

Choose Scandinavian trust

RADIO TEST REPORT – 452156-1TRFWL

Type of assessment: Final product testing				
Applicant: IDS Georadar Srl Via A. Righi, 1/2 – 56121 Pisa (PI) – Italy				
Product: System for real time detection of rockfall e	vents			
Model: ROCKSPOT	Model variant(s): 			
FCC ID: UFW-ROCKSPOT				
Specifications: FCC 47 CFR Part 90, Subpart F				
Date of issue: November 9, 2021				
P. Barbieri	Baul L			
Tested by	Signature			
D. Guarnone	Double guomone			
Reviewed by	Signature			

This test report shall not be partially reproduced without the prior written consent of Nemko S.p.A. The phase of sampling of equipment under test is carried out by the customer. Results indicated in this test report refer exclusively to the tested samples and apply to the sample as received. This Test Report, when bearing the Nemko name and logo is only valid when issued by a Nemko laboratory, or by a laboratory having special agreement with Nemko. Doc. n. TRF001; Rev. 0; Date: 2020-11-30

Lab locations

Company name	Nemko Spa
Address	Via del Carroccio, 4
City	Biassono
Province	MB
Postal code	20853
Country	Italy
Telephone	+39 039 220 12 01
Facsimile	+39 039 220 12 21
Website	www.nemko.com
Site number	682159 (10 m semi anechoic chamber)

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report. This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contain in this report are within Nemko Spa ISO/IEC 17025 accreditation.

Copyright notification

Nemko Spa authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Spa accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Table of Contents

Table of	Contents	3
Section 1	Report summary	4
1.1	Test specifications	4
1.2	Test methods	4
1.3	Exclusions	4
1.4	Statement of compliance	4
1.5	Test report revision history	4
Section 2	Engineering considerations	5
2.1	Modifications incorporated in the EUT for compliance	5
2.2	Technical judgment	5
2.3	Deviations from laboratory tests procedures	5
Section 3	Test conditions	6
3.1	Atmospheric conditions	6
3.2	Power supply range	6
Section 4	Measurement uncertainty	7
4.1	Uncertainty of measurement	7
Section 5	Information provided by the applicant	8
5.1	Disclaimer	8
5.2	Applicant/Manufacture	8
5.3	EUT information	8
5.4	Technical information	9
5.5	EUT setup details	9
Section 6	Summary of test results	13
6.1	Testing location	. 13
6.2	Testing period	. 13
6.3	Sample information	. 13
6.4	FCC Part 2 and 90 Subpart F test requirements results	. 13
Section 7	Test equipment	14
7.1	Test equipment list	. 14
Section 8	Testing data	15
8.1	RF power output	. 15
8.2	Occupied bandwidth	. 17
8.3	Frequency stability	. 21
8.4	Transmitter Unwanted Emissions	. 22
Section 9	EUT photos	36
9.1	Set-up photos	. 36
9.2	External photos	. 38

Section 1 Report summary

1.1 Test specifications

FCC 47 CFR Part 90, Subpart F	Radiolocation Service
1.2 Test methods	
ANSI C63.26-2015	American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services
FCC 47 CFR Part 2, Subpart J	Equipment authorization procedures

1.3 Exclusions

None

1.4 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was performed against all relevant requirements of the test standard except as noted in section 1.3 above. Results obtained indicate that the product under test complies In full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.5 Test report revision history

Table 1.5-1: Test report revision history

Revision #	Date of issue	Details of changes made to test report
452156-1TRFWL	November 9, 2021	Original report issued

vem

Section 2 Engineering consideration

Section 2 Engineering considerations

2.1 Modifications incorporated in the EUT for compliance

There were no modifications performed to the EUT during this assessment.

2.2 Technical judgment

None

2.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 3 Test conditions

3.1 Atmospheric conditions

Temperature	15 °C − 35 °C
Relative humidity	20 % – 75 %
Air pressure	86 kPa (860 mbar) – 106 kPa (1060 mbar)

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

The following instruments are used to monitor the environmental conditions:

Equipment	Manufacturer	Model no.	Asset no.	Cal date	Next cal.	
Thermo-hygrometer data loggers	Testo	175-H2	20012380/305	0012380/305 2020-12		
Thermo-hygrometer data loggers	Testo	175-H2	38203337/703	2020-12	2022-12	
Barometer	Castle	GPB 3300	072015	2021-04	2022-04	

3.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

vem

Section 4 Measurement uncertainty

4.1 Uncertainty of measurement

The measurement uncertainty was calculated for each test and quantity listed in this test report, according to CISPR 16-4-2 and other specific test standard and is documented in Nemko Spa working manual WML1002.

The assessment of conformity for each test performed on the equipment is performed not taking into account the measurement uncertainty. The two following possible verdicts are stated in the report:

P (Pass) - The measured values of the equipment respect the specification limit at the points tested. The specific risk of false accept is up to 50% when the measured result is close to the limit.

F (Fail) - One or more measured values of the equipment do not respect the specification limit at the points tested. The specific risk of false reject is up to 50% when the measured result is close to the limit.

Hereafter Nemko's measurement uncertainties are reported:

EUT	Туре	Test	Range	Measurement Uncertainty	Notes
		Frequency error	0.001 MHz ÷ 40 GHz	0.08 ppm	(1)
			0.009 MHz ÷ 30 MHz	1.1 dB	(1)
		Carrier power	30 MHz ÷ 18 GHz	1.5 dB	(1)
		RF Output Power	18 MHz ÷ 40 GHz	3.0 dB	(1)
			40 MHz ÷ 140 GHz	5.0 dB	(1)
		Adjacent channel power	1 MHz ÷ 18 GHz	1.4 dB	(1)
			0.009 MHz ÷ 18 GHz	3.0 dB	(1)
		Conducted spurious emissions	18 GHz ÷ 40 GHz	4.2 dB	(1)
			40 GHz ÷ 220 GHz	6.0 dB	(1)
		Intermodulation attenuation	1 MHz ÷ 18 GHz	2.2 dB	(1)
		Attack time – frequency behaviour	1 MHz ÷ 18 GHz	2.0 ms	(1)
		Attack time – power behaviour	1 MHz ÷ 18 GHz	2.5 ms	(1)
Conducted	Conducted	Release time – frequency behaviour	1 MHz ÷ 18 GHz	2.0 ms	(1)
		Release time – power behaviour	1 MHz ÷ 18 GHz	2.5 ms	(1)
Transmittar		Transient behaviour of the transmitter-Transient frequency behaviour	1 MHz ÷ 18 GHz	0.2 kHz	(1)
Transmitter		Transient behaviour of the transmitter – Power level slope	1 MHz ÷ 18 GHz	9%	(1)
		Frequency deviation - Maximum permissible frequency deviation	0.001 MHz ÷ 18 GHz	1.3%	(1)
		Frequency deviation - Response of the transmitter to modulation frequencies above 3 kHz	0.001 MHz ÷ 18 GHz	0.5 dB	(1)
		Dwell time	-	3%	(1)
		Hopping Frequency Separation	0.01 MHz ÷ 18 GHz	1%	(1)
		Occupied Channel Bandwidth	0.01 MHz ÷ 18 GHz	2%	(1)
		Modulation Bandwidth	0.01 MHz ÷ 18 GHz	2%	(1)
			0.009 MHz ÷ 26.5 GHz	6.0 dB	(1)
		Radiated spurious emissions	26.5 GHz ÷ 66 GHz	8.0 dB	(1)
	Radiated		66 GHz ÷ 220 GHz	10 dB	(1)
	Naulateu		10 kHz ÷ 26.5 GHz	6.0 dB	(1)
		Effective radiated power transmitter	26.5 GHz ÷ 66 GHz	8.0 dB	(1)
			66 GHz ÷ 220 GHz	10 dB	(1)

NOTES:

(1) The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k = 2, which for a normal distribution corresponds to a coverage probability of approximately 95 %

vem

Section 5 Information provided by the applicant

Section 5 Information provided by the applicant

5.1 Disclaimer

This section contains information provided by the applicant and has been utilized to support the test plan. Inaccurate information provided by the applicant can affect the validity of the results contained within this test report. Nemko accepts no responsibility for the information contained within this section and the impact it may have on the test plan and resulting measurements.

5.2 Applicant/Manufacture

Applicant name	IDS Georadar Srl
Applicant address	Via A. Righi, 1/2 – 56121 Pisa (PI) – Italy
Manufacture name	Same as applicant
Manufacture address	Same as applicant

5.3 EUT information

Product name	System for real time detection of rockfall events
Model	ROCKSPOT
Model variant(s)	
Serial number	090-19-000073
Part number	887724
Power supply requirements	24 V DC from an external AC/DC adapter
Product description and theory of operation	The EUT is a remote sensing monitoring system, capable of detecting in real-time the occurrence of sudden falling of rocks, mudflows, avalanches or any similar falling event related to geological/environmental hazards hereinafter called Sudden Falling Event (in short SFE) and to provide corresponding real-time tracking. IDS GeoRadar stress out that RockSpot has not been designed as an automatic decision-making system; in fact, it has been designed for providing information and notification to the Decision Maker. Critical decisions about reactive measures to be taken with reference to sudden falling event related to geologic hazard must be taken by the Decision Maker under his exclusive responsibility.

Section 5

5.4 Technical information

Frequency band	10.4 GHz – 10.5 GHz
Frequency Min	10.402 GHz for sub-band 1 / 10.448 GHz for sub-band 2 / 10.406 GHz for sub-band 3
Frequency Max	10.446 GHz for sub-band 1 / 10.492 GHz for sub-band 2 / 10.488 GHz for sub-band 3
Channel numbers	N/A
RF power Max (W), Conducted	1.175 W (30.7 dBm)
Field strength, dBµV/m @ 3 m	N/A
Measured BW (kHz), 99% OBW	46.6 MHz for sub-band 1 / 46.5 MHz for sub-band 2 / 81.6 for sub-band 3
Type of modulation	FMCW
Emission classification	46M6F1D for sub-band 1 / 46M5F1D for sub-band 2 / 81M6F1D for sub-band 3
Transmitter spurious, dBm @ 3 m	-17.9 dBm @ 10.09 GHz
Antenna information	Integral antenna with 9 dBi gain

5.5 EUT setup details

5.5.1 Radio exercise details

The EUT has been forced in CW and FMCW continuous transmission mode with the following dedicated software accessible with a chrome browser:

-	Maintenance	× 🕂 💼 👔 👘 👔				- (0	×
~	ightarrow $ ightarrow$ $ ightarrow$ Non side	ro 192.168.0.150/maintenance.html				☆	-	÷
A	Home							^
*	Radar configuration	E Maintenna						
-	Detection parameters	Maintenance						1
₹	IIR filter	RF status bits						
۲	Windowing parameters	SYNT HPA	OFF V ON V					
*	Alarm mask	SWCAL SWRX1	50Q V ANT V					
	Alarms history	SWRX2 SWRX3	ANT - ANT -					
ы	Statistics	SWRX4	ANT 🗸					
×	Failure statistics	DDS						
_		DDS selector	CW 🗸					
	Memory monitoring	CW freq.	362.20	MHz				
R:	Factory settings	FMCW start freq.	350.52	MHz				
		FMCW band	10	MHz				
11	System upgrade	FMCW duration	64	ha				
0	Sensors	Others						
ф	Calibration	HPF		7				
-		TXGC	500					
-	Transmitter test	RXGC	7					
2	Receiver test							
۶	Maintenance	Арру						
	DM tecting							-

5.5.2 EUT setup configuration

Table 5.5-1: EUT sub assemblies

Description	Brand name	Model, Part number, Serial number, Revision level	
	The EUT is co	mposed by a single unit	
	Table 5.5-2	2: EUT interface ports	
Description			Qty.
DC Power Port			1
Ethernet line			2
	Table 5.5-3	3: Support equipment	
Description	Brand name	Model, Part number, Serial number, Revision level	
AC/DC adapter	Mean Well	GST120a20-JD	
Notebook	Packard Bell	EasyNote TS	
	Table 5.5-4:	Inter-connection cables	
Cable description	From	Το	Length (m)

Cable description	From	То	Length (m)
DC power cable	Adapter	EUT	1.5
Ethernet line	EUT	PC	2.7

Page 10 of 40

Section 5

EUT setup configuration, continued

Figure 5.5-1: Radiated testing below 1 GHz block diagram

Section 5

EUT setup configuration, continued

Figure 5.5-2: Radiated testing above 1 GHz block diagram

Figure 5.5-3: Antenna port testing block diagram

Section 6 Summary of test results

6.1 Testing location

vem

Test loo	cation (s)	Nemko Spa		
6.2	Testing period			
Test sta	art date	November 3, 2021	Test end date	November 9, 2021
6.3	Sample information	n		
Receipt	t date	November 2, 2021	Nemko sample ID number(s)	4521560001

6.4 FCC Part 2 and 90 Subpart F test requirements results

Table 6.4-1: FCC requirements results

Section	Method (clause)	Test description	Verdict
90.103(b) / 90.205(r)	ANSI C63.26 (5.2.7)	RF power output	Pass
90.103(b)	ANSI C63.26 (5.4.4)	Occupied bandwidth	Pass
90.210(c)(3)	ANSI C63.26 (5.7)	Spurious emissions at antenna terminals (conducted)	Pass
90.210(c)(3)	ANSI C63.26 (5.5)	Field strength of spurious radiation	Pass
90.213	ANSI C63.26 (5.6)	Frequency stability	Pass

Notes:

Section 7 Test equipment

7.1 Test equipment list

Table 7.1-1: Equipment list					
Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Spectrum Analyzer	Rohde & Schwarz	FSW43	101767	2021-01	2022-01
EMI Receiver	Rohde & Schwarz	ESW44	101620	2021-08	2022-08
Climatic Chamber	MSL	EC500DA	15022	2021-01	2022-01
Antenna Trilog 25MHz - 8GHz	Schwarzbeck Mess-Elektronik	VULB9162	9162-025	2021-07	2024-07
Antenna 1 - 18 GHz	Schwarzbeck Mess-Elektronik	STLP9148	STLP 9148-152	2021-09	2024-09
Double Ridge Horn Antenna	RFSpin	DRH40	061106A40	2020-04	2023-04
Horn Antenna	A.H.System Inc.	SAS-574	558	2020-01	2023-01
Horn Antenna	Sage	SAR-2507-19VF-R2	15715-01	2021-06	2024-06
Broadband Amplifier	Schwarzbeck Mess-Elektronik	BBV9718C	00121	2021-01	2022-01
Broadband Bench Top Amplifier	Sage	STB-1834034030-KFKF-L1	18490-01	2021-04	2022-04
Harmonic Mixer	Radiometer Physics	FS-Z60	100988	2021-01	2024-01
Controller	Maturo	FCU3.0	10041	NCR	NCR
Tilt antenna mast	Maturo	TAM4.0-E	10042	NCR	NCR
Turntable	Maturo	TT4.0-5T	2.527	NCR	NCR
Semi-anechoic chamber	Nemko S.p.a.	10m semi-anechoic chamber	530	2021-09	2023-09
Spectrum Analyzer	Rohde & Schwarz	FSW43	101767	2021-01	2022-01

Notes: NCR - no calibration required, VOU - verify on use

vem

 Section 8
 Testing data

 Test name
 RF power output

 Specification
 FCC Part 90 Subpart F

Section 8 Testing data

8.1 RF power output

8.1.1 References, definitions and limits

FCC §90.205:

Applicants for licenses must request and use no more power than the actual power necessary for satisfactory operation. Except where otherwise specifically provided for, the maximum power that will be authorized to applicants whose license applications for new stations are filed after August 18, 1995 is as follows:

(r) All other frequency bands. Requested transmitter power will be considered and authorized on a case by case basis.

FCC §90.103:

(b) Frequencies available. The following table indicates frequencies available for assignment to stations in the Radiolocation Service, together with the class of station(s) to which they are normally assigned, and the specific assignment limitations, which are explained in paragraph (c) of this section:

	Frequency or band	Class of station(s)	Limitation
	10000 to 10500 MHz	do	12, 13, 19
2			

(12) This frequency is shared with and is on a secondary basis to the Government Radiolocation Service.
 (12) On a structure of the secondary basis to the Government Radiolocation Service.

(13) Operations in this band are limited to survey operations using transmitters with a peak power not to exceed 5 watts into the antenna.

(19) Operations in this band are on a secondary basis to the Amateur Radio Service (part 97). Pulsed emissions are prohibited.

8.1.2 Test summary

Verdict	Pass		
Tested by	P. Barbieri	Test date	November 5, 2021

8.1.3 Observations, settings and special notes

Test performed with a CW signal at 10.45 GHz.

Spectrum analyzer settings:	
Resolution bandwidth	≥ OBW
Video bandwidth	≥ 3 × RBW
Frequency span	≥ 2 × OBW
Detector mode	Peak
Trace mode	Max Hold

8.1.4 Test equipment used

Equipment	Manufacturer	Model no.	Asset no.
EMI Receiver	Rohde & Schwarz	ESW44	101620
Antenna 1 - 18 GHz	Schwarzbeck Mess-Elektronik	STLP9148	STLP 9148-152
Controller	Maturo	FCU3.0	10041
Tilt antenna mast	Maturo	TAM4.0-E	10042
Turntable	Maturo	TT4.0-5T	2.527
Semi-anechoic chamber	Nemko S.p.a.	10m semi-anechoic chamber	530
Spectrum Analyzer	Rohde & Schwarz	FSW43	101767

Notes: NCR - no calibration required, VOU - verify on use

Testing data

RF power output

FCC Part 90 Subpart F

8.1.5 Test data

Figure 8.1-1: EIRP

 Section 8
 Testing data

 Test name
 Occupied bandwidth

 Specification
 FCC Part 90 Subpart F

8.2 Occupied bandwidth

8.2.1 References, definitions and limits

FCC §90.103:

(b) Frequencies available. The following table indicates frequencies available for assignment to stations in the Radiolocation Service, together with the class of station(s) to which they are normally assigned, and the specific assignment limitations, which are explained in paragraph (c) of this section:

Frequency or band	Class of station(s)	Limitation
10000 to 10500 MHz	do	12, 13, 19

(12) This frequency is shared with and is on a secondary basis to the Government Radiolocation Service.

(13) Operations in this band are limited to survey operations using transmitters with a peak power not to exceed 5 watts into the antenna.

(19) Operations in this band are on a secondary basis to the Amateur Radio Service (part 97). Pulsed emissions are prohibited.

8.2.2 Test summary

Verdict	Pass		
Tested by	P. Barbieri	Test date	November 5, 2021

8.2.3 Observations, settings and special notes

Test performed with a FMCW signal in three sub-band.

Spectrum analyser settings:	
Resolution bandwidth	1–5% of OBW
Video bandwidth	≥3 × RBW
Frequency span	1.5 × OBW
Detector mode	Peak
Trace mode	Max Hold

8.2.4 Test equipment used

Equipment	Manufacturer	Model no.	Asset no.
EMI Receiver	Rohde & Schwarz	ESW44	101620
Antenna 1 - 18 GHz	Schwarzbeck Mess-Elektronik	STLP9148	STLP 9148-152
Controller	Maturo	FCU3.0	10041
Tilt antenna mast	Maturo	TAM4.0-E	10042
Turntable	Maturo	TT4.0-5T	2.527
Semi-anechoic chamber	Nemko S.p.a.	10m semi-anechoic chamber	530
Spectrum Analyzer	Rohde & Schwarz	FSW43	101767

Notes: NCR - no calibration required, VOU - verify on use

Testing data

Occupied bandwidth FCC Part 90 Subpart F

8.2.5 Test data

Table 8.2-1: 99% occupied bandwidth results

Modulation	Sub-band	99% occupied bandwidth, MHz
FMCW	1	46.6
FMCW	2	46.5
FMCW	3	81.6

1 Occupied Ba	ndwidth								⊖1Rm Max
								M1[1]	39.71 dBm
									10.402050 GHz
40 dBm			M1						
		-							
			Ý	T12					
35 dBm				7					
30 dBm									
25 dBm									
20 dBm									
15 dBm									
		[] []							
		l III			N. Contraction of the second s				1.1.1
IU dBm	L CHAR	. La Mel			Mr	and the second	d in dilari	March Well a Miller	March March
Mapphinterthenthe	adda ha ha an	Markin Mar 1			I MARANA MARA	WANNAMANA	nam/Mphphandelinean/	we hadabalkada area	աների հետություն։
	by solution.								
5 dBm									
0 dBm									
CE 10 45 CU			1001	-					050 0 M/L
UF 10.45 GHz			1001 pts	i	2	5.0 MHz/		S	pan 250.0 MHz

2 Marker	lable					
Type	Ref	Trc	X-Value	Y-Value	Function	Function Result
M1		1	10.40205 GHz	39.71 dBm	Occ Bw	46.605058125 MHz
T1		1	10.400713 GHz	35.68 dBm	Occ Bw Centroid	10.424015477 GHz
T2		1	10.447318 GHz	34.34 dBm	Occ Bw Freq Offset	-25.984523166 MHz

Figure 8.2-1: 99% occupied bandwidth with sub-band 1

Testing data Occupied bandwidth FCC Part 90 Subpart F

Test data, continued

1 Occupied Bandwidth					⊖1Rm Max
				M1[1]	39.74 dBm
					10.487460 GHz
		M1			
40 dBm-					
35 dBm					
		Y I			
30 dBm					
25 dBm					
20 dBm-					
	1 1 1				
15 dBm					
	l i Al				
10 dBm					1
and a new of the base to be to be to be a new of the second states of th	With a way hit shall be		Undul Asked a fistion and	hall all we have	An Man Mun Marker
n. www.mater.ukuMee.auto.cababraade.easifieddahfrareteddaaaded.bber.bft	e-sultration to a second state of the second s		ra in ini Maran Aiduda, awai	i ha na ser e e e	
5 dBm					
U dBm-					
CF 10.45 GHz	1001 pts	25.0 MHz/		S	oan 250.0 MHz

2 Marker	Table					
Type	Ref	Trc	X-Value	Y-Value	Function	Function Result
M1	,,	1	10.48746 GHz	39.74 dBm	Occ Bw	46.50634734 MHz
Τ1		1	10.44663 GHz	34.62 dBm	Occ Bw Centroid	10.46988326 GHz
T2		1	10.493136 GHz	33.94 dBm	Occ Bw Freq Offset	19.883260396 MHz

Figure 8.2-2: 99% occupied bandwidth with sub-band 2

Testing data Occupied bandwidth FCC Part 90 Subpart F

Test data, continued

1 Occupied Bar	ndwidth									01Rm Max
									M1[1]	39.55 dBm
										10.485210 GHz
40 dBm						MI move				
			т	·····		12				
			Ť			l ľ				
3E dBm										
35 UBII										
30 dBm										
25 dBm										
20 dBm										
15 dBm										
			1							
			1							
10 dBm		. 10							the set of the set	n name of A to
all tracks a base book or	which are Mr. A. M. as in	A har we were the	r]				UMANA.	W WARNA MANNA	hMhANNWMM	Althe MAC Waters alter in al
di da da adheritaria. Badd	e de la contre la coloda.	MD Alle contract and					lan di sa	er ekserekkinn		
5 dBm										
U aBm										
CE 10.45 GHz			1001 pts	L	2"	 5.0 MHz /			 ج،	an 250.0 MHz
2. 10110 ONE			1001 pt	-	20				0	

2 Marker	Table					
Type	Ref	Trc	X-Value	Y-Value	Function	Function Result
M1	· · · ·	1	10.48521 GHz	39.55 dBm	Occ Bw	81.633042483 MHz
T1		1	10.405069 GHz	36.88 dBm	Occ Bw Centroid	10.445885371 GHz
T2		1	10.486702 GHz	37.55 dBm	Occ Bw Freq Offset	-4.114628646 MHz

Figure 8.2-3: 99% occupied bandwidth with sub-band 3

Section 8Testing dataTest nameFrequency stabilitySpecificationFCC Part 90 Subpart F

8.3 Frequency stability

8.3.1 References, definitions and limits

FCC §90.213:

(a) Unless noted elsewhere, transmitters used in the services governed by this part must have a minimum frequency stability as specified in the following table.

Table 8.3-1: Minimum frequency stability

Freque	ncy range (MHz)	Fixed and base stations	Mobile stations over 2 watts output power	Mobile stations 2 watts or less output power			
At	oove 2450 ¹⁰						
Notes:	Notes: ¹⁰ Frequency stability for DSRCS equipment in the 5895-5925 MHz band is specified in subpart M of this part. For all other equipment, frequency stability is						
	to be specified in t	he station authorization.					

(b) For the purpose of determining the frequency stability limits, the power of a transmitter is considered to be the maximum rated output power as specified by the manufacturer.

8.3.2 Test summary

Verdict	Pass		
Tested by	P. Barbieri	Test date	November 9, 2021

8.3.3 Observations, settings and special notes

Test performed with a CW signal at 10.45 GHz.

8.3.4 Test equipment used

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Spectrum Analyzer	Rohde & Schwarz	FSW43	101767	2021-01	2022-01
Climatic Chamber	MSL	EC500DA	15022	2021-01	2022-01

8.3.5 Test data

Table 8.3-2: Transmitter	frequency stability	results
--------------------------	---------------------	---------

Test conditions	Frequency, Hz	Drift, Hz	Drift, ppm
+50 °C, Nominal	10450051682.1	201682.1	19.3
+40 °C, Nominal	10450051682.1	201682.1	19.3
+30 °C, Nominal	10449950318.6	100318.6	9.6
+20 °C, -15% voltage	10449951363.5	101363.5	9.7
+20 °C, Nominal	10449850000.0	Reference	Reference
+20 °C, +15% voltage	10450050637.1	200637.1	19.2
+10 °C, Nominal	10450053772.1	203772.1	19.5
0 °C, Nominal	10450150955.7	300955.7	28.8
–10 °C, Nominal	10449950318.6	100318.6	9.6

 Section 8
 Testing data

 Test name
 Transmitter Unwanted Emissions

 Specification
 FCC Part 90 Subpart F

8.4 Transmitter Unwanted Emissions

8.4.1 References, definitions and limits

FCC §90.210:

Except as indicated elsewhere in this part, transmitters used in the radio services governed by this part must comply with the emission masks outlined in this section. Unless otherwise stated, per paragraphs (d)(4), (e)(4), and (o) of this section, measurements of emission power can be expressed in either peak or average values provided that emission powers are expressed with the same parameters used to specify the unmodulated transmitter carrier power. For transmitters that do not produce a full power unmodulated carrier, reference to the unmodulated transmitter carrier power refers to the total power contained in the channel bandwidth. Unless indicated elsewhere in this part, the table in this section specifies the emission masks for equipment operating under this part.

(c) Emission Mask C. For transmitters that are not equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier output power (P) as follows:

(3) On any frequency removed from the center of the authorized bandwidth by more than 250 percent of the authorized bandwidth: At least 43 + 10 log (P) dB.

8.4.2 Test summary

Verdict	Pass		
Tested by	P. Barbieri	Test date	November 5, 2021

8.4.3 Observations, settings and special notes

Test performed with a CW signal at 10.45 GHz.

Spectrum analyzer settings:	
Resolution bandwidth	100k Hz (below 1 GHz); 1 MHz (above 1 GHz)
Video bandwidth	> RBW
Detector mode	Peak
Trace mode	Max Hold

8.4.1 Test equipment used

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Spectrum Analyzer	Rohde & Schwarz	FSW43	101767	2021-01	2022-01
EMI Receiver	Rohde & Schwarz	ESW44	101620	2021-08	2022-08
Antenna Trilog 25MHz - 8GHz	Schwarzbeck Mess-Elektronik	VULB9162	9162-025	2021-07	2024-07
Antenna 1 - 18 GHz	Schwarzbeck Mess-Elektronik	STLP9148	STLP 9148-152	2021-09	2024-09
Double Ridge Horn Antenna	RFSpin	DRH40	061106A40	2020-04	2023-04
Horn Antenna	A.H.System Inc.	SAS-574	558	2020-01	2023-01
Horn Antenna	Sage	SAR-2507-19VF-R2	15715-01	2021-06	2024-06
Broadband Amplifier	Schwarzbeck Mess-Elektronik	BBV9718C	00121	2021-01	2022-01
Broadband Bench Top Amplifier	Sage	STB-1834034030-KFKF-L1	18490-01	2021-04	2022-04
Harmonic Mixer	Radiometer Physics	FS-Z60	100988	2021-01	2024-01
Controller	Maturo	FCU3.0	10041	NCR	NCR
Tilt antenna mast	Maturo	TAM4.0-E	10042	NCR	NCR
Turntable	Maturo	TT4.0-5T	2.527	NCR	NCR
Semi-anechoic chamber	Nemko S.p.a.	10m semi-anechoic chamber	530	2021-09	2023-09
Spectrum Analyzer	Rohde & Schwarz	FSW43	101767	2021-01	2022-01

Notes: NCR - no calibration required, VOU - verify on use

	Section 8	Testing data
vem	Test name	Transmitter Unwanted Emissions
-2	Specification	FCC Part 90 Subpart F

8.4.2 Test data

Radiated spurious emissions- Frequency range 30 to 1000 MHz with antenna in horizontal polarization

Section 8 Test name Specification Testing data Transmitter Unwanted Emissions FCC Part 90 Subpart F

Test data, continued

Radiated spurious emissions- Frequency range 30 to 1000 MHz with antenna in vertical polarization

Section 8 Testing data Test name Transmitter Unwanted Emissions Specification FCC Part 90 Subpart F

Test data, continued

Radiated spurious emissions- Frequency range 1000 to 8000 MHz with antenna in horizontal polarization

Section 8 Testing data Test name Transmitter Unwanted Emissions Specification FCC Part 90 Subpart F

Test data, continued

Radiated spurious emissions- Frequency range 1000 to 8000 MHz with antenna in vertical polarization

Section 8 Test name Specification Testing data Transmitter Unwanted Emissions FCC Part 90 Subpart F

Test data, continued

Radiated spurious emissions- Frequency range 8000 to 18000 MHz with antenna in horizontal polarization

Section 8 Test name Specification Testing data Transmitter Unwanted Emissions FCC Part 90 Subpart F

Test data, continued

09:33:18 05.11.2021

Page 1/1

Radiated spurious emissions- Frequency range 8000 to 18000 MHz with antenna in vertical polarization

Section 8 Test name Specification Testing data Transmitter Unwanted Emissions FCC Part 90 Subpart F

Test data, continued

Radiated spurious emissions- Frequency range 18 to 40 GHz with antenna in horizontal polarization

Section 8 Test name Specification Testing data Transmitter Unwanted Emissions FCC Part 90 Subpart F

Test data, continued

Radiated spurious emissions- Frequency range 18 to 40 GHz with antenna in vertical polarization

Section 8 Test name Specification Testing data Transmitter Unwanted Emissions FCC Part 90 Subpart F

Test data, continued

Radiated spurious emissions- Frequency range 40 to 60 GHz with antenna in horizontal polarization

Section 8 Test name Specification Testing data Transmitter Unwanted Emissions FCC Part 90 Subpart F

Test data, continued

Radiated spurious emissions-Frequency range 40 to 60 GHz with antenna in vertical polarization

Testing data Transmitter Unwanted Emissions FCC Part 90 Subpart F

Test data, continued

1 Frequency S	weep								●1Pk Max
								M1[1]	-43.76 dBm
									551.820 MHz
30 dBm									
20 dBm									
10 dBm									
0.40.0									
U dBm									
-10 d8m									
10 0011	U1 10 000 dBs								
	HI -13,000 UBr	1							
-20 dBm									
-30 dBm									
40 40-1									
-40 aBm-					M1				
					A Maria				
A. son	million the state of the state	www.www.white	Markowwwwwwwww	mannant	man and manager	Mar and Marked Marked	when have been the	whitematine	a marked Markan
-50 dBm	har warat the ward a the start	h wards and a second	14 14 14					and the second second by the	A STATISTICS OF S
30.0 MHz			1001 pts		Q.	 7.0.MHz/			1.0.GHz

Conducted spurious emissions – Frequency range 30 to 1000 MHz

Testing data Transmitter Unwanted Emissions FCC Part 90 Subpart F

Test data, continued

Conducted spurious emissions – Frequency range 1 to 40 GHz

No X-Value Y-Value No X-Value Y-Value 1 10.097000 GHz -29.923 dBm 4 31.331 000 GHz -30.503 dBm	
1 10.097000 GHz -29.923 dBm 4 31.331 000 GHz -30.503 dBm	
	1
2 10.448000 GHz 30.897 dBm 5 39.123 000 GHz -29.019 dBm	1
3 10.799000 GHz -30.391 dBm	

Testing data Transmitter Unwanted Emissions FCC Part 90 Subpart F

Test data, continued

1 Frequency S	weep								o1Pk Max
								M1[1	.] -40.45 dBm
									58.891 0 GHz
-5 dBm									
-10 dBm									
	H1 -13.000 dBr	n							
-15 dBm									
-20 dBm									
-25 dBm									
-23 0811									
-30 dBm									
-35 dBm									
-40 dBm									M1
und de	haler and	La cara da		A DOMESTIC	O. K. C. M.	have been	يداد و الم	the construction	الم الم المار ال
WUMANAWA	nan waxay ya waxaya	MANNA MANNA	http://www.www.	and northern and all a	ynn-dynnddiwydlwad	MUMMANAMUM	handrown	n national and the state of the	rywanyumaaaaaa
-45 dBm									
40.0 GHz			1001 pts	5	2	.0 GHz/			60.0 GHz

Conducted spurious emissions – Frequency range 40 to 60 GHz

Section 9 EUT photos

9.1 Set-up photos

Figure 9.1-1: Antenna port testing set-up

Figure 9.1-2: Antenna port testing set-up in climatic chamber

Figure 9.1-3: Radiated emissions set-up for frequencies below 1 GHz

Figure 9.1-4: Radiated emissions set-up for frequencies above 1 GHz

9.2 External photos

Figure 9.2-1: Front view photo

Figure 9.2-2: Rear view photo

Figure 9.2-3: Internal view photo

End of the test report