FCC TEST REPORT

FCC ID	: UHIVRFM8
Applicant Address	: Roadmaster USA Corp.: 41 James Way Eatontown, NJ 07724
Equipment Under T	Cest (EUT) :
Product	: MP3 FM Transmitter
Model No.	: VRFM8
Standards	: FCC 15 Subpart C Paragraph 15.239
Date of Test	: December 8, 2006
Test Engineer	: Tiger Su
Reviewed By	: Thele zhouf

PERPARED BY: Waltek Services (Shenzhen) Co., Ltd.

8C,West Tower, Aidi Building, No.5003 Binhe Rd, Futian District, Shenzhen518045, Guangdong, China.

Tel: 86-755-83551033

Fax: 86-755-83552400

2 Contents

			Page
1	C	COVER PAGE	1
2	C	CONTENTS	2
3	Т	EST SUMMARY	5
4	G	GENERAL INFORMATION	
	4.1	CLIENT INFORMATION	
	4.2	GENERAL DESCRIPTION OF E.U.T	
	4.3	DETAILS OF E.U.T.	
	4.4	DESCRIPTION OF SUPPORT UNITS	
	4.5	STANDARDS APPLICABLE FOR TESTING	
	4.6	TEST FACILITY	
5	4.7	Test Location	
Э	E	QUIPMENT USED DURING TEST	ð
С	OMM	10N USED EQUIPMENT	8
6	C	CONDUCTED EMISSION TEST	9
	6.1	TEST EQUIPMENT	9
	6.2	TEST PROCEDURE	
	6.3	CONDUCTED TEST SETUP	
	6.4	EUT OPERATING CONDITION	
	6.5	CONDUCTED EMISSION LIMITS	
7	R	RADIATION EMISSION TEST	
	7.1	TEST EQUIPMENT	
	7.2	Measurement Uncertainty	
	7.3	TEST PROCEDURE	
	7.4	RADIATED TEST SETUP	
	7.5 7.6	SPECTRUM ANALYZER SETUP Corrected Amplitude & Margin Calculation	
	7.0	SUMMARY OF TEST RESULTS	
	7.8	EUT OPERATING CONDITION	
	7.9	RADIATED EMISSIONS LIMIT	
	7.10		
8	B	SAND EDGE	
	8.1	Test Equipment	
	8.2	Test Procedure	
	8.3	BAND EDGE TEST RESULT	
9	Р	PHOTOGRAPHS OF TESTING	
	9.1	RADIATION EMISSION TEST VIEW	
1) P	PHOTOGRAPHS - CONSTRUCTIONAL DETAILS	
	10.1	EUT - Front View	

FCC ID: UHIVRFM8

11 FCC	D LABEL	27
10.8	PCB3-BACK VIEW	
	PCB3-FRONT VIEW	
	PCB2-BACK VIEW	
10.5	PCB2-FRONT VIEW	25
10.4	PCB1-BACK VIEW	24
10.3	PCB1-FRONT VIEW	24
10.2	EUT - BACK VIEW	23

3 Test Summary

Test	Test Requirement	Test Method	Class / Severity	Result
Radiated Emission (30MHz to 1GHz)	FCC PART 15: 2003	ANSI C63.4: 2003	Class B	PASS
Conducted Emission (150KHz to 30MHz)	FCC PART 15: 2003	ANSI C63.4: 2003	Class B	N/A

4 General Information

4.1 Client Information

Applicant:	Roadmaster USA Corp.
Address:	41 James Way Eatontown, NJ 07724
Manufacturer:	DONGGUAN YUJIA INDUSTRY CO., LTD
Address:	No.1, Road 1, Shangsha 4 th Industrial Area Changan Town,
	Dongguan City, Guangdong Province, China

4.2 General Description of E.U.T.

Product description:	MP3 FM Transmitter
Model No.:	VRFM8

4.3 Details of E.U.T.

Power Supply: DC 12 V

4.4 Description of Support Units

The EUT has been tested as an independent unit.

4.5 Standards Applicable for Testing

The customer requested FCC tests for a MP3 FM Transmitter. The standards used were FCC 15 Paragraph 15.209 and Paragraph 15.239.

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd ShenZhen Branch EMC Lab, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 556682, August 04, 2005.

4.7 Test Location

All Emissions testswere performed at:-

No.1 Workshop, M-10, Middle Section, Science & Technology Park, ShenZhen, China 518057.

Equipment	Brand Name	Model	Cal. Int Months	Last Cal. Date
3m Anechoic chamber				
EMC Analyzer	Agilent	E7402A	12	2006-08-30
EMI Test Receiver	R&S	ESS	12	2006-08-30
Pre Amplifier	Anritsu	MH648A	12	2006-08-30
Bilog Antenna	SCHAFFNER	CBL6111C	12	2009-08-30
Loop Antenna	R&S	6108	12	2006-08-30
Horn Antenna	ETS.LINDGERN	GH14-H052	12	2006-08-30
AM/FM Stereo Signal Generator	Panasonic	VP-8122A	12	2006-08-30
Signal Generator	R&S	SMG	12	2006-08-30
RF Selector	ТОҮО	NS4901A	N/A	N/A
Turn Disc	HD	DS4150S	N/A	N/A
Antenna Mast	HD	MA2400	N/A	N/A
EMI Shielded Room				
Spectrum analyzer	ADVANTEST	R3261C	12	2006-08-30
EMI Test Receiver	R&S	ESS	12	2006-08-30
Pre Amplifier	Anritsu	MH648A	12	2006-08-30
LISN	R&S	ENV216	12	2006-08-30
Absorbing Clamp	R&S	MDS-21	12	2006-08-30
Distortion Meter	MEGURO	MAK-6578A	12	2006-08-30
AM/FM Stereo Signal Generator	Panasonic	VP-8122A	12	2006-08-30
Oscilloscope	LEADER	LS1020	12	2006-08-30
Function Generator	National	VP-7422A	12	2006-08-30
Signal Generator	R&S	SMG	12	2006-08-30
RF Selector	ТОҮО	NS4000	N/A	N/A
Remote Controller	ТОҮО	MAC	N/A	N/A
Adaptor	Suntop	AD12V	N/A	N/A

5 Equipment Used during Test

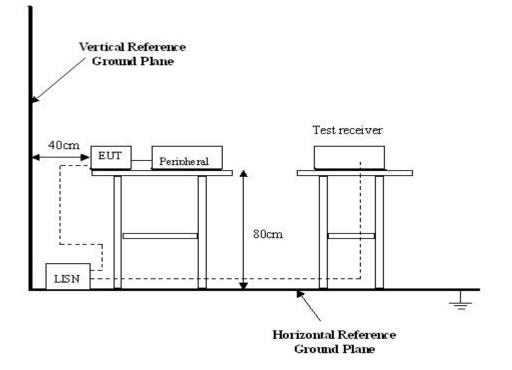
Common Used Equipment

U Flash Disk	SONY	T04	N/A	N/A
--------------	------	-----	-----	-----

6 Conducted Emission Test

Product Name:	MP3 FM Transmitter
Test Requirement:	FCC Part15 Paragraph 15.207
Test Method:	Based on FCC Part15 Paragraph 15.207
Test Date:	
Frequency Range:	150kHz to 30MHz
Class:	Class B
Detector:	Peak for pre-scan (9kHz Resolution Bandwidth)
	Quasi-Peak & Average if maximised peak within 6dB of
	Average Limit

6.1 Test Equipment


Please refer to Section 5 this report.

6.2 Test Procedure

- 1. The EUT was tested according to ANSI C63.4:2003. The frequency spectrum from 150kHz to 30MHz was investigated.
- 2. The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.
- 3. Compliance test was performed test in the EUT was connect the adaptor output.

6.3 Conducted Test Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.4:2003, The specification used in this report was the FCC Part15 Paragraph 15.207 limits.

6.4 EUT Operating Condition

Operating condition is according to ANSI C63.4:2003.

- A. Setup the EUT and simulators as shown on follow.
- B. Enable RF signal and confirm EUT active.
- C. Modulate output capacity of EUT up to specification.

-	
E	
	AND A DESCRIPTION AND A
E	EUT
5 2	
-	
:	
3 .	
1	
:	
2	
-	
•	
1	

6.5 Conducted Emission Limits

66-56 dBμV/m between 0.15MHz & 0.5MHz
56 dBμV/m between 0.5MHz & 5MHz
60 dBμV/m between 5MHz & 30MHz

Note: In the above limits, the tighter limit applies at the band edges. Owing to the DC operation of EUT, this test is not performed.

7 Radiation Emission Test

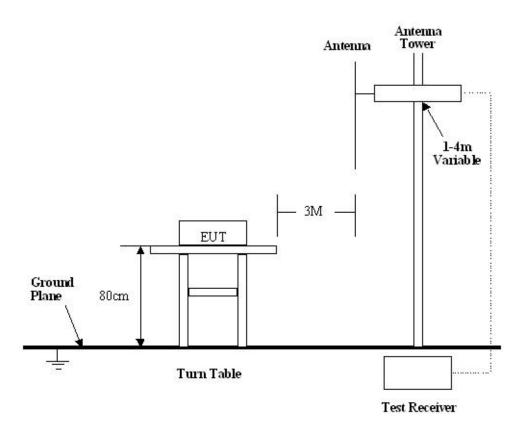
Product Name:	MP3 FM Transmitter
Test Requirement:	FCC Part15 Paragraph 15.239
Test Method:	Based on ANSI C63.4:2003
Test Date:	December 8, 2006
Frequency Range:	30MHz to 1GHz
Measurement Distance:	3m
Detector:	Peak for pre-scan (120kHz resolution bandwidth)
	Quasi-Peak if maximised peak within 6dB of limit

7.1 Test Equipment

Please refer to Section 5 this report.

7.2 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.


Based on ANSI C63.4:2003, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at SGS EMC Laboratory is +4.0 dB.

7.3 Test Procedure

- 1. Maximizing procedure was performed on the six (6) highest emissions to ensure EUT is compliant with all installation combinations.
- 2. All data was recorded in the peak detection mode. Quasi-peak readings was performed only when an emission was found to be marginal (within -4 dB μ V of specification limits), and are distinguished with a "Qp" in the data table.
- 3. The EUT was under normal mode during the final qualification test and the configuration was used to represent the worst case results.
- 4. The market sample is tested for low frequency testing at 88.1 MHz and high frequency testing at 107.9 MHz. The tested sample at 98.00 MHz is only used for middle frequency testing and will not be selling in the market.

7.4 Radiated Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.4:2003, The specification used in this report was the FCC Part15 Paragraph 15.209 and Paragraph 15.239 limits.

7.5 Spectrum Analyzer Setup

According to FCC Part15 Paragraph 15.239 Rules, the system was tested to 1000 MHz.

Start Frequency	30 MHz
Stop Frequency	1000 MHz
Sweep Speed Auto	
IF Bandwidth	100 kHz
Video Bandwidth	1 MHz
Quasi-Peak Adapter Bandwidth	120 kHz
Quasi-Peak Adapter Mode	Normal
Resolution Bandwidth	1MHz

7.6 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-7dB\mu V$ means the emission is $7dB\mu V$ below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Class B Limit

7.7 Summary of Test Results

According to the data in section 7.10, the EUT complied with the FCC Part15 Paragraph 15.239 standards.

7.8 EUT Operating Condition

Same as section 6.4 of this report. Compliance test was performed test in the transmitter operation Mode.

7.9 Radiated Emissions Limit

A. FCC Part 15 subpart C Paragraph 15.239 Limit

Fundamental	Field Strength of Fundamental		
Frequency(MHZ)	uV/m	dBuV/m	
88-108	250	48	

- **Note:** (1) RF Voltage(dBuV)=20 log RF Voltage(uV)
 - (2) Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.
 - (3) The emission limit in this paragraph is based on measurement instrumentaion employing an average detector.Measurement using instrumentation with a peak detector function,corresponding to 20dB above the maximum permitted average limit.

B. Frequencies in restricted band are complied to limit on Paragraph 15.209

Frequency(MHZ)	Distance(m)	Field strength(dBuV/m)
30-88	3	40.0
88-216	3	43.5
216-960	3	46.0
Above 960	3	54.0

Note: (1) RF Voltage(dBuV)=20 log RF Voltage(uV)

- (2) In the Above Table, the tighter limit applies at the band edges.
- (3) Distance refers to the distance in meters between the measuring instrument antenna.

As shown in 15.35(b),for frequencies above 1000MHz,the field strength limits are based on average detector,however,the peak field strength of any emission shall not exceed the maximum permitted average limits,specified above by more than 20dB under any condition of modulation.

7.10 Radiated Emissions Test Result

Formula of conversion factors: the field strength at 3m was egtablished by adding The meter reading of the spectrum analyer (which is set to read in units of dBuV) To the antenna correction factor supplied by the antenna manufacturer. The antenna Correction factors are stared in terms of dB. The gain of the pressletor was accounted For in the spectrum analyser meter reading.

Example:

Freq(MHz) Meter Reading +ACF=FS 33 20dBuV+10.36dB=30.36dBuV/m @3m

Radiated Emission Test Data

Test Item:	Radiated Emission Test Data
Test Voltage:	DC 12V
Test Mode:	ON TX
Temperature:	24 °C
Humidity:	52%RH
Test Result:	PASS

Frequency (MHz)	Antenna Polarization	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Turntable Angle (°C)
()	Low Frequency					
88.10	Horizontal	42.3	48.0	5.7	1.8	270
176.2	Horizontal	39.2	43.5	4.3	1.5	90
264.3	Horizontal	37.2	46.0	8.8	1.0	45
352.4	Horizontal	26.5	46.0	19.5	1.8	180
88.10	Vertical	41.2	48.0	6.8	1.5	90
176.2	Vertical	35.3	43.5	8.2	2.0	270
264.3	Vertical	33.3	46.0	12.7	1.5	45
352.4	Vertical	27.0	46.0	19.0	1.0	180
Middle Frequency						
98.0	Horizontal	44.1	48.0	3.9	1.5	90
196.0	Horizontal	39.0	43.5	7.0	1.0	45
294.0	Horizontal	38.1	46.0	7.9	1.8	180
98.0	Vertical	43.4	48.0	4.6	2.0	270
196.0	Vertical	34.6	43.5	11.4	1.5	45
294.0	Vertical	33.1	46.0	12.9	1.0	180

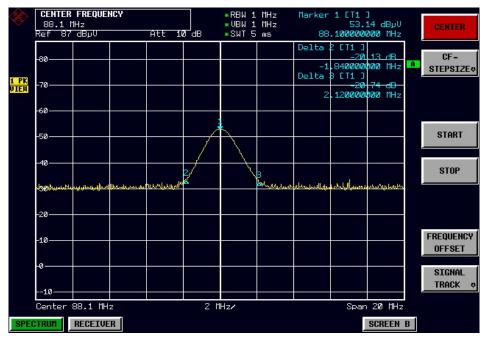
High Frequency						
107.9	Horizontal	39.9	48.0	8.1	1.5	90
215.8	Horizontal	37.0	43.5	6.5	1.0	45
232.7	Horizontal	20.9	46.0	25.1	1.8	180
107.9	Vertical	40.7	48.0	7.3	2.0	270
215.8	Vertical	35.8	43.5	7.7	1.5	45
232.7	Vertical	20.5	46.0	25.5	1.0	180

- **Note:** (1) All Reading Levels below 1GHz are Quasi-Peak, above are peak and average value.
 - (2) Emission Level = Reading Level + Probe Factor + Cable Loss.

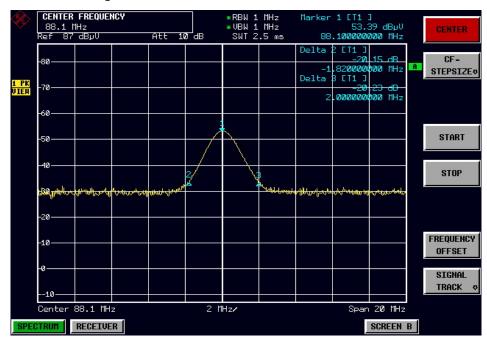
8 Band Edge

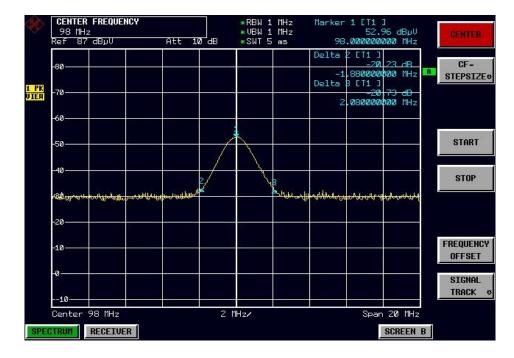
8.1 Test Equipment

Please refer to Section 5 this report.

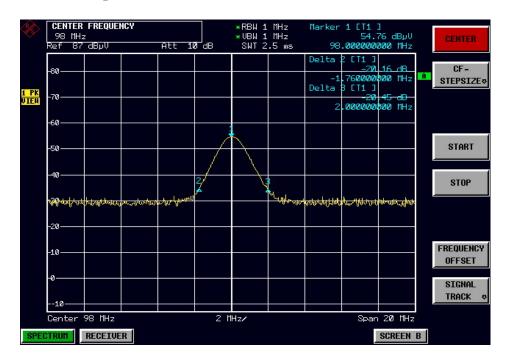

8.2 Test Procedure

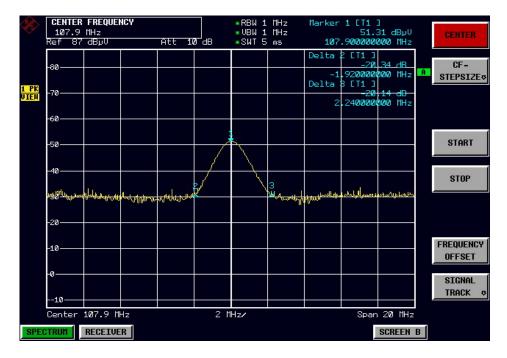
- 1.The EUT, peripherals were put on the turntable which table size is 1mX1.5m, table high 0.8m. All set up is according to ANSI C63.4:2003.
- 2. The antenna high were varied from 1m to 4m high to find the maximum emission for each frequency.
- 3. The bandwidth of the fundamental frequency was measure by spectrum analyser with 1MHz RBW and 1MHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power 20dB.
- 4.The market sample is tested for low frequency testing at 88.1 MHz and high frequency testing at 107.9 MHz. The tested sample at 98.00 MHz is only used for middle frequency testing and will not be selling in the market.


8.3 Band Edge Test Result

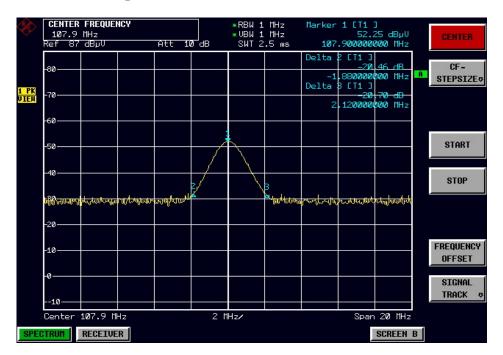

Product Name:	MP3 FM Transmitter
Test Item:	Band Edge Test
Test Voltage:	DC 12V
Test Mode:	TX ON
Temperature:	24 °C
Humidity:	52%RH

88.1 MHz For U Flash Disk


88.1 MHz For Audio Input

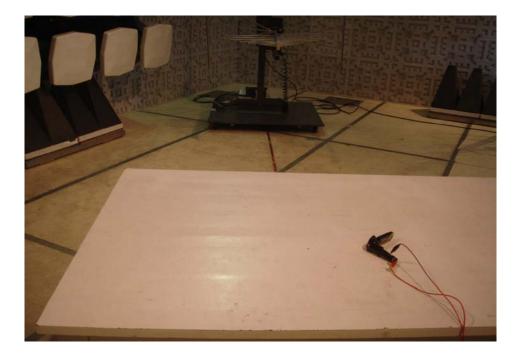


98 MHz For U Flash Disk


98 MHz For Audio Input

107.9 MHz For U Flash Disk

107.9 MHz For Audio Input



- **Note:** (1) The field strength of any emissions which appear outside of this band shall not exceed the general radiated emission limits in Section 15.209.
 - (2) The average measurement was not performed when the peak measured data under the limit of average detection.

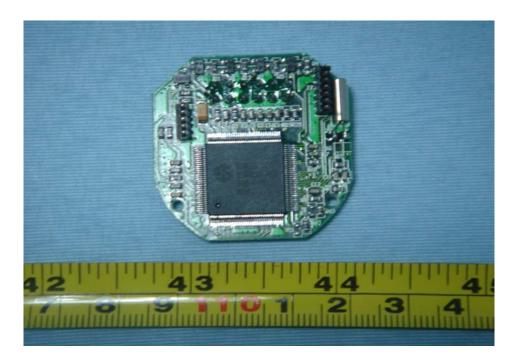
Roadmaster USA Corp.

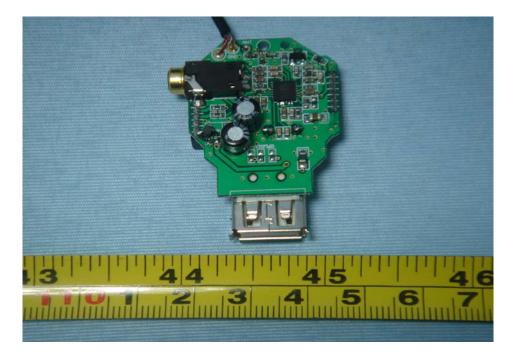
9 Photographs of Testing

9.1 Radiation Emission Test View

10 Photographs - Constructional Details

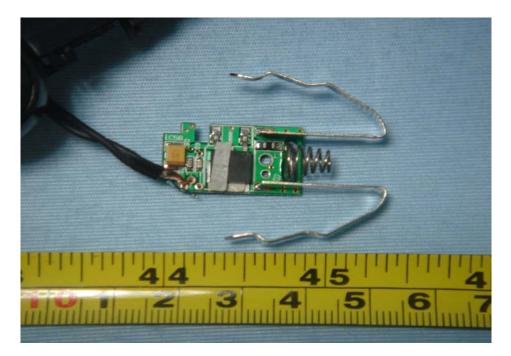

10.1 EUT - Front View


10.2 EUT - Back View

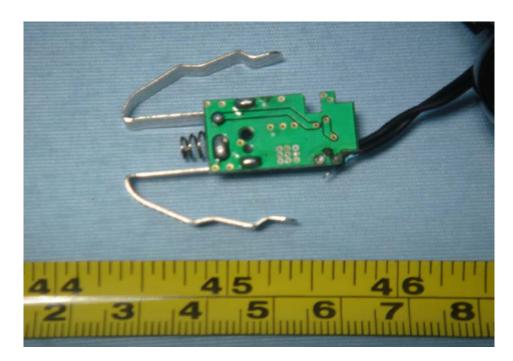

10.3 PCB1-Front View

10.4 PCB1-Back View

10.5 PCB2-Front View



10.6 PCB2-Back View



Roadmaster USA Corp.

10.7 PCB3-Front View

10.8 PCB3-Back View

11 FCC ID Label

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:(1)this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. The Label must not be a stick-on paper. The Label on these products must be permanently affixed to the product and readily visible at the time of purchase and must last the expected lifetime of the equipment not be readily detachable.

Proposed Label Location on EUT EUT Bottom View/proposed FCC Mark Location