	(mW)

$S_L =$	0.200	(mW/cm ²)
S ₂₀ at 20cm =	31.456	(mW/cm ²)
$R_c =$	250.8	(cm)
S _c =	0.20	(mW/cm ²)

User's Manual must indicate a minimum separation distance of:

251cm

Art Voss Senior Engineer Celltech Labs Inc.