Report No: C140220R01-RPB

FCC ID:UIDTG1682

Date of Issue :February 25, 2014

RADIO FREQUENCY EXPOSURE

LIMIT

According to §15.247(i) and §15.407(f), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b) of this chapter.

EUT Specification

EUT	TG1682G				
Frequency band (Operating)	 ◯ WLAN: 2.412GHz ~ 2.462GHz ◯ WLAN: 5.15GHz ~ 5.25GHz ◯ WLAN: 5.25GHz ~ 5.35GHz ◯ WLAN: 5.47GHz ~ 5.725GHz ◯ WLAN: 5.725GHz ~ 5.85GHz ◯ Others 				
Device category	☐ Portable (<20cm separation) ☐ Mobile (>20cm separation) ☐ Others				
Exposure classification	 ☐ Occupational/Controlled exposure (S = 5mW/cm²) ☐ General Population/Uncontrolled exposure (S=1mW/cm²) 				
Antenna diversity	☐ Single antenna ☐ Multiple antennas ☐ Tx diversity ☐ Rx diversity ☐ Tx/Rx diversity				
Max. output power					
Antenna gain (Max)	draft 802.11ac Wide-80 MHz Channel mode: 25.86 dBm Dipole antennas for 2.4GHz Gain 3.20 dBi and Dipole antennas for 5 GHz Gain 5.20 dBi				
Evaluation applied	✓ MPE Evaluation*✓ SAR Evaluation✓ N/A				
	wer is 29.87dBm (966.1mW) at 2437MHz (with 2.09numeric antenna gain.); 190MHz (with 3.31numeric antenna gain.); 25.74dBm (375.0mW) at				

2. DTS device is not subject to routine RF evaluation; MPE estimate is used to justify the compliance.

5825MHz (with 7.16numeric antenna gain.)

- 3. For mobile or fixed location transmitters, no SAR consideration applied. The maximum power density is 1.0 mW/cm2 even if the calculation indicates that the power density would be larger.
- 4. All three antennas are completely uncorrelated with each other.

TEST RESULTS

No non-compliance noted.

Calculation

Given

$$E = \frac{\sqrt{30 \times P \times G}}{d} \& S = \frac{E^2}{3770}$$

Where E = Field strength in Volts / meter

P = Power in Watts

G = Numeric antenna gain

d = *Distance in meters*

S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and

$$d(cm) = d(m) / 100$$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$
 Equation 1

Where

d = Distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW/cm^2$

Maximum Permissible Exposure

Substituting the MPE safe distance using d = 20 cm into Equation 1:

Yields

$$S = 0.000199 \times P \times G$$

Where P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW / cm^2$

Compliance Certification Services Inc. Report No: C140220R01-RPB FCC ID:UIDTG1682 Date of Issue :Februar

Date of Issue :February 25, 2014

Modulation Mode	Frequency band (MHz)	Max. Conducted output power(dBm)	Antenna gain (dBi)	Distance (cm)	Power density (mW/cm2)	Limit (mW/cm2)
802.11b	2412-2462	29.85	3.2	20	0.4017	1
802.11g		29.82	3.2	20	0.3989	1
802.11 n(20MHz)		29.50	3.2	20	0.3706	1
802.11 n(40MHz)		28.19	3.2	20	0.2741	1
802.11a	5150-5250	15.04	5.2	20	0.0210	1
802.11 an(20MHz)		14.92	5.2	20	0.0205	1
802.11 an(40MHz)		16.50	5.2	20	0.0294	1
802.11 ac(20MHz)		14.50	5.2	20	0.0186	1
802.11 ac(40MHz)		16.40	5.2	20	0.0288	1
802.11 ac(80MHz)		16.09	5.2	20	0.0268	1
802.11a	5725-5850	28.94	5.2	20	0.5162	1
802.11 an(20MHz)		27.56	5.2	20	0.3757	1
802.11 an(40MHz)		27.39	5.2	20	0.3613	1
802.11 ac(20MHz)		27.67	5.2	20	0.3853	1
802.11 ac(40MHz)		27.39	5.2	20	0.3613	1
802.11 ac(80MHz)		25.86	5.2	20	0.2540	1

Note:

Both of the WLAN 2.4G&5.0G can transmit simultaneously, the formula of calculated the MPE is: CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

(For mobile or fixed location transmitters, the maximum power density is 1.0 $\,\mathrm{mW/cm^2}$ even if the calculation indicates that the power density would be larger.)