

MET Laboratories, Inc. *Safety Certification - EMI - Telecom Environmental Simulation* 914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230-3432 • PHONE (410) 354-3300 • FAX (410) 354-3313 33439 WESTERN AVENUE • UNION CITY, CALIFORNIA 94587 • PHONE (510) 489-6300 • FAX (510) 489-6372 3162 BELICK STREET • SANTA CLARA, CALIFORNIA 95054 • PHONE (408) 748-3585 • FAX (510) 489-6372 13501 MCCALLEN PASS • AUSTIN, TX 78753 • PHONE (512) 287-2500 • FAX (512) 287-2513

July 14, 2015

ARRIS Group, Inc. 3871 Lakefield Drive, Suite 300 Suwanee, Georgia 30024

Dear Tony Figueiredo,

Enclosed is the EMC Wireless test report for Class II Permissive Change compliance testing of the ARRIS Group, Inc., DG1660/DG1670 as tested to the requirements of Title 47 of the CFR, Ch. 1 (10-1-06 ed.), Title 47 of the CFR, Part 15.407, Subpart E (UNII 3) for Intentional Radiators.

Thank you for using the services of MET Laboratories, Inc. If you have any questions regarding these results or if MET can be of further service to you, please feel free to contact me.

Sincerely yours, MET LABORATORIES, INC.

amy Draino

Amy Graziano Documentation Department

Reference: (\ARRIS Group, Inc.\ EMC85688-FCC407 UNII 3 Rev. 3)

Certificates and reports shall not be reproduced except in full, without the written permission of MET Laboratories, Inc.

MET Laboratories, Inc. *Safety Certification - EMI - Telecom Environmental Simulation* 914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230-3432 • PHONE (410) 354-3300 • FAX (410) 354-3313 33439 WESTERN AVENUE • UNION CITY, CALIFORNIA 94587 • PHONE (510) 489-6300 • FAX (510) 489-6372 3162 BELICK STREET • SANTA CLARA, CALIFORNIA 95054 • PHONE (408) 748-3585 • FAX (510) 489-6372 13501 MCCALLEN PASS • AUSTIN, TX 78753 • PHONE (512) 287-2500 • FAX (512) 287-2513

Electromagnetic Compatibility Criteria Class II Permissive Change Test Report

for the

ARRIS Group, Inc. Model DG1660/DG1670

Tested under The FCC Certification Rules contained in Title 47 of the CFR, Part 15.407 for Intentional Radiators

MET Report: EMC85688-FCC407 UNII 3 Rev. 3

July 14, 2015

Prepared For:

ARRIS Group, Inc. 3871 Lakefield Drive, Suite 300 Suwanee, Georgia 30024

> Prepared By: MET Laboratories, Inc. 914 W. Patapsco Ave. Baltimore, MD 21230

Electromagnetic Compatibility Criteria Class II Permissive Change Test Report

for the

ARRIS Group, Inc. Model DG1660/DG1670

Tested under The FCC Certification Rules contained in Title 47 of the CFR, Part 15.407 for Intentional Radiators

Benjamin C. Taylor

Benjamin Taylor, Project Engineer Electromagnetic Compatibility Lab

Imy Draiguno

Amy Graziano Documentation Department

Engineering Statement: The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of Parts 15B, 15.407, of the FCC Rules under normal use and maintenance.

a Bajira.

Asad Bajwa, Director, Electromagnetic Compatibility Lab

Report Status Sheet

Revision	Report Date	Reason for Revision
Ø May 29, 2015 Initial Issue.		Initial Issue.
1	June 18, 2015	Editorial corrections.
2	July 7, 2015	Revised to update power measurements.
3	July 14, 2015	Revised to reflect updated MPE calculation.

Table of Contents

I.	Executive Summary	1
	A. Purpose of Test	2
	B. Executive Summary	
II.	Equipment Configuration	3
	A. Overview	
	B. References	5
	C. Test Site	5
	D. Description of Test Sample	
	E. Equipment Configuration	
	F. Support Equipment	
	G. Modifications	
	a) Modifications to EUT	
	b) Modifications to Test Standard	6
	H. Disposition of EUT	
III.	Electromagnetic Compatibility Criteria for Intentional Radiators	7
	§ 15.203 Antenna Requirement	
	§ 15.403(c) 26dB Bandwidth	
	§15.407(a)(3) RF Power Output	
	§15.407(a)(1)(i) & §15.407(a)(3) Peak Power Spectral Density	
	§15.407(b)(1), §15.407(b)(6), & §15.407(b)(7) Undesirable Emissions	
	§ 15.407(f) RF Exposure	
IV.	Test Equipment	
V.	Certification & User's Manual Information	
	A. Certification Information	
	B. Label and User's Manual Information	

List of Tables

Table 1. Executive Summary of EMC Part 15.407 ComplianceTesting	2
Table 2. EUT Summary	
Table 3. References	
Table 4. Equipment Configuration	5
Table 5. Support Equipment	
Table 6. Occupied Bandwidth Test Results26 dB Occupied Bandwidth Test Results	
Table 7. Conducted Output Power Test ResultsRF Output Power Test Results	
Table 8. Peak Power Spectral Density Test ResultsPeak Power Spectral Density Test Results	
Table 9. Test Equipment List	

List of Figures

Figure 1.	Occupied Bandwidth, Test Setup	9
Figure 2.	Power Output Test Setup	20
Figure 3.	Power Spectral Density Test Setup	51

List of Plots

Plot 1. 26 dB Occupied Bandwidth, 5745 MHz, 802.11a, Chain 0	.11
Plot 2. 26 dB Occupied Bandwidth, 5745 MHz, 802.11a, Chain 1	.11
Plot 3. 26 dB Occupied Bandwidth, 5745 MHz, 802.11a, Chain 2	.11
Plot 4. 26 dB Occupied Bandwidth, 5785 MHz, 802.11a, Chain 0	.12
Plot 5. 26 dB Occupied Bandwidth, 5785 MHz, 802.11a, Chain 1	
Plot 6. 26 dB Occupied Bandwidth, 5785 MHz, 802.11a, Chain 2	
Plot 7. 26 dB Occupied Bandwidth, 5825 MHz, 802.11a, Chain 0	
Plot 8. 26 dB Occupied Bandwidth, 5825 MHz, 802.11a, Chain 1	
Plot 9. 26 dB Occupied Bandwidth, 5825 MHz, 802.11a, Chain 2	13
Plot 10. 26 dB Occupied Bandwidth, 5745 MHz, 802.11n, HT20, Chain 0	
Plot 11. 26 dB Occupied Bandwidth, 5745 MHz, 802.11n, HT20, Chain 1	
Plot 12. 26 dB Occupied Bandwidth, 5745 MHz, 802.11n, HT20, Chain 2	
Plot 13. 26 dB Occupied Bandwidth, 5785 MHz, 802.11n, HT20, Chain 0	
Plot 14. 26 dB Occupied Bandwidth, 5785 MHz, 802.11n, HT20, Chain 1	
Plot 15. 26 dB Occupied Bandwidth, 5785 MHz, 802.11n, HT20, Chain 2	
Plot 16. 26 dB Occupied Bandwidth, 5825 MHz, 802.11n, HT20, Chain 0	
Plot 17. 26 dB Occupied Bandwidth, 5825 MHz, 802.11n, HT20, Chain 1	
Plot 18. 26 dB Occupied Bandwidth, 5825 MHz, 802.11n, HT20, Chain 2	
Plot 19. 26 dB Occupied Bandwidth, 5755 MHz, 802.11n, HT40, Chain 0	
Plot 20. 26 dB Occupied Bandwidth, 5755 MHz, 802.11n, HT40, Chain 1	
Plot 21. 26 dB Occupied Bandwidth, 5755 MHz, 802.11n, HT40, Chain 2	
Plot 22. 26 dB Occupied Bandwidth, 5755 MHz, 802.11n, HT40, Chain 0	
Plot 23. 26 dB Occupied Bandwidth, 5755 MHz, 802.11n, HT40, Chain 1	
Plot 24. 26 dB Occupied Bandwidth, 5755 MHz, 802.11n, HT40, Chain 2	
Plot 25. 26 dB Occupied Bandwidth, 5795 MHz, 802.11n, HT40, Chain 0	
Plot 26. 26 dB Occupied Bandwidth, 5795 MHz, 802.11n, HT40, Chain 1	
Plot 27. 26 dB Occupied Bandwidth, 5795 MHz, 802.11n, HT40, Chain 2	
Plot 28. RF Output Power, 5745 MHz, 802.11a, Chain 0	
Plot 29. RF Output Power, 5745 MHz, 802.11a, Chain 1	
Plot 30. RF Output Power, 5745 MHz, 802.11a, Chain 2	
Plot 31. RF Output Power, 5785 MHz, 802.11a, Chain 0	
Plot 32. RF Output Power, 5785 MHz, 802.11a, Chain 1	
Plot 33. RF Output Power, 5785 MHz, 802.11a, Chain 2	.23

Plot 34. RF Output Power, 5825 MHz, 802.11a, Chain 0	
Plot 35. RF Output Power, 5825 MHz, 802.11a, Chain 1	
Plot 36. RF Output Power, 5825 MHz, 802.11a, Chain 2	
Plot 37. RF Output Power, 5745 MHz, 802.11n, HT20, Chain 0	25
Plot 38. RF Output Power, 5745 MHz, 802.11n, HT20, Chain 1	25
Plot 39. RF Output Power, 5745 MHz, 802.11n, HT20, Chain 2	25
Plot 40. RF Output Power, 5785 MHz, 802.11n, HT20, Chain 0	
Plot 41. RF Output Power, 5785 MHz, 802.11n, HT20, Chain 1	
Plot 42. RF Output Power, 5785 MHz, 802.11n, HT20, Chain 2	
Plot 43. RF Output Power, 5825 MHz, 802.11n, HT20, Chain 0	
Plot 44. RF Output Power, 5825 MHz, 802.11n, HT20, Chain 1	
Plot 45. RF Output Power, 5825 MHz, 802.11n, HT20, Chain 2	
Plot 46. RF Output Power, 5755 MHz, 802.11n, HT40, Chain 0	
Plot 47. RF Output Power, 5755 MHz, 802.11n, HT40, Chain 1	
Plot 48. RF Output Power, 5755 MHz, 802.11n, HT40, Chain 2	
Plot 49. RF Output Power, 5785 MHz, 802.11n, HT40, Chain 0	
Plot 50. RF Output Power, 5785 MHz, 802.11n, HT40, Chain 1	
Plot 51. RF Output Power, 5785 MHz, 802.11n, HT40, Chain 2	
Plot 52. RF Output Power, 5795 MHz, 802.11n, HT40, Chain 0	
Plot 53. RF Output Power, 5795 MHz, 802.11n, HT40, Chain 1	
Plot 54. RF Output Power, 5795 MHz, 802.11n, HT40, Chain 2	
Plot 55. Peak Power Spectral Density, 5745 MHz, 802.11a, Chain 0	
Plot 56. Peak Power Spectral Density, 5745 MHz, 802.11a, Chain 1	
Plot 57. Peak Power Spectral Density, 5745 MHz, 802.11a, Chain 2	
Plot 58. Peak Power Spectral Density, 5785 MHz, 802.11a, Chain 0	
Plot 59. Peak Power Spectral Density, 5785 MHz, 802.11a, Chain 1 Plot 60. Peak Power Spectral Density, 5785 MHz, 802.11a, Chain 2	
Plot 61. Peak Power Spectral Density, 5785 MHz, 802.11a, Chain 2	
Plot 62. Peak Power Spectral Density, 5825 MHz, 802.11a, Chain 0	
Plot 63. Peak Power Spectral Density, 5825 MHz, 802.11a, Chain 2	
Plot 64. RF Output Power, 5745 MHz, 802.11n, HT20, Chain 0	
Plot 65. RF Output Power, 5745 MHz, 802.11n, HT20, Chain 1	
Plot 66. RF Output Power, 5745 MHz, 802.11n, HT20, Chain 2	
Plot 67. RF Output Power, 5785 MHz, 802.11n, HT20, Chain 0	
Plot 68. RF Output Power, 5785 MHz, 802.11n, HT20, Chain 1	
Plot 69. RF Output Power, 5785 MHz, 802.11n, HT20, Chain 2	
Plot 70. RF Output Power, 5825 MHz, 802.11n, HT20, Chain 0	
Plot 71. RF Output Power, 5825 MHz, 802.11n, HT20, Chain 1	
Plot 72. RF Output Power, 5825 MHz, 802.11n, HT20, Chain 2	
Plot 73. RF Output Power, 5755 MHz, 802.11n, HT40, Chain 0	
Plot 74. RF Output Power, 5755 MHz, 802.11n, HT40, Chain 1	
Plot 75. RF Output Power, 5755 MHz, 802.11n, HT40, Chain 2	
Plot 76. RF Output Power, 5785 MHz, 802.11n, HT40, Chain 0	
Plot 77. RF Output Power, 5785 MHz, 802.11n, HT40, Chain 1	
Plot 78. RF Output Power, 5785 MHz, 802.11n, HT40, Chain 2	
Plot 79. RF Output Power, 5795 MHz, 802.11n, HT40, Chain 0	41
Plot 80. RF Output Power, 5795 MHz, 802.11n, HT40, Chain 1	41
Plot 81. RF Output Power, 5795 MHz, 802.11n, HT40, Chain 2	
Plot 82. Radiated Spurious Emissions, 5745 MHz, 802.11a, 30 MHz – 1 GHz	
Plot 83. Radiated Spurious Emissions, 5745 MHz, 802.11a, 1 GHz – 7 GHz	
Plot 84. Radiated Spurious Emissions, 5745 MHz, 802.11a, 7 GHz – 18 GHz	
Plot 85. Radiated Spurious Emissions, 5785 MHz, 802.11a, 30 MHz – 1 GHz	
Plot 86. Radiated Spurious Emissions, 5785 MHz, 802.11a, 1 GHz – 7 GHz	
Plot 87. Radiated Spurious Emissions, 5785 MHz, 802.11a, 7 GHz – 18 GHz	
Plot 88. Radiated Spurious Emissions, 5825 MHz, 802.11a, 30 MHz – 1 GHz	
Plot 89. Radiated Spurious Emissions, 5825 MHz, 802.11a, 1 GHz – 7 GHz	

Plot 90. Radiated Spurious Emissions, 5825 MHz, 802.11a, 7 GHz – 18 GHz	45
Plot 91. Radiated Spurious Emissions, 5745 MHz, 802.11n, HT20, 30 MHz – 1 GHz	
Plot 92. Radiated Spurious Emissions, 5745 MHz, 802.11n, HT20, 50 MHz – 7 GHz	
Plot 93. Radiated Spurious Emissions, 5745 MHz, 802.11n, HT20, 7 GHz – 7 GHz	
Plot 94. Radiated Spurious Emissions, 5785 MHz, 802.11n, HT20, 30 MHz – 1 GHz	
Plot 95. Radiated Spurious Emissions, 5785 MHz, 802.11n, HT20, 1 GHz – 7 GHz	
Plot 96. Radiated Spurious Emissions, 5785 MHz, 802.11n, HT20, 7 GHz – 18 GHz	
Plot 97. Radiated Spurious Emissions, 5825 MHz, 802.11n, HT20, 30 MHz - 1 GHz	
Plot 98. Radiated Spurious Emissions, 5825 MHz, 802.11n, HT20, 1 GHz – 7 GHz	
Plot 99. Radiated Spurious Emissions, 5755 MHz, 802.11n, HT40, 30 MHz - 1 GHz	
Plot 100. Radiated Spurious Emissions, 5755 MHz, 802.11n, HT40, 1 GHz - 7 GHz	
Plot 101. Radiated Spurious Emissions, 5755 MHz, 802.11n, HT40, 7 GHz - 18 GHz	
Plot 102. Radiated Spurious Emissions, 5785 MHz, 802.11n, HT40, 30 MHz – 1 GHz	
Plot 103. Radiated Spurious Emissions, 5785 MHz, 802.11n, HT40, 1 GHz – 7 GHz	
Plot 104. Radiated Spurious Emissions, 5785 MHz, 802.11n, HT40, 7 GHz – 18 GHz	
Plot 105. Radiated Spurious Emissions, 5795 MHz, 802.11n, HT40, 30 MHz – 1 GHz	
Plot 106. Radiated Spurious Emissions, 5795 MHz, 802.11n, HT40, 1 GHz – 7 GHz	
Plot 107. Radiated Spurious Emissions, 5795 MHz, 802.11n, HT40, 7 GHz – 7 GHz.	
riot 107. Kaulated Spurious Emissions, 5755 Winz, 602.1111, H140, 7 GHz – 18 GHz	

AC	Alternating Current
ACF	Antenna Correction Factor
Cal	Calibration
d	Measurement Distance
dB	Decibels
dBμA	Decibels above one microamp
dBμV	Decibels above one microvolt
dBμA/m	Decibels above one microamp per meter
dBμV/m	Decibels above one microvolt per meter
DC	Direct Current
Е	Electric Field
DSL	Digital Subscriber Line
ESD	Electrostatic Discharge
EUT	Equipment Under Test
f	Frequency
FCC	Federal Communications Commission
GRP	Ground Reference Plane
Н	Magnetic Field
НСР	Horizontal Coupling Plane
Hz	Hertz
IEC	International Electrotechnical Commission
kHz	Kilohertz
kPa	Kilopascal
kV	Kilovolt
LISN	Line Impedance Stabilization Network
MHz	Megahertz
μΗ	Microhenry
μ	Microfarad
μ s	Microseconds
PRF	Pulse Repetition Frequency
RF	Radio Frequency
RMS	Root-Mean-Square
ТWT	Traveling Wave Tube
V/m	Volts per meter
VCP	Vertical Coupling Plane

List of Terms and Abbreviations

I. Executive Summary

A. Purpose of Test

An EMC evaluation was performed to determine compliance of the ARRIS Group, Inc. DG1660/DG1670, with the requirements of Part 15, §15.407. All references are to the most current version of Title 47 of the Code of Federal Regulations in effect. In accordance with §2.1033, the following data is presented in support of the Certification of the DG1660/DG1670. ARRIS Group, Inc. should retain a copy of this document which should be kept on file for at least two years after the manufacturing of the DG1660/DG1670, has been **permanently** discontinued.

B. Executive Summary

The following tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15, §15.407, in accordance with ARRIS Group, Inc., purchase order number AR1059354. All tests were conducted using measurement procedure ANSI C63.4-2003.

FCC Reference	Description	Results
§15.203	Antenna Requirements	Compliant
§15.407	26dB Occupied Bandwidth	Compliant
§15.407 (a)(3)	Conducted Transmitter Output Power	Compliant
§15.407 (a)(3)	Power Spectral Density	Compliant
§15.407 (b)(4), (6), (7)	Undesirable Emissions (15.205/15.209 - General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Compliant
§15.407 (e)	6 dB Bandwidth	Compliant
§15.407(f)	RF Exposure Completed	

 Table 1. Executive Summary of EMC Part 15.407 ComplianceTesting

II. Equipment Configuration

A. Overview

MET Laboratories, Inc. was contracted by ARRIS Group, Inc. to perform testing on the DG1660/DG1670, under ARRIS Group, Inc.'s purchase order number AR1059354.

This document describes the test setups, test methods, required test equipment, and the test limit criteria used to perform compliance testing of the ARRIS Group, Inc. DG1660/DG1670.

The results obtained relate only to the item(s) tested.

Model(s) Tested:	DG1660/DG1670	
Model(s) Covered:	DG1660/DG1670	
	Primary Power: 120 VAC	C, 60 Hz
	Class II Permissive Change FCC ID: UIDDG1660	
EUT	Type of Modulations:	OFDM
Specifications:	Equipment Code:	UNII
	Peak RF Output Power:	22.53dBm
	EUT Frequency Ranges:	5745MHz-5825 MHz 5755MHz-5795MHz
Analysis:	The results obtained relate only to the item(s) tested.	
	Temperature: 15-35° C	
Environmental Test Conditions:	Relative Humidity: 30-60%	
	Barometric Pressure: 860-1060 mbar	
Evaluated by:	Benjamin Taylor	
Report Date(s):	July 14, 2015	

Table 2. EUT Summary

**Note: This report has Class II Permissive Change testing data to demonstrate compliance with the UNII-3 requirement.

B. References

CFR 47, Part 15, Subpart E Unlicensed National Information Infrastructure Devices (UNII)	
ANSI C63.4:2003Methods and Measurements of Radio-Noise Emissions from Low-Vo Electrical And Electronic Equipment in the Range of 9 kHz to 40 GH	
ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories	
ANSI C63.10-2009 American National Standard for Testing Unlicensed Wireless Devices	
KDB 789033 D02 General UNII Test Procedures	

Table 3. References

C. Test Site

All testing was performed at MET Laboratories, Inc., 914 W. Patapsco Ave., Baltimore, MD 21230. All equipment used in making physical determinations is accurate and bears recent traceability to the National Institute of Standards and Technology.

Radiated Emissions measurements were performed in a 3 meter semi-anechoic chamber (equivalent to an Open Area Test Site). In accordance with §2.948(a)(3), a complete site description is contained at MET Laboratories.

D. Description of Test Sample

The ARRIS Group, Inc. DG1660/DG1670, Equipment Under Test (EUT), combines two analog voice lines, a 4-port Gigabit Router, and 802.11n wireless access point with two independent, simultaneously operating 802.11n radios into a single device capable of supporting both home and small office applications. The TC1672G can achieve high bandwidth performance without affecting voice quality.

E. Equipment Configuration

Name / Description	Model Number	Serial Number
Telephony Gateway	DG1670	CCPBP1332300192

Table 4. Equipment Configuration

F. Support Equipment

Support equipment necessary for the operation and testing of the EUT is included in the following list.

Name / Description	Manufacturer	Model Number
Ethernet Cable Config / Control	Dell	Vostro
Telephone	Emerson	EM-2115RW
USB Flash Drive	Verbatim	4 GB

Table 5.Support Equipment

G. Modifications

a) Modifications to EUT

No modifications were made to the EUT.

b) Modifications to Test Standard

No modifications were made to the test standard.

H. Disposition of EUT

The test sample including all support equipment submitted to the Electro-Magnetic Compatibility Lab for testing was returned to ARRIS Group, Inc. upon completion of testing.

III. Electromagnetic Compatibility Criteria for Intentional Radiators

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.203 Antenna Requirement

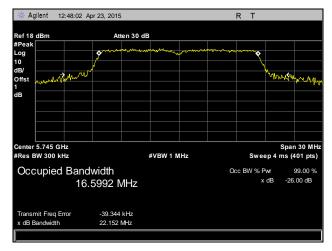
Test Requirement:	§ 15.203: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with Section 15.203 of the Rules. Section 15.203 states that the subject device must meet at least one of the following criteria:
	a.) Antenna must be permanently attached to the unit.
	b.) Antenna must use a unique type of connector to attach to the EUT.
	c.) Unit must be professionally installed. Installer shall be responsible for verifying that the correct antenna is employed with the unit.
Results:	The EUT is compliant with the criteria of §15.203. The EUT employs an integrated antenna.
Test Engineer(s):	Benjamin Taylor
Test Date(s):	04/20/15

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15. 403(i) 26dB Bandwidth

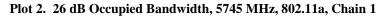
Test Requirements:	§ 15.403 (i): For purposes of this subpart the emission bandwidth shall be determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 26 dB down relative to the maximum level of the modulated carrier. Determination of the emissions bandwidth is based on the use of measurement instrumentation employing a peak detector function with an instrument resolution bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement.
Test Procedure:	The transmitter was set to low, mid, and high operating frequencies at the highest output power and connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using a RBW approximately equal to 1% of the total emission bandwidth, VBW > RBW. The 26 dB Bandwidth was measured and recorded.
Test Results	The 26 dB Bandwidth was compliant with the requirements of this section and was determined from the plots on the following pages.
Test Engineer(s):	Benjamin Taylor
Test Date(s):	04/23/15
	EUT Attenuator Spectrum Analyzer

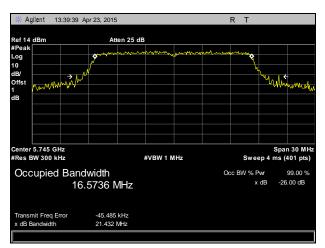
Figure 1. Occupied Bandwidth, Test Setup



Frequency (MHz)	Mode/Chain	Occupied Bandwidth (MHz)
	802.11a Chain 0	22.152
5745	802.11 a Chain 1	20.810
	802.11a Chain 2	21.432
	802.11a Chain 0	19.546
5785	802.11 a Chain 1	21.287
	802.11a Chain 2	20.246
	802.11a Chain 0	20.446
5825	802.11 a Chain 1	20.740
	802.11a Chain 2	21.269
	802.11n HT20 Chain 0	19.375
5745	802.11n HT20 Chain 1	21.216
	802.11n HT20 Chain 2	20.282
	802.11n HT20 Chain 0	19.691
5785	802.11n HT20 Chain 1	21.516
	802.11n HT20 Chain 2	20.569
	802.11n HT20 Chain 0	20.215
5825	802.11n HT20 Chain 1	20.612
	802.11n HT20 Chain 2	19.921
	802.11n HT40 Chain 0	38.795
5755	802.11n HT40 Chain 1	38.596
	802.11n HT40 Chain 2	42.044
	802.11n HT40 Chain 0	40.279
5795	802.11n HT40 Chain 1	38.800
	802.11n HT40 Chain 2	38.792

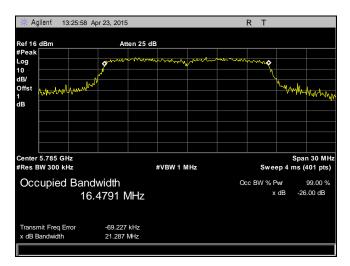
Table 6. Occupied Bandwidth Test Results

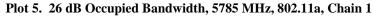


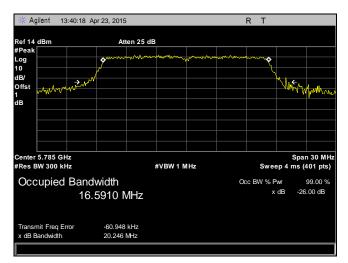

26 dB Occupied Bandwidth Test Results

Plot 1. 26 dB Occupied Bandwidth, 5745 MHz, 802.11a, Chain 0

🔆 Agilent 13:14:4	6 Apr 23, 2015		RT	
Ref 16 dBm	Atten 25	5 dB		
Peak				
.og		man have been and the second	en marine &	
0 B/			V,	
B/ Dffst ₩₩ <u>₩₩₩₩</u> ₩₩	2 M		<u>ارا</u>	AL 10 - 10
WWWWWWW				Marth Marth
IB				
enter 5.745 GHz				Span 30 MI
Res BW 300 kHz		#VBW 1 MHz	Sweep	4 ms (401 pts
Occupied Ba	ndwidth		Occ BW % Pwr	99.00 %
	16.5564 MHz		× dE	-26.00 dB
Transmit Freq Error	-30.881 kHz			
x dB Bandwidth	20.810 MHz			

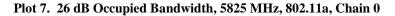


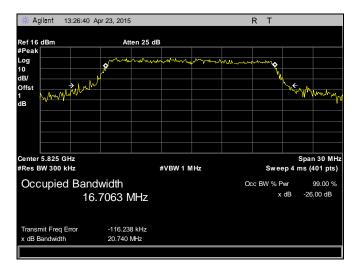

Plot 3. 26 dB Occupied Bandwidth, 5745 MHz, 802.11a, Chain 2

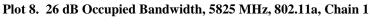


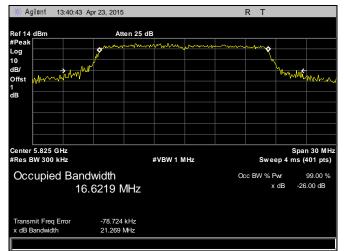
🔆 Agilent 🛛 12:48	:56 Apr 23, 2015		F	хт	
Ref 18 dBm	Atten	30 dB			
Peak Log	\$ month and	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~ ?	
iB/ Dffst <mark>www.co.uk</mark>	ward the second s			L.	vuluuk, va
IB					~wwwwwwww
Center 5.785 GHz ¢Res BW 300 kHz		#VBW 1 MHz		Sweep 4	Span 30 MI ms (401 pts
Occupied B	andwidth		Occ	BW % Pwr	99.00 %
	16.4347 MH	Z		x dB	-26.00 dB
Transmit Freq Error	-81.953 kHz				
x dB Bandwidth	19.546 MHz				

Plot 4. 26 dB Occupied Bandwidth, 5785 MHz, 802.11a, Chain 0

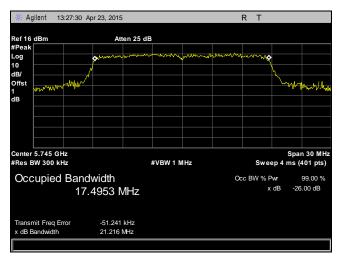




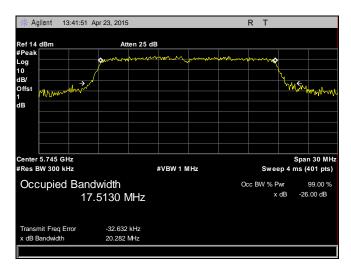

Plot 6. 26 dB Occupied Bandwidth, 5785 MHz, 802.11a, Chain 2



🔆 Agilent 12:4	9:36 Apr	or 23, 2015					RΤ			
Ref 18 dBm		At	ten 30 di	в						
#Peak										
Log		4 mon	mmm	m	r mar	mound	mito			
10										
dB/ Offst	-			<u>م م</u>				My. <		
dB/ Offst www.hander 1	W							- WWW	`∕w	WWhyh
dB										
				کھی						
Center 5.825 GHz								\$	Span	n 30 MH
#Res BW 300 kHz				#VBW1M	l Hz		Swe			01 pts)
Occupied E	Sandy	width				Or	c BW % F	Pwr	4	99.00 %
Occupica 1			411-					k dB		.00 dB
	10.0	5989 N	/IHZ							
Transmit Freq Erro	r	-117.37	1 kHz							
x dB Bandwidth		20.446	MHz							

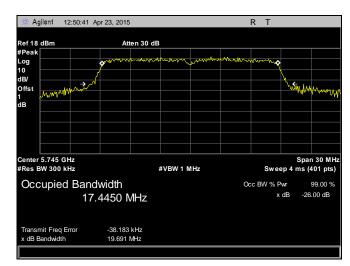


Plot 9. 26 dB Occupied Bandwidth, 5825 MHz, 802.11a, Chain 2

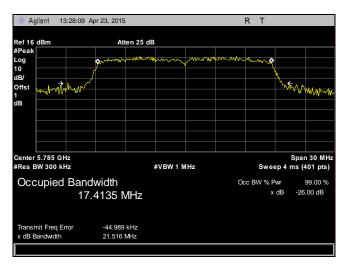


🔆 Agilent 12:5	51:25 Apr 23,	, 2015			F	RΤ		
Ref 18 dBm		Atten 30	0 dB					
#Peak								
Log	2~1	mumm	www.	- Martin	m	mino		
10 dB/	/ I			عديات			٨.	
Offst	1 AN						White	
CAMPAGE AND				<u>ل الم</u>				www
dB								
بيصواعا								
بيصواعه								
Center 5.785 GHz								20 MH
#Res BW 300 kHz			#VBW 1 N	MHz		Swee	spa ep 4 ms (an 30 MH (401 pts)
Occupied E	Bandwid	lth			Oc	c BW % P	wr	99.00 %
CC CC CC		13 MHz					dB -26	6.00 dB
	1.00							
Transmit Freq Error	r -8	33.959 kHz						
x dB Bandwidth		9.375 MHz						

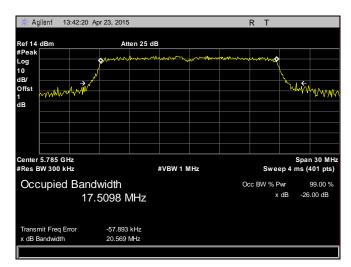
Plot 10. 26 dB Occupied Bandwidth, 5745 MHz, 802.11n, HT20, Chain 0



Plot 11. 26 dB Occupied Bandwidth, 5745 MHz, 802.11n, HT20, Chain 1

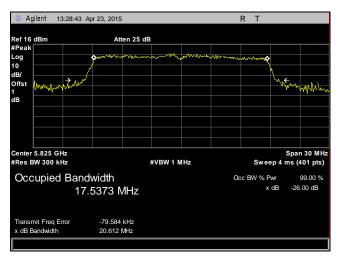


Plot 12. 26 dB Occupied Bandwidth, 5745 MHz, 802.11n, HT20, Chain 2

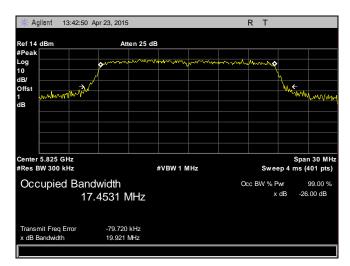


Plot 13. 26 dB Occupied Bandwidth, 5785 MHz, 802.11n, HT20, Chain 0

Plot 14. 26 dB Occupied Bandwidth, 5785 MHz, 802.11n, HT20, Chain 1



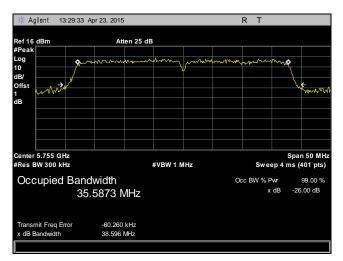
Plot 15. 26 dB Occupied Bandwidth, 5785 MHz, 802.11n, HT20, Chain 2



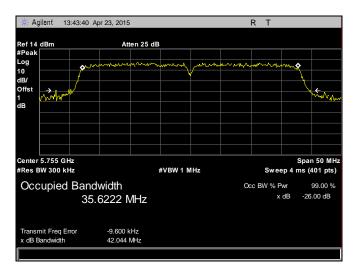
lef 18 dBm	Atten	30 dB				
Peak						
og	¢ mmm	mann	www.ww	·····		
0					1	
B/					1	
offst					here	2014 14.3
в						a t a-sta.
B						
enter 5.825 GHz					Spa	n 30 M
Res BW 300 kHz		#VBW 1	M Hz	Swe	ep 4 ms (
Occupied Ban	dwidth			Occ BW % F	Dur	99.00
						5.00 dB
17	7.5453 M⊦	IZ		,	UD -20	.00 ав
Transmit Freq Error						
x dB Bandwidth	20.215 MH	7				

Plot 16. 26 dB Occupied Bandwidth, 5825 MHz, 802.11n, HT20, Chain 0

Plot 17. 26 dB Occupied Bandwidth, 5825 MHz, 802.11n, HT20, Chain 1

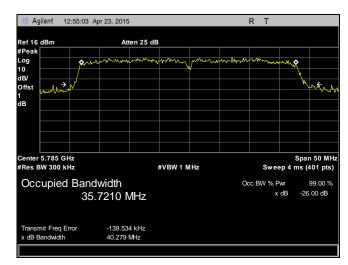


Plot 18. 26 dB Occupied Bandwidth, 5825 MHz, 802.11n, HT20, Chain 2

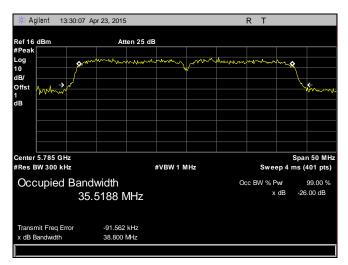


Ref 16 dBm		Att	ten 25 dE	в					
#Peak	و و ا	ر کار ا		/ Carlos					
_og	A	······	Marrie Contraction	mumul	Contraction of the second	and the second	mm	mg	
10								5	
dB/ Offst								h h	mm
Offst									
яв —									
5 755 0								C	50 141
Center 5.755 G #Res BW 300 k				#VBW1N	M H-		Swaa		n 50 MH
					THZ		Swee	p 4 ms (401 pts,
Occupied	Band	width				Oc	cc BW % Pw	vr	99.00 %
		6625 N	MH7				хc	dB -26	6.00 dB
	55.	0025-1	10.02						
Transmit Freq E	fror	-44.460	kHz						
x dB Bandwidth		38.795							

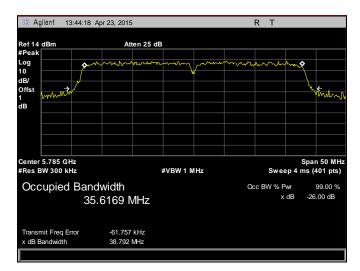
Plot 19. 26 dB Occupied Bandwidth, 5755 MHz, 802.11n, HT40, Chain 0



Plot 20. 26 dB Occupied Bandwidth, 5755 MHz, 802.11n, HT40, Chain 1

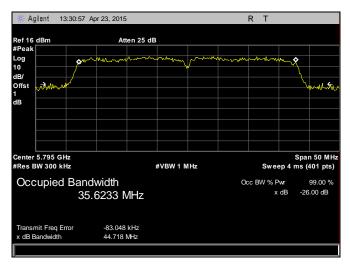


Plot 21. 26 dB Occupied Bandwidth, 5755 MHz, 802.11n, HT40, Chain 2

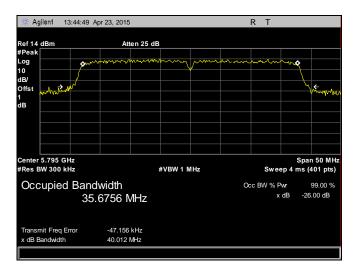


Plot 22. 26 dB Occupied Bandwidth, 5755 MHz, 802.11n, HT40, Chain 0

Plot 23. 26 dB Occupied Bandwidth, 5755 MHz, 802.11n, HT40, Chain 1



Plot 24. 26 dB Occupied Bandwidth, 5755 MHz, 802.11n, HT40, Chain 2



🔆 Agiler	nt 12:56	3:13 Ap	or 23, 2015					R	Т		
Ref 16 dB	Зm		At	ten 25 dB							
#Peak Log 10 dB/		¢~~~	n al hand a h	·····	manna	/~~ ~~~	yhn yn yn	~~~	~~~	m	
Offst 1 dB	<u>7</u> 1										Me w
Center 5.7	795 GHz									Sp	an 50 MH
#Res BW	300 kHz				#VBW1 M	lHz			Swee		(401 pts)
Occu	ipied B		width 6891 N	ИНz			Oc	ic B\	W % P x		99.00 % 26.00 dB
Transmit x dB Ban	Freq Error		-177.448 41.843 M								

Plot 25. 26 dB Occupied Bandwidth, 5795 MHz, 802.11n, HT40, Chain 0

Plot 26. 26 dB Occupied Bandwidth, 5795 MHz, 802.11n, HT40, Chain 1

Plot 27. 26 dB Occupied Bandwidth, 5795 MHz, 802.11n, HT40, Chain 2

Electromagnetic Compatibility Criteria for Intentional Radiators

§§15.407(a)(3) RF Power Output

Test Requirements: §15.407(a)(3): For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

Test Procedure: The EUT was connected to a spectrum analyzer through an attenuator and set to transmit continuously on the low, mid, and high channels. Its power was measured according to measurement method SA-1, as described in 789033 D02 General UNII Test Procedures New Rule v01. Plots were corrected for attenuator and cable loss.

Test Results: Equipment was compliant with the Peak Power Output limits of §15.407(a)(3).

Test Engineer(s): Benjamin Taylor

Test Date(s): 04/24/15

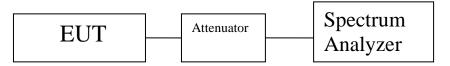


Figure 2. Power Output Test Setup

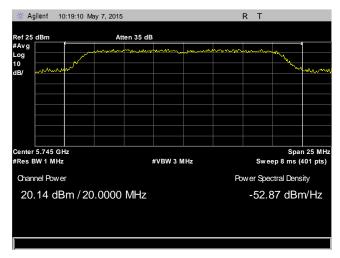
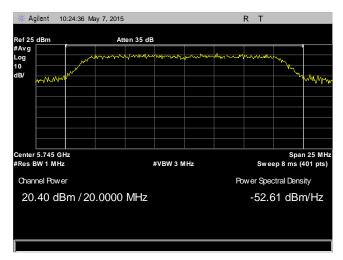
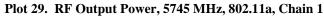
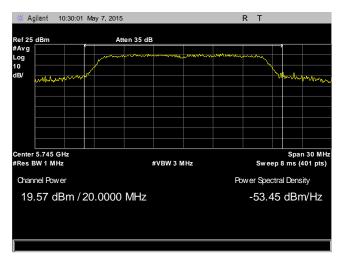

Frequency (MHz)	Mode/Chain	Raw Conducted Output Power (dBm)	Measurement Cable Loss (dB)	Corrected Output Power (dBm)
	802.11a Chain 0	20.14	1.78	21.92
5745	802.11 a Chain 1	20.40	1.78	22.18
	802.11a Chain 2	19.57	1.78	21.35
	802.11a Chain 0	18.14	1.78	19.92
5785	802.11 a Chain 1	19.12	1.78	20.9
	802.11a Chain 2	19.12	1.78	20.9
	802.11a Chain 0	19.26	1.78	21.04
5825	802.11 a Chain 1	18.86	1.78	20.64
	802.11a Chain 2	18.36	1.78	20.14
	802.11n HT20 Chain 0	20.41	1.78	22.19
5745	802.11n HT20 Chain 1	19.01	1.78	20.79
	802.11n HT20 Chain 2	19.49	1.78	21.27
	802.11n HT20 Chain 0	18.64	1.78	20.42
5785	802.11n HT20 Chain 1	18.67	1.78	20.45
	802.11n HT20 Chain 2	18.91	1.78	20.69
	802.11n HT20 Chain 0	17.05	1.78	18.83
5825	802.11n HT20 Chain 1	17.81	1.78	19.59
	802.11n HT20 Chain 2	18.14	1.78	19.92
	802.11n HT40 Chain 0	20.75	1.78	22.53
5755	802.11n HT40 Chain 1	19.93	1.78	21.71
	802.11n HT40 Chain 2	19.69	1.78	21.47
	802.11n HT40 Chain 0	19.34	1.78	21.12
5785	802.11n HT40 Chain 1	19.40	1.78	21.18
	802.11n HT40 Chain 2	19.47	1.78	21.25
	802.11n HT40 Chain 0	19.51	1.78	21.29
5795	802.11n HT40 Chain 1	19.47	1.78	21.25
	802.11n HT40 Chain 2	18.66	1.78	20.44

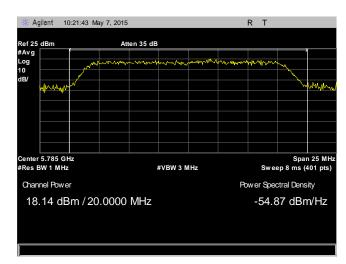
Table 7. Conducted Output Power Test Results

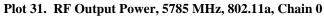

Note: The power values displayed in the plots shown below, do not account for the measurement cable loss of 1.78dB. That, and the final corrected power values can be seen in Table 7.

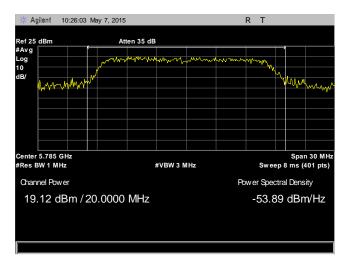


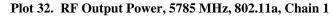

RF Output Power Test Results

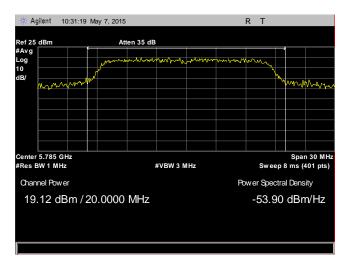
Plot 28. RF Output Power, 5745 MHz, 802.11a, Chain 0

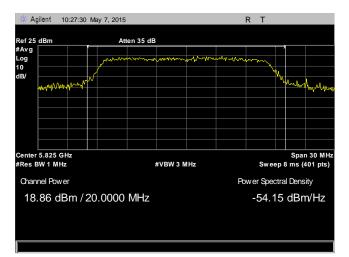


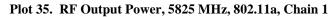


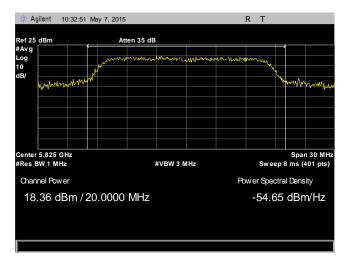



Plot 30. RF Output Power, 5745 MHz, 802.11a, Chain 2



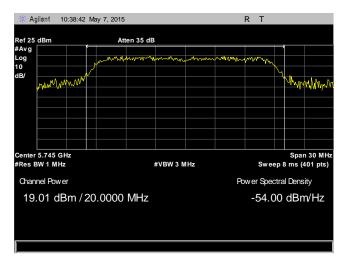


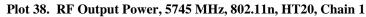

Plot 33. RF Output Power, 5785 MHz, 802.11a, Chain 2

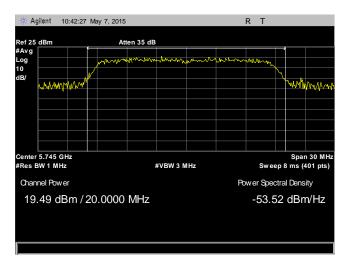


Ref 25 dBm ≉Avg	ř		ten 35 dE										
_og	N	man	mun	www.	mount	man	why	m					
0 IB/	N							- Mu					
1B/	~							~	ndyn,				
Center 5.825 G Res BW 1 MHz	1Hz	Span 25 MH Hz Sweep 8 ms (401 pts)											
Channel Powe	Channel Power							Power Spectral Density					
10 26 dF	19.26 dBm / 20.0000 MHz							-53.75 dBm/Hz					
10.20 uL	JIII / 20	.0000					55.						

Plot 34. RF Output Power, 5825 MHz, 802.11a, Chain 0

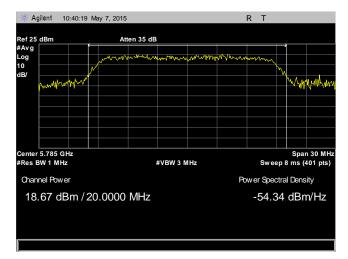


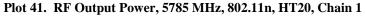

Plot 36. RF Output Power, 5825 MHz, 802.11a, Chain 2

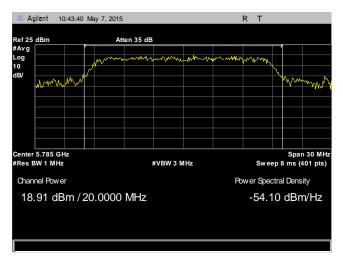


Ref 25 dBm #Avg		Atten 35 dB									
og 10	1	Many	and Anno	m make	Martin	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- Marine I	m			
зв/	ww							- M	VM	nthrw	
Center 5.745 G										n 30 MHz	
Res BW 1 MHz #VBW 3 MHz						Sweep 8 ms (401 pts)					
Channel Powe	er					Pov	wer Spe	ctra	al Dens	sity	
20.41 dE		-52.60 dBm/Hz									

Plot 37. RF Output Power, 5745 MHz, 802.11n, HT20, Chain 0

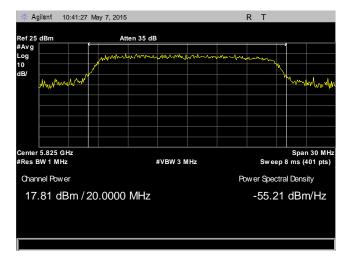


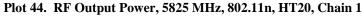

Plot 39. RF Output Power, 5745 MHz, 802.11n, HT20, Chain 2

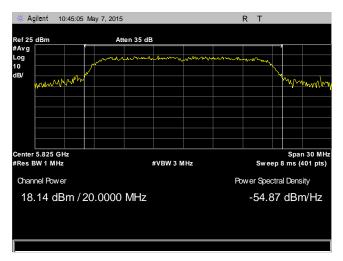


Ref25 #Avg	dBm		Atten 35 dB											
#Avg Log 10				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mm	mon	mm	nun	mm					
dB/			4							1				
	MAMMAN	WwW								\square	Wys	pronter		
	Center 5.785 GHz HRes BW 1 MHz #VBW 3 MHz							Span 30 MHz Sweep 8 ms (401 pts)						
Chani	nel Power							Pov	ver Spe	ctra	al Dens	sity		
18.	64 dBr	m / 2	20.	0000	MHz				-54.3	37	dBr	n/Hz		

Plot 40. RF Output Power, 5785 MHz, 802.11n, HT20, Chain 0

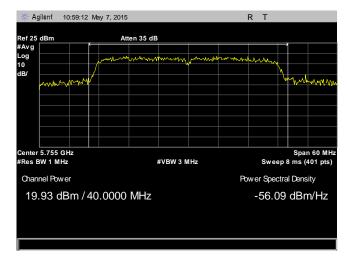


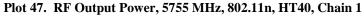

Plot 42. RF Output Power, 5785 MHz, 802.11n, HT20, Chain 2

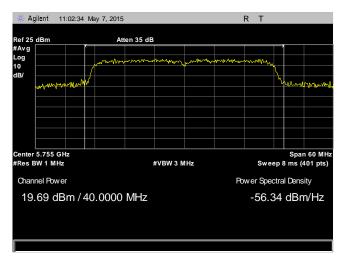


A. Mar. M	, and the second se	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~								
A. Mar M	Jaw	mm	~~~								
. A. A. A. M	1			menny	mm	mon	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
A. Mar. N	<u>/ </u>							۳			
N MW WWW									ww	www	
enter 5.825 GHz Res BW 1 MHz #VBW 3 MHz							_			n 30 MH	
/I Hz				#VBW 3 N	IHz		Swe	ep	8 ms (401 pts)	
Channel Pow er							Power Spectral Density				
17.05 dBm / 20.0000 MHz							-55.96 dBm/Hz				
	20.00		14				00.	00	abi	1/112	
	MHz	MHz ower	MHz ower	MHz	WHZ #VBW 3 N	MHz #VBW 3 MHz ower	MHz #VBW 3 MHz ower Po	MHz #VBW 3 MHz Swe wer Power Spe	WHz #VBW 3 MHz Sweep ower Power Spectra	MHz #VBW 3 MHz Sweep 8 ms (bwer Power Spectral Dens	

Plot 43. RF Output Power, 5825 MHz, 802.11n, HT20, Chain 0

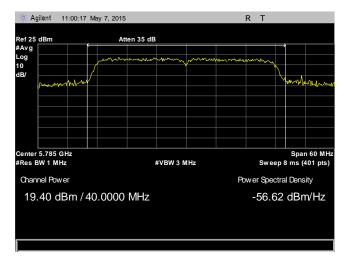


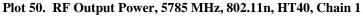

Plot 45. RF Output Power, 5825 MHz, 802.11n, HT20, Chain 2

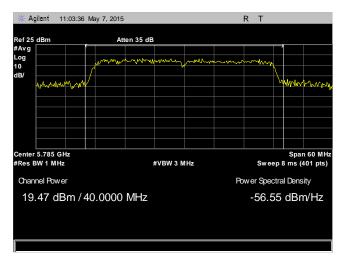


Ref 25	dBm		At	ten 35 dE	3							
#Avg Log		~	mm	www	hum	mm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m	m.	F		
10 dB/	mm	, f								Ľ	horn	
	W-Weller I.											
	Center 5.755 GHz #Res BW 1 MHz #VBW 3 MHz					Span 60 MHz Sweep 8 ms (401 pts)						
Char	Channel Pow er						Power Spectral Density					
20	20.75 dBm / 40.0000 MHz						-55.27 dBm/Hz					

Plot 46. RF Output Power, 5755 MHz, 802.11n, HT40, Chain 0

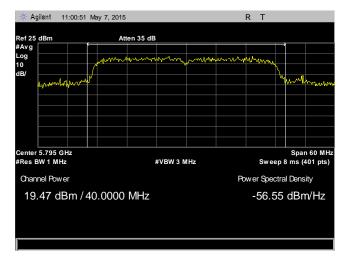


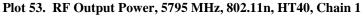

Plot 48. RF Output Power, 5755 MHz, 802.11n, HT40, Chain 2

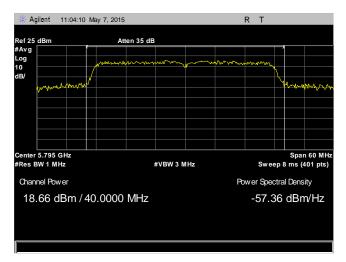


		At	ten 35 dE	3						
	ř							F		
		mm	mayne	mm	mm	mhrmly	mm			
	/				í			N		
mangh	ŕ_								ww	mpp
				#VBW 3 N	1Hz		Swe	ep		n 60 MHz 401 pts)
bw er						Po	wer Spe	ctra	l Dens	sity
19 34 dBm / 40 0000 MHz						-56.68 dBm/Hz				
	τu	.0000					50.0	50	uDi	11/11/2
	5 GHz MHz bw er	5 GHz MHz bwer	5 GHz MHz bwer	5 GHz MH2	5 GHz MHz #VBW 3 N bwer	5 GHz #VBW 3 MHz bwer	s GHz #VBW 3 MHz bwer Po	source of the second seco	5 GHz #VBW 3 MHz Sweep 1 bwer Bower	5 GHz #VBW 3 MHz Sweep 8 ms (bwer Power Spectral Dens

Plot 49. RF Output Power, 5785 MHz, 802.11n, HT40, Chain 0




Plot 51. RF Output Power, 5785 MHz, 802.11n, HT40, Chain 2



	when the	with								
	pohanon	mm						1		
			mmy	mm	when	um.	m	<u> </u>		
							$-\lambda$			
myhamalu	×							mu	MAN	
95 GHz								Spa	n 60 MHz	
#Res BW 1 MHz #VBW 3 MHz					Sweep 8 ms (401 pts)					
Channel Pow er						Pow er Spectral Density				
19.51 dBm / 40.0000 MHz						-56.51 dBm/Hz				
	1 MHz Power	1 MHz Power	1 MHz Power	IMHz #VBW3M Power	1 MHz #VBW 3 MHz Power	1 MHz #VBW 3 MHz Power Po	1 MHz #VBW 3 MHz Si Power Power S	1 MHz #VBW 3 MHz Sweep Power Power Spectra	1 MHz #VBW 3 MHz Sweep 8 ms (Power Power Spectral Dens	

Plot 52. RF Output Power, 5795 MHz, 802.11n, HT40, Chain 0

Plot 54. RF Output Power, 5795 MHz, 802.11n, HT40, Chain 2

Electromagnetic Compatibility Criteria for Intentional Radiators

§15.407(a)(3) Peak Power Spectral Density

Test Requirements:	§15.407(a)(3): In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.
Test Procedure:	The transmitter was connected directly to a Spectrum Analyzer through an attenuator. The power level was set to the maximum level on the EUT. The RBW was set to 1MHz and the VBW was set to 3MHz. The method of measurement used was method SA-1 from 789033 D02 General UNII Test Procedures New Rule v01. Plots are correct for attenuators and cable loss.
Test Results:	Equipment was compliant with the peak power spectral density limits of $\$15.407(a)(3)$ The peak power spectral density was determined from plots on the following page(s).
Test Engineer(s):	Benjamin Taylor
Test Date(s):	04/24/15

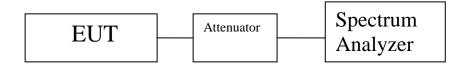
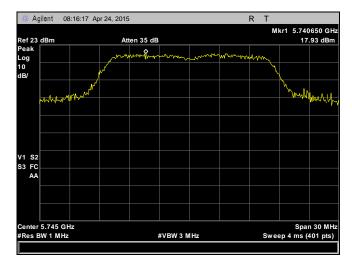
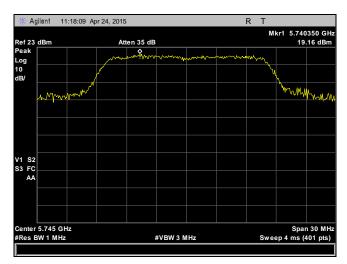
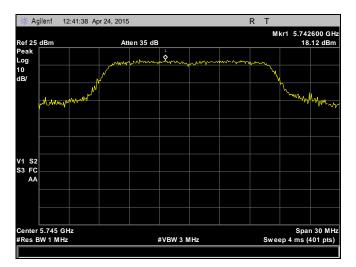


Figure 3. Power Spectral Density Test Setup

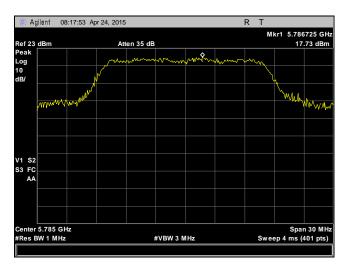


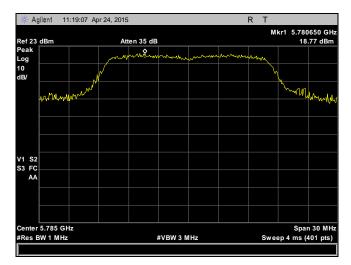
Frequency (MHz)	Mode/Chain	Peak Power Spectral Density (dBm)
	802.11a Chain 0	17.93
5745	802.11 a Chain 1	19.16
	802.11a Chain 2	18.12
	802.11a Chain 0	17.73
5785	802.11 a Chain 1	18.77
	802.11a Chain 2	18.72
	802.11a Chain 0	18.12
5825	802.11 a Chain 1	17.88
	802.11a Chain 2	18.1
	802.11n HT20 Chain 0	19.21
5745	802.11n HT20 Chain 1	17.78
	802.11n HT20 Chain 2	17.23
	802.11n HT20 Chain 0	17.92
5785	802.11n HT20 Chain 1	18.15
	802.11n HT20 Chain 2	16.93
	802.11n HT20 Chain 0	17.32
5825	802.11n HT20 Chain 1	16.87
	802.11n HT20 Chain 2	17.02
	802.11n HT40 Chain 0	16.42
5755	802.11n HT40 Chain 1	14.56
	802.11n HT40 Chain 2	14.25
	802.11n HT40 Chain 0	15.81
5785	802.11n HT40 Chain 1	14.61
	802.11n HT40 Chain 2	14.64
	802.11n HT40 Chain 0	15.21
5795	802.11n HT40 Chain 1	14.64
	802.11n HT40 Chain 2	13.98

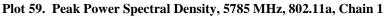

Table 8. Peak Power Spectral Density Test Results

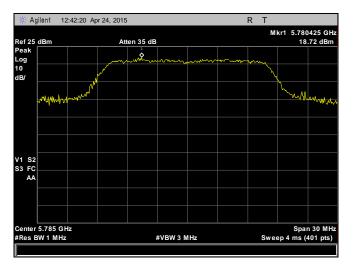

Peak Power Spectral Density Test Results

Plot 55. Peak Power Spectral Density, 5745 MHz, 802.11a, Chain 0

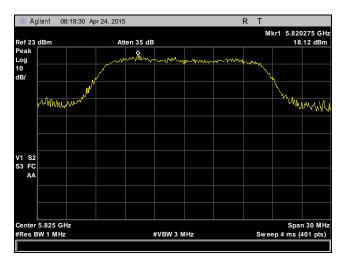


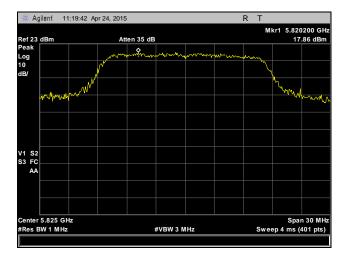



Plot 57. Peak Power Spectral Density, 5745 MHz, 802.11a, Chain 2

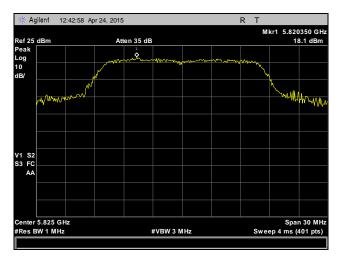


Plot 58. Peak Power Spectral Density, 5785 MHz, 802.11a, Chain 0

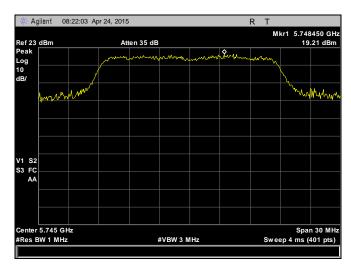




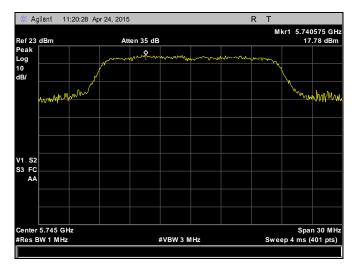
Plot 60. Peak Power Spectral Density, 5785 MHz, 802.11a, Chain 2

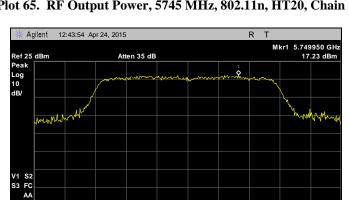


Plot 61. Peak Power Spectral Density, 5825 MHz, 802.11a, Chain 0



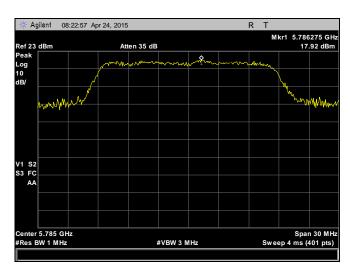
Plot 62. Peak Power Spectral Density, 5825 MHz, 802.11a, Chain 1



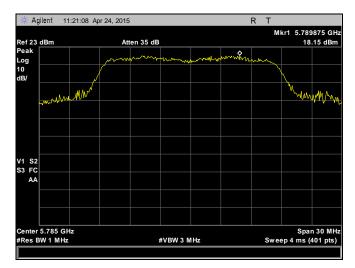

Plot 63. Peak Power Spectral Density, 5825 MHz, 802.11a, Chain 2

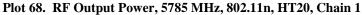
Plot 64. RF Output Power, 5745 MHz, 802.11n, HT20, Chain 0

Plot 65. RF Output Power, 5745 MHz, 802.11n, HT20, Chain 1

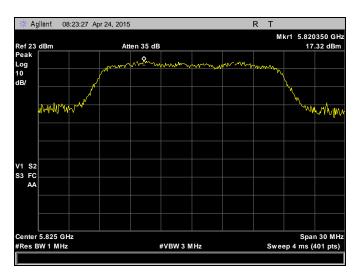

Plot 66. RF Output Power, 5745 MHz, 802.11n, HT20, Chain 2

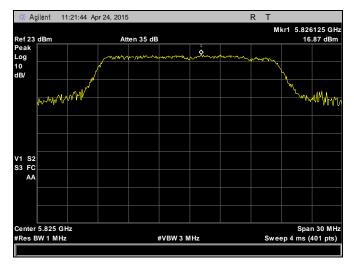
#VBW 3 MHz

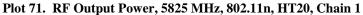

Span 30 MHz Sweep 4 ms (401 pts)

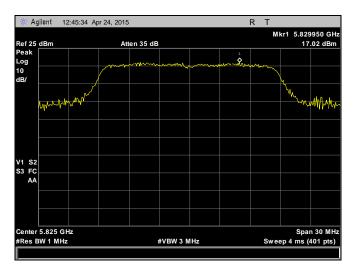

Center 5.745 GHz #Res BW 1 MHz

Plot 67. RF Output Power, 5785 MHz, 802.11n, HT20, Chain 0

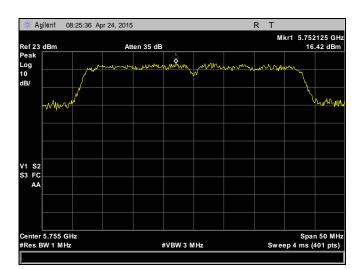


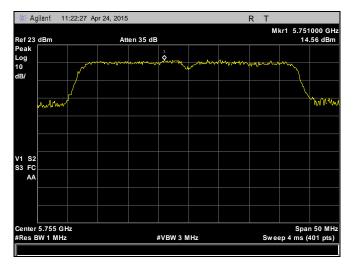


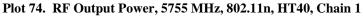

Plot 69. RF Output Power, 5785 MHz, 802.11n, HT20, Chain 2

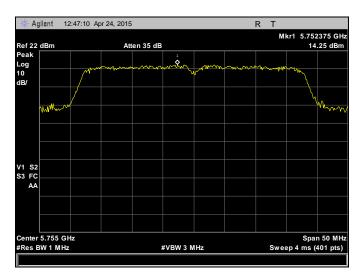


Plot 70. RF Output Power, 5825 MHz, 802.11n, HT20, Chain 0

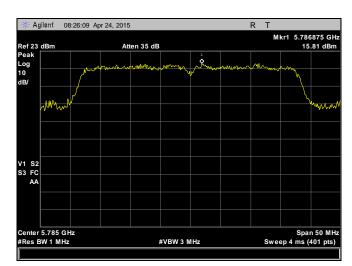


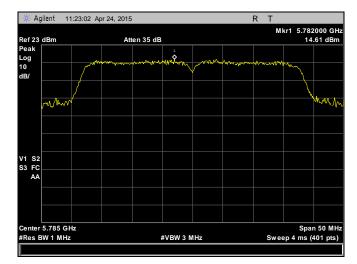


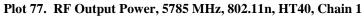

Plot 72. RF Output Power, 5825 MHz, 802.11n, HT20, Chain 2

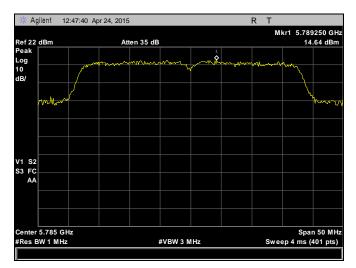


Plot 73. RF Output Power, 5755 MHz, 802.11n, HT40, Chain 0

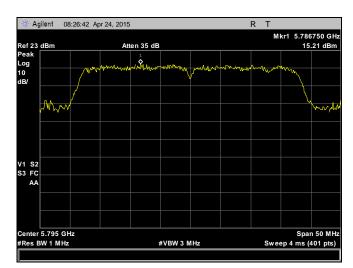


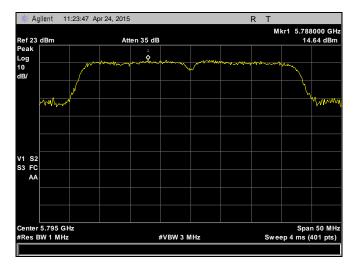



Plot 75. RF Output Power, 5755 MHz, 802.11n, HT40, Chain 2



Plot 76. RF Output Power, 5785 MHz, 802.11n, HT40, Chain 0

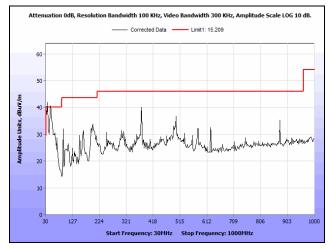




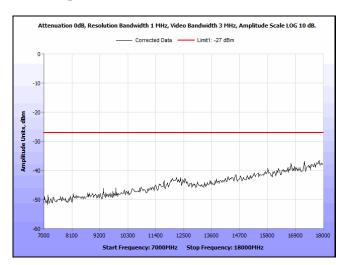
Plot 78. RF Output Power, 5785 MHz, 802.11n, HT40, Chain 2

Plot 79. RF Output Power, 5795 MHz, 802.11n, HT40, Chain 0

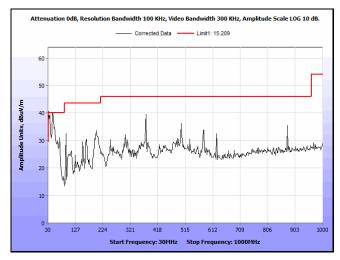
Plot 80. RF Output Power, 5795 MHz, 802.11n, HT40, Chain 1


Plot 81. RF Output Power, 5795 MHz, 802.11n, HT40, Chain 2

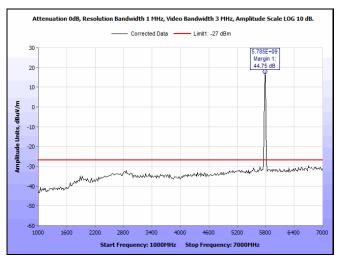
Electromagnetic Compatibility Criteria for Intentional Radiators							
§15.407(b)(1)	, §15.407(b)(6), & §15.407(b)(7)	Undesirable Emissions					
Test Requirements:	§15.407(b)(1), § 15.407(b)(6), § 15.407(b)((7); §15.205: Emissions outside the frequency band.					
	frequency range from the band edge to 10	the 5.725-5.85 GHz band: All emissions within the MHz above or below the band edge shall not exceed as 10 MHz or greater above or below the band edge, dBm/MHz.					
		7 1 GHz must comply with the general field strength r, any U-NII devices using an AC power line are limits set forth in Section 15.207.					
	§15.407(b)(7): The provisions of Section operating under this section.	n 15.205 of this part apply to intentional radiators					
Test Procedure:	Measurements were performed with the E antenna mast height to determine worst case	wooden table inside in a semi-anechoic chamber. UT rotated 360 degrees and varying the adjustable e orientation for maximum emissions. A preamp was we noise floor. Plots were corrected for cable loss,					
	For frequencies from 30 MHz to 1 GHz, m with a 120 kHz bandwidth. The procedure	easurements were made using a quasi-peak detector was used for average.					
	resolution bandwidth. A notch filter was a spurious emissions fell into a restricted ba	nents were made with a Peak detector with 1 MHz use to filter out the transmitting channel. Where the nd, measurements were also made with an average 15.209 limits. Only noise floor was seen above 18 na.					
Test Results:		ed Emission limits for Intentional Radiators. See ll emissions above 18 GHz were at the noise floor of					
Note(s)		at appear to be in excess of the limits are exclusively its. These emissions were addressed in the 15.109 a Class II PC).					
Test Engineer(s):	Benjamin Taylor						
Test Date(s):	04/22/15						


Radiated Spurious Emissions, Test Results

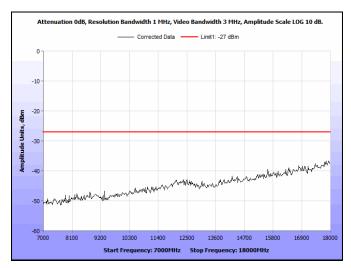
Plot 82. Radiated Spurious Emissions, 5745 MHz, 802.11a, 30 MHz - 1 GHz



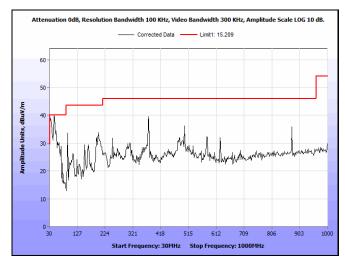
Plot 83. Radiated Spurious Emissions, 5745 MHz, 802.11a, 1 GHz - 7 GHz



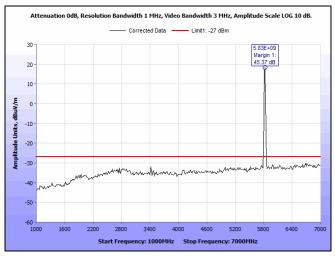
Plot 84. Radiated Spurious Emissions, 5745 MHz, 802.11a, 7 GHz – 18 GHz



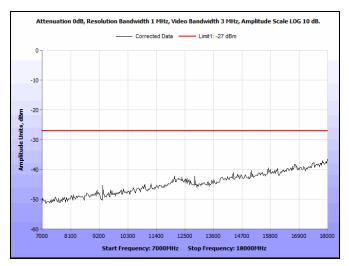
Plot 85. Radiated Spurious Emissions, 5785 MHz, 802.11a, 30 MHz – 1 GHz



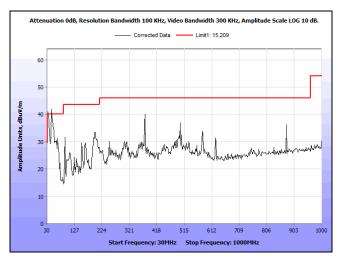
Plot 86. Radiated Spurious Emissions, 5785 MHz, 802.11a, 1 GHz - 7 GHz



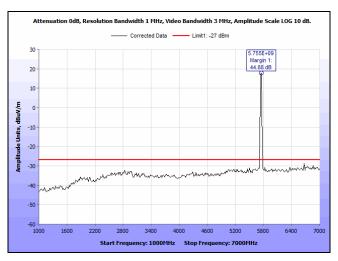
Plot 87. Radiated Spurious Emissions, 5785 MHz, 802.11a, 7 GHz – 18 GHz



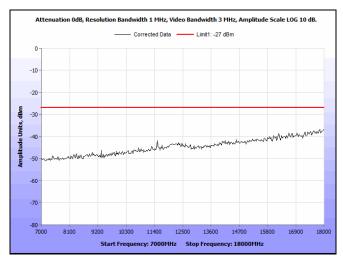
Plot 88. Radiated Spurious Emissions, 5825 MHz, 802.11a, 30 MHz - 1 GHz



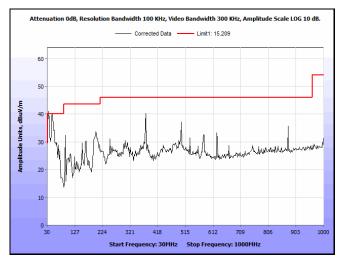
Plot 89. Radiated Spurious Emissions, 5825 MHz, 802.11a, 1 GHz - 7 GHz



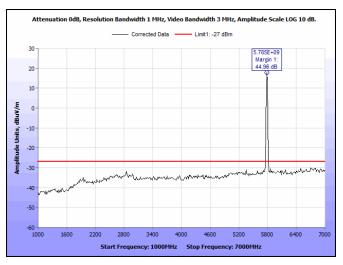
Plot 90. Radiated Spurious Emissions, 5825 MHz, 802.11a, 7 GHz – 18 GHz



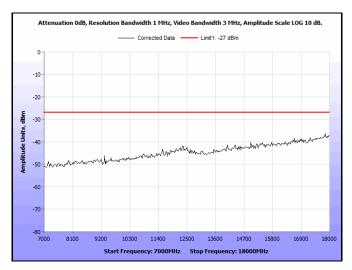
Plot 91. Radiated Spurious Emissions, 5745 MHz, 802.11n, HT20, 30 MHz - 1 GHz



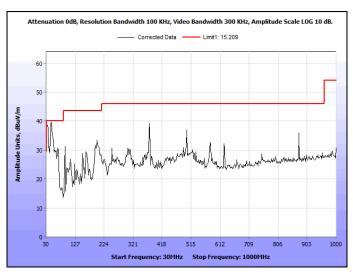
Plot 92. Radiated Spurious Emissions, 5745 MHz, 802.11n, HT20, 1 GHz – 7 GHz



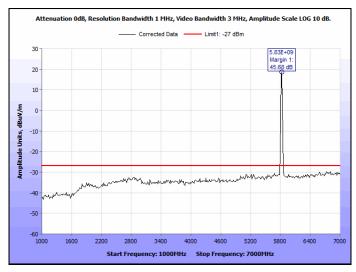
Plot 93. Radiated Spurious Emissions, 5745 MHz, 802.11n, HT20, 7 GHz – 18 GHz



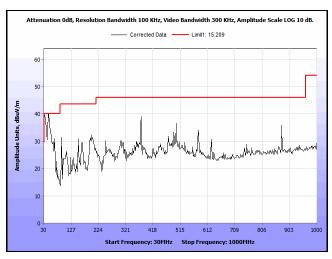
Plot 94. Radiated Spurious Emissions, 5785 MHz, 802.11n, HT20, 30 MHz - 1 GHz



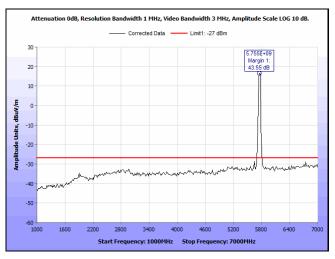
Plot 95. Radiated Spurious Emissions, 5785 MHz, 802.11n, HT20, 1 GHz - 7 GHz



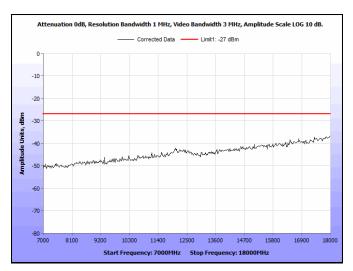
Plot 96. Radiated Spurious Emissions, 5785 MHz, 802.11n, HT20, 7 GHz – 18 GHz



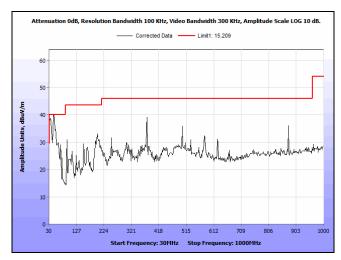
Plot 97. Radiated Spurious Emissions, 5825 MHz, 802.11n, HT20, 30 MHz - 1 GHz



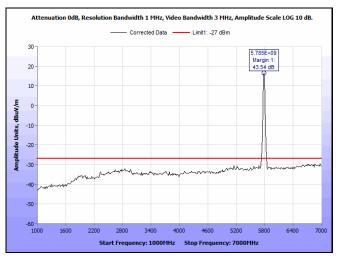
Plot 98. Radiated Spurious Emissions, 5825 MHz, 802.11n, HT20, 1 GHz - 7 GHz



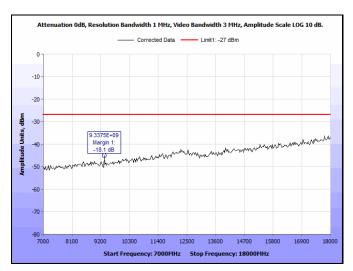
Plot 99. Radiated Spurious Emissions, 5755 MHz, 802.11n, HT40, 30 MHz - 1 GHz



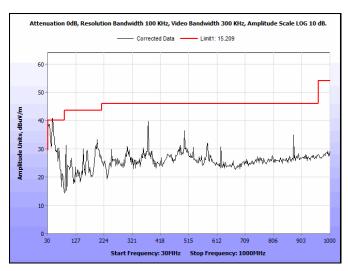
Plot 100. Radiated Spurious Emissions, 5755 MHz, 802.11n, HT40, 1 GHz - 7 GHz



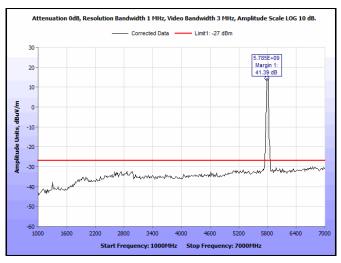
Plot 101. Radiated Spurious Emissions, 5755 MHz, 802.11n, HT40, 7 GHz - 18 GHz



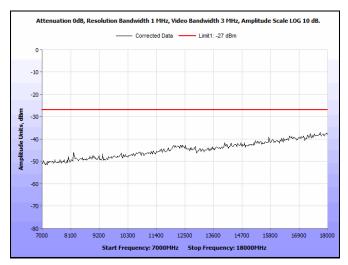
Plot 102. Radiated Spurious Emissions, 5785 MHz, 802.11n, HT40, 30 MHz - 1 GHz



Plot 103. Radiated Spurious Emissions, 5785 MHz, 802.11n, HT40, 1 GHz - 7 GHz



Plot 104. Radiated Spurious Emissions, 5785 MHz, 802.11n, HT40, 7 GHz – 18 GHz



Plot 105. Radiated Spurious Emissions, 5795 MHz, 802.11n, HT40, 30 MHz - 1 GHz

Plot 106. Radiated Spurious Emissions, 5795 MHz, 802.11n, HT40, 1 GHz – 7 GHz

Plot 107. Radiated Spurious Emissions, 5795 MHz, 802.11n, HT40, 7 GHz – 18 GHz

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.407(f) RF Exposure

RF Exposure Requirements:	§1.1307(b)(1) and §1.1307(b)(2): Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines.
RF Radiation Exposure Limit:	§1.1310: As specified in this section, the Maximum Permissible Exposure (MPE) Limit shall be used to evaluate the environmental impact of human exposure to radiofrequency (RF) radiation as specified in Sec. 1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of Sec. 2.1093 of this chapter.

MPE Limit Calculation: EUT's operating frequencies @ 5745-5825 MHz; Limit for Uncontrolled exposure: 1 mW/cm² or 10 W/m²

Equation from page 18 of OET 65, Edition 97-01

 $S = PG / 4\pi R2$ or $R = \sqrt{PG} / 4\pi S$

where, S = Power Density

P = Power Input to antenna =22.53 dBm = 179.06 mW

G = Antenna Gain 3 dBi (1.99 inear)

R = Minimum Distance between User and Antenna (20 cm)

S = (179.06*1.99)/(4*3.14*400) = 0.07 mW/cm2

Therefore the uncontrolled exposure limit is achieved at 20 cm.

IV. Test Equipment

Test Equipment

Calibrated test equipment utilized during testing was maintained in a current state of calibration per the requirements of ISO/IEC 17025:2005.

MET Asset #	Equipment	Manufacturer	Model	Last Cal Date	Cal Due Date
1T4612	SPECTRUM ANALYZER	AGILENT TECHNOLOGIES	E4407B	07/25/2014	01/25/2016
1T4300A	SEMI-ANECHOIC CHAMBER # 1 (FCC)	EMC TEST SYSTEMS	NONE	07/24/2012	07/24/2015
1T4409	EMI RECEIVER	ROHDE & SCHWARZ	ESIB7	10/29/2014	10/29/2016
1T4751	ANTENNA - BILOG	SUNOL SCIENCES	JB6	07/29/2014	01/29/2016
1T4483	ANTENNA; HORN	ETS-LINDGREN	3117	02/28/2014	08/28/2015
1T4149	HIGH-FREQUENCY ANECHOIC CHAMBER	RAY-PROOF	81	NOT REQUIRED	
1T4442	PRE-AMPLIFIER, MICROWAVE	MITEQ	AFS42- 01001800-30-10P	SEE NOTE	
1T4859	DIGITAL BAROMETER, HYGROMETER, THERMOMETER	CONTROL COMPANY	15-078-198, FB70423, 245CD	12/19/2013	12/19/2015

Table 9. Test Equipment List

I. Certification Information

The following is extracted from Title 47 of the Code of Federal Regulations, Part 2, Subpart I — Marketing of Radio frequency devices:

§ 2.801 Radio-frequency device defined.

As used in this part, a radio-frequency device is any device which in its operation is capable of Emitting radio-frequency energy by radiation, conduction, or other means. Radio- frequency devices include, but are not limited to:

- (a) The various types of radio communication transmitting devices described throughout this chapter.
- (b) The incidental, unintentional and intentional radiators defined in Part 15 of this chapter.
- (c) The industrial, scientific, and medical equipment described in Part 18 of this chapter.
- (d) Any part or component thereof which in use emits radio-frequency energy by radiation, conduction, or other means.

§ 2.803 Marketing of radio frequency devices prior to equipment authorization.

- (a) Except as provided elsewhere in this chapter, no person shall sell or lease, or offer for sale or lease (including advertising for sale or lease), or import, ship or distribute for the purpose of selling or leasing or offering for sale or lease, any radio frequency device unless:
 - (1) In the case of a device subject to certification, such device has been authorized by the Commission in accordance with the rules in this chapter and is properly identified and labeled as required by §2.925 and other relevant sections in this chapter; or
 - (2) In the case of a device that is not required to have a grant of equipment authorization issued by the Commission, but which must comply with the specified technical standards prior to use, such device also complies with all applicable administrative (including verification of the equipment or authorization under a Declaration of Conformity, where required), technical, labeling and identification requirements specified in this chapter.
- (d) Notwithstanding the provisions of paragraph (a) of this section, the offer for sale solely to business, commercial, industrial, scientific or medical users (but not an offer for sale to other parties or to end users located in a residential environment) of a radio frequency device that is in the conceptual, developmental, design or preproduction stage is permitted prior to equipment authorization or, for devices not subject to the equipment authorization requirements, prior to a determination of compliance with the applicable technical requirements *provided* that the prospective buyer is advised in writing at the time of the offer for sale that the equipment is subject to the FCC rules and that the equipment will comply with the appropriate rules before delivery to the buyer or to centers of distribution.

- (e)(1) Notwithstanding the provisions of paragraph (a) of this section, prior to equipment authorization or determination of compliance with the applicable technical requirements any radio frequency device may be operated, but not marketed, for the following purposes and under the following conditions:
 - (*i*) Compliance testing;
 - (ii) Demonstrations at a trade show provided the notice contained in paragraph (c) of this section is displayed in a conspicuous location on, or immediately adjacent to, the device;
 - (iii) Demonstrations at an exhibition conducted at a business, commercial, industrial, scientific or medical location, but excluding locations in a residential environment, provided the notice contained in paragraphs (c) or (d) of this section, as appropriate, is displayed in a conspicuous location on, or immediately adjacent to, the device;
 - (iv) Evaluation of product performance and determination of customer acceptability, provided such operation takes place at the manufacturer's facilities during developmental, design or pre-production states; or
 - (v) Evaluation of product performance and determination of customer acceptability where customer acceptability of a radio frequency device cannot be determined at the manufacturer's facilities because of size or unique capability of the device, provided the device is operated at a business, commercial, industrial, scientific or medical user's site, but not at a residential site, during the development, design or pre-production stages.
- (e)(2) For the purpose of paragraphs (e)(1)(iv) and (e)(1)(v) of this section, the term *manufacturer's facilities* includes the facilities of the party responsible for compliance with the regulations and the manufacturer's premises, as well as the facilities of other entities working under the authorization of the responsible party in connection with the development and manufacture, but not the marketing, of the equipment.
- (f) For radio frequency devices subject to verification and sold solely to business, commercial, industrial, scientific and medical users (excluding products sold to other parties or for operation in a residential environment), parties responsible for verification of the devices shall have the option of ensuring compliance with the applicable technical specifications of this chapter at each end user's location after installation, provided that the purchase or lease agreement includes a proviso that such a determination of compliance be made and is the responsibility of the party responsible for verification of the equipment.

The following is extracted from Title 47 of the Code of Federal Regulations, Part 2, Subpart J — Equipment Authorization Procedures:

§ 2.901 Basis and Purpose

- (a) In order to carry out its responsibilities under the Communications Act and the various treaties and international regulations, and in order to promote efficient use of the radio spectrum, the Commission has developed technical standards for radio frequency equipment and parts or components thereof. The technical standards applicable to individual types of equipment are found in that part of the rules governing the service wherein the equipment is to be operated.¹ In addition to the technical standards provided, the rules governing the service may require that such equipment be verified by the manufacturer or importer, be authorized under a Declaration of Conformity, or receive an equipment authorization from the Commission by one of the following procedures: certification or registration.
- (b) The following sections describe the verification procedure, the procedure for a Declaration of Conformity, and the procedures to be followed in obtaining certification from the Commission and the conditions attendant to such a grant.

§ 2.907 Certification.

- (a) Certification is an equipment authorization issued by the Commission, based on representation and test data submitted by the applicant.
- (b) Certification attaches to all units subsequently marketed by the grantee which are identical (see Section 2.908) to the sample tested except for permissive changes or other variations authorized by the Commission pursuant to Section 2.1043.

¹ In this case, the equipment is subject to the rules of Part 15. More specifically, the equipment falls under Subpart B (of Part 15), which deals with unintentional radiators.

§ 2.948 Description of measurement facilities.

(a) Each party making measurements of equipment that is subject to an equipment authorization under Part 15 or Part 18 of this chapter, regardless of whether the measurements are filed with the Commission or kept on file by the party responsible for compliance of equipment marketed within the U.S. or its possessions, shall compile a description of the measurement facilities employed.

(1) If the measured equipment is subject to the verification procedure, the description of the measurement facilities shall be retained by the party responsible for verification of the equipment.

- (i) If the equipment is verified through measurements performed by an independent laboratory, it is acceptable for the party responsible for verification of the equipment to rely upon the description of the measurement facilities retained by or placed on file with the Commission by that laboratory. In this situation, the party responsible for the verification of the equipment is not required to retain a duplicate copy of the description of the measurement facilities.
- (ii) If the equipment is verified based on measurements performed at the installation site of the equipment, no specific site calibration data is required. It is acceptable to retain the description of the measurement facilities at the site at which the measurements were performed.
- (2) If the equipment is to be authorized by the Commission under the certification procedure, the description of the measurement facilities shall be filed with the Commission's Laboratory in Columbia, Maryland. The data describing the measurement facilities need only be filed once but must be updated as changes are made to the measurement facilities or as otherwise described in this section. At least every three years, the organization responsible for filing the data with the Commission shall certify that the data on file is current.

Label and User's Manual Information

The following is extracted from Title 47 of the Code of Federal Regulations, Part 15, Subpart A — General:

§ 15.19 Labeling requirements.

- (a) In addition to the requirements in Part 2 of this chapter, a device subject to certification or verification shall be labeled as follows:
 - (1) Receivers associated with the operation of a licensed radio service, e.g., FM broadcast under Part 73 of this chapter, land mobile operation under Part 90, etc., shall bear the following statement in a conspicuous location on the device:

This device complies with Part 15 of the FCC Rules. Operation is subject to the condition that this device does not cause harmful interference.

(2) A stand-alone cable input selector switch, shall bear the following statement in a conspicuous location on the device:

This device is verified to comply with Part 15 of the FCC Rules for use with cable television service.

(3) All other devices shall bear the following statement in a conspicuous location on the device:

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

- (4) Where a device is constructed in two or more sections connected by wires and marketed together, the statement specified under paragraph (a) of this section is required to be affixed only to the main control unit.
- (5) When the device is so small or for such use that it is not practicable to place the statement specified under paragraph (a) of this section on it, the information required by this paragraph shall be placed in a prominent location in the instruction manual or pamphlet supplied to the user or, alternatively, shall be placed on the container in which the device is marketed. However, the FCC identifier or the unique identifier, as appropriate, must be displayed on the device.

§ 15.21 Information to user.

The user's manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

The following is extracted from Title 47 of the Code of Federal Regulations, Part 15, Subpart B — Unintentional Radiators:

§ 15.105 Information to the user.

(a) For a Class A digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at own expense.

(b) For a Class B digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a residential environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.