

Report Reference ID:	438701TRFWL
	Title 47-Telecommunication Chapter I - Federal Communications Commission Part 90 – Private Land Mobile Radio Services
	Subpart F – Radiolocation Service
Test specification:	RSS-Gen Issue 5 April 2018 - Amendment 1 March 2019 – Amendment 2 February 2021 General Requirements for Compliance of Radio Apparatus
	RSS-210 Issue 10 December 2019 - Amendment (April 2020) Licence-Exempt Radio Apparatus: Category I Equipment

Applicant:	IDS GeoRadar SrI – Via A. Righi, 6-6A-8 – 56121 Pisa (PI) – Italy
Apparatus:	Ku-band radar sensor
Model:	IBIS-KU-ETH2
FCC ID:	UFW-IBIS-KU-ETH2
IC Registration number	8991A-IBISKUETH2

Via del Carroccio, 4 – 20853 Biassono (MB) – Italy		Nemko Spa Via del Carroccio, 4 – 20853 Biassono (MB) – Italy
--	--	--

	Name, fun	ction and signatu	re	Date
Tested by:	Tessa S.	Sara Zema	(project handler)	2021-07-05
Reviewed by:	P. Barbieri	Baul L	(verifier)	2021-07-15

Nemko Spa, 20853 Biassono (MB) - Italy. All rights reserved.

This publication may be reproduced in whole for non-commercial purposes as long as Nemko Spa is acknowledged as copyright owner and source of the material. Nemko Spa takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context. Nemko Spa accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This test report may not be partially reproduced, except with the prior written permission of Nemko Spa. The test report merely corresponds to the test sample. The phase of sampling / collection of equipment under test is carried out by the customer.

This Test Report, when bearing the Nemko name and logo is only valid when issued by a Nemko laboratory, or by a laboratory having special agreement with Nemko.

Table of contents

Section 1: 1.1	Report summary Test specification	3 3
1.2	Statement of compliance	3
1.3	Exclusions	3
1.4	Registration number	3
1.5	Test report revision history	3
1.6	Limits of responsibility	4
Section 2: 2.1	Summary of test results FCC Test results	
Section 3: 3.1	Equipment under test (EUT) and application details	
3.2	Modular equipment	
3.3	Product details	
3.4	Application purpose	
3.5	Certification details	
3.6	Composite/related equipment	
3.7	Sample information	
3.8	EUT technical specifications	
3.9	Accessories and support equipment	
3.10	Operation of the EUT during testing	
3.11	EUT setup diagram	
3.12	Software version	
Section 4: 4.1	Engineering considerations Modifications incorporated in the EUT	
4.2	Deviations from laboratory tests procedures	
4.3	Technical judgment	
Section 5:	Test conditions	10
5.1	Deviations from laboratory tests procedures	10
5.2	Test conditions, power source and ambient temperatures	
5.3	Measurement uncertainty	11
5.4	Test equipment	
Section 6: ' 6.1	Test results RF power output	
6.2	Occupied Bandwidth	17
6.8	Clause 90.213 Frequency stability measurements	21
Field Streng	gth of spurious radiation	22
	A: Block diagrams of test set-ups 3: Photos	

Section 1: Report summary

1.1 Test specification		
	Part 90 – Private Land Mobile Radio Services Subpart F – Radiolocation Service	
Specifications	Subpart P – Radiolocation Service RSS-Gen Issue 5 April 2018 - Amendment 1 March 2019 – Amendment 2 February 2021 General Requirements for Compliance of Radio Apparatus RSS-210 Issue 10 December 2019 - Amendment (April 2020) Licence-Exempt Radio Apparatus: Category I Equipment	

1.2 Statem	2 Statement of compliance		
	In the configuration tested the EUT was found compliant Yes ⊠ No □		
Compliance	This report contains an assessment of apparatus against specifications based upon tests carried out on samples submitted at Nemko Spa. These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 90 Subpart F. The tests were conducted in accordance with ANSI C63.26.		

1.3 Exclusions	
Exclusions	None

1.4 Registration number

ECC ID number 682159		
Test site: ISED ID number 9109A	Test site:	FCC ID number 682159 ISED ID number 9109A

1.5 Test report revision history	
Revision #	Details of changes made to test report
1	Original report issued

1.6 Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report. This test report has been completed in accordance with the requirements of ISO/IEC 17025. Nemko Spa authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Spa accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Section 2: Summary of test results

2.1 FCest results				
Test Specification Clause	Methods	Test description	Verdict	
FCC 47 CFR §2.1046 §90.205(r) RSS-210 B.11	ANSI C63.26	RF power output	Pass	
FCC 47 CFR §2.1049 §90.209 RSS-Gen § 6.7	ANSI C63.26	Occupied Bandwidth	Pass	
FCC 47 CFR §2.1051 §90.210(b) RSS-Gen § 6.13	ANSI C63.26	Emission mask	Pass	
FCC 47 CFR §2.1051 §90.210(b) RSS-Gen § 6.13	ANSI C63.26	Spurious emissions at antenna terminals	Pass	
FCC 47 CFR §2.1051 §90.210(b) RSS-Gen § 6.13	ANSI C63.26	Field strength of spurious radiation	Pass	
§90.213 §21055 RSS-Gen § 6.11	ANSI C63.26	Frequency stability	Pass	
Notes: Possible test case verdicts: test case does not apply to the test object: N/A (Not applicable) test object does meet the requirement: P (Pass) test object does not meet the requirement: F (Fail)				

Section 3: Equipment under test (EUT) and application details

3.1 Applicant details				
	Name:	IDS GeoRadar Srl		
	Address:	Via A. Righi 6-6A-8		
Applicant	City:	Pisa		
Applicant	Province/State:	Pisa		
	Post code:	56121		
	Country:	Italy		
Manufacturer	Name:	IDS GeoRadar Srl		
	Address:	Via A. Righi 6-6A-8		
	City:	Pisa		
Walturacturer	Province/State:	Pisa		
	Post code:	56121		
	Country:	Italy		
	Name:	Leica Geosystems Ltd		
	Address:	1-3761 Victoria Park Ave		
Canadian	City:	Scarborough		
representative	Province/State:	Ontario		
representative	Post code:	M1W3S2		
	Country:	Canada		
	IC company number:	3177B		

3.2 Modular equipment		
a) Single modular	Single modular approval	
approval	Yes 🗌 No 🖂	
b) Limited single	Limited single modular approval	
modular approval	Yes 🗌 No 🖂	

3.3 Product details		
FCC ID	Grantee code:	UFW
FCCID	Product code:	-IBIS-KU-ETH2
IC Registration number	8991A-IBISKUETH2	
Equipment class	TNB – Licensed Non-Broadcast	Station Transmitter
Equipment category	Field Disturbance Sensor	
Departmention of product	Ku-band radar sensor	
Description of product as it is marketed	Model name:	IBIS-KU-ETH2
	Serial number:	RF 2.0 PROT. 02
	The EUT is also classified as Terminal Equipment subject to IC CS-	
Product	03	
	No 🖂 Yes 🗌	

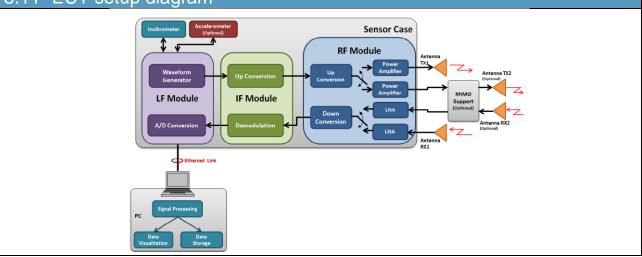
3.4 Application purpose		
Type of application	\boxtimes	Original certification
		Change in identification of presently authorized equipment Original FCC ID: Grant date: Class II permissive change or modification of presently authorized equipment
		- 1-1

3.5 Certification details		
Services requested	New certification	
Type of assessment	New family	
	Re-assessment	
	Existing family	
	Multiple listing	

3.6 Composite/related equipment		
a) Composite	The EUT is a composite device subject to an additional equipment	
equipment	authorization	
	Yes 🗌 No 🖂	
b) Related equipment	The EUT is part of a system that operates with, or is marketed with,	
	another device that requires an equipment authorization	
	Yes 🗌 No 🖂	

3.7 Sample information	
Receipt date:	2021-06-23
Nemko sample ID:	43870100002

3.8 EUT technical specifications		
Operating band:	17.1 GHz – 17.3 GHz	
Operating frequency:	17.2 GHz	
Modulation type:	FMCW	
Occupied bandwidth:	199.1 MHz	
Channel spacing:		
Emission designator:	199MN0N	
RF Conducted Output:	19.7 dBm (FCC) and 11.2 dBm (ISED)	
Antenna type:	External Antenna - IBIS-ANT7-H50V31 (Gain 13.5 dBi)	
Power source:	9-36 VDC	


3.9 Accessories and support equipment

The following information identifies accessories used to exercise the EUT during testing:

--

3.10 Operation of the EUT during testing		
Details:	Transmitting at max gain with max RF power output.	

3.11 EUT setup diagram

3.12 Software and Firmware version used during tests		
	SW: IBIS Test - Version: ArcSAR 1.0.34	
Details:	FW-uControllore: IBIS versione: 2.33 FW-FPGA: ibis versione:2.12	

Section 4: Engineering considerations

4.1 Modifications incorporated in the EUT Modifications Modifications Ves Performed by Client			
	Details:		
4.2 Deviations	4.2 Deviations from laboratory tests procedures		
Deviations	Deviations from laboratory test procedures None \square Yes \square - details are listed below:		
1.2 Technical judgment			

4.3 Technical j	I.3 Technical judgment		
Judgment	None		

Section 5: Test conditions

5.1 Deviations from laboratory tests procedures

No deviations were made from laboratory test procedures.

5.2 Test conditions, power source and ambient temperatures		
Normal temperature, humidity and air pressure test conditions	Unless different values are declared in the test case, following ambient conditions apply for the tests:	
	Temperature: 18 ÷ 33 °C	
	Relative humidity: 30 ÷ 60 %	
	Air pressure: 980 ÷ 1060 hPa	
	When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.	
Power supply range:	The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ± 5 %, for which the equipment was designed.	

Equipment	Manufacturer	Model	Serial N°
Thermo-hygrometer data loggers	Testo	175-H2	20012380/305
Thermo-hygrometer data loggers	Testo	175-H2	38203337/703
Barometer	Castle	GPB 3300	072015

5.3 Measurement uncertainty

The measurement uncertainty was calculated for each test and quantity listed in this test report, according to CISPR 16-4-2 and other specific test standard and is documented in Nemko Spa working manual WML1002.

The assessment of conformity for each test performed on the equipment is performed not taking into account the measurement uncertainty. The two following possible verdicts are stated in the report:

P (Pass) - The measured values of the equipment respect the specification limit at the points tested. The specific risk of false accept is up to 50% when the measured result is close to the limit. F (Fail) - One or more measured values of the equipment do not respect the specification limit at the points tested. The specific risk of false reject is up to 50% when the measured result is close to the limit.

Hereafter Nemko's measurement uncertainties are reported:

EUT	Туре	Test	Range	Measurement Uncertainty	Notes
		Frequency error	0.001 MHz ÷ 40 GHz	0.08 ppm	(1)
			0.009 MHz ÷ 30 MHz	1.1 dB	(1)
		Carrier power	30 MHz ÷ 18 GHz	1.5 dB	(1)
		RF Output Power	18 MHz ÷ 40 GHz	3.0 dB	(1)
			40 MHz ÷ 140 GHz	5.0 dB	(1)
		Adjacent channel power	1 MHz ÷ 18 GHz	1.4 dB	(1)
			0.009 MHz ÷ 18 GHz	3.0 dB	(1)
		Conducted spurious emissions	18 GHz ÷ 40 GHz	4.2 dB	(1)
		·	40 GHz ÷ 220 GHz	6.0 dB	(1)
		Intermodulation attenuation	1 MHz ÷ 18 GHz	2.2 dB	(1)
		Attack time – frequency behaviour	1 MHz ÷ 18 GHz	2.0 ms	(1)
		Attack time – power behaviour	1 MHz ÷ 18 GHz	2.5 ms	(1)
		Release time – frequency behaviour	1 MHz ÷ 18 GHz	2.0 ms	(1)
	Conducted	Release time – power behaviour	1 MHz ÷ 18 GHz	2.5 ms	(1)
		Transient behaviour of the transmitter- Transient frequency behaviour	1 MHz ÷ 18 GHz	0.2 kHz	(1)
Transmitter		Transient behaviour of the transmitter – Power level slope	1 MHz ÷ 18 GHz	9%	(1)
		Frequency deviation - Maximum permissible frequency deviation	0.001 MHz ÷ 18 GHz	1.3%	(1)
		Frequency deviation - Response of the transmitter to modulation frequencies above 3 kHz	0.001 MHz ÷ 18 GHz	0.5 dB	(1)
		Dwell time	-	3%	(1)
		Hopping Frequency Separation	0.01 MHz ÷ 18 GHz	1%	(1)
		Occupied Channel Bandwidth	0.01 MHz ÷ 18 GHz	2%	(1)
		Modulation Bandwidth	0.01 MHz ÷ 18 GHz	2%	(1)
			0.009 MHz ÷ 26.5 GHz	6.0 dB	(1)
		Radiated spurious emissions	26.5 GHz ÷ 66 GHz	8.0 dB	(1)
		'	66 GHz ÷ 220 GHz	10 dB	(1)
	Radiated		10 kHz ÷ 26.5 GHz	6.0 dB	(1)
		Effective radiated power transmitter	26.5 GHz ÷ 66 GHz	8.0 dB	(1)
			66 GHz ÷ 220 GHz	10 dB	(1)
			0.009 MHz ÷ 26.5 GHz	6.0 dB	(1)
		Radiated spurious emissions	26.5 GHz ÷ 66 GHz	8.0 dB	(1)
	Radiated		66 GHz ÷ 220 GHz	10 dB	(1)
Receiver		Sensitivity measurement	1 MHz ÷ 18 GHz	6.0 dB	(1)
			0.009 MHz ÷ 18 GHz	3.0 dB	(1)
	Conducted	Conducted spurious emissions	18 GHz ÷ 40 GHz	4.2 dB	(1)
	Conducted		40 GHz ÷ 220 GHz	6.0 dB	(1)
				0.0 UD	

(1) The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k = 2, which for a normal distribution corresponds to a coverage probability of approximately 95 %

Equipment	Manufacturer	Model	Serial N°	Cal Date	Due Date
Trilog Broadband Antenna	Schwarzbeck	VULB 9162	9162-025	2018-07	2021-07
EMI receiver (20 Hz ÷ 8 GHz)	Rohde & Schwarz	ESU8	100202	2020-08	2021-08
EMI receiver (2 Hz ÷ 44 GHz)	Rohde & Schwarz	ESW44	101620	2020-09	2021-09
EMI receiver (2 Hz ÷ 43.5 GHz)	Rohde & Schwarz	FSW43	101767	2021-01	2022-01
Controller	Maturo	FCU3.0	10041	NSC	
Tilt antenna mast	Maturo	TAM4.0-E	10042	NSC	
Turntable	Maturo	TT4.0-5T	2.527	NSC	
Bilog Antenna (1 ÷ 18 GHz)	Schwarzbeck Mess- Elektronik	STLP9148	STLP 9148- 152	2018-09	2021-09
Preamplifier (1 ÷ 18 GHz)	Schwarzbeck Mess- Elektronik	BBV9718C	00121	2021-01	2022-01
Double Ridge Horn Antenna (18 ÷ 40 GHz)	RFSpin	DRH40	061106A40	2020-04	2023-04
Preamplifier (18 ÷ 40 GHz)	Sage	STB-1834034030- KFKF-L1	18490-01	2021-04	2022-04
Pyramidal Horn Antenna (40 ÷ 60 GHz)	Sage	SAR-2507-19VF-R2	15715-01	2021-06	2031-06
Pyramidal Horn Antenna (60 ÷ 90 GHz)	Sage	SAR-2013-121F-E2	1738301	NSC	-
Harmonic Mixer (40 ÷ 60 GHz)	Radiometer Physics	RPG FS Z60	100988	2021-01	2024-01
Harmonic Mixer (60 ÷ 90 GHz)	Radiometer Physics	RPG FS Z90	101670	2021-01	2024-01
Semi-anechoic chamber	Nemko	10 m semi-anechoic chamber	530	2018-09	2021-09
Shielded room	Siemens	10 m control room	1947	NSC	

Section 6: Test results

6.1 RF power output

FCC 47 CFR § 90.205 (r)

Applicants for licenses must request and use no more power than the actual power necessary for satisfactory operation. Except where otherwise specifically provided for, the maximum power that will be authorized to applicants whose license applications for new stations are filed after August 18, 1995 is as follows:

(r) All other frequency bands. Requested transmitter power will be considered and authorized on a case by case basis.

RSS 210 Annex B.11

The following carrier frequencies are available for use by radar and other mobile devices:

- a. 17.15 GHz: 0.3 W e.i.r.p.
- b. 94 GHz: 0.4 W e.i.r.p.

Parameters, such as occupied bandwidth and permissible out-of-band emissions, will be evaluated on a case-by-case basis.

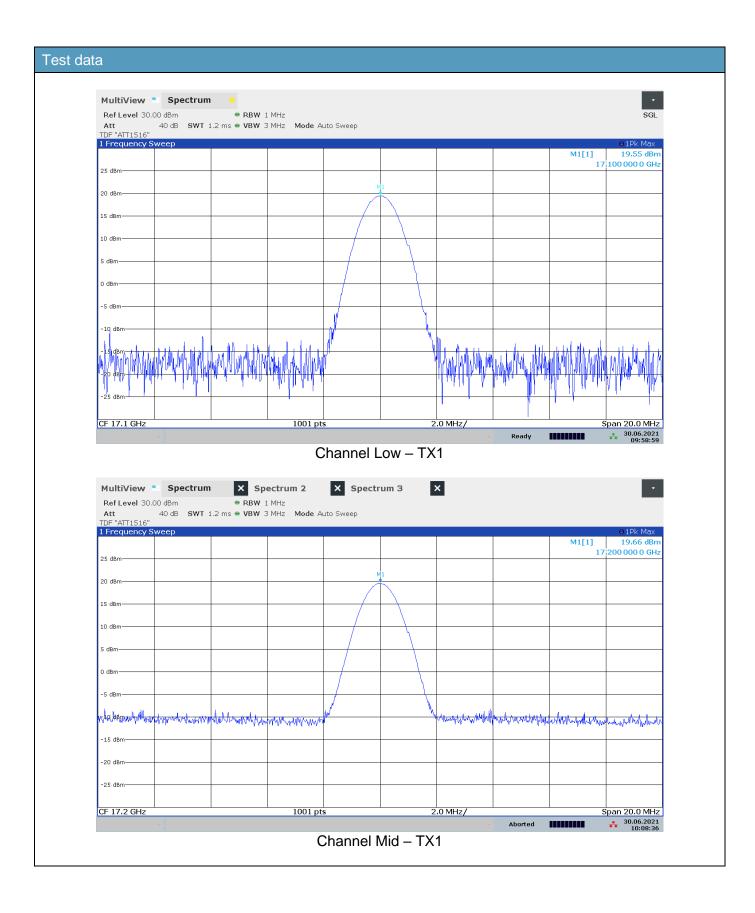
Test date: 2021-06-30

Test results: Pass

Note: In order to comply with RSS 210 Annex B.11 limits, the output power should be adjusted depending on antenna gain.

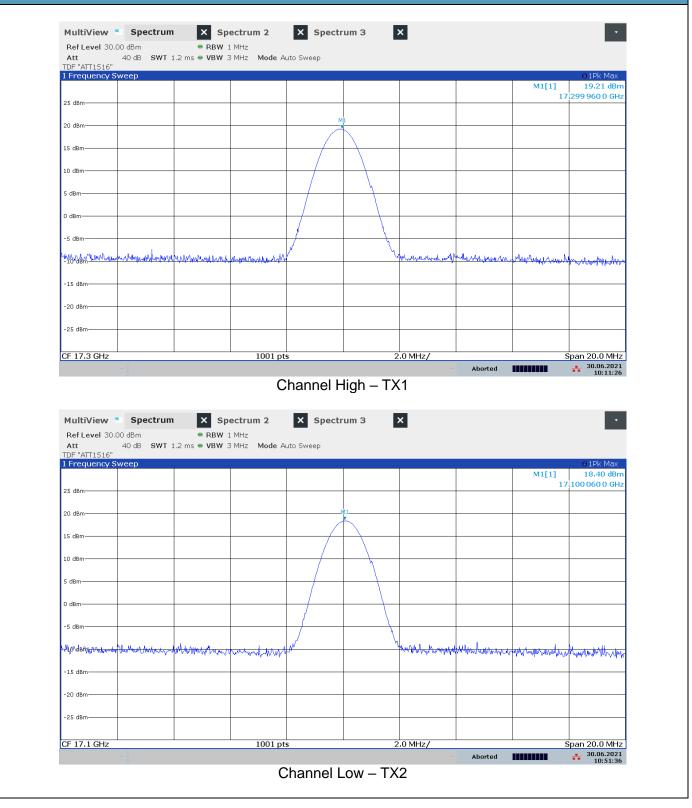
EIRP: 300 mW = 24.7 dBm **Conducted output power**: 24.7 dBm – 13.5 dBi = 11.2 dBm

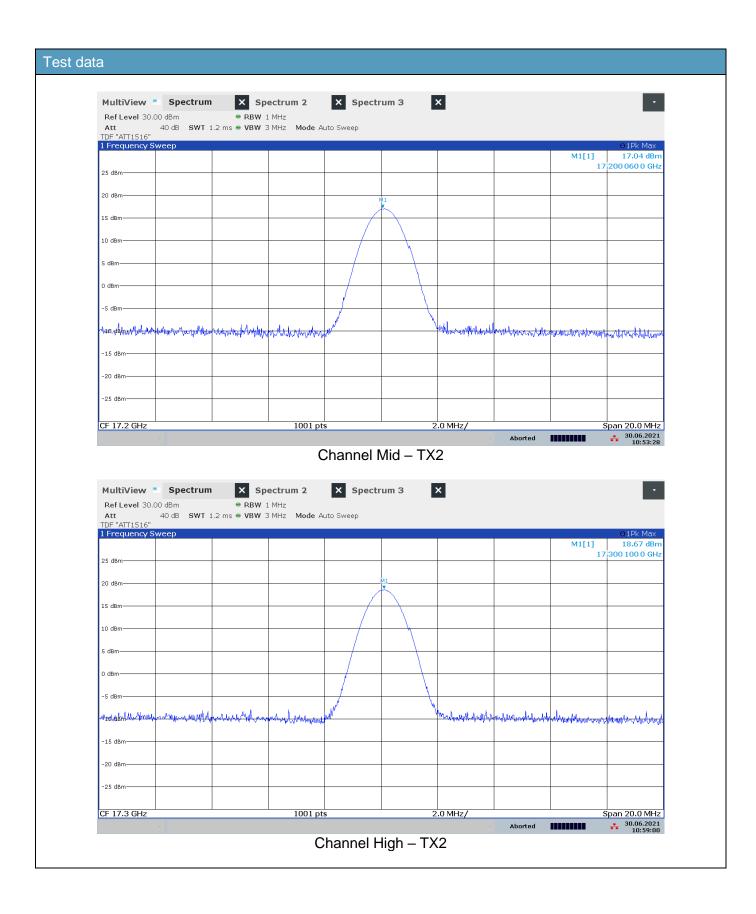
Special notes


Signal stimulation: CW

Result:

-	TX1
Frequency (channel)	Conducted output power
17.1. GHz (low)	19.6 dBm
17.2 GHz (mid)	19.7 dBm
17.3 GHz (high)	19.3 dBm


Т	X2
Frequency (channel)	Conducted output power
17.1. GHz (low)	18.4 dBm
17.2 GHz (mid)	17.1 dBm
17.3 GHz (high)	18.7 dBm



Test data

6.2 Occupied Bandwidth

FCC 47 CFR § 90.209

(a) Each authorization issued to a station licensed under this part will show an emission designator representing the class of emission authorized. The designator will be prefixed by a specified necessary bandwidth. This number does not necessarily indicate the bandwidth occupied by the emission at any instant. In those cases where §2.202 of this chapter does not provide a formula for the computation of necessary bandwidth, the occupied bandwidth, as defined in part 2 of this chapter, may be used in lieu of the necessary bandwidth.

(b) The maximum authorized single channel bandwidth of emission corresponding to the type of emission specified in §90.207 is as follows:

(1) For A1A or A1B emissions, the maximum authorized bandwidth is 0.25 kHz. The maximum authorized bandwidth for type A3E emission is 8 kHz.

(2) For operations below 25 MHz utilizing J3E emission, the bandwidth occupied by the emission shall not exceed 3000 Hz. The assigned frequency will be specified in the authorization. The authorized carrier frequency will be 1400 Hz lower in frequency than the assigned frequency. Only upper sideband emission may be used. In the case of regularly available double sideband radiotelephone channels, an assigned frequency for J3E emissions is available either 1600 Hz below or 1400 Hz above the double sideband radiotelephone assigned frequency.

(3) For all other types of emissions, the maximum authorized bandwidth shall not be more than that normally authorized for voice operations.

(4) Where a frequency is assigned exclusively to a single licensee, more than a single emission may be used within the authorized bandwidth. In such cases, the frequency stability requirements of §90.213 must be met for each emission.

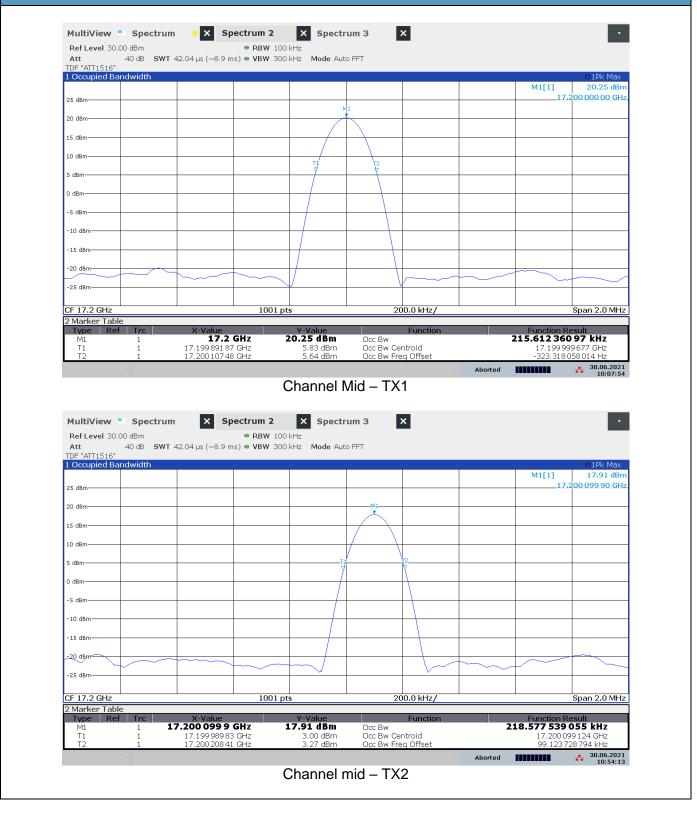
(5) Unless specified elsewhere, channel spacings and bandwidths that will be authorized in the following frequency bands are given in the following table.

Frequency band (MHz)	Channel spacing (kHz)	Authorized bandwidth (kHz)
Below 25 ²		
25-50	20	20
72-76	20	20
150-174	¹ 7.5	^{1 3} 20/11.25/6
216-220 ⁵	6.25	20/11.25/6
220-222	5	4
406-512 ²	¹ 6.25	^{1 3 6} 20/11.25/6
806-809/851-854	12.5	20
809-817/854-862	12.5	⁶ 20/11.25
817-824/862-869	25	⁶ 20
896-901/935-940	12.5	13.6
902-928 ⁴		
929-930	25	20
1427-1432 ⁵	12.5	12.5
³ 2450-2483.5 ²		
Above 2500 ²		

²Bandwidths for radiolocation stations in the 420-450 MHz band and for stations operating in bands subject to this footnote will be reviewed and authorized on a case-by-case basis. **RSS-Gen - Clause 6.7**

Test date: 2021-06-30

Test results: Pass


Special notes

Signal stimulation: CW and FMCW

TX1	
Frequency (channel)	Bandwidth
17.2 GHz (mid)	215.7 kHz
17.1GHz -17.3 GHz (sweep)	199.1 MHz
TX2	
Frequency (channel)	Bandwidth
17.2 GHz (mid)	218.6 kHz
17.1GHz -17.3 GHz (sweep)	199.1 MHz

Test data

oct.		ata
COL	u	ala

Att	00 dBm 40 dB SWT	 RBW 1.2 ms VBW 		Auto Sweep					
TDF "ATT1516" 1 Occupied Ba	ndwidth		I				1	1	●1Pk Max
25 dBm								M1[1]	20.06 dBm 17.172 030 GHz
20 dBm	1		M1						T2
15 dBm	Y .	Γ··/	····· · · ·	V . V	and the second	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			7
10 dBm									
5 dBm									
0 dBm									
-5 dBm									
-10 dBm									hundhamanaha
-15 dBm									
-20 dBm									
-25 dBm									
CF 17.2 GHz			1001 pt	l l	25	.0 MHz/		c	pan 250.0 MHz
2 Marker Table			1001 p			•			
Type Ref	1	X-Value 17.172 03 G		Y-Value 20.06 dBm	Occ Bw	Function	1	Function R 99.076 704	929 MHz
T1 T2	1 1	17.100291 0 17.299368 0	3Hz 3Hz	19.65 dBm 19.27 dBm	Occ Bw Cen Occ Bw Fred	trola 9 Offset		-170.797	29 203 GHz 097 656 kHz
MultiView	00 dBm	■ RBW		Sweep	_		Aborted		30.06.2021 10:33:22
	00 dBm 40 dB SWT		2 MHz	× Spectr		3	Aborted		• 30.06.2021 10:33:22 • 0 1Pk Max
Ref Level 30.0 Att TDF "ATT1516" 1 Occupied Bar	00 dBm 40 dB SWT	■ RBW	2 MHz	× Spectr		1	Aborted	M1[1]	0 1Pk Max 19.19 dBm
Ref Level 30.0 Att TDF "ATT1516" 1 Occupied Bar 25 dBm-	00 dBm 40 dB SWT	■ RBW	2 MHz	× Spectr		4	Aborted		0 1Pk Max 19.19 dBm 17.297 650 GHz
Ref Level 30.0 Att TDF "ATT1516" 1 Occupied Bat 25 dBm- 20 dBm-	00 dBm 40 dB SWT	■ RBW	2 MHz	× Spectr		3	Aborted	M1[1]	0 1Pk Max 19.19 dBm 17.297 650 GHz
Ref Level 30.0 Att TDF "ATT1516" 1 Occupied Bar 25 dBm 20 dBm 15 dBm	00 dBm 40 dB SWT	■ RBW	2 MHz	Auto Sweep	um 3 🗙	-	Aborted	M1[1]	0 1Pk Max 19.19 dBm 17.297 650 GHz
Ref Level 30.0 Att TDF "ATT1516" 1 Occupied Bar 25 dBm 20 dBm 15 dBm	00 dBm 40 dB SWT	■ RBW	2 MHz	Auto Sweep	um 3 🗙	-	Aborted	M1[1]	0 1Pk Max 19.19 dBm 17.297 650 GHz
Ref Level 30.0 Att TDF "ATT1516" 1 Occupied Bat 25 dBm- 20 dBm-	00 dBm 40 dB SWT	■ RBW	2 MHz	Auto Sweep	um 3 🗙	-	Aborted	M1[1]	0 1Pk Max 19.19 dBm 17.297 650 GHz
Ref Level 30.0 Att TDF "ATT1516" 1 Occupied Bar 25 dBm 20 dBm 15 dBm 10 dBm	00 dBm 40 dB SWT	■ RBW	2 MHz	Auto Sweep	um 3 🗙	-	Aborted	M1[1]	0 1Pk Max 19.19 dBm 17.297 650 GHz
Ref Level 30.0 Att TDF "ATT1516" 1 Occupied Bar 25 dBm 20 dBm 15 dBm 10 dBm 5 dBm	00 dBm 40 dB SWT	■ RBW	2 MHz	Auto Sweep	um 3 🗙	-	Aborted	M1[1]	0 1Pk Max 19.19 dBm 17.297 650 GHz
Ref Level 30.0 Att TDF "ATT1516" 1 Occupied Bar 25 dBm 20 dBm 10 dBm 5 dBm 0 dBm -5 dBm -10 dBm	00 dBm 40 dB SWT	■ RBW	2 MHz	Auto Sweep	um 3 🗙	-	Aborted	M1[1]	0 1Pk Max 19.19 dBm 17.297 650 GHz 12
Ref Level 30.0 Att TDF "ATT1516" 1 Occupied Bar 25 dBm 20 dBm 10 dBm 5 dBm 0 dBm -5 dBm	00 dBm 40 dB SWT	■ RBW	2 MHz	Auto Sweep	um 3 🗙	-	Aborted	M1[1]	0 1Pk Max 19.19 dBm 17.297 650 GHz
Ref Level 30.0 Att TDF "ATT1516" 1 Occupied Bar 25 dBm 20 dBm 15 dBm 10 dBm 5 dBm -10 dBm -10 dBm	00 dBm 40 dB SWT	■ RBW	2 MHz	Auto Sweep	um 3 🗙	-	Aborted	M1[1]	0 1Pk Max 19.19 dBm 17.297 650 GHz 12
Ref Level 30.0 Att TDF "ATT1516" 1 Occupied Bar 25 dBm 20 dBm 10 dBm 5 dBm 0 dBm -5 dBm -10 dBm -10 dBm	00 dBm 40 dB SWT	■ RBW	2 MHz	Auto Sweep	um 3 🗙	-	Aborted	M1[1]	0 1Pk Max 19.19 dBm 17.297 650 GHz 12
Ref Level 30.0 Att TDF "ATT1516" 1 Occupied Bar 25 dBm 20 dBm 10 dBm 5 dBm 0 dBm 5 dBm 0 dBm 5 dBm 0 dBm -5 dBm -10 dBm -13 dBm -20 dBm -20 dBm	00 dBm 40 dB SWT	■ RBW	2 MHz Mode	X Spectro	um 3 ×		Aborted	M1[1]	0 1Pk Max 19.19 dBm 17.297 650 GHz
Ref Level 30.0 Att TDF "ATT1516" 1 Occupied Bar 25 dBm 20 dBm 15 dBm 10 dBm 5 dBm 0 dBm -5 dBm -10 dBm -20 dBm	D0 dBm 40 dB SWT ndwidth	RBW 1.2 ms VBW	2 MHz	X Spectro	um 3 ×	.0 MHz/	Aborted	M1[1]	0 1Pk Max 19.19 dBm 17.297 650 GHz 12.297 6
Ref Level 30.0 Att TDF "ATT1516" 1 Occupied Ba 25 dBm 20 dBm 15 dBm 10 dBm 5 dBm 0 dBm -10 dBm -10 dBm -25 dBm -20 dBm -25 dBm -27 dBm -28 dBm -29 dBm -27 dBm -28 dBm -29 dBm -29 dBm -20 dBm -28 dBm -29 dBm -29 dBm -20 dBm -28 dBm -29 dBm -29 dBm -20 dBm -29 dBm -20 dBm -20 dBm -20 dBm -20 dBm -10 dBm -10 dBm	00 dBm 40 dB SWT ndwidth	RBW 1.2 ms • VBW	2 MHz 2 MHz Mode	Auto Sweep	um 3	.0 MHz/		M1[1] M S S Function R S S S S S S S S S S S S S	0 1Pk Max 19.19 dBm 17.297 650 GHz 17.297 650 GHz 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000
Ref Level 30.0 Att TDF "ATT1516" 1 Occupied Bar 25 dBm 20 dBm 15 dBm 10 dBm 5 dBm 0 dBm -5 dBm -10 dBm -20 dBm -20 dBm -20 dBm -20 dBm -25 dBm -20 dBm -25 dBm -20 dBm -25 dBm -20 dBm	D0 dBm 40 dB SWT ndwidth	RBW 1.2 ms • VBW	2 MHz 2 MHz Mode	Auto Sweep	um 3 ×	.0 MHz/ Function		M1[1]	0 1Pk Max 19.19 dBm 17.297 650 GHz

6.8 Clause 90.213 Frequency stability measurements

FCC 47 CFR § 90.213 RSS Gen Clause 6.11

There are no limits specified

Test date: 2021-06-30

Test results: Pass

Special notes

Signal stimulation: CW

Test conditions	Frequency, GHz
+50 °C, Nominal	17.200 000 081
+40 °C, Nominal	17.200 000 070
+30 °C, Nominal	17.200 000 089
+20 °C, +15 %	17.200 000 060
+20 °C, Nominal	17.200 000 000
+20 °C, −15 %	17.200 000 010
+10 °C, Nominal	17.199 999 998
0 °C, Nominal	17.200 000 005
−10 °C, Nominal	17.199 999 986
−20 °C, Nominal	17. 199 999 986
−30 °C, Nominal	17.200 000 001

Field Strength of spurious radiation

FCC 47 CFR § 90.210

Except as indicated elsewhere in this part, transmitters used in the radio services governed by this part must comply with the emission masks outlined in this section. Unless otherwise stated, per paragraphs (d)(4), (e)(4), and (o) of this section, measurements of emission power can be expressed in either peak or average values provided that emission powers are expressed with the same parameters used to specify the unmodulated transmitter carrier power. For transmitters that do not produce a full power unmodulated carrier, reference to the unmodulated transmitter carrier power refers to the total power contained in the channel bandwidth. Unless indicated elsewhere in this part, the table in this section specifies the emission masks for equipment operating under this part.

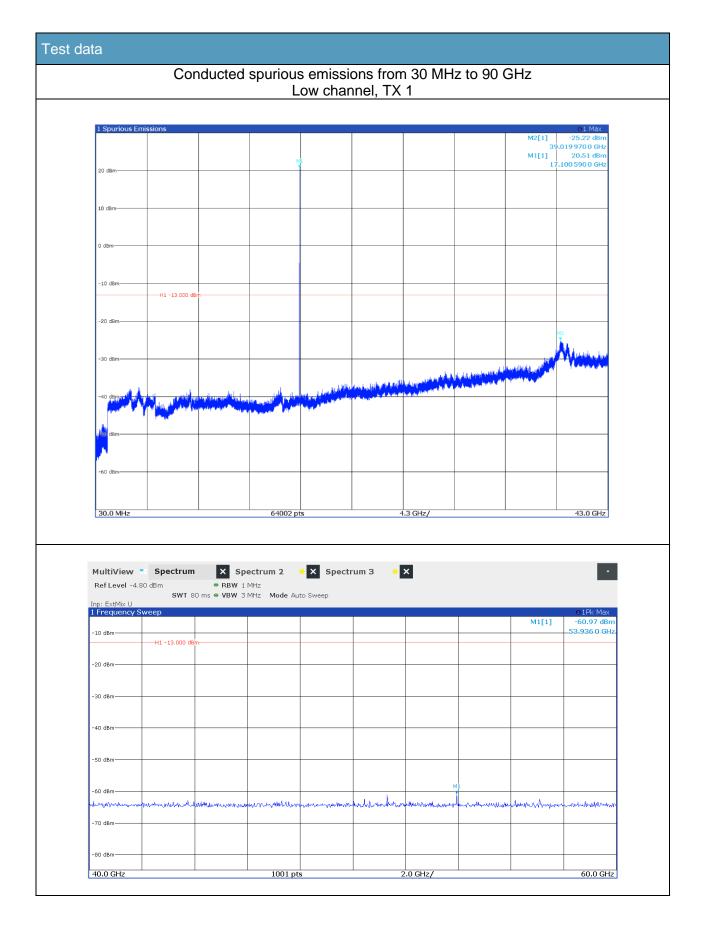
Frequency band (MHz)	Mask for equipment with audio low pass filter	Mask for equipment without audio low pass filter
Below 25 ¹	A or B	A or C
25-50	В	С
72-76	В	с
150-174 ²	B, D, or E	C, D or E
150 paging only	В	с
220-222	F	F
421-512 ^{2 5}	B, D, or E	C, D, or E
450 paging only	В	G
806-809/851-854 ⁶	В	н
809-824/854-869 ³⁵	B, D	D, G.
896-901/935-940	I	J
902-928	к	к
929-930	В	G
4940-4990 MHz	L or M	L or M
5850-5925 ⁴		
All other bands	В	с

APPLICABLE EMISSION MASKS

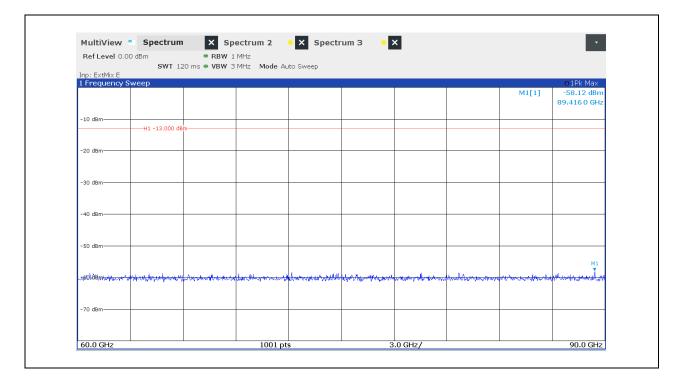
(b) Emission Mask B. For transmitters that are equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:

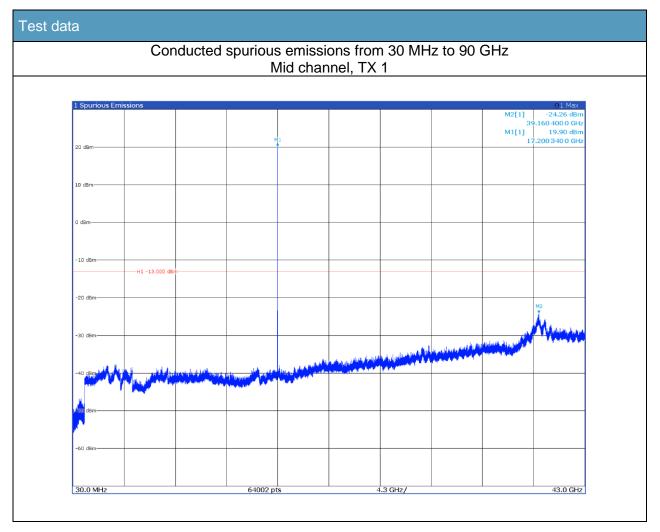
(1) On any frequency removed from the assigned frequency by more than 50 percent, but not more than 100 percent of the authorized bandwidth: At least 25 dB.

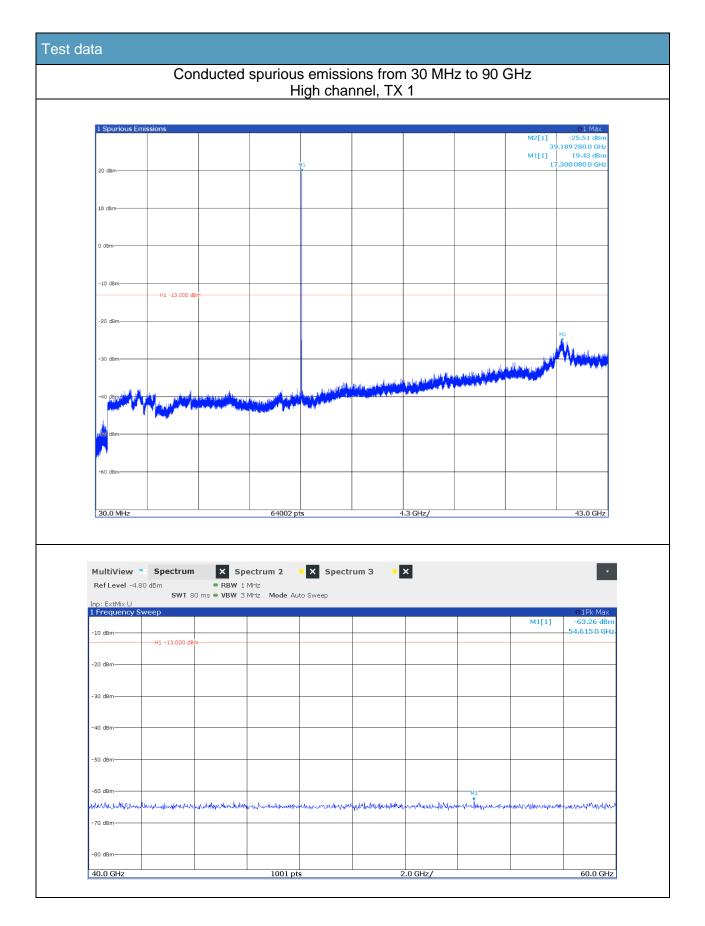
(2) On any frequency removed from the assigned frequency by more than 100 percent, but not more than 250 percent of the authorized bandwidth: At least 35 dB.

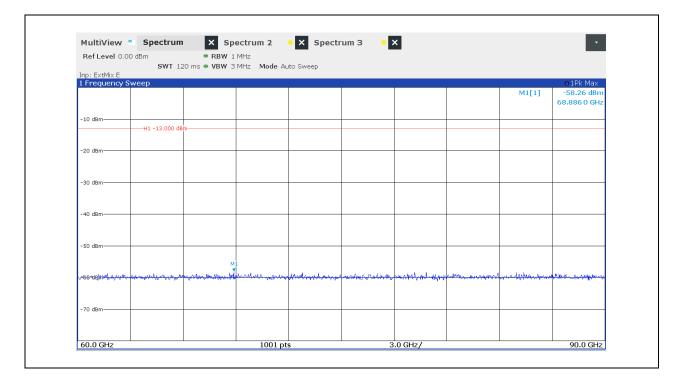

(3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least $43 + 10 \log (P) dB$.

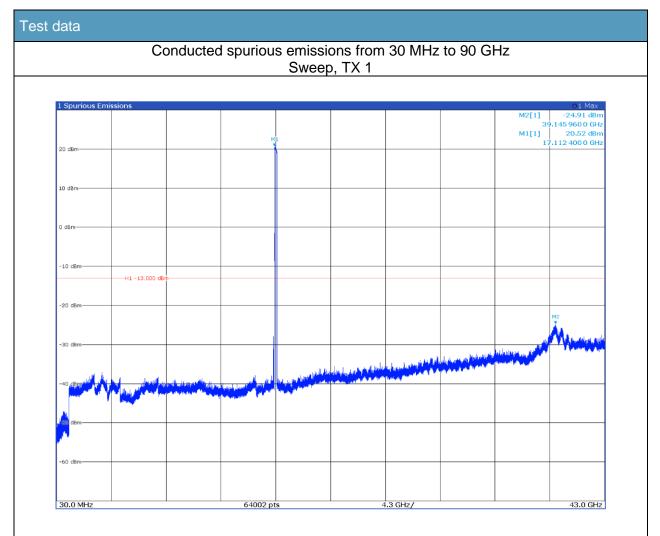
RSS Gen Clause 6.11

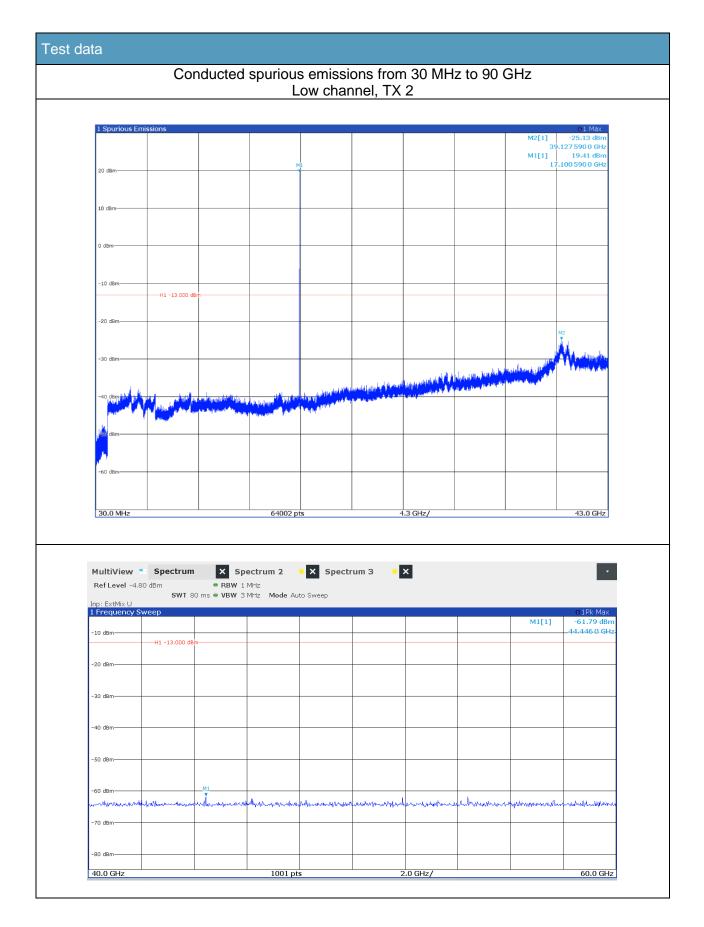

Test date: From 2021-06-25 to 2020-06-29

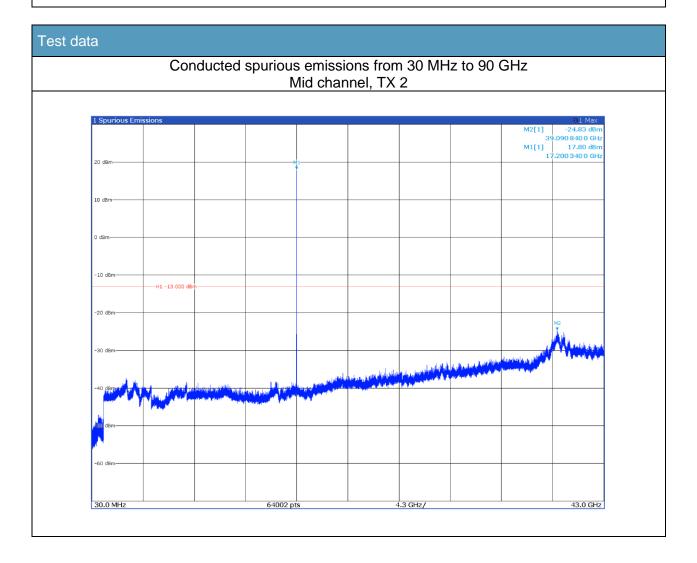

Test results: Pass

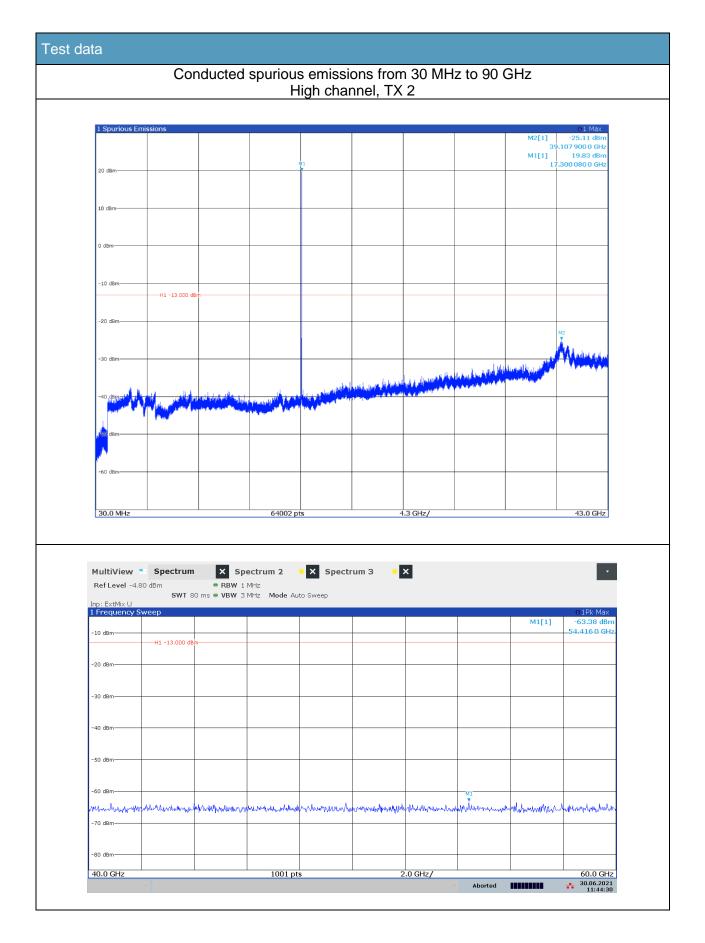




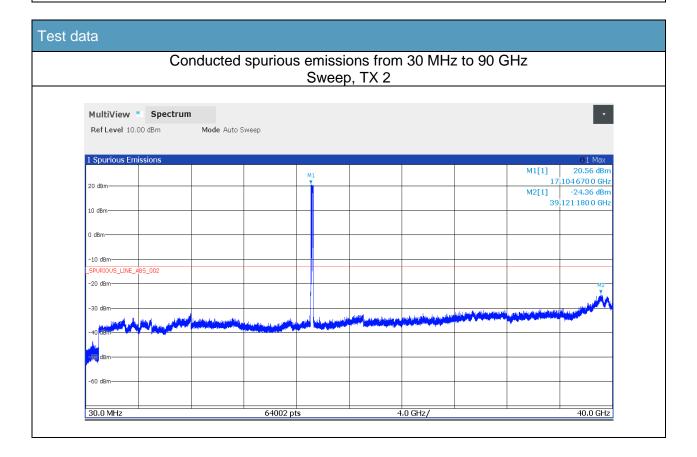

	SWT 8								
Inp: ExtMix U									
1 Frequency S	weep							M1[1]	• 1Pk Max -62.25 dB
-10 dBm								MILI	-59.2910 G
-10 0011		m							
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm									M1
mashindren	wither warder	hor haber was	when marches has	And marche should be	mound	and months	and share and the second	aller manual	moundary
							1		
-70 dBm									
-80 dBm									
								1	
40.0 GHz MultiView	Spectrum	× Sp	1001 pt ectrum 2	s × Spectr		.0 GHz/			60.0 GH
) dBm	• RBW 1	ectrum 2	× Spect		_			60.0 GH
MultiView Ref Level 0.00) dBm		ectrum 2	× Spect		_	1		60.0 GH
MultiView	dBm SWT 12	• RBW 1	ectrum 2	× Spect		_			
MultiView Ref Level 0.00 Inp: ExtMix E	dBm SWT 12	• RBW 1	ectrum 2	× Specti		_		M1[1]	o 1Pk Max -57.75 dB
MultiView Ref Level 0.00 Inp: ExtMix E	dBm SWT 12	• RBW 1	ectrum 2	× Specti		_		M1[1]	o 1Pk Max -57.75 dB
MultiView Ref Level 0.00 Inp: ExtMix E 1 Frequency S	dBm SWT 12	• RBW 1	ectrum 2	× Specti		_		M1[1]	o 1Pk Max -57.75 dB
MultiView Ref Level 0.00 Inp: ExtMix E	dBm SWT 12	● RBW 1 20 ms ● VBW 3	ectrum 2	× Specti		_		M1[1]	o 1Pk Max -57.75 dB
MultiView Ref Level 0.00 Inp: ExtMix E 1 Frequency S	o dBm SWT 12 weep	● RBW 1 20 ms ● VBW 3	ectrum 2	× Specti		_		M1[1]	o 1Pk Max -57.75 dB
MultiView Ref Level 0.00 Inp: ExtMix E 1 Frequency S	o dBm SWT 12 weep	● RBW 1 20 ms ● VBW 3	ectrum 2	× Spect		_		M1[1]	o 1Pk Max -57.75 dB
MultiView Ref Level 0.00 Inp: ExtMix E 1 Frequency S	o dBm SWT 12 weep	● RBW 1 20 ms ● VBW 3	ectrum 2	× Spect		_		M1[1]	o 1Pk Max -57.75 dB
MultiView Ref Level 0.00 Inp: ExtMix E 1 Frequency S	o dBm SWT 12 weep	● RBW 1 20 ms ● VBW 3	ectrum 2	× Spect		_		M1[1]	o 1Pk Max -57.75 dB
MultiView Ref Level 0.00 Inp: ExtMix E 1 Frequency S	o dBm SWT 12 weep	● RBW 1 20 ms ● VBW 3	ectrum 2	× Spect		_		M1[1]	o 1Pk Max -57.75 dB
MultiView Ref Level 0.00 Inp: ExtMix E I Frequency S -10 d8m -20 d8m	o dBm SWT 12 weep	● RBW 1 20 ms ● VBW 3	ectrum 2	× Spect		_		M1[1]	o 1Pk Max -57.75 dB
MultiView Ref Level 0.00 Inp: ExtMix E I Frequency S -10 d8m -20 d8m	o dBm SWT 12 weep	● RBW 1 20 ms ● VBW 3	ectrum 2	× Spect		_		M1[1]	o 1Pk Max -57.75 dB
MultiView Ref Level 0.00 Inp: ExtMix E I Frequency S -10 d8m -20 d8m	o dBm SWT 12 weep	● RBW 1 20 ms ● VBW 3	ectrum 2	× Spect		_		M1[1]	o 1Pk Max -57.75 dB
MultiView Ref Level 0.00 Inp: ExtMix E I Frequency S -10 dBm -20 dBm -30 dBm	o dBm SWT 12 weep	● RBW 1 20 ms ● VBW 3	ectrum 2	× Specti		_		M1[1]	o 1Pk Max -57.75 dB
MultiView Ref Level 0.00 Inp: ExtMix E I Frequency S -10 d8m	o dBm SWT 12 weep	● RBW 1 20 ms ● VBW 3	ectrum 2	× Specti		_		M1[1]	o 1Pk Max -57.75 dB
MultiView Ref Level 0.00 Inp: ExtMix E I Frequency S -10 dBm -20 dBm -30 dBm	o dBm SWT 12 weep	● RBW 1 20 ms ● VBW 3	ectrum 2	× Specti		_		M1[1]	o 1Pk Max -57.75 dB
MultiView Ref Level 0.00 Inp: ExtMix E I Frequency S -10 d8m	o dBm SWT 12 weep	● RBW 1 20 ms ● VBW 3	ectrum 2	× Specti	um 3 \star	×		M1[1]	o 1Pk Max -57.75 dB
MultiView • Ref Level 0.00 Inp: ExtMix E I Frequency S - -10 d8m - -20 d8m - -30 d8m - -40 d8m -	dBm SWT 12 weep H1 -13.000 dB	• RBW 1 20 ms • VBW 3	ectrum 2 MHz Mode Au	× Specti	um 3 ×	×			e 1Pk Maa -57.75 dB 77.757 0 Gł
MultiView Ref Level 0.00 Inp: ExtMix E I Frequency S -10 d8m	o dBm SWT 12 weep	• RBW 1 20 ms • VBW 3	ectrum 2	× Specti	um 3 \star	×		M1[1]	o 1Pk Max -57.75 dB
MultiView • Ref Level 0.00 Inp: ExtMix E I Frequency S - -10 d8m - -20 d8m - -30 d8m - -40 d8m -	dBm SWT 12 weep H1 -13.000 dB	• RBW 1 20 ms • VBW 3	ectrum 2 MHz Mode Au	× Specti	um 3 ×	×			e 1Pk Maa -57.75 dB 77.757 0 Gł
MultiView Ref Level 0.00 Inp: ExtMix E I Frequency S -10 dBm	dBm SWT 12 weep H1 -13.000 dB	• RBW 1 20 ms • VBW 3	ectrum 2 MHz Mode Au	× Specti	um 3 ×	×			e 1Pk Maa -57.75 dB 77.757 0 Gł
MultiView • Ref Level 0.00 Inp: ExtMix E I Frequency S - -10 d8m - -20 d8m - -30 d8m - -40 d8m -	dBm SWT 12 weep H1 -13.000 dB	• RBW 1 20 ms • VBW 3	ectrum 2 MHz Mode Au	× Specti	um 3 ×	×			e 1Pk Maa -57.75 dB 77.757 0 Gł
MultiView ■ Ref Level 0.00 Inp: ExtMix E I Frequency S - -10 dBm - -20 dBm - -30 dBm - -40 dBm - -50 dBm -	dBm SWT 12 weep H1 -13.000 dB	• RBW 1 20 ms • VBW 3	ectrum 2 MHz Mode Au	× Specti	um 3 ×	×			60.0 GF




Ref Level -4.80		RBW 1	1*1012						
	SWT 8	Oms 🗢 VBW 3	MHz Mode Au	to Sweep					
Inp: ExtMix U 1 Frequency Sv	veep								o1Pk Max
								M1[1]	-61.89 dBr
-10 dBm									53.936 0 GH
	H1 -13.000 dB	m							
-20 dBm									
-30 dBm									
30 ubiii									
-40 dBm									
-50 dBm									
-60 dBm									
monorwaterally	d model to many physical states	Munhahaddaa	winder the Werrenthour	www.supersonare	whankann	- Andrew watches	Mad Horadow when a resource	mannamm	he be and
-70 dBm									
-80 dBm									
	Spectrum	× Sp	1001 pt	× Specti		2.0 GHz/			60.0 GH
40.0 GHz MultiView Ref Level 0.00	dBm	• RBW 1	ectrum 2	🔆 🗙 Specti		_			60.0 GH
MultiView Ref Level 0.00	dBm	• RBW 1	ectrum 2	🔆 🗙 Specti		_	<u>.</u>		60.0 GH
MultiView Ref Level 0.00 Inp: ExtMix E	dBm SWT 12	• RBW 1	ectrum 2	🔆 🗙 Specti		_			o 1Pk. Max
MultiView Ref Level 0.00 Inp: ExtMix E	dBm SWT 12	• RBW 1	ectrum 2	🔆 🗙 Specti		_		M1[1]	• 1Pk Max -57.51 dBi
MultiView =	dBm SWT 12	• RBW 1	ectrum 2	🔆 🗙 Specti		_		M1[1]	o 1Pk Max -57.51 dB
MultiView Ref Level 0.00 Inp: ExtMix E	dBm SWT 12	• RBW 1	ectrum 2	🔆 🗙 Specti		_		M1[1]	o 1Pk Max -57.51 dB
MultiView Ref Level 0.00 Inp: ExtMix E I Frequency Sv	dBm SWT 12	● RBW 1 0 ms ● VBW 3	ectrum 2	🔆 🗙 Specti		_		M1[1]	o 1Pk Max -57.51 dB
MultiView Ref Level 0.00 Inp: ExtMix E I Frequency Sy -10 dBm	dBm SWT 12 veep	● RBW 1 0 ms ● VBW 3	ectrum 2	🔆 🗙 Specti		_		M1[1]	o 1Pk Max -57.51 dB
MultiView Ref Level 0.00 Inp: ExtMix E I Frequency Sv	dBm SWT 12 veep	● RBW 1 0 ms ● VBW 3	ectrum 2	🔆 🗙 Specti		_		M1[1]	• 1Pk Max -57.51 dBi
MultiView Ref Level 0.00 Inp: ExtMix E I Frequency Sy -10 dBm	dBm SWT 12 veep	● RBW 1 0 ms ● VBW 3	ectrum 2	🔆 🗙 Specti		_		M1[1]	• 1Pk Max -57.51 dBi
MultiView Ref Level 0.00 Inp: ExtMix E I Frequency Sv -10 dBm	dBm SWT 12 veep	● RBW 1 0 ms ● VBW 3	ectrum 2	🔆 🗙 Specti		_		M1[1]	0.0 GH
MultiView Ref Level 0.00 Inp: ExtMix E I Frequency Sy -10 dBm	dBm SWT 12 veep	● RBW 1 0 ms ● VBW 3	ectrum 2	🔆 🗙 Specti		_		M1[1]	• 1Pk Max -57.51 dBi
MultiView Ref Level 0.00 Inp: ExtMix E I Frequency Sv -10 dBm	dBm SWT 12 veep	● RBW 1 0 ms ● VBW 3	ectrum 2	🔆 🗙 Specti		_		M1[1]	• 1Pk Max -57.51 dBi
MultiView Ref Level 0.00 Inp: ExtMix E I Frequency SV -10 dBm -20 dBm	dBm SWT 12 veep	● RBW 1 0 ms ● VBW 3	ectrum 2	🔆 🗙 Specti		_		M1[1]	• 1Pk Max -57.51 dBi
MultiView Ref Level 0.00 Inp: ExtMix E I Frequency Sv -10 dBm	dBm SWT 12 veep	● RBW 1 0 ms ● VBW 3	ectrum 2	🔆 🗙 Specti		_		M1[1]	• 1Pk Max -57.51 dBi
MultiView Ref Level 0.00 Inp: ExtMix E I Frequency SV -10 dBm -20 dBm	dBm SWT 12 veep	● RBW 1 0 ms ● VBW 3	ectrum 2	🔆 🗙 Specti		_		M1[1]	• 1Pk Max -57.51 dBi
MultiView Ref Level 0.00 Inp: ExtMix E I Frequency SV -10 dBm -20 dBm	dBm SWT 12 veep	● RBW 1 0 ms ● VBW 3	ectrum 2	🔆 🗙 Specti		_		M1[1]	• 1Pk Max -57.51 dBi
MultiView Image: Comparison of the second seco	dBm SWT 12 veep	● RBW 1 0 ms ● VBW 3	ectrum 2	🔆 🗙 Specti	um 3 🔸	_		M1[1]	• 1Pk Max -57.51 dBi
MultiView Image: Control of the second	dBm SWT 12 veep H1 -13.000 dB	• RBW 1 0 ms • VBW 3	ectrum 2	X Spectr		×			• 1Pk Max -57.51 dBi 76.2290 GH
MultiView Image: Control of the second	dBm SWT 12 veep	• RBW 1 0 ms • VBW 3	ectrum 2	🔆 🗙 Specti	um 3 🔸	_		M1[1]	• 1Pk Max -57.51 dBi
MultiView Image: Comparison of the second seco	dBm SWT 12 veep H1 -13.000 dB	• RBW 1 0 ms • VBW 3	ectrum 2	X Spectr	um 3 🔸	×			0 1Pk Max -57.51 dB 76.2290 Gł
MultiView ■ Ref Level 0.00 Inp: ExtMix E I Frequency SV - -10 dBm - -20 dBm - -30 dBm - -50 dBm - -50 dBm -	dBm SWT 12 veep H1 -13.000 dB	• RBW 1 0 ms • VBW 3	ectrum 2	X Spectr	um 3 🔸	×			• 1Pk Max -57.51 dBi 76.2290 GH
MultiView Image: Control of the second	dBm SWT 12 veep H1 -13.000 dB	• RBW 1 0 ms • VBW 3	ectrum 2	X Spectr	um 3 🔸	×			• 1Pk Max -57.51 dBi 76.2290 GH
MultiView Image: Ref Level 0.00 Inp: ExtMix E Image: Ima	dBm SWT 12 veep H1 -13.000 dB	• RBW 1 0 ms • VBW 3	ectrum 2	X Spectr	um 3 🔸	×			• 1Pk Max -57.51 dBi 76.2290 GH

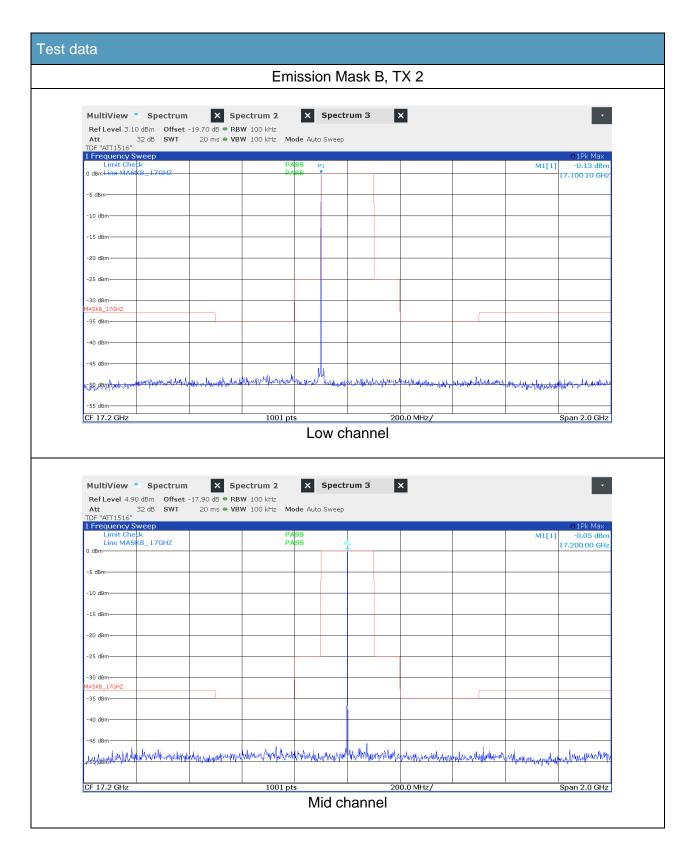

MultiView	Spectrum	× Sp	ectrum 2	🔆 🗙 Spectr	um 3 🛛 🔆	×			•
Ref Level 0.00	dBm				-				
	SWT 12	0 ms 👄 VBW 3	MHz Mode A	uto Sweep					
Inp: ExtMix E									o 1Pk Max
1 Frequency Sw	reep							M1[1]	-58.34 dBm
								willi	79.166 0 GHz
-10 dBm									
	—H1 -13.000 dB	m							
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
						M1			
doude a la contraction de				and a strend		Y	a haralar a	and the second second	the second second
t60\dBrowerdown	Apple of the second second	m Alan Mar and Barley	an a	and a marker with Administrate	and the second state of th	umman and a children and a second	www.www.www.www.	and a second a second	<u>eresta ana aktata</u> a
-70 dBm									
60.0 GHz			1001 pt			.0 GHz/			90.0 GHz

Nemko


	SWTS			ito oweep					
Inp: ExtMix U		50 mili 0 VDW 5	MHz Mode Au						
1 Frequency S	Sweep						1	M1[1]	• 1Pk Max -62.25 dB
-10 dBm								, milling	46.144 0 G
	H1 -13.000 de	m							
-20 dBm									
-30 dBm									
-40 dBm									
-40 UBM									
-50 dBm									
-60 dBm			м1						
show was and	whichurrow	the whole moust and	human	and an and the second	manutanter	monahan	moundation	popular march	and month much
-70 dBm									
-80 dBm									
40.0 GHz			1001 pt	6		2.0 GHz/			60.0 GF
MultiView	 Spectrum 	× Sp	ectrum 2	🔆 🗙 Spectr	um 3 🔆	×			•
MultiView Ref Level 0.0	0 dBm	• RBW 1	MHz	_	um 3 🔸	×			
Ref Level 0.0 Inp: ExtMix E	0 dBm SWT 12	• RBW 1		_	um 3 🔸	×			
Ref Level 0.0	0 dBm SWT 12	• RBW 1	MHz	_	um 3 🔺 1	×			
Ref Level 0.0 Inp: ExtMix E	0 dBm SWT 12	• RBW 1	MHz	_	um 3 ¥	×		M1[1]	-58.00 dB
Ref Level 0.0 Inp: ExtMix E	0 dBm SWT 12	• RBW 1	MHz	_	um 3 🔺	×		M1[1]	-58.00 dB
Ref Level 0.0 Inp: ExtMix E	0 dBm SWT 12 Sweep	• RBW 1 20 ms • VBW 3	MHz	_	um 3 🔸	×		M1[1]	-58.00 dB
Ref Level 0.0 Inp: ExtMix E 1 Frequency S	0 dBm SWT 12	• RBW 1 20 ms • VBW 3	MHz	_	um 3 🔸	×		M1[1]	-58.00 dB
Ref Level 0.0 Inp: ExtMix E 1 Frequency S -10 dBm-	0 dBm SWT 12 Sweep	• RBW 1 20 ms • VBW 3	MHz	_	um 3 \star	×		M1[1]	-58.00 dB
Ref Level 0.0 Inp: ExtMix E 1 Frequency S	0 dBm SWT 12 Sweep	• RBW 1 20 ms • VBW 3	MHz	_	um 3 🙁	×		M1[1]	-58.00 dB
Ref Level 0.0 Inp: ExtMix E 1 Frequency S -10 dBm-	0 dBm SWT 12 Sweep	• RBW 1 20 ms • VBW 3	MHz	_	um 3 \star	×		M1[1]	-58.00 dB
Ref Level 0.0 Inp: ExtMix E 1 Frequency S -10 dBm	0 dBm SWT 12 Sweep	• RBW 1 20 ms • VBW 3	MHz	_	um 3 🗡	×		M1[1]	-58.00 dB
Ref Level 0.0 Inp: ExtMix E 1 Frequency S -10 dBm-	0 dBm SWT 12 Sweep	• RBW 1 20 ms • VBW 3	MHz	_	um 3 🔺	×		M1[1]	-58.00 dB
Ref Level 0.0 Inp: ExtMix E 1 Frequency S -10 dBm	0 dBm SWT 12 Sweep	• RBW 1 20 ms • VBW 3	MHz	_	um 3 🔺	×		M1[1]	-58.00 dB
Ref Level 0.0 Inp: ExtMix E 1 Frequency S -10 dBm	0 dBm SWT 12 Sweep	• RBW 1 20 ms • VBW 3	MHz	_	um 3 \star	×		M1[1]	-58.00 dB
Ref Level 0.0 Inp: ExtMix E 1 Frequency S -10 dBm -20 dBm -30 dBm	0 dBm SWT 12 Sweep	• RBW 1 20 ms • VBW 3	MHz	_	um 3 🗙	×		M1[1]	-58.00 dB
Ref Level 0.0 Inp: ExtMix E 1 Frequency S -10 dBm -20 dBm -30 dBm -40 dBm	0 dBm SWT 12 Sweep	• RBW 1 20 ms • VBW 3	MHz	_	um 3 \star	×		M1[1]	-58.00 dB
Ref Level 0.0 Inp: ExtMix E 1 Frequency S -10 dBm -20 dBm -30 dBm	0 dBm SWT 12 Sweep	• RBW 1 20 ms • VBW 3	MHz	_	um 3 ¥	×		M1[1]	-58.00 dB
Ref Level 0.0 Inp: ExtMix E 1 Frequency S -10 dBm -20 dBm -30 dBm -40 dBm	0 dBm SWT 12 Sweep	• RBW 1 20 ms • VBW 3	MHz	_		×		M1[1]	-58.00 dB
Ref Level 0.0 Inp: ExtMix E 1 Frequency S -10 dBm -20 dBm -30 dBm -40 dBm	0 dBm SWT 12 Sweep	• RBW 1 20 ms • VBW 3	MHz						-58.00 dB
Ref Level 0.0 Inp: ExtMix E 1 Frequency S -10 dBm -20 dBm -30 dBm -40 dBm	0 dBm SWT 12 Sweep	• RBW 1 20 ms • VBW 3	MHz	_				M1[1]	-58.00 dB
Ref Level 0.0 Inp: ExtMix E 1 Frequency S -10 dBm -20 dBm -30 dBm -40 dBm	0 dBm SWT 12 Sweep	• RBW 1 20 ms • VBW 3	MHz						-58.00 dB
Ref Level 0.0 Inp: ExtMix E 1 Frequency S -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	0 dBm SWT 12 Sweep	• RBW 1 20 ms • VBW 3	MHz						-58.00 dB
Ref Level 0.0 Inp: ExtMix E 1 Frequency S -10 dBm -20 dBm -30 dBm -40 dBm	0 dBm SWT 12 Sweep	• RBW 1 20 ms • VBW 3	MHz						• 1Pk Max -58.00 dBi 75.480 0 GF
Ref Level 0.0 Inp: ExtMix E 1 Frequency S -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	0 dBm SWT 12 Sweep	• RBW 1 20 ms • VBW 3	MHz						-58.00 dB

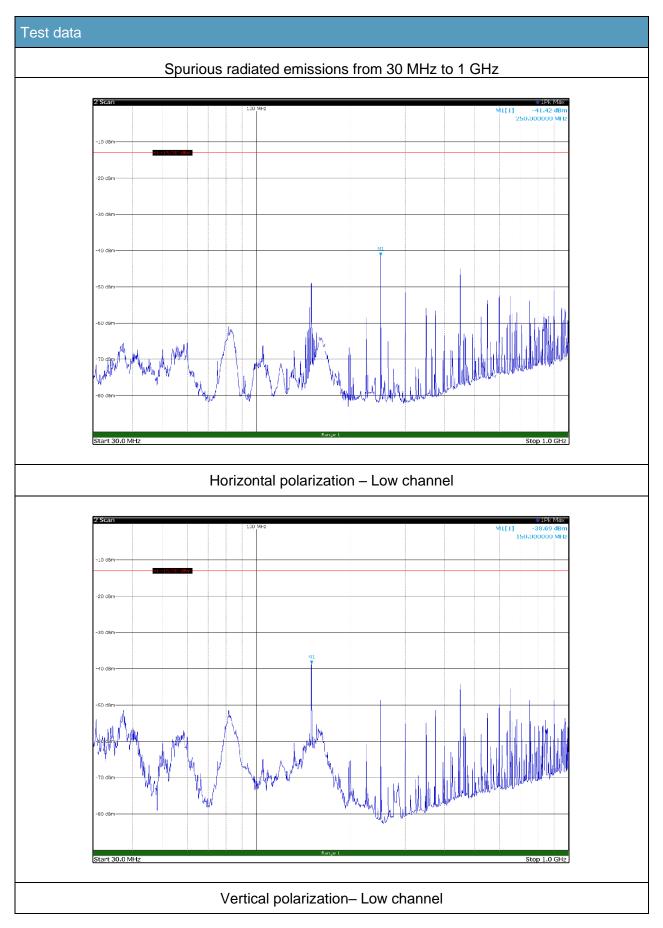
MultiView	Spectrum	× Sp	ectrum 2	🗧 🗙 Specti	'um 3 🛛 🔆 🗄	×			-
Ref Level 0.00	dBm	 RBW 1 			-	_			
	SWT 12	0 ms 👄 VBW 3	MHz Mode Au	uto Sweep					
Inp: ExtMix E									
1 Frequency Sv	veep							M1[1]	• 1Pk Max -58.41 dBm
								MILII	62.473 0 GHz
-10 dBm									
	H1 -13.000 dBn	n							
-20 dBm									
-30 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
M1									
168 dBm mouthing	Mon John Martin	- Antoning on the class	How who budge	to another when the second	Wither when to work on a	may work the	Anter marker	work that the work was	to at a state to a state
-70 dBm							1		

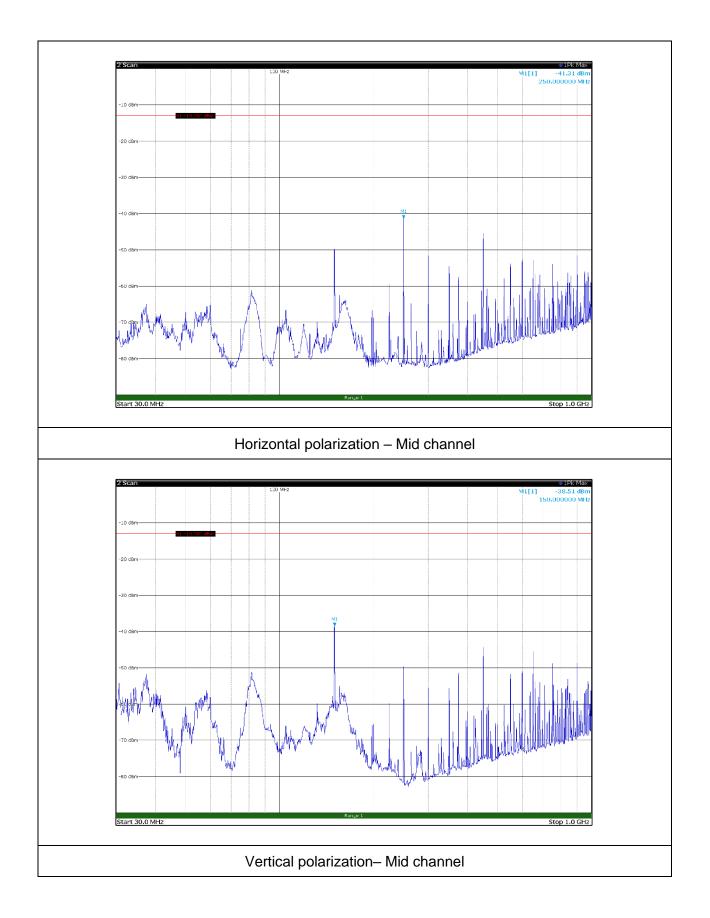
-0.88 MI[1] -62.55 -0.88 MI[1] -62.55 -0.88 -1.0 -1.0 -0.88 -1.0 -1.0 -0.88 -1.0 -1.0 -0.88 -1.0 -1.0 -0.88 -1.0 -1.0 -0.88 -1.0 -1.0 -0.88 -1.0 -1.0 -10.88 -1.0 -1.0 -10.88 -1.0 -1.0 -10.88 -1.0 -1.0 -10.88 -1.0 -1.0 -10.88 -1.0 -1.0 -10.88 -1.0 -1.0 -10.88 -1.0 -1.0 -10.88 -1.0 -1.0 -10.001 pts 2.0 GHz/ 60.0 MultWiew Spectrum Spectrum Spectrum SWI 120 ms WW 118tr SWI 120 ms VW 318tr Mode Auto Sweep If Cequency Sweep -1.0 -1.0 -10.88 -1.1 -1.0 -1.0 -10.88 -1.1 -1.0 -1.0		SWT 0								
1 Frequency Sweep 0 HK -20 dm M1[1] 62.52 -20 dm H1 · 15.00 do 1 1 62.52 -20 dm H1 · 15.00 do 1 1 1 62.52 -30 dm 1 1 1 1 1 1 -30 dm 1 1 1 1 1 1 1 -30 dm 1		3010	0 ms 🖷 VBW 3	MHz Mode Au	to Sweep					
-10 dtm 11 - 13 000 dm 14 - 13 000 d		Sweep			1	1	I	I	1	o1Pk Max
-20 dtm -13.00 db									M1[1]	-62.59 dBn
-00 dm Image: Spectrum Image: S	-10 dBm-	H1 -12 000 dB								45,604 0 GH
-30 dbm		11 13.000 05								
-30 dm + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	-20 dBm									
-50 dm	-30 dBm									
-50 dm										
-50 dm										
	-40 dBm									
	-50 dBm									
-70 dbm	30 april									
-70 dbm										
-70 dbm	-60 dBm		M1-							
-70 dBm	whentermenter	mounderstand	magginember	who work anothing	manufarment	almanderade	mannan	hendprompert	adar planted work had	mamman
-00 dBm										
40.0 GHz 1001 pts 2.0 GHz/ 60.0 MultiView * Spectrum X Spectrum 2 * X Spectrum 3 * X Ref Level 0.00 dBm 0.00 Hz SWT 120 ms * VBW 3 MHz Node Auto Sweep Intra SWT 120 ms * VBW 3 MHz Intra SWT 120 ms * VBW 3 MIZ	-70 dBm	-								
40.0 GHz 1001 pts 2.0 GHz/ 60.0 MultiView * Spectrum X Spectrum 2 * X Spectrum 3 * X Ref Level 0.00 dBm 0.00 Hz SWT 120 ms * VBW 3 MHz Node Auto Sweep Intra SWT 120 ms * VBW 3 MHz Intra SWT 120 ms * VBW 3 MIZ										
40.0 GHz 1001 pts 2.0 GHz/ 60.0 MultiView * Spectrum X Spectrum 2 * X Spectrum 3 * X Ref Level 0.00 dBm 0.00 Hz SWT 120 ms * VBW 3 MHz Node Auto Sweep Intra SWT 120 ms * VBW 3 MHz Intra SWT 120 ms * VBW 3 MIZ	00 d0									
MultiView Spectrum	-80 UBM									
MultiView Spectrum	40.0 GHz			1001 pt	C					60.0 GHz
OIPK IFrequency Sweep OIPK Ifrequency Sweep OIPK -10 dbm M1[1] -57.65 60.9441 -10 dbm H1 -13.000 dbm Implementation Implementation Implementation Implementation -20 dbm H1 -13.000 dbm Implementation	MultiView	 Spectrum 	× Sp	ectrum 2	× Specti	-um 3 🔺	×			
1 Frequency Sweep 0 1Pk)0 dBm	• RBW 1	. MHz	_	rum 3 🔸	×			•
-10 dBm +11 -13.000 dBm	Ref Level 0.0)0 dBm	• RBW 1	. MHz	_	-um 3 🔺	×			•
-10 dBm Image: state	Ref Level 0.0	00 dBm SWT 12	• RBW 1	. MHz	_	um 3 🔺 1	×			• 1Pk Max
H1 -13.000 dBm Image: Constraint of the second	Ref Level 0.0	00 dBm SWT 12	• RBW 1	. MHz	_	um 3 🔺	×		M1[1]	-57.62 dBn
-20 dBm	Ref Level 0.0	00 dBm SWT 12	• RBW 1	. MHz	_	rum 3 🔺	×		M1[1]	
-30 dBm	Ref Level 0.0 Inp: ExtMix E 1 Frequency 9	00 dBm SWT 12 Sweep	● RBW 1 20 ms ● VBW 3	. MHz	_	rum 3 🖌	×		M1[1]	-57.62 dBn
-30 dBm	Ref Level 0.0 Inp: ExtMix E 1 Frequency 9	00 dBm SWT 12 Sweep	● RBW 1 20 ms ● VBW 3	. MHz	_	rum 3 🔸	×		M1[1]	-57.62 dBn
-40 dBm	Ref Level 0.0 Inp: ExtMix E 1 Frequency S -10 dBm-	00 dBm SWT 12 Sweep	● RBW 1 20 ms ● VBW 3	. MHz	_	'um 3 🔸	×		M1[1]	-57.62 dBn
-40 dBm	Ref Level 0.0 Inp: ExtMix E 1 Frequency S -10 dBm-	00 dBm SWT 12 Sweep	● RBW 1 20 ms ● VBW 3	. MHz	_	rum 3 🔸	×		M1[1]	-57.62 dBn
-40 dBm	Ref Level 0.0 Inp: ExtMix E 1 Frequency S -10 dBm-	00 dBm SWT 12 Sweep	● RBW 1 20 ms ● VBW 3	. MHz	_	um 3 🔸	×		M1[1]	-57.62 dBn
-50 dbm	Ref Level 0.0 Inp: ExtMix E 1 Frequency S -10 dBm	00 dBm SWT 12 Sweep	● RBW 1 20 ms ● VBW 3	. MHz	_	um 3 🔸	×		M1[1]	-57.62 dBn
-50 dBm	Ref Level 0.0 Inp: ExtMix E Trequency S -10 dBm	00 dBm SWT 12 Sweep	● RBW 1 20 ms ● VBW 3	. MHz	_	um 3 🔸	×		M1[1]	-57.62 dBn
N3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ref Level 0.0 Inp: ExtMix E 1 Frequency S -10 dBm	00 dBm SWT 12 Sweep	● RBW 1 20 ms ● VBW 3	. MHz	_	'um 3 ¥∎	×		M1[1]	-57.62 dBn
N3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ref Level 0.0 Inp: ExtMix E 1 Frequency S -10 dBm- -20 dBm- -30 dBm-	00 dBm SWT 12 Sweep	● RBW 1 20 ms ● VBW 3	. MHz	_	'um 3 \star	×		M1[1]	-57.62 dBn
N3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ref Level 0.0 Inp: ExtMix E 1 Frequency S -10 dBm- -20 dBm- -30 dBm-	00 dBm SWT 12 Sweep	● RBW 1 20 ms ● VBW 3	. MHz	_	'um 3 🔸	×		M1[1]	-57.62 dBn
	Ref Level 0.0 Inp: ExtMix E I Frequency S -10 dBm- -20 dBm- -30 dBm- -40 dBm-	00 dBm SWT 12 Sweep	● RBW 1 20 ms ● VBW 3	. MHz	_	um 3 🔸	×		M1[1]	-57.62 dBn
and send that the member of a marine and have a set with mether the rest of the transmission of the second second set and the second	Ref Level 0.0 Inp: ExtMix E I Frequency S -10 dBm- -20 dBm- -30 dBm- -40 dBm-	00 dBm SWT 12 Sweep	● RBW 1 20 ms ● VBW 3	. MHz	_	um 3 *	×		M1[1]	-57.62 dBn
	Ref Level 0.0 Inp: ExtMix E 1 Frequency S -10 dBm- -20 dBm- -30 dBm- -40 dBm-	00 dBm SWT 12 Sweep	● RBW 1 20 ms ● VBW 3	. MHz	_	um 3 *	×		M1[1]	-57.62 dBn
	Ref Level 0.0 Inp: ExtMix E 1 Frequency S -10 dBm -20 dBm -30 dBm -40 dBm	00 dBm SWT 12 Sweep H1 -13.000 dB	RBW 1 20 ms VBW 3	MHz Mode Au	ito Sweep					-57.62 dBn 60.944 0 GH
	Ref Level 0.0 Inp: ExtMix E 1 Frequency S -10 dBm -20 dBm -30 dBm -40 dBm	0 dBm SWT 12 Sweep	RBW 1 20 ms VBW 3	MHz Mode Au	ito Sweep					-57.62 dBn 60.944 0 GH
-70 dBm	Ref Level 0.0 Inp: ExtMix E 1 Frequency S -10 dBm -20 dBm -30 dBm -40 dBm	0 dBm SWT 12 Sweep	RBW 1 20 ms VBW 3	MHz Mode Au	ito Sweep					-57.62 dBn 60.944 0 GH
	Ref Level 0.0 Inp: ExtMix E 1 Frequency S -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	0 dBm SWT 12 Sweep	RBW 1 20 ms VBW 3	MHz Mode Au	ito Sweep					-57.62 dBn 60.944 0 GH
	Ref Level 0.0 Inp: ExtMix E 1 Frequency S -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	0 dBm SWT 12 Sweep	RBW 1 20 ms VBW 3	MHz Mode Au	ito Sweep					-57.62 dBn 60.944 0 GH



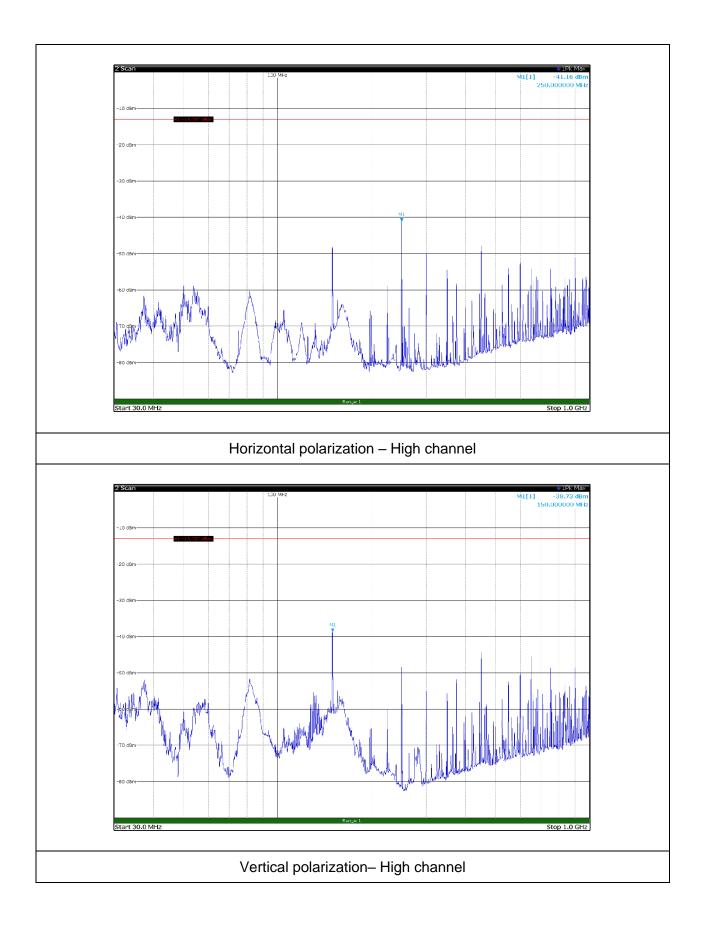
		Emiss	ion Ma	ask B, T	X 1			
MultiView Spectrum Ref Level 2.00 dBm Offset Att 32 dB SWT	-20.80 dB • RBW 1	100 kHz		ım 3	×			•
TDF "ATT1516"	20 IIIS - VBW	TOU KHZ MODE A	uto sweep					
1 Frequency Sweep		PASS	MI				M1[1]	•1Pk Max -0.01 dBm
0 dBm <mark>Limit Check</mark> Line MASKB_17GHZ		PASS						17.100 10 GHz
-5 dBm			_					
-10 dBm								
-15 dBm								
-20 dBm								
-25 dBm								
-30 dBm								
MASKB_17GHZ	+							
-35 dBm								
-40 dBm								
-45 dBm								
			M					
-SO dBm	Marked Market Market	rannondarianta	and Manperson	whetherstaten	Normadanterproperty	mountput	Mahanymana	when my when
-55 dBm								
CF 17.2 GHz		1001 pts		20	0.0 MHz/			Span 2.0 GHz
				annel				
MultiView Spectrum Ref Level 2.50 dBm Offset	-20.30 dB 🗢 RBW 1	trum 2 😽 🗙 100 kHz	Spectro		×			
Ref Level 2.50 dBm Offset Att 32 dB SWT TDF "ATT1516"	-20.30 dB 🗢 RBW 1	trum 2 🔸 🗙	Spectro		×			•
Ref Level 2.50 dBm Offset Att 32 dB SWT TDF "ATT1516" 1 Frequency Sweep Limit Check 1	-20.30 dB 🗢 RBW 1	trum 2 😽 🗙 100 kHz 100 kHz Mode A PASS	Spectro		×		M1[1]	o 1Pk Max -0.03 dBm
Ref Level 2.50 dBm Offset Att 32 dB SWT TDF "ATT1516" 1 Frequency Sweep	-20.30 dB 🗢 RBW 1	trum 2 😽 🗙 100 kHz 100 kHz Mode A	Spectro uto Sweep		×		M1[1]	
Ref Level 2.50 dBm Offset Att 32 dB SWT TDF "ATT1516" 1 Frequency Sweep Limit Check 1	-20.30 dB 🗢 RBW 1	trum 2 😽 🗙 100 kHz 100 kHz Mode A PASS	Spectro uto Sweep		×		M1[1]	-0.03 dBm
Ref Level 2.50 dBm Offset Att 32 dB SWT TDF "ATTISI6" I Frequency Sweep Limit Che ⁺ k 0 dBm <u>Line MASKB_17GH2</u>	-20.30 dB 🗢 RBW 1	trum 2 😽 🗙 100 kHz 100 kHz Mode A PASS	Spectro uto Sweep		×		M1[1]	-0.03 dBm
Ref Level 2.50 dBm Offset Att 32 dB SWT TDF "ATTISI6" I Frequency Sweep Limit Che ³ k 0 dBm <u>Line MASKB_170H2</u> -5 dBm	-20.30 dB 🗢 RBW 1	trum 2 😽 🗙 100 kHz 100 kHz Mode A PASS	Spectro uto Sweep		×		M1[1]	-0.03 dBm
Ref Level 2.50 dBm Offset Att 32 dB SWT TDF "ATT1516" 1 Frequency Sweep Limit Chesk 0 dBm Line MASKB_17GHZ -5 dBm	-20.30 dB 🗢 RBW 1	trum 2 😽 🗙 100 kHz 100 kHz Mode A PASS	Spectro uto Sweep		×		M1[1]	-0.03 dBm
Ref Level 2.50 dBm Offset Att 32 dB SWT TDF "ATTISI6" I Frequency Sweep Limit Che ⁺ k 0 dBm_Line MAS kB_170H2 -5 dBm	-20.30 dB 🗢 RBW 1	trum 2 😽 🗙 100 kHz 100 kHz Mode A PASS	Spectro uto Sweep		×		M1[1]	-0.03 dBm
Ref Level 2.50 dBm Offset Att 32 dB SWT TDF "ATTISI6" I I I Frequency Sweep Limit Che k 0 0 dBm the MASKB_170H2 - - -5 dBm - - -10 dBm - - -20 dBm - -	-20.30 dB 🗢 RBW 1	trum 2 😽 🗙 100 kHz 100 kHz Mode A PASS	Spectro uto Sweep		×		M1[1]	-0.03 dBm
Ref Level 2.50 dBm Offset Att 32 dB SWT TDF "ATT1516" I Frequency Sweep Limit Check 0 dBm Line MASKB_170H2 -5 dBm -10 dBm	-20.30 dB 🗢 RBW 1	trum 2 😽 🗙 100 kHz 100 kHz Mode A PASS	Spectro uto Sweep		×		M1[1]	-0.03 dBm
Ref Level 2.50 dBm Offset 32 dB Att 32 dB SWT TDF "ATT1516" Image: Comparison of the set o	-20.30 dB 🗢 RBW 1	trum 2 😽 🗙 100 kHz 100 kHz Mode A PASS	Spectro uto Sweep		×		M1[1]	-0.03 dBm
Ref Level 2.50 dBm Offset Att 32 dB SWT TDF "ATT1516" Imit Check Imit Check 0 dBm time MASKB_170H2 Imit Check Imit Check -5 dBm Imit Check Imit Check -20 dBm Imit Check Imit Check	-20.30 dB 🗢 RBW 1	trum 2 😽 🗙 100 kHz 100 kHz Mode A PASS	Spectro uto Sweep		×		M1[1]	-0.03 dBm
Ref Level 2.50 dBm Offset 32 dB SWT TDF "ATT1516" ITFrequency Sweep Itrint Che-k Itrint Che-k 0 dBm_tine MASKB_17GH2 -5 dBm -5 dBm -5 dBm -10 dBm -10 dBm -5 dBm -5 dBm -20 dBm -5 dBm -730 dBm -730 dBm	-20.30 dB 🗢 RBW 1	trum 2 😽 🗙 100 kHz 100 kHz Mode A PASS	Spectro uto Sweep		×		M1[1]	-0.03 dBm
Ref Level 2.50 dBm Offset Att 32 dB SWT TDF "ATTISI6" IFrequency Sweep Limit Che k 0 dBm_time MAS KB_170H2 - - -5 dBm	-20.30 dB 🗢 RBW 1	trum 2 😽 🗙 100 kHz 100 kHz Mode A PASS	Spectro uto Sweep		×		M1[1]	-0.03 dBm
Ref Level 2.50 dBm Offset 32 dB TDF "ATT1516" SWT TDF "ATT1516" Imit Che-k 0 dBm_tine MASKB_17GH2 - -5 dBm - -10 dBm - -20 dBm - -30 dBm - -30 dBm -	-20.30 dB 🗢 RBW 1	trum 2 😽 🗙 100 kHz 100 kHz Mode A PASS	Spectro uto Sweep		×		M1[1]	-0.03 dBm
Ref Level 2.50 dBm Offset 32 dB SWT TDF "ATT1516" IFrequency Sweep Imit Che k 0 Limit Che k 0 dBm Line MASKB_170H2 - -5 dBm - - - -10 dBm - - - -20 dBm - - - -30 dBm - - - -30 dBm - - - -40 dBm - - -	-20.30 dB • RBW 1 20 ms • VBW 1	trum 2 * × 100 kHz Mode A PASS PASS	Spectru uto Sweep	ım 3				-0.03 dBm 17.200 00 GHz
Ref Level 2.50 dBm Offset 32 dB SWT TDF "ATT1516" IFrequency Sweep Imit Che k 0 Limit Che k 0 dBm Line MASKB_17GH2 - -5 dBm - - - -10 dBm - - - -20 dBm - - - -30 dBm - - - -30 dBm - - - -40 dBm - - -	-20.30 dB • RBW 1 20 ms • VBW 1	trum 2 😽 🗙 100 kHz 100 kHz Mode A PASS	Spectru uto Sweep	ım 3				-0.03 dBm 17.200 00 GHz
Ref Level 2.50 dBm Offset 32 dB SWT TDF "ATT1516" IFrequency Sweep Imit Che-k 0 Limit Che-k 0 Bm_Line MASKB_17GH2 - -5 dBm - - - -10 dBm - - - -20 dBm - - - -30 dBm - - - -30 dBm - - - -40 dBm - - -	-20.30 dB • RBW 1 20 ms • VBW 1	trum 2 * × 100 kHz Mode A PASS PASS	Spectru uto Sweep					-0.03 dBm 17.200 00 GHz

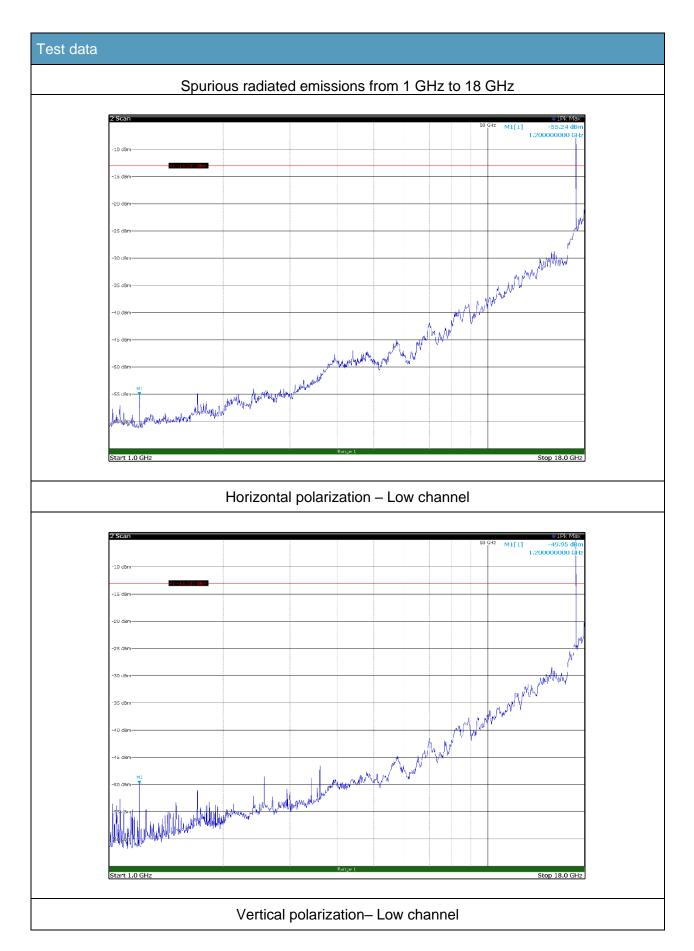
Ref Level 2.5 Att TDF "ATT1516"		X Sp	ectrum 2	×		rum 3	>	~			
	50 dBm Offset	-20.30 dB 🖷 RB'	₩ 100 kHz					-			_
	32 dB SWT	20 ms 🖷 VB	🛿 100 kHz 🛛 M	ode Aut	to Sweep						
1 Frequency	Sweep										●1Pk Max
Limit Che 0 dBm	eck			ASS ASS		M	1			M1[1]	-0.16 dBm
Ellie MA	17012										17.299 90 GH
-5 dBm-					-						
10.10											
-10 dBm											
-15 dBm											
-20 dBm											
-25 dBm											
-30 dBm											
MASKB_17GHZ											
Jo ubili											
-40 dBm											
-45 dBm											
-50 dBm	I allowed	L	A Maria	witch &	to a to a	h, h		. at nu			
wywythy Marth	www.mma	MAMMAN ANALAN	ell, elle suevende eller el d	pannationa	ahallaha	n www.	WAAN W	www.www.www.ww	and the state of t	www.chappen.ch	May will be a fine over
-55 dBm											
00 00.00											
CF 17.2 GHz	Spectrum	× so	1001 p	Hi	igh c		nel	0.0 MHz/			Span 2.0 GHz
CF 17.2 GHz MultiView	Spectrum 00 dBm Offset	_	ectrum 2		igh c spect		nel	0.0 MHz/		I	Span 2.0 GHz
CF 17.2 GHz MultiView Ref Level 2.0 Att	00 dBm Offset 32 dB SWT	-20.80 dB 🗢 RB'	ectrum 2	Hi	Spect		nel				Span 2.0 GHz
CF 17.2 GHz MultiView Ref Level 2.0 Att TDF "ATT 1516"	00 dBm Offset 32 dB SWT	-20.80 dB 🗢 RB'	ectrum 2 W 100 kHz W 100 kHz M	Hi × ode Aut	Spect		nel				• 1Pk Max
CF 17.2 GHz MultiView Ref Level 2.0 Att TDF "ATT 1516"	00 dBm Offset 32 dB SWT	-20.80 dB 🗢 RB'	ectrum 2 W 100 kHz W 100 kHz M	Hi × ode Aut	Spect		nel			M2[1]	• 1Pk Max -43.56 dBm
MultiView Ref Level 2.0 Att TDF "ATT 1516" I Frequency J 0 dBm Limit Cho Line MAS	00 dBm Offset 32 dB SWT	-20.80 dB 🗢 RB'	ectrum 2 W 100 kHz W 100 kHz M	Hi × ode Aut	Spect		nel			M2[1] M1[1]	• 1Pk Max -43.56 dBn 17.078 10 GHz
CF 17.2 GHz MultiView Ref Level 2.0 Att TDF "ATT 1516"	00 dBm Offset 32 dB SWT	-20.80 dB 🗢 RB'	ectrum 2 W 100 kHz W 100 kHz M	Hi × ode Aut	Spect		nel				• 1Pk Max -43.56 dBn 17.078 10 GHz
MultiView Ref Level 2.0 Att TDF "ATT 1516" I Frequency 1 0 dBm Limit Chu Line MAS	00 dBm Offset 32 dB SWT	-20.80 dB 🗢 RB'	ectrum 2 W 100 kHz W 100 kHz M	Hi × ode Aut	Spect		nel				o 1Pk Max -43.56 dBn 17.078 10 GH; -0.02 dBn
MultiView Ref Level 2.0 Att TDF "ATT 1516" I Frequency 1 G dBm Limit Chu Line MAS -5 dBm	00 dBm Offset 32 dB SWT	-20.80 dB 🗢 RB'	ectrum 2 W 100 kHz W 100 kHz M	Hi × ode Aut	Spect		nel				o 1Pk Max -43.56 dBn 17.078 10 GH; -0.02 dBn
MultiView Ref Level 2.0 Att TDF "ATT1516" I Frequency S 0 dBmLine MAS -5 dBm-	00 dBm Offset 32 dB SWT	-20.80 dB 🗢 RB'	ectrum 2 W 100 kHz W 100 kHz M	Hi × ode Aut	Spect		nel				o 1Pk Max -43.56 dBn 17.078 10 GH; -0.02 dBn
MultiView Ref Level 2.0 Att TDF "ATT 1516" I Frequency 1 G dBm Limit Chu Line MAS -5 dBm	00 dBm Offset 32 dB SWT	-20.80 dB 🗢 RB'	ectrum 2 W 100 kHz W 100 kHz M	Hi × ode Aut	Spect		nel				o 1Pk Max -43.56 dBn 17.078 10 GH; -0.02 dBn
CF 17.2 GHz MultiView Ref Level 2.0 Att DF "ATT1516" 1 Frequency 1 o dam Limit Cho Line MAS -5 dBm	00 dBm Offset 32 dB SWT	-20.80 dB 🗢 RB'	ectrum 2 W 100 kHz W 100 kHz M	Hi × ode Aut	Spect		nel				o 1Pk Max -43.56 dBn 17.078 10 GH; -0.02 dBn
MultiView Ref Level 2.0 Att TDF "ATT 1516" I Frequency June MAS -5 dBm- -10 dBm- -15 dBm-	00 dBm Offset 32 dB SWT	-20.80 dB 🗢 RB'	ectrum 2 W 100 kHz W 100 kHz M	Hi × ode Aut	Spect		nel				o 1Pk Max -43.56 dBn 17.078 10 GH; -0.02 dBn
MultiView Ref Level 2.0 Att TDF "ATT1516" I Frequency Line MAS -5 dBm -10 dBm -20 dBm -25 dBm	00 dBm Offset 32 dB SWT	-20.80 dB 🗢 RB'	ectrum 2 W 100 kHz W 100 kHz M	Hi × ode Aut	Spect		nel				o 1Pk Max -43.56 dBn 17.078 10 GH; -0.02 dBn
CF 17.2 GHz MultiView Ref Level 2.0 Att TOF "ATT1516" I Frequency 3 0 dBm Limit Che Line MAS -5 dBm -10 dBm -15 dBm -20 dBm -25 dBm -30 dBm	00 dBm Offset 32 dB SWT	-20.80 dB 🗢 RB'	ectrum 2 W 100 kHz W 100 kHz M	Hi × ode Aut	Spect		nel				o 1Pk Max -43.56 dBn 17.078 10 GH; -0.02 dBn
CF 17.2 GHz MultiView Ref Level 2.0 Att TDF "ATT1516" I Frequency 5 0 dBm_Limit Che -10 dBm	00 dBm Offset 32 dB SWT	-20.80 dB 🗢 RB'	ectrum 2 W 100 kHz W 100 kHz M	Hi × ode Aut	Spect		nel				o 1Pk Max -43.56 dBn 17.078 10 GH; -0.02 dBn
CF 17.2 GHz MultiView Ref Level 2.0 Att TDF "ATT1516" I Frequency 1 0 dBm Limit Cho 0 dBm -10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -33 dBm	00 dBm Offset 32 dB SWT	-20.80 dB 🗢 RB'	ectrum 2 W 100 kHz W 100 kHz M	Hi × ode Aut	Spect		nel				o 1Pk Max -43.56 dBn 17.078 10 GH; -0.02 dBn
CF 17.2 GHz MultiView Ref Level 2.0 Att TDF "ATT1516" I Frequency 5 0 dBm Limit Chr -10 dBm -10 dBm -15 dBm -20 dBm -20 dBm -30 dBm -30 dBm	00 dBm Offset 32 dB SWT	-20.80 dB 🗢 RB'	ectrum 2 W 100 kHz W 100 kHz M	Hi × ode Aut	Spect		nel				o 1Pk Max -43.56 dBn 17.078 10 GH; -0.02 dBn
CF 17.2 GHz MultiView Ref Level 2.0 Att TDF "ATT1516" I Frequency 1 0 dBm Limit Cho 0 dBm -10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -33 dBm	00 dBm Offset 32 dB SWT	-20.80 dB 🗢 RB'	ectrum 2 W 100 kHz W 100 kHz M	Hi x adds	Spect		nel				o 1Pk Max -43.56 dBn 17.078 10 GH; -0.02 dBn
CF 17.2 GHz MultiView Ref Level 2.0 Att TDF "ATT1516" I Frequency 0 dbm Linit Cho 0 dbm	00 dBm Offset 32 dB SWT Sweep etk SKB_177GHZ	-20.80 dB • RB 20 ms • VB	ectrum 2 w 100 kHz M 100 kHz M P, P,	Hi ode Aut ASS ASS ASS ASS ASS ASS ASS AS	Spect	rum 3				M1[1]	01Pk Max -43.56 dBm 17.078 10 GH2 -0.02 dBm 17.114 10 GH2
CF 17.2 GHz MultiView Ref Level 2.0 Att TDF "ATT1516" I Frequency 0 dbm Linit Cho 0 dbm	00 dBm Offset 32 dB SWT Sweep etk SKB_177GHZ	-20.80 dB • RB 20 ms • VB	ectrum 2 w 100 kHz M 100 kHz M P, P,	Hi ode Aut ASS ASS ASS ASS ASS ASS ASS AS	Spect	rum 3				M1[1]	01Pk Max -43.56 dBm 17.078 10 GH2 -0.02 dBm 17.114 10 GH2
CF 17.2 GHz MultiView Ref Level 2.0 Att TDF "ATT1516" I Frequency 0 dbm Linit Cho 0 dbm	00 dBm Offset 32 dB SWT	-20.80 dB • RB 20 ms • VB	ectrum 2 w 100 kHz M 100 kHz M P, P,	Hi ode Aut ASS ASS ASS ASS ASS ASS ASS AS	Spect	rum 3					01Pk Max -43.56 dBm 17.078 10 GH2 -0.02 dBm 17.114 10 GH2
ItiView f Level 2.0 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	00 dBm Offset 32 dB SWT	-20.80 dB 🗢 RB'	ectrum 2 W 100 kHz W 100 kHz M	Hi × ode Aut	Spect		nel				● 1Pk Max -43.56 dBr 17.078 10 GH -0.02 dBr

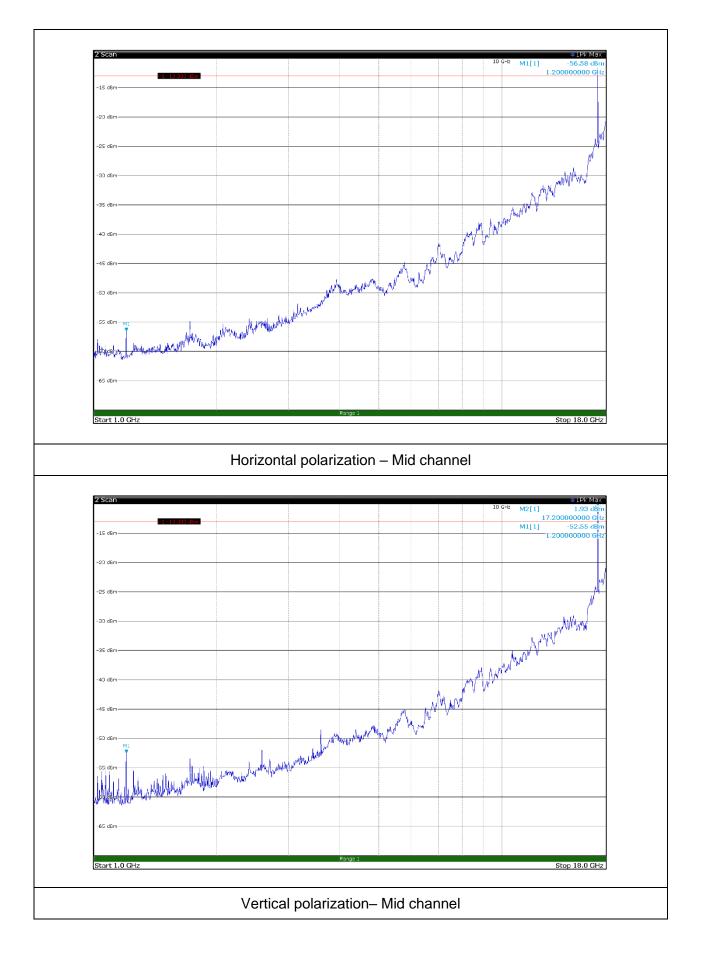


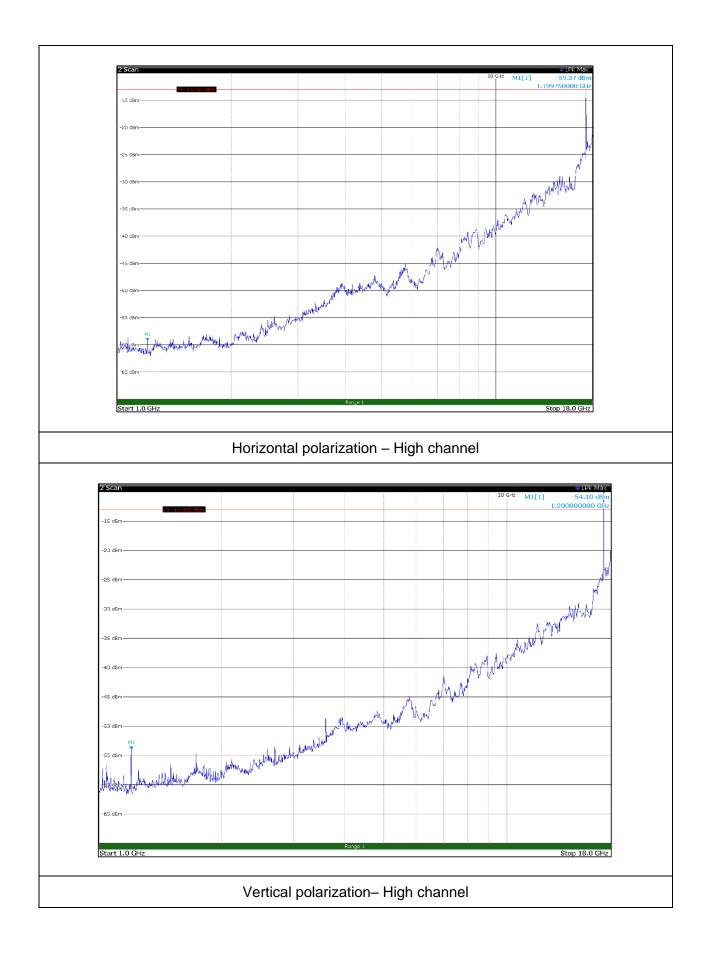


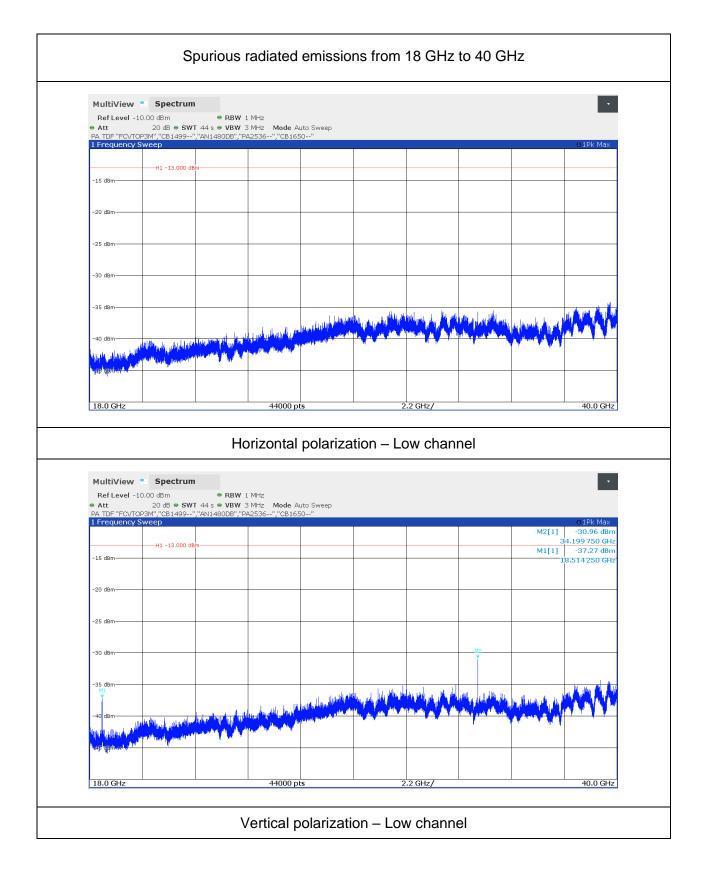
MultiView	Spectrum	× Spe	ectrum 2	×	Spect	rum 3		×			-
Ref Level 3.10 d	dBm Offset -	19.70 dB 🖷 RBV	№ 100 kHz								_
Att 32 TDF "ATT1516"	2 dB SWT	20 ms 🖷 VBV	V 100 kHz M	ode Aut	o Sweep						
1 Frequency Sw	еер										o1Pk Max
Limit Check 0 dBmLine MASKE	17GH7			ASS ASS		M	1			M1[1]	
o domento inico de											17.299 90 GH
-5 dBm											
					1						
-10 dBm											
-15 dBm											
-20 dBm											
-25 dBm											
LO GDIN											
-30 dBm											
MASKB_17GHZ		—									
-35 dBm											
-40 dBm				-							
-45 dBm				1							
-50 dBm	Marcal Antes de	n. In sol	war with the at me	the state of	the court of	the starte h	WWWALD .	hilds du ant	wheel a start .	A M Low Cold	
MANNALANAMAN	 Mile. Assults as they 	gradin marin ng mara	e nahakti se sakadi i	Luklers d	where we are the	Halak artas	1. WANN	u danana Majadeka Alilar	aka kombaratha ha	man and the stand of the stand	Nindra Managaran M
-55 dBm			1	-							
		_	1001 pt	Hi	igh c		nel	0.0 MHz/			Span 2.0 GHz
MultiView -	dBm Offset -	19.70 dB 🖷 RBV	ectrum 2 N 100 kHz	Hi	Spect		nel	0.0 MHz/			Span 2.0 GHz
MultiView - Ref Level 3.10 o Att 3; TDF "ATT1516"	dBm Offset - 2 dB SWT	19.70 dB 🖷 RBV	ectrum 2	Hi	Spect		nel				•
MultiView Ref Level 3.10 of Att 3: TDF "ATT 1516" 1 Frequency Sw	dBm Offset - 2 dB SWT eep	19.70 dB 🖷 RBV	ectrum 2 W 100 kHz W 100 kHz M	Hi × ode Aut	Specto to Sweep		nel			MOETI	• 01Pk Max
MultiView Ref Level 3.10 d Att 3: TDF "ATT1516" I Frequency Sw Limit Chekk	dBm Offset - 2 dB SWT eep	19.70 dB 🖷 RBV	ectrum 2 W 100 kHz W 100 kHz M	Hi × ode Aut	Spect		nel			M2[1]	• 01Pk Max -41.79 dBn
MultiView Ref Level 3.10 d Att 3: 10F "ATT1516" I Frequency Sw Limit Che k U dBmLine MASKE	dBm Offset - 2 dB SWT eep	19.70 dB 🖷 RBV	ectrum 2 N 100 kHz N 100 kHz M	Hi × ode Aut	Specto to Sweep		nel			M2[1] M1[1]	• 1Pk Max -41.79 dBn 17.080 10 GH -0.19 dBn
MultiView Ref Level 3.10 d Att 3: 10F "ATT1516" I Frequency Sw Limit Che k Limit Che k O dBm Line MASKE	dBm Offset - 2 dB SWT eep	19.70 dB 🖷 RBV	ectrum 2 N 100 kHz N 100 kHz M	Hi × ode Aut	Specto to Sweep		nel				● 1Pk Max -41.79 dBn 17.080 10 GH -0.19 dBn
MultiView Ref Level 3.10 o Att 3: TDF "ATT 1516" I Frequency Sw Limit Chebo 0 dBmLine MASCE -5 dBm-	dBm Offset - 2 dB SWT eep	19.70 dB 🖷 RBV	ectrum 2 N 100 kHz N 100 kHz M	Hi × ode Aut	Specto to Sweep		nel				● 1Pk Max -41.79 dBn 17.080 10 GH -0.19 dBn
MultiView Ref Level 3.10 c Att 3: TDF "ATT1516" I Frequency Sw Limit Check 0 dBmLine MAS (F -5 dBm- -10 dBm-	dBm Offset - 2 dB SWT eep	19.70 dB 🖷 RBV	ectrum 2 N 100 kHz N 100 kHz M	Hi × ode Aut	Specto to Sweep		nel				• 1Pk Max -41.79 dBn 17.080 10 GH
MultiView Ref Level 3.10 c Att 3: TDF "ATT1516" I Frequency Sw Limit Check 0 dBmLine MAS (F -5 dBm- -10 dBm-	dBm Offset - 2 dB SWT eep	19.70 dB 🖷 RBV	ectrum 2 N 100 kHz N 100 kHz M	Hi × ode Aut	Specto to Sweep		nel				● 1Pk Max -41.79 dBn 17.080 10 GH -0.19 dBn
MultiView Ref Level 3.10 o Att 3: TDF "ATT1516" I Frequency Sw Limit Chepk 0 dBmLine MASKE -5 dBm -10 dBm	dBm Offset - 2 dB SWT eep	19.70 dB 🖷 RBV	ectrum 2 N 100 kHz N 100 kHz M	Hi × ode Aut	Specto to Sweep		nel				● 1Pk Max -41.79 dBn 17.080 10 GH -0.19 dBn
MultiView Ref Level 3.10 Att 3: TDF "ATT 1516" I Frequency Sw Limit Check 0 dBmLine MAS (E -5 dBm -10 dBm -15 dBm -20 dBm	dBm Offset - 2 dB SWT eep	19.70 dB 🖷 RBV	ectrum 2 N 100 kHz N 100 kHz M	Hi × ode Aut	Specto to Sweep		nel				● 1Pk Max -41.79 dBn 17.080 10 GH -0.19 dBn
MultiView Ref Level 3.10 Att 3: TDF "ATT 1516" I Frequency Sw Limit Check 0 dBmLine MAS (E -5 dBm -10 dBm -15 dBm -20 dBm	dBm Offset - 2 dB SWT eep	19.70 dB 🖷 RBV	ectrum 2 N 100 kHz N 100 kHz M	Hi × ode Aut	Specto to Sweep		nel				• 1Pk Max -41.79 dBn 17.080 10 GH -0.19 dBn
MultiView Ref Level 3.10 (Att 3.10 (dBm Offset - 2 dB SWT eep	19.70 dB 🖷 RBV	ectrum 2 N 100 kHz N 100 kHz M	Hi × ode Aut	Spect to Sweep		nel				● 1Pk Max -41.79 dBn 17.080 10 GH -0.19 dBn
MultiView Ref Level 3.10 c Att 3: IF requency Sw Limit Check o dBmLine MAS (F -5 dBm -10 dBm -15 dBm -20 dBm -25 dBm -25 dBm -25 dBm -25 dBm	dBm Offset - 2 dB SWT eep	19.70 dB 🖷 RBV	ectrum 2 N 100 kHz N 100 kHz M	Hi × ode Aut	Spect to Sweep		nel				● 1Pk Max -41.79 dBn 17.080 10 GH -0.19 dBn
MultiView Ref Level 3.10 c Att 3: IF requency Sw Limit Check o dBmLine MAS (F -5 dBm -10 dBm -15 dBm -20 dBm -25 dBm -25 dBm -25 dBm -25 dBm	dBm Offset - 2 dB SWT eep	19.70 dB 🖷 RBV	ectrum 2 N 100 kHz N 100 kHz M	Hi × ode Aut	Spect to Sweep		nel				● 1Pk Max -41.79 dBn 17.080 10 GH -0.19 dBn
MultiView	dBm Offset - 2 dB SWT eep	19.70 dB 🖷 RBV	ectrum 2 N 100 kHz N 100 kHz M	Hi × ode Aut	Spect to Sweep		nel				• 1Pk Max -41.79 dBn 17.080 10 GH -0.19 dBn
MultiView	dBm Offset - 2 dB SWT eep	19.70 dB 🖷 RBV	ectrum 2 N 100 kHz N 100 kHz M	Hi × ode Aut	Spect to Sweep		nel				● 1Pk Max -41.79 dBn 17.080 10 GH -0.19 dBn
Att 33 TDF "ATT1516" 1 Frequency Sw	dBm Offset - 2 dB SWT eep	19.70 dB 🖷 RBV	ectrum 2 N 100 kHz N 100 kHz M	Hi × ode Aut	Spect to Sweep		nel				● 1Pk Max -41.79 dBn 17.080 10 GH -0.19 dBn
MultiView	dBm Offset - 2 dB SWT	19.70 dB • RBV	ectrum 2 W 100 kHz W 100 kHz M P/ P/	Alss Alss Alss Alss Alss Alss Alss Alss	Spect to Sweep	rum 3		×			0 1Pk Max -41.79 dBn 17.080 10 GH. -0.19 dBn 17.102 10 GH.
MultiView Image: Constraint of the second seco	dBm Offset - 2 dB SWT	19.70 dB 🖷 RBV	ectrum 2 W 100 kHz W 100 kHz M P/ P/	Alss Alss Alss Alss Alss Alss Alss Alss	Spect to Sweep	rum 3					● 1Pk Max -41.79 dBn 17.080 10 GH -0.19 dBn
MultiView	dBm Offset - 2 dB SWT	19.70 dB • RBV	ectrum 2 W 100 kHz W 100 kHz M P/ P/	Alss Alss Alss Alss Alss Alss Alss Alss	Spect to Sweep	rum 3		×			0 1Pk Max -41.79 dBn 17.080 10 GH. -0.19 dBn 17.102 10 GH.

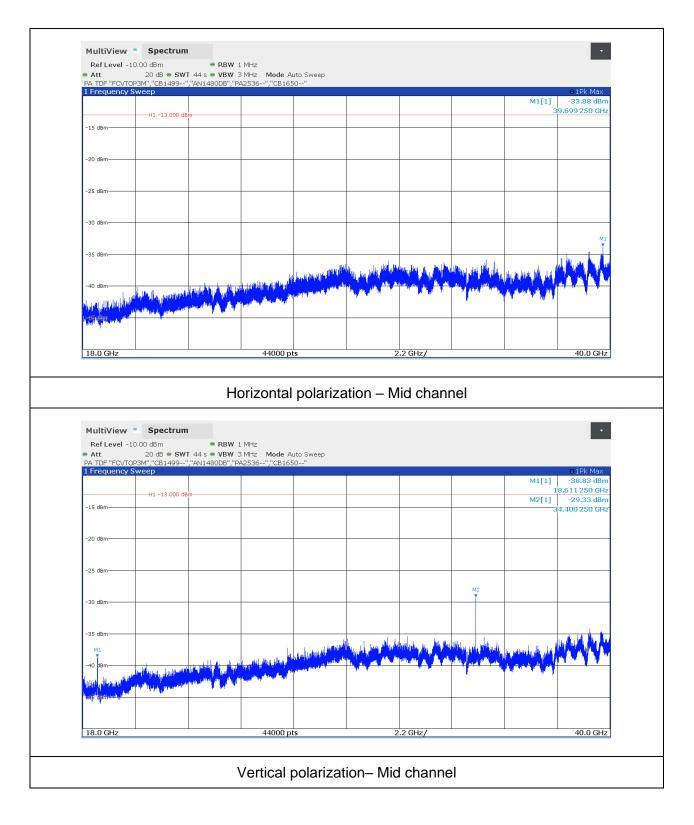


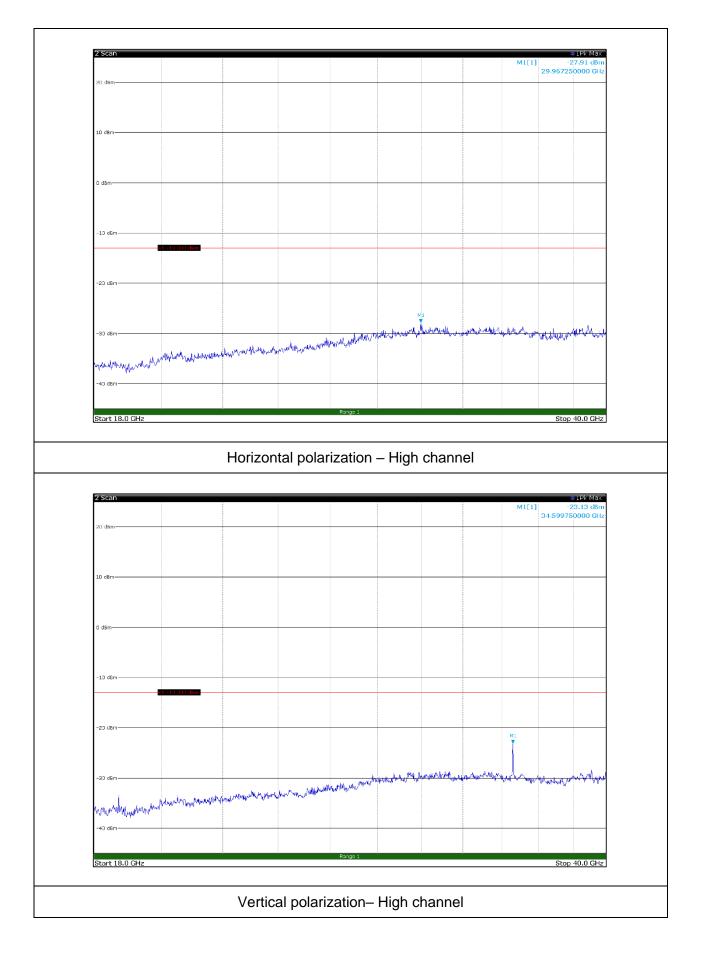


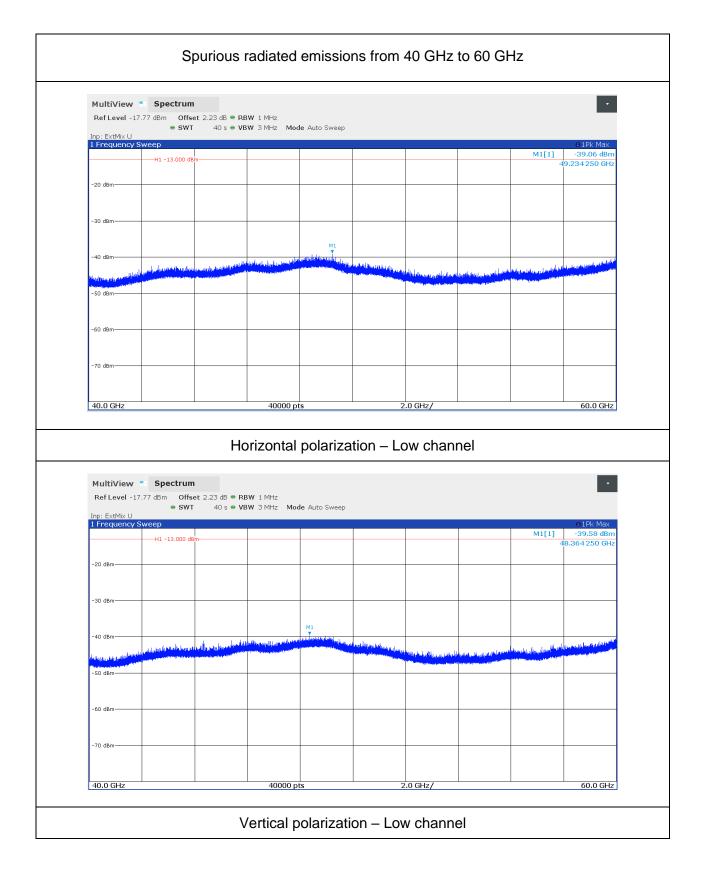


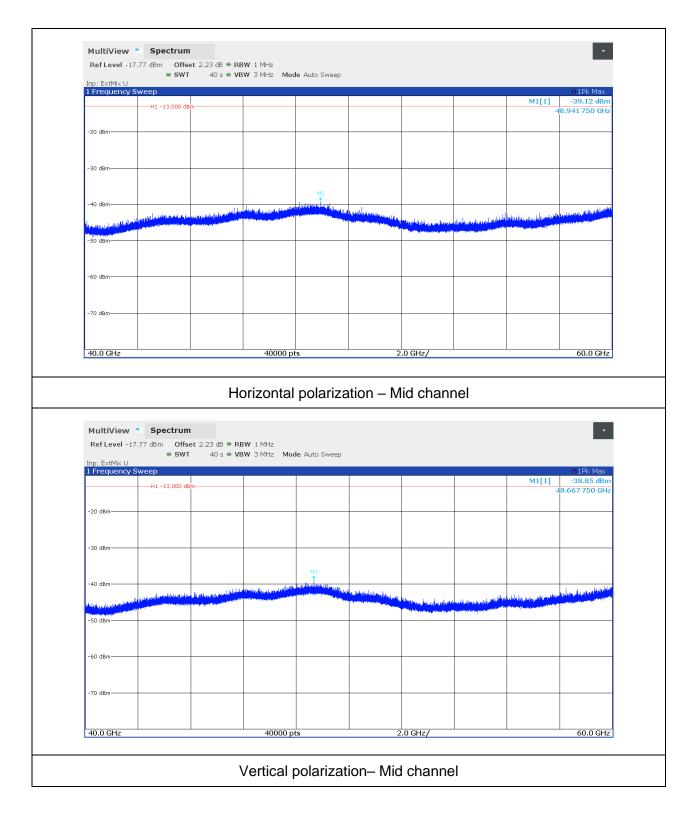


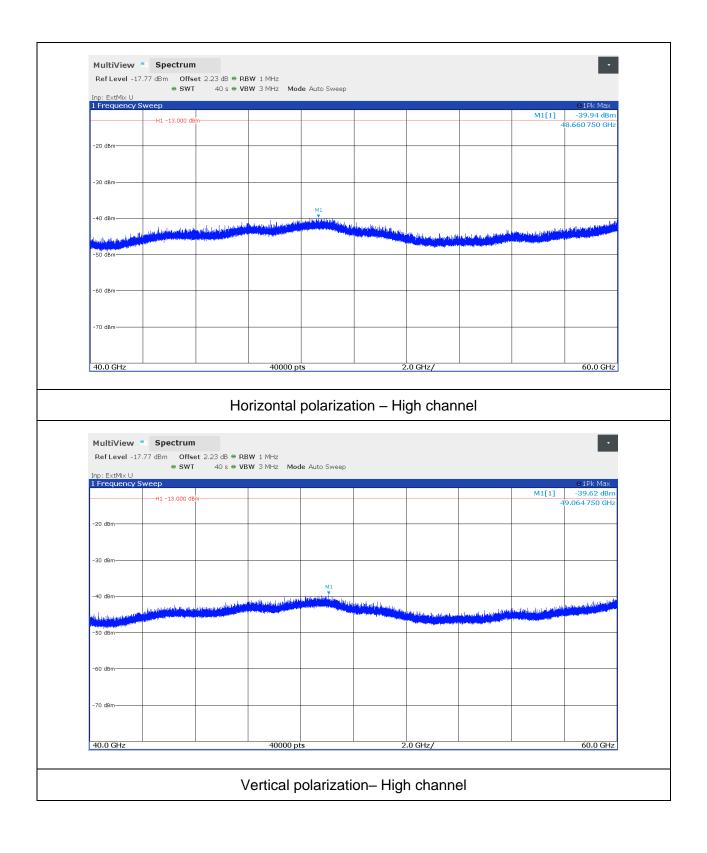


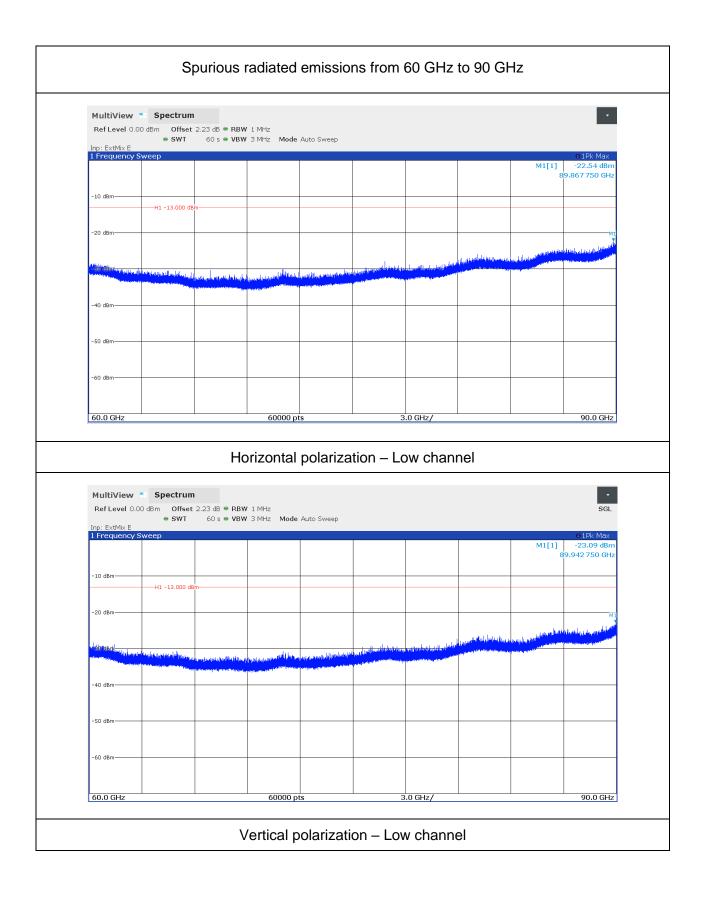


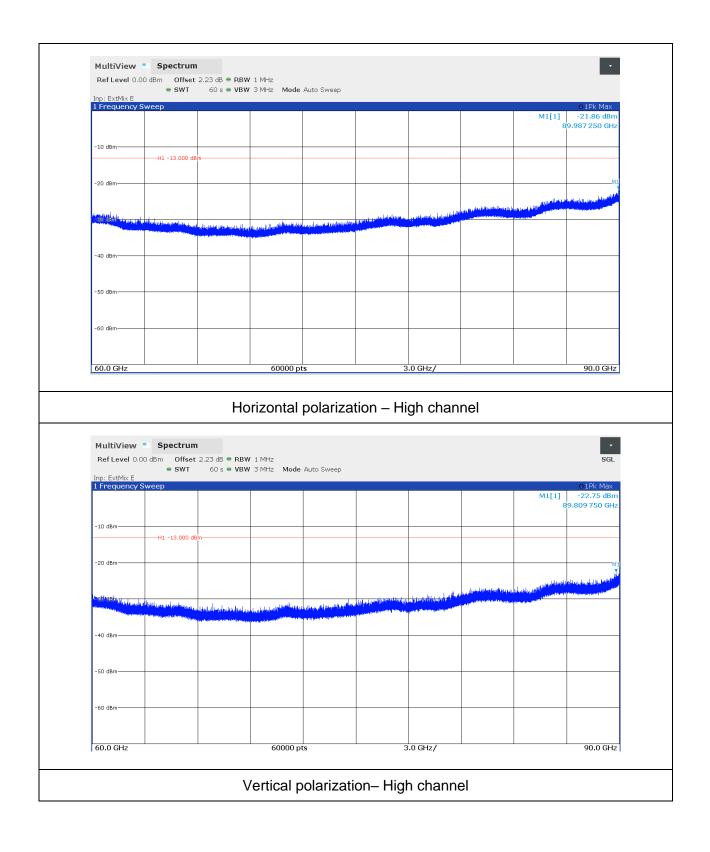


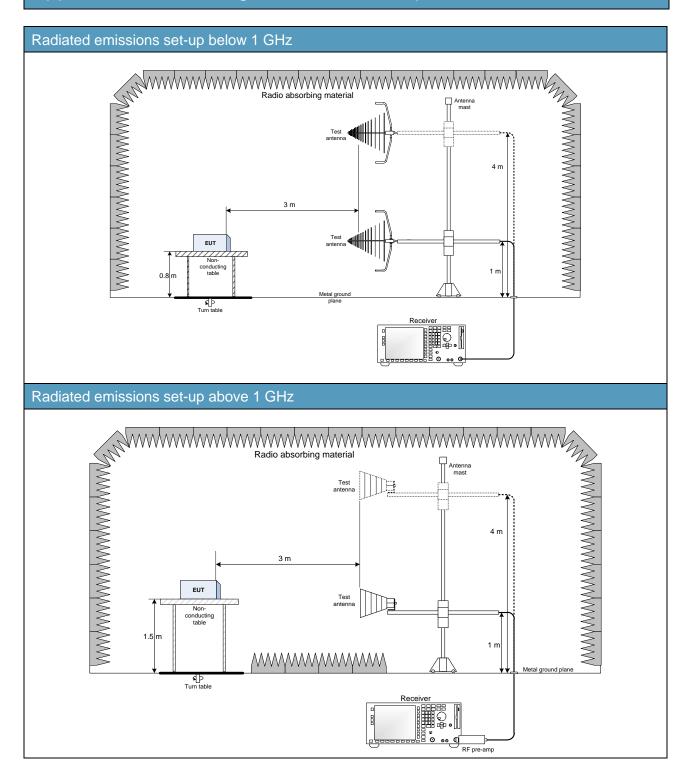


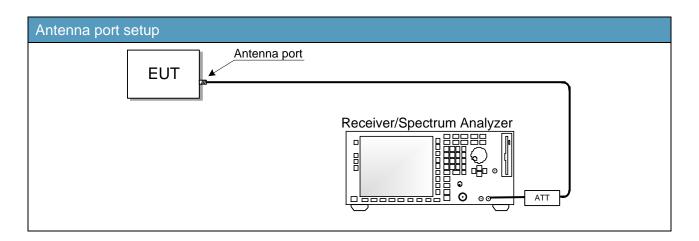




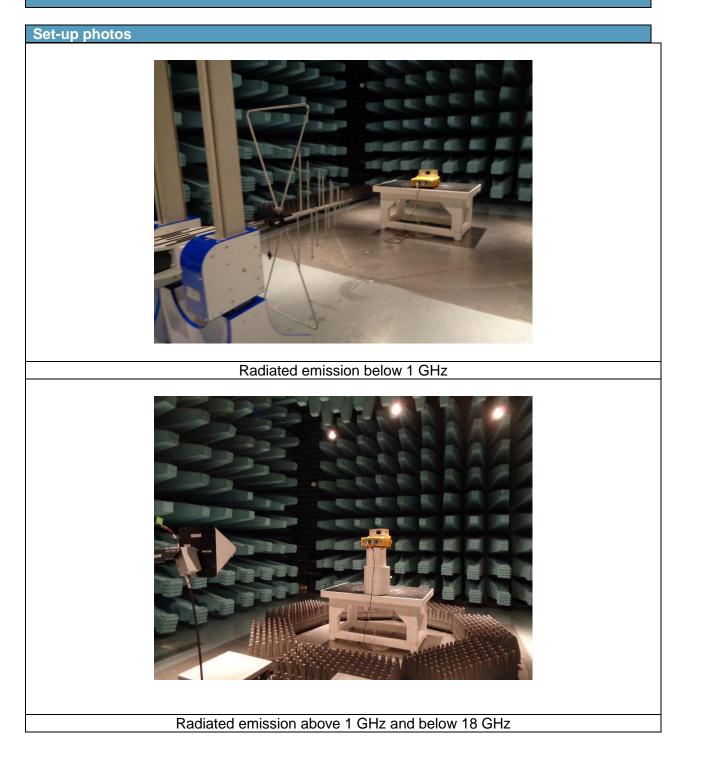




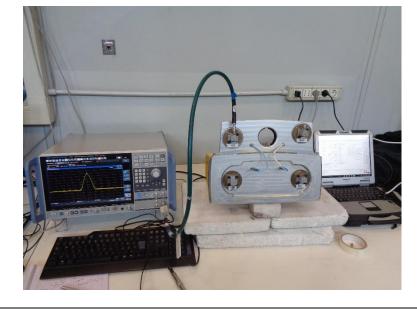

Inp: ExtMix E	● SWT	60 s 🖶 VBW	3 MHz Mode	Auto Sweep					
1 Frequency Sweep								M1[1]	 1Pk Max -22.54 dBr
									9.744 750 GH
-10 dBm									
	L -13.000 dBm								
-20 dBm									
								المليد ان	uluusiatus nul kulit
hinder and the second					1.	are well and the state of the state	and a substance of the second	det in doit of all of	Inductive formation
-soldBman putibilities at a line	hindline and a li	upone kulturi da de da curid	والمالسلانيا وبالمعد بالأجليل	when the construction of the	Real processing of the second s	Alexandra Contractor a contractor	a participan de la contra de la c	respillents in fallen	
		un dels seus activit en dels fontes y pro-	teres, des 2 de 1 de 1 de la desta de la desta de services	and the set of the set					
-40 dBm									
50 40.0									
-50 dBm									
-60 dBm									
60.0 GHz			60000 pt	s	3	3.0 GHz/			90.0 GH:
		2.23 dB • RBW	' 1 MHz	polariza	ation – N	1id chanı	nel		SGL
MultiView = S Ref Level 0.00 dBm		2.23 dB • RBW		polariza	ation – M	1id chanı	nel		SGL
MultiView = S	Offset 2 • SWT	2.23 dB • RBW	' 1 MHz	polariza	ation – N	lid chanı	nel	A1[1]	o1Pk Max
MultiView S Ref Level 0.00 dBm Inp: ExtMix E	Offset 2 • SWT	2.23 dB • RBW	' 1 MHz	polariza	ation – M	1id chanı	nel	M1[1] 8	01Pk Max -22.97 dBr
MultiView S Ref Level 0.00 dBm Inp: ExtMix E I Frequency Sweep	Offset 2 • SWT	2.23 dB • RBW	' 1 MHz	polariza	ation – M	1id chanı	nel		01Pk Max -22.97 dBr
MultiView S Ref Level 0.00 dBm Inp: ExtMix E I Frequency Sweep -10 dBm	Offset 2 SWT	2.23 dB ● RBW 60 s ● VBW	' 1 MHz	polariza	ation – M	lid chanı	nel		01Pk Max -22.97 dBr
MultiView S Ref Level 0.00 dBm Inp: ExtMix E I Frequency Sweep -10 dBm	Offset 2 • SWT	2.23 dB ● RBW 60 s ● VBW	' 1 MHz	polariza	ation – N	lid chanı	nel		01Pk Max -22.97 dBr
MultiView S Ref Level 0.00 dBm Inp: ExtMix E I Frequency Sweep -10 dBm	Offset 2 SWT	2.23 dB ● RBW 60 s ● VBW	' 1 MHz	polariza	ation – M	lid chanı			01Pk Max -22.97 dBr
MultiView = S Ref Level 0.00 dBm Inp: ExtMix E I Frequency Sweep -10 dBm	Offset 2 SWT	2.23 dB ● RBW 60 s ● VBW	' 1 MHz	polariza	ation – M	lid chanı		8	01Pk Max -22.97 dBr 9.862 250 GH
MultiView S Ref Level 0.00 dBm Inp: ExtMix E I Frequency Sweep -10 dBm	Offset 2 • SWT	2.23 dB ● RBW 60 s ● VBW	' 1 MHz	Polariza					• 1Pk Max -22.97 dBn 9.862 250 GH
MultiView = S Ref Level 0.00 dBm Inp: ExtMix E I Frequency Sweep -10 dBm	Offset 2 • SWT	2.23 dB ● RBW 60 s ● VBW	1 MHz 3 MHz Mode	Polariza	ation – M			8	01Pk Max -22.97 dBr 9.862 250 GH
MultiView S Ref Level 0.00 dBm Inp: ExtMix E I Frequency Sweep -10 dBm	Offset 2 • SWT	2.23 dB ● RBW 60 s ● VBW	1 MHz 3 MHz Mode	Polariza				8	01Pk Max -22.97 dBr 9.862 250 GH
MultiView S Ref Level 0.00 dBm Inp: ExtMix E I Frequency Sweep -10 dBm	Offset 2 • SWT	2.23 dB ● RBW 60 s ● VBW	1 MHz 3 MHz Mode	Polariza				8	01Pk Max -22.97 dBr 9.862 250 GH
MultiView S Ref Level 0.00 dBm Inp: ExtMix E I Frequency Sweep -10 dBm -20 dBm	Offset 2 • SWT	2.23 dB ● RBW 60 s ● VBW	1 MHz 3 MHz Mode	Polariza				8	01Pk Max -22.97 dBr 9.862 250 GH
MultiView - S Ref Level 0.00 dBm Inp: ExtMix E I Frequency Sweep -10 dBm -20 dBm -20 dBm -40 dBm	Offset 2 • SWT	2.23 dB ● RBW 60 s ● VBW	1 MHz 3 MHz Mode	Polariza				8	01Pk Max -22.97 dBr 9.862 250 GH
MultiView S Ref Level 0.00 dBm Inp: ExtMix E I Frequency Sweep -10 dBm -20 dBm	Offset 2 • SWT	2.23 dB ● RBW 60 s ● VBW	1 MHz 3 MHz Mode	Polariza				8	01Pk Max -22.97 dBr 9.862 250 GH
MultiView - S Ref Level 0.00 dBm Inp: ExtMix E I Frequency Sweep -10 dBm -20 dBm -20 dBm -40 dBm	Offset 2 • SWT	2.23 dB ● RBW 60 s ● VBW	1 MHz 3 MHz Mode	Polariza				8	01Pk Max -22,97 dBr 9,862 250 GH
MultiView - S Ref Level 0.00 dBm Inp: ExtMix E I Frequency Sweep -10 dBm -20 dBm -20 dBm -40 dBm	Offset 2 • SWT	2.23 dB ● RBW 60 s ● VBW	1 MHz 3 MHz Mode	Polariza				8	01Pk Max -22,97 dBr 9,862 250 GH
MultiView S Ref Level 0.00 dBm Inp: ExtMix E I Frequency Sweep -10 dBm -20 dBm -20 dBm -40 dBm -50 dBm	Offset 2 • SWT	2.23 dB ● RBW 60 s ● VBW	1 MHz 3 MHz Mode	Polariza				8	01Pk Max -22,97 dBr 9,862 250 GH
MultiView S Ref Level 0.00 dBm Inp: ExtMix E I Frequency Sweep -10 dBm -20 dBm -20 dBm -40 dBm -50 dBm	Offset 2 • SWT	2.23 dB ● RBW 60 s ● VBW	1 MHz 3 MHz Mode	polariza				8	01Pk Max -22.97 dBr 9.862 250 GH



Appendix A: Block diagrams of test set-ups



Appendix B: Photos



Set-up photos

Radiated emission above 18 GHz

Antenna port measurement


Set-up photos

Frequency stability

EUT photos

End of report