

FCC Radio Test Report

FCC ID: UFOOPN3200SI

Report No. Equipment Model Name Brand Name Applicant Address Manufacturer Address	BTL-FCCP-2-2108T054 Handheld Bluetooth 2D Imager Scanner OPN-3200Si OPTICON OPTOELECTRONICS Co., Ltd. 4-12-17, Tsukagoshi, Warabi-shi, Saitama Pref., 335-0002 Japan OPTOELECTRONICS Co., Ltd. 4-12-17, Tsukagoshi, Warabi-shi, Saitama Pref., 335-0002 Japan	
Radio Function	Bluetooth EDR	
FCC Rule Part(s) Measurement Procedure(s)	FCC CFR Title 47, Part 15, Subpart C ANSI C63.10-2013	
Date of Receipt Date of Test Issued Date	2021/8/13 2021/8/13~ 2022/7/13 2022/7/15	

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by Jerry Chuang, Supervisor **ac-MRA** Testing Laborat 0659 Approved by Peter Chen, Vice Manager BTL Inc. No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

CONTENTS

REVIS	SION HISTORY	5
1	SUMMARY OF TEST RESULTS	6
1.1	TEST FACILITY	7
1.2	MEASUREMENT UNCERTAINTY	7
1.3	TEST ENVIRONMENT CONDITIONS	8
1.4	TABLE OF PARAMETERS OF TEST SOFTWARE SETTING	8
1.5	DUTY CYCLE	9
2	GENERAL INFORMATION	10
2.1	DESCRIPTION OF EUT	10
2.2	TEST MODES	12
2.3	BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	13
2.4	SUPPORT UNITS	13
3	AC POWER LINE CONDUCTED EMISSIONS TEST	14
3.1	LIMIT	14
3.2	TEST PROCEDURE	14
3.3	DEVIATION FROM TEST STANDARD	14
3.4	TEST SETUP	15
3.5	TEST RESULT	15
4	RADIATED EMISSIONS TEST	16
4.1	LIMIT	16
4.2	TEST PROCEDURE	17
4.3	DEVIATION FROM TEST STANDARD	17
4.4	TEST SETUP	17
4.5	EUT OPERATING CONDITIONS	18
4.6	TEST RESULT – BELOW 30 MHZ	19
4.7	TEST RESULT – 30 MHZ TO 1 GHZ	19
4.8	TEST RESULT – ABOVE 1 GHZ	19
5	NUMBER OF HOPPING CHANNEL	20
5.1	APPLIED PROCEDURES	20
5.2	TEST PROCEDURE	20
5.3	DEVIATION FROM STANDARD	20
5.4	TEST SETUP	20
5.5	EUT OPERATION CONDITIONS	20
5.6	TEST RESULTS	20
6	AVERAGE TIME OF OCCUPANCY	21
6.1	APPLIED PROCEDURES / LIMIT	21
6.2	TEST PROCEDURE	21
6.3	DEVIATION FROM STANDARD	21
6.4	TEST SETUP	21
6.5	EUT OPERATION CONDITIONS	21
6.6	TEST RESULTS	21
7	HOPPING CHANNEL SEPARATION MEASUREMENT	22
7.1	APPLIED PROCEDURES / LIMIT	22
7.2		22
7.3	DEVIATION FROM STANDARD	22
7.4	TEST SETUP	22
7.5	TEST RESULTS	22

8	BANDW	IDTH TEST	23
8.1	APPL	IED PROCEDURES	23
8.2	TEST	PROCEDURE	23
8.3	DEVI	ATION FROM STANDARD	23
8.4	TEST	SETUP	23
8.5	EUT	OPERATION CONDITIONS	23
8.6	TEST	RESULTS	23
9	OUTPU	T POWER TEST	24
9.1	APPL	IED PROCEDURES / LIMIT	24
9.2	TEST	PROCEDURE	24
9.3	DEVI	ATION FROM STANDARD	24
9.4	TEST	SETUP	24
9.5	EUT	OPERATION CONDITIONS	24
9.6	TEST	RESULTS	24
10	ANTEN	NA CONDUCTED SPURIOUS EMISSION	25
10.1	APPL	IED PROCEDURES / LIMIT	25
10.2	TEST	PROCEDURE	25
10.3	DEVI	ATION FROM STANDARD	25
10.4	TEST	SETUP	25
10.5	EUT	OPERATION CONDITIONS	25
10.6	TEST	RESULTS	25
11	LIST OF	MEASURING EQUIPMENTS	26
12	EUT TE	ST PHOTO	28
13	EUT PH	OTOS	28
APPEND	IX A	AC POWER LINE CONDUCTED EMISSIONS	29
APPEND	IX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	34
APPEND	IX C	RADIATED EMISSIONS - ABOVE 1 GHZ	37
APPEND	IX D	NUMBER OF HOPPING CHANNEL	54
APPEND	IX E	AVERAGE TIME OF OCCUPANCY	56
APPEND	IX F	HOPPING CHANNEL SEPARATION MEASUREMENT	59
APPEND	IX G	BANDWIDTH	62
APPEND	IX H	OUTPUT POWER	65
APPEND	IX I	ANTENNA CONDUCTED SPURIOUS EMISSION	67

<u>3TL</u>

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-2-2108T054	R00	Original Report.	2022/7/14	Invalid
BTL-FCCP-2-2108T054	R01	Revised Typo.	2022/7/15	Valid

SUMMARY OF TEST RESULTS 1

Test procedures according to the technical standards.

Standard(s) Section	Description	Test Result	Judgement	Remark
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass	
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C	Pass	
15.247 (a)(1)(iii)	Number of Hopping Frequency	APPENDIX D	Pass	
15.247 (a)(1)(iii)	Average Time of Occupancy	APPENDIX E	Pass	
15.247 (a)(1)	Hopping Channel Separation	APPENDIX F	Pass	
15.247 (a)(1)	Bandwidth	APPENDIX G	Pass	
15.247 (b)(1)	Output Power	APPENDIX H	Pass	
15.247(d)	Antenna conducted Spurious Emission	APPENDIX I	Pass	
15.203	Antenna Requirement		Pass	

NOTE:

(1) "N/A" denotes test is not applicable in this Test Report.(2) The report format version is TP.1.1.1.

1.1 TEST FACILITY

The test facilities used to collect the test data in this report:

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan The test sites and facilities are covered under FCC RN: 674415 and DN: TW0659.

\boxtimes	C05	CB08	CB11	\boxtimes	CB15	CB16
\boxtimes	SR05					

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = 2$, providing a level of confidence of approximately **95**%. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cispr} requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C05	CISPR	150 kHz ~ 30 MHz	3.44

B. Radiated emissions test :

Test Site	Measurement Frequency Range	U,(dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB15	1 GHz ~ 6 GHz	5.21
CB15	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

C. Conducted test :

Test Item	U,(dB)
Occupied Bandwidth	0.5338
Output power	0.3659
Conducted Spurious emissions	0.5416
Conducted Band edges	0.5348
Dwell time	0.6606
Channel separation	0.6606
Channel numbers	0.6606

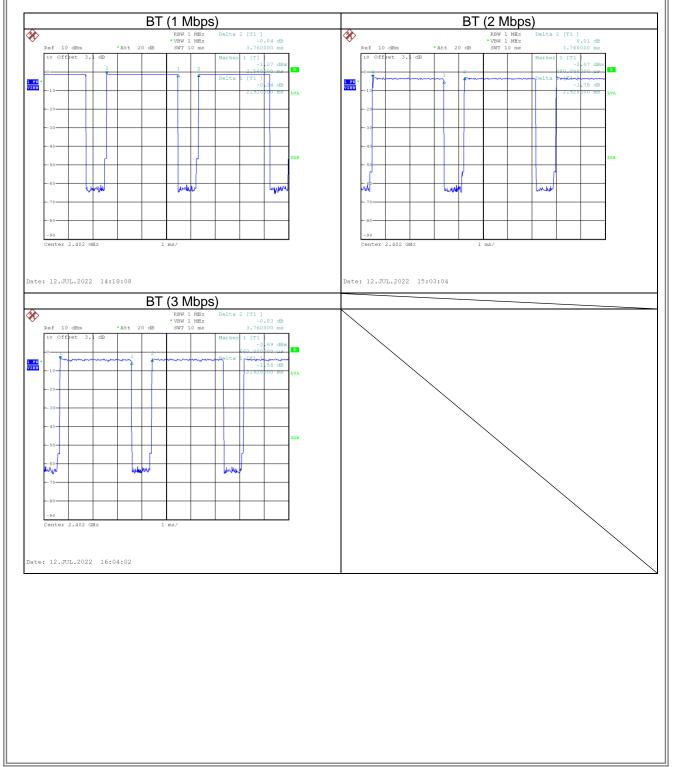
NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	22 °C, 53 %	AC120V	Tim Lian
Radiated emissions below 1 GHz	25 °C, 60 %	AC120V	Vincent Lee
Radiated emissions above 1 GHz	25 °C, 60 %	AC120V	Vincent Lee
Number of Hopping Frequency	24.4 °C, 49 %	AC120V	Tim Lee
Average Time of Occupancy	24.4 °C, 49 %	AC120V	Tim Lee
Hopping Channel Separation	24.4 °C, 49 %	AC120V	Tim Lee
Bandwidth	24.4 °C, 49 %	AC120V	Tim Lee
Output Power	24.4 °C, 49 %	AC120V	Tim Lee
Antenna conducted Spurious Emission	24.4 °C, 49 %	AC120V	Tim Lee

1.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING


Test Software	NA						
Modulation Mode	2402 MHz	2441 MHz	2480 MHz	Data Rate			
GFSK	MAX	MAX	MAX	1 Mbps			
π/4-DQPSK	MAX	MAX	MAX	2 Mbps			
8DPSK	MAX	MAX	MAX	3 Mbps			

1.5 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

Remark	Delta 1			Delta 2	On Time/Period	10 log(1/Duty Cycle)
Mode	ON	Numbers	On Time (B)	Period (ON+OFF)	Duty Cycle	Duty Factor
Wode	(ms)	(ON)	(ms)	(ms)	(%)	(dB)
BT (1 Mbps)	2.920	1	2.920	3.760	77.66%	1.10
BT (2 Mbps)	2.920	1	2.920	3.760	77.66%	1.10
BT (3 Mbps)	2.920	1	2.920	3.760	77.66%	1.10

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment Handheld Bluetooth 2D Imager Scanner Model Name OPN-3200Si Brand Name OPTICON Model Difference N/A						
Brand Name OPTICON						
Model Difference N/A						
Power Source #1 DC Voltage supplied from AC/DC adapter via charger.						
#2 Supplied from battery.						
Power Rating #1 I/P: 100-240V~ 50/60Hz 500mA / O/P: 6.0V 2000m/	A					
#2 3.7V 1100mAh 4.1Wh						
1 * Adapter: OPTICON / S018BAM0600200						
Products Covered 1 * Charger: OPTICON / CHG-3201						
1 * Battery: OPTICON / OPR33015505-0-02	1 * Battery: OPTICON / OPR33015505-0-02					
Operation Band 2400 MHz ~ 2483.5 MHz						
Operation Frequency 2402 MHz ~ 2480 MHz						
Modulation Type GFSK, π/4-DQPSK, 8DPSK						
Modulation Technology FHSS						
Transfer Rate 1 Mbps, 2 Mbps, 3Mbps						
1 Mbps: 2.40 dBm (0.0017 W)						
Output Power Max. 2 Mbps: 1.23 dBm (0.0013 W)						
3 Mbps: 1.37 dBm (0.0014 W)						
Test Model OPN-3200Si						
Sample Status Engineering Sample						
EUT Modification(s) N/A						

NOTE:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

(2) Channel List:

BIL

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

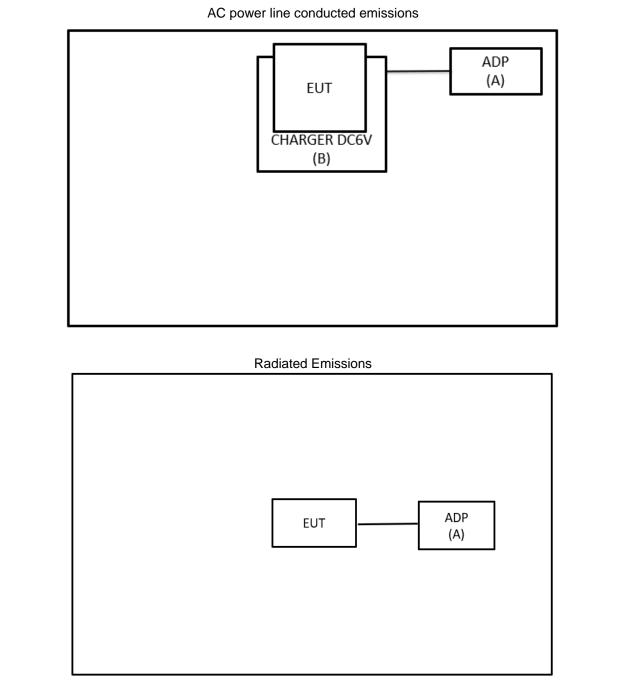
(3) Table for Filed Antenna:

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	OPTOELECTRO NICS CO., LTD.	2.4G PCB Antenna	PCB Layout	N/A	-0.86

2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	1 Mbps	39	-
Transmitter Radiated Emissions	1/3 Mbps	00/78	Bandedge
(above 1GHz)	1/3 Mbps	00/39/78	Harmonic
Number of Hopping Frequency	1/3 Mbps	00~78	-
Average Time of Occupancy	1/3 Mbps	00/39/78	-
Hopping Channel Separation	1/3 Mbps	00/39/78	-
Bandwidth	1/3 Mbps	00/39/78	-
Peak Output Power	1/2/3 Mbps	00/39/78	-
Antenna conducted Spurious Emission	1/3 Mbps	00/39/78	-

NOTE:


(1) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Horizontal) is recorded.

(2) All X, Y and Z axes are evaluated, but only the worst case (Z axis) is recorded.

2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
А	Adapter	OTPICON	S018BAM060020 0	N/A	Supplied by test requester
В	CHARGER	OTPICON	CHG-3201	N/A	Supplied by test requester
Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
-	-	-	-	-	-

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBµV)		
(MHz)	Quasi-peak	Average	
0.15 - 0.5	66 - 56 *	56 - 46 *	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:
 - Measurement Value = Reading Level + Correct Factor
 - Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
38.22	+	3.45	Ш	41.67

Measurement Value		Limit Value		Margin Level
41.67	-	60	Ш	-18.33

The following table is the setting of the receiver.

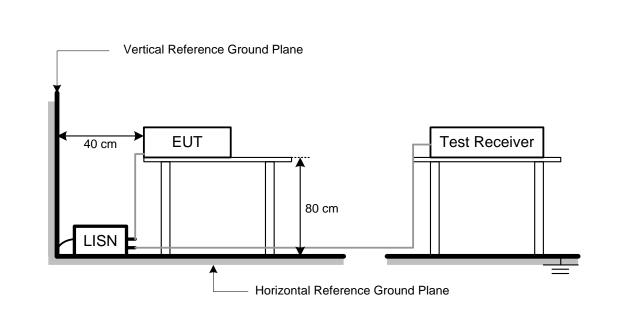
Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment were powered from an additional LISN(s).

- The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable will be terminated, using the correct terminating impedance. The overall length shall not exceed 1 m.
- The LISN is spaced at least 80 cm from the nearest part of the EUT chassis. d.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:


- (1) In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.

3.3 DEVIATION FROM TEST STANDARD

No deviation.

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

3

3

3

3

4 RADIATED EMISSIONS TEST

30~88

88~216

216~960

960~1000

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

100

150

200

500

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz) Frequency Field Strength Measurement Distance (MHz) (microvolts/meter) (meters) 0.009~0.490 2400/F(KHz) 300 24000/F(KHz) 0.490~1.705 30 1.705~30.0 30 30

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	1	Emissions V/m)	Measurement Distance (meters)
(11112)	Peak	Average	(motoro)
Above 1000	74	54	3

NOTE:

(1) The limit for radiated test was performed according to FCC Part 15, Subpart C.

- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:
 - Measurement Value = Reading Level + Correct Factor

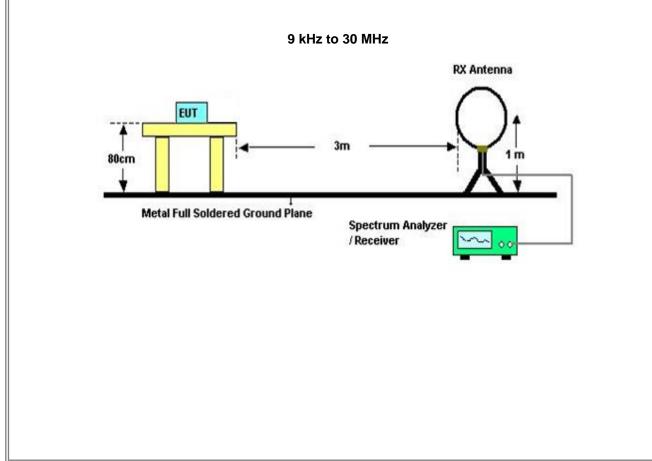
Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use) Margin Level = Measurement Value - Limit Value

Calculation example:

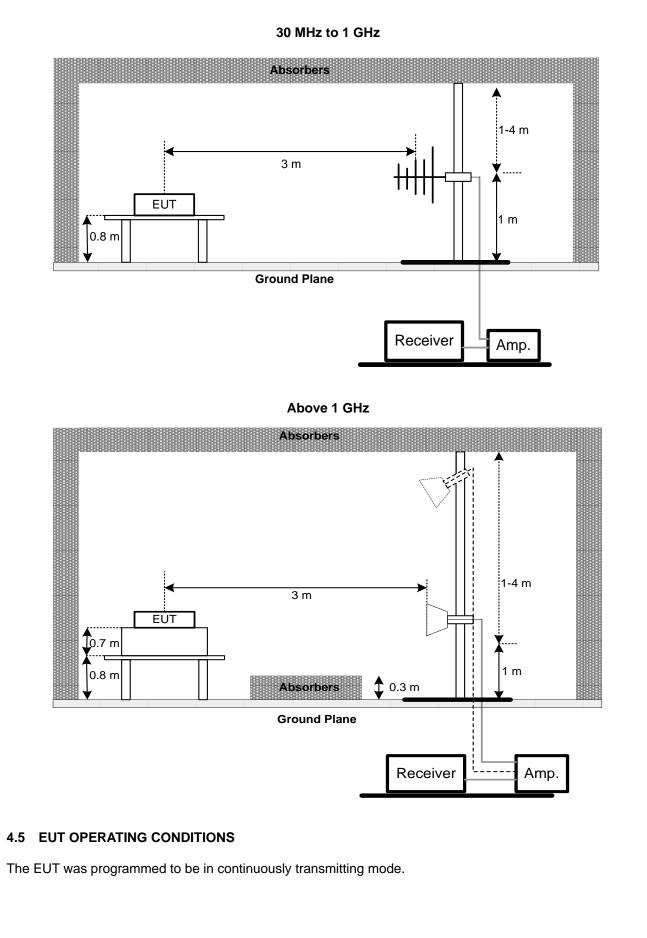
Reading Level		Correct Factor		Measurement Value
35.45	+	-11.37	Π	24.08

Measurement Value		Limit Value		Margin Level
24.08	-	40	Ι	-15.92

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average
Spectrum Parameter	Setting
opoor an i aramotor	Setting
Attenuation	Auto
•	
Attenuation	Auto
Attenuation Start ~ Stop Frequency	Auto 9KHz~90KHz for PK/AVG detector
Attenuation Start ~ Stop Frequency Start ~ Stop Frequency	Auto 9KHz~90KHz for PK/AVG detector 90KHz~110KHz for QP detector


4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.


4.3 DEVIATION FROM TEST STANDARD

No deviation.

4.4 TEST SETUP

4.6 TEST RESULT – BELOW 30 MHZ

There were no emissions found below 30 MHz within 20 dB of the limit.

4.7 TEST RESULT – 30 MHZ TO 1 GHZ

Please refer to the APPENDIX B.

4.8 TEST RESULT – ABOVE 1 GHZ

Please refer to the APPENDIX C.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5 NUMBER OF HOPPING CHANNEL

5.1 APPLIED PROCEDURES

Section Test Item		Frequency Range (MHz)	Result
15.247(a)(1)(iii) Number of Hopping Channel		2400-2483.5	PASS

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> Operating Frequency Range
RBW	100 KHz
VBW	100 KHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=100KHz, VBW=100KHz, Sweep time = Auto.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULTS

Please refer to the APPENDIX D.

6 AVERAGE TIME OF OCCUPANCY

6.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit	Limit Frequency Range (MHz)	
15.247(a)(1)(iii)	Average Time of Occupancy	0.4sec	2400-2483.5	PASS

6.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer
- b. Set RBW of spectrum analyzer to 1MHz and VBW to 1MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- h. Measure the maximum time duration of one single pulse.
- i. Measure the maximum time duration of one single pulse.

A Period Time = (channel number) * 0.4

For Non-AFH Mode (79 Channel): DH1 Time Solt: Reading * (1600/6)/79 * (0.4 * 79) DH3 Time Solt: Reading * (1600/6)/79 * (0.4 * 79) DH5 Time Solt: Reading * (1600/6)/79 * (0.4 * 79)

For AFH Mode (20 Channel):

DH1 Time Solt: Reading * (800/6)/20 * (0.4 * 20) DH3 Time Solt: Reading * (800/6)/20 * (0.4 * 20) DH5 Time Solt: Reading * (800/6)/20 * (0.4 * 20)

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

6.6 TEST RESULTS

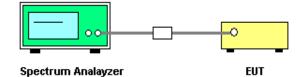
Please refer to the APPENDIX E.

7 Hopping Channel Separation Measurement

7.1 APPLIED PROCEDURES / LIMIT

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 KHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Spectrum Parameter	Setting	
Attenuation	Auto	
Span Frequency	> Measurement Bandwidth or Channel Separation	
RBW	30 KHz	
VBW	100 KHz	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	


7.2 TEST PROCEDURE

- a. The EUT must have its hopping function enabled
- b. Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span Video (or Average) Bandwidth (VBW) ≥ RBW Sweep = Auto Detector function = Peak Trace = Max Hold

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 TEST RESULTS

Please refer to the APPENDIX F.

8 BANDWIDTH TEST

8.1 APPLIED PROCEDURES

Section	Test Item	Frequency Range (MHz)	
15.247(a)(2)	Bandwidth	2400-2483.5	

Spectrum Parameter	Setting		
Attenuation	Auto		
Span Frequency	> Measurement Bandwidth or Channel Separation		
RBW	30 KHz (20dB Bandwidth) / 30 KHz (Channel Separation)		
VBW	100 KHz (20dB Bandwidth) / 100 KHz (Channel Separation)		
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 30KHz, VBW=100KHz, Sweep Time = Auto.

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

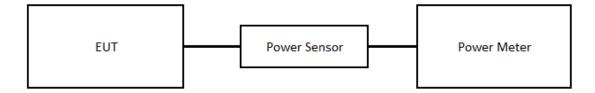
8.6 TEST RESULTS

Please refer to the APPENDIX G.

9 OUTPUT POWER TEST

9.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(1)	Peak Output Power	0.125Watt or 21dBm	2400-2483.5	PASS


9.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 3MHz, VBW= 3MHz, Sweep time = Auto.

9.3 DEVIATION FROM STANDARD

No deviation.

9.4 TEST SETUP

9.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

9.6 TEST RESULTS

Please refer to the APPENDIX H.

10 ANTENNA CONDUCTED SPURIOUS EMISSION

10.1 APPLIED PROCEDURES / LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

10.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=100KHz, Sweep time = Auto.
- c. Offset=antenna gain+cable loss

10.3 DEVIATION FROM STANDARD

No deviation.

10.4 TEST SETUP

10.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

10.6 TEST RESULTS

Please refer to the APPENDIX I.

11 LIST OF MEASURING EQUIPMENTS							
	Kind of	AC Pow	er Line Conducted	d Emissions	Colibrator	Colibrated	
ltem	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	TWO-LINE V-NETWORK	R&S	ENV216	101339	2021/3/10	2022/3/9	
2	Test Cable	EMCI	EMCCFD300-BM -BMR-6000	170714	2021/6/7	2022/6/6	
3	EMI Test Receiver	R&S	ESR 7	101433	2020/12/11	2021/12/10	
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A	
			Radiated Emissio	ons			
	Kind of				Calibrated	Calibrated	
ltem	Equipment	Manufacturer	Type No.	Serial No.	Date	Until	
1	Preamplifier	EMCI	EMC02325B	980217	2021/4/8	2022/4/7	
2	Preamplifier	EMCI	EMC012645B	980267	2021/4/8	2022/4/7	
3	Preamplifier	EMCI	EMC001340	980555	2021/4/8	2022/4/7	
4	Test Cable	EMCI	EMC-SM-SM-100	180809	2021/4/8	2022/4/7	
5	Test Cable	EMCI	EMC104-SM-SM- 3000	151205	2021/4/8	2022/4/7	
6	Test Cable	EMCI	EMC-SM-SM-700	180408	2021/4/8	2022/4/7	
7	MXE EMI Receiver	Agilent	N9038A	MY554200087	2021/5/27	2022/5/26	
8	Signal Analyzer	Agilent	N9010A	MY56480554	2021/8/25	2022/8/24	
9	Loop Ant	Electro-Metrics	EMCI-LPA600	274	2021/6/1	2022/5/31	
10	Horn Ant	SCHWARZBECK		9120D-1342	2021/6/2	2022/6/1	
11	Horn Ant	Schwarzbeck	BBHA 9170	BBHA 9170340	2021/7/9	2022/7/8	
12	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	VULB 9168-352	2021/8/11	2022/8/10	
13	5dB Attenuator	EMCI	EMCI-N-6-05	AT-N0625	2021/8/11	2022/8/10	
14	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A	
		Num	ber of Hopping Fr	anoncy			
	Kind of	num	ser of hopping Fr	equency	Calibrated	Calibrated	
tem	Equipment	Manufacturer	Type No.	Serial No.	Date	Until	
1	Spectrum Analyzer	R&S	FSP 30	100854	2022/4/12	2023/4/11	
		Δνα	erage Time of Occ	upancy			
ltem	Kind of	Manufacturer	Type No.	Serial No.	Calibrated	Calibrated	
1	Equipment Spectrum	R&S	FSP 30	100854	Date 2022/4/12	Until 2023/4/11	
	Analyzer						
		Нор	ping Channel Sep	paration			
tem	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
	Spectrum	R&S	FSP 30	100854	2022/4/12	2023/4/11	

	Bandwidth					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP 30	100854	2022/4/12	2023/4/11

Output Power						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Power Meter	Anritsu	ML2487A	6K00004714	2021/8/15	2022/8/14
2	Power Sensor	Anritsu	MA2491A	034138	2021/8/15	2022/8/14

Antenna conducted Spurious Emission						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP 30	100854	2022/4/12	2023/4/11

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

12 EUT TEST PHOTO

Please refer to document Appendix No.: TP-2108T054-FCCP-1 (APPENDIX-TEST PHOTOS).

13 EUT PHOTOS

Please refer to document Appendix No.: EP-2108T054-2 (APPENDIX-EUT PHOTOS).

APPENDIX A AC POWER LINE CONDUCTED EMISSIONS

est Mo		Normal						ested Date	2021/10/6		
est Fre	quency	-					F	hase	Line		
80.0	dBuV										
70											
60											
50											
		x									
40		2 X							11		
30			3 X 4	5					1 <u>1</u> ×		
20			x	× 6 ×		7 10	9 X 10				
10						x	×				
O											
-10											
-20.0											
	150		0.5		(MHz)		5		30.000		
No. Mł	k. Freq.	Readii Leve	-		1.1.1.1.1	Over					
140. 100	MHz	dBu\		dBuV	dBuV	dB	Detector	Comment			
1 *	0.3210	35.8	5 9.72	45.57	59.68	-14.11	QP				
2	0.3210	25.6	0 9.72	2 35.32	49.68	-14.36	AVG				
3	0.5010	17.2	4 9.73	3 26.97	56.00	-29.03	QP				
4	0.5010				46.00	-24.93	AVG				
5	0.9622				56.00	-33.34	QP				
6	0.9622				46.00	-29.91	AVG				
7 8	3.2730				56.00 46.00	-38.54 -33.61	QP AVG				
9	5.5523				60.00	-40.46	QP				
10	5.5523				50.00	-37.22	AVG				
11	19.6170	19.5	2 10.2	3 29.75	60.00	-30.25	QP				
12	19.6170	17.84	4 10.2	3 28.07	50.00	-21.93	AVG				

est Mod	de	Normal						Т	ested Date	2021/10/6
	quency	-							hase	Neutral
estrie	quency							P	11030	Neutrai
80.0	dBuV									
70										
60										
50										
40		1 X								
30		2								
30		x	3 X	5						12
20			4 ×	X 6		7		9		×-
10				×		¥		¥0 ×		
0										
-10										
-20.0										
0.	150		0.5			(MHz)		5		30.000
No. Mk	. Freq.	Readir Level		orrect actor	Measure- ment	Limit	Over			
140. 100	MHz	dBuV		dB	dBuV	dBuV	dB	Detector	Comment	
1 *	0.3210	30.73	3 9	9.73	40.46	59.68	-19.22	QP		
2	0.3210	17.11	1 9	9.73	26.84	49.68	-22.84	AVG		
3	0.5010	13.76	5 9	9.74	23.50	56.00	-32.50	QP		
4	0.5010			9.74	14.43	46.00	-31.57	AVG		
5	0.7282			9.74	18.23	56.00	-37.77	QP		
6	0.7282			9.74	11.55	46.00	-34.45	AVG		
7 8	2.1930			9.79 9.79	13.21 8.27	56.00 46.00	-42.79 -37.73	QP AVG		
9	5.5523			0.01	12.12	60.00	-47.88	QP		
10	5.5523			0.01	7.98	50.00	-42.02	AVG		
11	19.6170			0.35	21.03	60.00	-38.97	QP		
12	19.6170	8.59	1	0.35	18.94	50.00	-31.06	AVG		

est Mo	de	dle						Tested Date	2021/10/6
est Fre	quency	•						Phase	Line
80.0 70 60 50	dBuV	+ ×							
40 30 20		2 X	3 X 4 X	5		7 ¥	9		11 X
10 0				X		×	×		12 X
-10									
-20.0									
0.	.150		0.5		(MHz)		5		30.000
No. MI	k. Freq.	Readin Level	g Corre Fact		- Limit	Over			
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	r Comment	
1 *	0.3210	35.78			59.68	-14.18	QP		
2	0.3210	25.35			49.68	-14.61	AVG		
3	0.5257	16.68			56.00	-29.59			
4	0.5257	10.38 9.09	9.73		46.00	-25.89 -37.17	AVG QP		
6	1.2210	3.27	9.74		46.00	-32.99	AVG		
7	3.2708	10.07			56.00	-36.10	QP		
8	3.2708	5.50	9.83		46.00	-30.67	AVG		
9	4.9020	10.13			56.00	-35.90	QP		
10	4.9020	6.59	9.97		46.00	-29.44	AVG		
11	21.2325	19.79	10.2	4 30.03	60.00	-29.97	QP		
12	21.2325	-3.45	10.2	4 6.79	50.00	-43.21	AVG		

st Mo	de	lo	dle								Teste	ed Date	2	021/10/6		
est Frequency -											Phas	e	Ν	Neutral		
80.0	dBu	v														
70																
60																
50																
	1 X		3													
40			x													
30	2 X		4 X	5												
20				X G					,	9				11 X		
10				×				}	{ <	¥о Х				12 X		
0																
-10																
-20.0 O	.150			0.5			(MHz)			5				30.000		
		_	Readir		rect	Measure-										
lo. M		Freq. MHz	Level dBuV		ctor	ment		CV dE		Dotosto		omment				
1		1590	33.95			43.69	dBu∀ dBu∀ 43.69 65.52		, 83	Detecto QP	r C	ommeni				
2		1590	16.63			26.37	55.52	-29.		AVG						
3 *	0.	3120	30.34			40.07	59.92	-19	85	QP						
4	0.	3120	18.76	5 9.	73	28.49	49.92	-21	43	AVG						
5		5685	12.14			21.88	56.00	-34.		QP						
6		5685	2.62	9.		12.36	46.00	-33.		AVG						
7		2708	4.63	9.		14.47	56.00	-41.		QP AVG						
8 9		2708 9020	-0.15 5.57			9.69 15.56	46.00									
9 10		9020	5.57 1.26			15.56	46.00	-40.		QP AVG						
11		7913	10.30			20.75	60.00			QP						
12		7913	-3.35			7.10	50.00			AVG						

APPENDIX B RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

Test Mode Test Frequency						Mbp				Test Dat Polarizati				1/10/8		
Temp				2441MHz 25°C						Hum.	OII		Vertical 60%			
80.0 dl	Terrip BuV/m				Z	50				num.			0	070		
								-							1	
70													>	a		
60																
50								-								
40 —																
30				3 X					5 X		6 X			<i>.</i>		
20 1 X		2 X		<u>^</u>			4 ×		×							
10														C. C		
0.0																
30.000	127.00	224.0	0	321.00)	418.0	00	515.	00 6	12.00	709.00	806	6.00	1000.00	мн	
No.	Mk.	Freq.		Read Lev			rrect ctor		easure- ment	Limit	C	Over				
		MHz		dBu	V	C	βB	dl	3uV/m	dBuV/m	า	dB	Detector	Comme	ent	
1	*	55.672	7	32.9)3	-9	.08	2	23.85	40.00	-1	6.15	peak			
2		193.154	40	32.2	23	-11	1.82	1	20.41	43.50	-2	23.09	peak			
3		286.56	50	36.4	1	-8	.58	1	27.83	46.00	-1	8.17	peak			
4		436.009	97	29.5	54	-4	.81	2	24.73	46.00	-2	21.27	peak			
5		562.724	40	29.5	53	-2	.24	2	27.29	46.00	-1	8.71	peak			
6		710.87	53	29.2	28	0	.38	2	29.66	46.00	-1	6.34	peak			

	Test Mo st Frequ				Mbps) 1MHz			Test Date Polarizatio			I/10/8 zontal		
Temp					5°C			Hum.		60%			
80.0 dB	uV/m	- 22			20			100					
			1									1	
70	k									×			
50													
50													
io			эх Х										
:0			×	4 X			Б		6 X				
	1 X	2 X					5 X						
:0	^												
0					2								
0.0													
30.000	127.00	224.00	321.0	0	418.00	515.	00 61	2.00 70)9.00 806	.00	1000.00	мн	
No.	Mk.	Freq.	Reac Lev		Correct Factor		easure- ment	Limit	Over				
		MHz	dBu	١V	dB	d	BuV/m	dBuV/m	dB	Detector	Comme	nt	
1		94.9253	35.5	59	-14.46		21.13	43.50	-22.37	peak			
2		189.8560	37.6	68	-11.66		26.02	43.50	-17.48	peak			
3	*	288.0523	45.8	88	-8.54		37.34	46.00	-8.66	peak			
4		353.5595	41.5	50	-7.18		34.32	46.00	-11.68	peak			
5		565.1490	29.9	99	-2.18		27.81	46.00	-18.19	peak			
6		777.4496	30.3	36	1.72	(32.08	46.00	-13.92	peak			

APPENDIX C RADIATED EMISSIONS - ABOVE 1 GHZ

Т	Test Mod est Frequ				Mbp: 2MH:					t Date rizatio			1/10/8 izontal
	Temp				5°C					um.			60%
30.0	dBuV/m												
20													
10	v												
00						5							
0													
0						5							
0													
:0 -			1			hoyalla	1	6		1		handharphinethradion	5 X
io 🚧	had a state of the second s	haykaran karakarakarakara	and you the stranger	ellinette lever	AUPANIPA	+	*CY	And the second s	W. Skort Broke	www.upranowaryy	alle an arthree lines	Motodal Second 1 - Million	NO WE ALL DOWN
0			2 X			-							6
0 -		5				2	8				12		×
:0						5							
0.0													
2302.	000 2322.00	D 2342.0	0 230	52.00	2382	.00	2402	.00 2	2422.00) 24	42.00 2	2462.00	2502.00 M
No.	Mk.	Freq.		ading evel		rrect ctor		easure- ment	Li	imit	Over		
		MHz	d	BuV	C	βB	dE	3uV/m	dB	uV/m	dB	Detector	Comment
1		2352.26	7 20	6.63	31	.09	5	57.72	74	4.00	-16.28	8 peak	
2		2352.26	7 7	.42	31	.09	3	8.51	54	4.00	-15.49) AVG	
3	Х	2402.00	0 60	6.08	31	.26	ę	7.34	74	4.00	23.34	peak	NoLimit
4	*	2402.00	0 6	5.60	31	.26	ç	6.86	54	4.00	42.86	AVG	NoLimit
5		2485.09	3 20	6.97	31	.52	5	58.49	74	4.00	-15.51	peak	
6		2485.09	3 3	.03	31	.52	3	84.55	54	4.00	-19.45	5 AVG	

		est Mo Frequ	lency			180N				Test D Polariza			Horiz	/10/8 zontal
30.0	dBu	Temp)			25°	С			Hum	า.		60)%
Γ														
20														
10														
00														
0												5		
								_						
'0 -														
io -	1			53×11×	0			.	hard	5 X	10.00		manutering	
50	MANNAN,	with	Nellementeral	e-k.whilew	-	n far an to	shader that was not a second	wheel	Munum	VM-Mah-Myhan 6	all and a second	warehold a state of the state o	which have a second should be a	hall the second second
										×				
	2							-						
0	x	-												
												2		
0.0														
L	30.000	2400.0	0 2420	.00	2440.00	2	460.00	248).00 2	2500.00	252	0.00 254	40.00	2580.00 MI
No		Mk.	Freq		Readin	g	Correct	Me	easure-	Limi	it	Over		
					Level		Factor		ment					
4			MHz		dBuV		dB		BuV/m	dBuV		dB	Detector	Comment
1			2384.9		25.32		31.19		56.51	74.0		-17.49	peak	
2 3		Х	2384.9 2480.0		2.81 64.98		31.19 31.51		34.00 96.49	<u>54.0</u> 74.0		-20.00 22.49	AVG peak	NoLimit
4		*	2480.0		64.90		31.51		96.49 96.16	54.0		42.16	AVG	NoLimit
5			2502.9		27.32		31.58		58.90	74.0		-15.10	peak	
6			2502.9		15.41		31.58		46.99	54.0		-7.01	AVG	

T	Test Mo est Frequ				Mbps) 2MHz			Test D Polariza				/10/8 zontal
	Temp				5°C			Hun)%
30.0	dBuV/m											
120												
110											>	
00							3			2		
90 -						10	Ň			5		
30											2	
70	1				2							
50 July	and and hear the and we	freedog to the stand was defended as	1 X	where	have he h had not	wanted	how	manufandan	MANNA	www.www.wh	number	5 4 Angener
50	970°94°10 8104 9.04°								2000			
•0			2 X									6 X
30										2		
20							2					
10.0												
No.	000 2322.00 Mk.	0 2342.00 Freq.	2362.0 Readi Leve	ing	2382.00 Correct Factor	t N	12.00 : leasure- ment	2422.00 • Lim	244 it	Over	2.00	2502.00 MH
		MHz	dBu		dB		BuV/m	dBuV	′/m	dB	Detector	Comment
1		2354.713	26.9	8	31.09		58.07	74.0	0	-15.93	peak	
2		2354.713	6.68	3	31.09		37.77	54.0	0	-16.23	AVG	
3	Х	2402.000	65.4	0	31.26		96.66	74.0	0	22.66	peak	NoLimit
4	*	2402.000	61.4		31.26		92.72	54.0		38.72	AVG	NoLimit
5		2486.953	26.0		31.53		57.62	74.0		-16.38	peak	
6		2486.953	3.02	2	31.53		34.55	54.0	0	-19.45	AVG	

		est Mo t Freq				BT(3 248	Mbp 0MH	,				est Dat				1/10/8 izontal	
		Tem					5°C					Hum.	-			0%	
30.0	dB	JV/m														1	-
20				_													
10								2								-	
00																	
10									[
80									-	1			-				
o				-				_					_				
:0										5							
		mulant	Mansham	hydere	when have	www.hm	a handah	Mulhan	WWW	WANNA	many	HALMAN	WARNA	www.mynume.Mhv	withoursel	with an advertised	1-1-1-1
50					-					ь Х							
0	2			-				-									
0	x																
°																	
20																	
0.0	00.00) 2400.	00 247	20.00	2440	00	2460	00	2480	1.00	250	0.00 4	2520.	00 254	0.00	2580.00	
No		Mk.	Fre		Rea			rrect	20.0050-0.0	easure		Limit	2320.	Over	10.00	2380.00	ј мн
140		IVIIX.	110	4.	Lev			ctor		ment		Linne		0.001			
			MH	z	dB	uV	(зB	d	3uV/m	(dBuV/m	ſ	dB	Detector	Comm	ent
1			2384.	513	25.		3′	.19	Ę	56.80		74.00		-17.20	peak		
2			2384.		2.7			.19		33.95		54.00		-20.05	AVG		
3		Х	2480.		63.			.51		94.91		74.00		20.91	peak	NoLir	
4		*	2480.		59.			.51		91.15		54.00		37.15	AVG	NoLir	nit
5			2483.		29.			.52		60.54		74.00		-13.46	peak		
6			2483.	680	16.	59	3′	.52	4	48.11		54.00		-5.89	AVG		

	est Mo Frequ				1Mbps))2MHz		Test Date Polarizatio			/10/8 tical
100	Temp				25°C		Hum.)%
130.0 dBu	iV/m									
20										
10										
10										
00										
0										
0	-									
50										
0		X								
0		×							_	
_										
0										
20									_	
0.0										
1000.000	3550.0	00 6100.	.00	8650.00	11200.00	13750.00	16300.00 18	3850.00 214	400.00	26500.00 MH
No.	Mk.	Freq.		Reading	Correct	Measure	- Limit	Over		
				Level	Factor	ment				
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.0		59.03	-9.84	49.19	74.00	-24.81	peak	
2	*	4804.0	00	55.71	-9.84	45.87	54.00	-8.13	AVG	

	est Mo Frequ				Mbps) 2MHz		Test Dat Polarizati			/10/8 zontal
165	Temp				5°C		Hum.)%
130.0 dBu	iV/m						110111.		0.	570
20										
10										
00		5								
0										
0										
0										
		-								
0		Ž.								
0										
20										
0.0										
1000.000				8650.00	11200.00				400.00	26500.00 MH
No.	Mk.	Freq	•	Reading Level	Correct Factor	Measure- ment	· Limit	Over		
		MHz		dBuV	dB	dBuV/m	dBuV/m	n dB	Detector	Comment
1		4804.0		60.37	-9.84	50.53	74.00	-23.47	peak	
2	*	4804.0	00	57.63	-9.84	47.79	54.00	-6.21	AVG	

	est Moo t Frequ				Mbps) 1MHz					Test Da olarizat				21/10/8 ertical
	Temp				5°C				· ·	Hum.				50%
130.0 dB	uV/m													
120				_						_				
110														
10														
00				<u></u>										
90														
30														
70											_			
50			1 ¥											
50			ž											
10				1										
30		52		-							92			
20														
10.0	0 3550.00	D 6100.0	0 00	50.00	11200.	00	1375	0.00	102	300.00	18850	00 4	21400.00	26500.00 M
No.	Mk.	Freq.		ading	Corr			asure		Limit		Over		20300.00 M
INU.	IVIN.	пец.		evel	Fact			nent	-	LIIIII		Over		
		MHz		BuV	dE			BuV/m	ı	dBuV/r	m	dB	Detector	r Comment
1		7323.00		7.08	-2.7			54.33		74.00		-19.67		
2	*	7323.00		1.74	-2.7			8.99		54.00		-5.01	AVG	

Т	Test Mo est Frequ			1Mbps) 11MHz		Test Date Polarization	2		/10/8 zontal
	Temp			25°C		Hum.	1)%
130.0	dBuV/m					Tion.		00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
120									
110							-		
100				S				2	
90									
80								-	
70									
60			1						
50			1 2 X						
40			^						
30				~					
20				5					
10.0									
1000.	000 3550.0	0 6100.00	8650.00	11200.00	13750.00 1	6300.00 18	850.00 214	00.00	26500.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		7323.000		-2.75	52.65	74.00	-21.35	peak	
2	*	7323.000	49.46	-2.75	46.71	54.00	-7.29	AVG	

	Fest Moo t Freque				Mbps 0MHz)				lest Da Darizat				I/10/8 tical
	Temp				5°C					Hum.	-			0%
130.0 dB	uV/m									2107				
120														
120														
10														
00														
90														
30														
70														
50			1											
50			1 X X X											
io											_			
80														
20										0				
0.0														
	0 3550.00		영화는 방법이 관심을	0.00	11200		1375				18850		400.00	26500.00 MI
No.	Mk.	Freq.		ading evel	Cori Fac			easure ment	-	Limit		Over		
		MHz		BuV	dl			3uV/m		dBuV/n	n	dB	Detector	Comment
1		7440.000) 57	.26	-2.	19	Ę	5.07		74.00		-18.93	peak	
2	*	7440.000) 50	.93	-2.1	19	2	8.74		54.00		-5.26	AVG	

	est Moo t Frequ				Mbps 0MHz					lest Da Iarizat				21/10/8 prizontal	
165	Temp	епсу			5°C				Г	Hum.				60%	
130.0 dBu	.₩/m			2	00					Tiani.				0070	
20				_				-							
10													~		
00											-				
0															
_															
0				7			-						2		
0					-										
			1 2												
0			X												
0			1000	_											-
															1
:0															-
0.0															
1000.000) 6100.00		60.00	11200		1375			00.00	1885		21400.00	26500.0	00 MH
No.	Mk.	Freq.		ading evel	Cor Fac			easure ment	-	Limit		Over	ſ		
		MHz		BuV	d			BuV/m		dBuV/r	n	dB	Detecto	or Comm	ent
1		7440.000		5.18	-2.			53.99		74.00		-20.0			
2	*	7440.000		9.83	-2.	19	2	17.64		54.00)	-6.36			

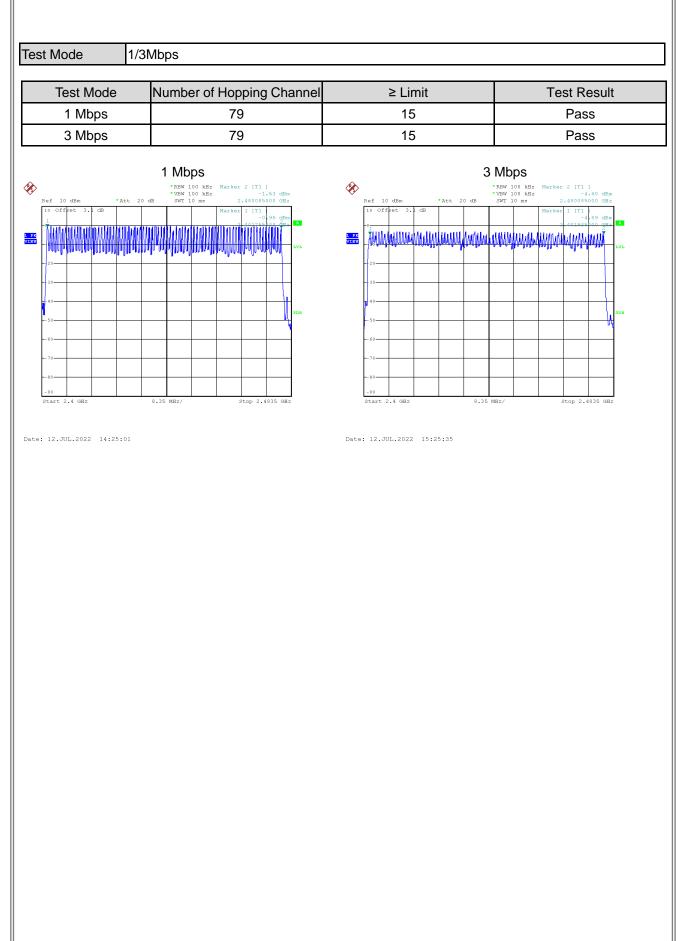
	est Mo t Frea	ode uency			Mbps) 2MHz		Test Date Polarizatio			/10/8 tical
	Temp				5°C		Hum.)%
130.0 dB	iV/m	-								
20									_	
10										
00										
o										
0										
0										
0	2	89							S	<u> </u>
0		1 X								
		2 X								
0		×								
0										
0.0										
1000.000	3550.	00 6100	.00	8650.00	11200.00	13750.00	16300.00 18	850.00 214	00.00	26500.00 MH
No.	Mk.	Freq.		Reading	Correct	Measure-	Limit	Over		
		·		Level	Factor	ment				
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.0		52.36	-9.84	42.52	74.00	-31.48	peak	
2	*	4804.0	00	42.05	-9.84	32.21	54.00	-21.79	AVG	

	est M				3Mbps) 02MHz		Test Date			/10/8
Tes	Tem	luency n			02101H2 25°C		Polarizatio Hum.	Dri		zontal)%
130.0 dB	JV/m	P			20 0		Tium.		00	J 70
120										
110										
10										
00										
90										
30										
70										
50										
50										
50										
10		1 X								
		2 X								
30		^								
20										
10.0										
1000.000) 3550.	.00 6100).00	8650.00	11200.00	13750.00	16300.00 1	8850.00 214	400.00	26500.00 MH
No.	Mk.	Freq		Reading	Correct	Measure	- Limit	Over		
				Level	Factor	ment				
		MHz		dBuV	dB	dBuV/m			Detector	Comment
1		4804.0		52.29	-9.84	42.45	74.00	-31.55	peak	
2	*	4804.0	00	42.23	-9.84	32.39	54.00	-21.61	AVG	

Test Mode Test Frequency				3Mbps) 1MHz		Test Date Polarization			/10/8 tical	
	Tem				5°C		Hum.)%
130.0 dB	ıV/m			100			1997 -			
120										
10										
00										
0										
30										
'O										
50										
50										
0		1 X								
10		2								
0		x						-		
20										
10.0						10750.00	10000.00.10	050.00	00.00	
1000.000				8650.00	11200.00				00.00	26500.00 MH
No.	Mk.	Freq	•	Reading Level	Correct Factor	Measure- ment	- Limit	Over		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4882.0	00	53.29	-9.77	43.52	74.00	-30.48	peak	
2	*	4882.0	00	42.08	-9.77	32.31	54.00	-21.69	AVG	

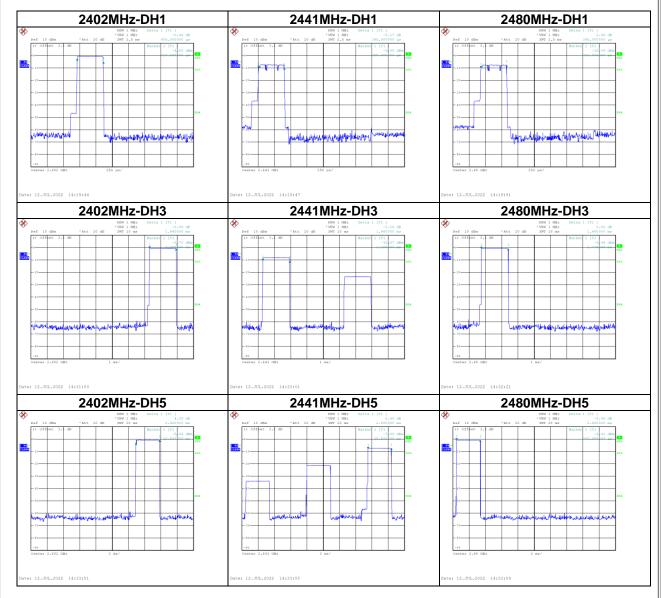
Test Mode Test Frequency				Mbps) 1MHz		Test Date Polarizatio			/10/8	
res	Temp				<u>1101HZ</u> 5°C		Hum.	11		zontal)%
130.0 dBu	iV/m	,		Z\			Tiuni.		00	<i>)</i> /0
20										
10				22	1					
00										
0										
80										
0	-									
50										
i0		1 X								
0										
80		2 X			-					
20										
10.0										
1000.000			00	8650.00	11200.00				00.00	26500.00 MH
No.	Mk.	Freq.		Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4882.00	00	53.52	-9.77	43.75	74.00	-30.25	peak	
2	*	4882.00	00	42.03	-9.77	32.26	54.00	-21.74	AVG	

Test Mode Test Frequency				3Mbps) 0MHz		Test Date Polarizatio			/10/8 tical	
	Tem				5°C		Hum.)%
30.0 dB	iV/m	-								
20										
10										
00										
0										
0										
o 📃										
0										
0										
0		1 X								
		2 X								
0		X					~			
o										
0.0										
1000.000	3550.	00 6100	.00	8650.00	11200.00	13750.00	16300.00 18	850.00 214	00.00	26500.00 MH
No.	Mk.	Freq		Reading	Correct	Measure-	Limit	Over		
				Level	Factor	ment				
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.0		53.03	-9.68	43.35	74.00	-30.65	peak	
2	*	4960.0	00	42.16	-9.68	32.48	54.00	-21.52	AVG	

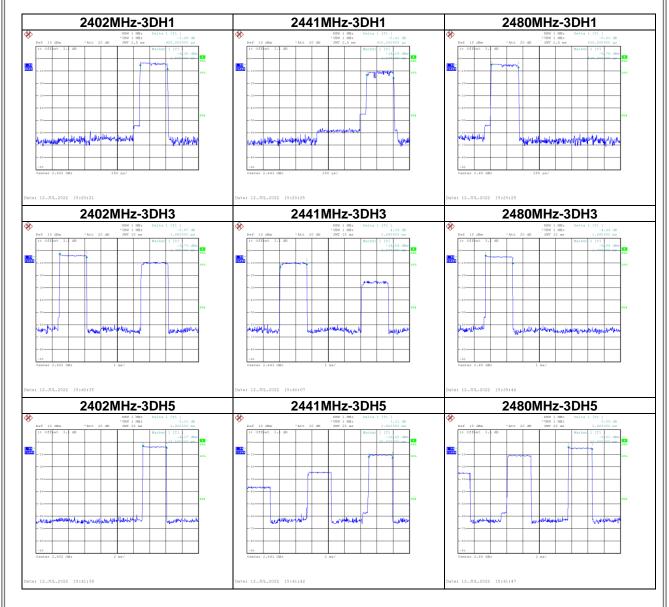


Test Mode Test Frequency				BT(3	Mbp 0MH					Test Da olarizat					/10/8			
Tes	Tem		icy				^{UIVI⊟} 5°C	Z			P	Hum.			_		zontal)%	
130.0 dB	uV/m	ιμ				20	50					Tium.	•			00	J 70	
		_																1
120		_						×									_	
10																		
10																		1
00		_	5					5										
0																		
30			2															
70									-									
50																		
															- É			
50			1 X												-		2	
10			2012 2012						_									
			2 X															
30																		1
20			5					5										
10.0																		
1000.00	0 3550	.00	6100	.00	8650	.00	1120	00.00	1375	i0.00	163	00.00	1885	0.00	2140	0.00	26500.0	ю мн
No.	Mk.		Freq	•		ding vel		rrect actor		easure ment) -	Limit		Ove	er			
			MHz		dB			dB		3uV/m	١	dBuV/r	m	dB		Detector	Comm	ent
1		2	1960.0	00	53	.93	-9	9.68	2	14.25		74.00)	-29.7	75	peak		
2	*	2	1960.0	00	42	.05	-9	9.68	3	32.37		54.00)	-21.6	63	AVG		

APPENDIX D NUMBER OF HOPPING CHANNEL

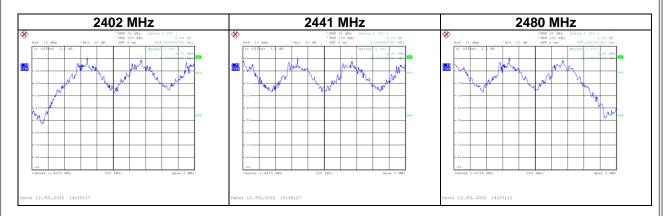


APPENDIX E AVERAGE TIME OF OCCUPANCY

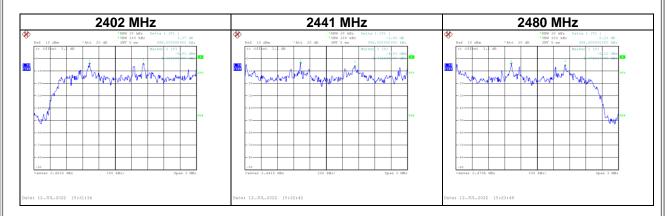


Test Mode	1Mbps				
Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limits (s)	Test Result
DH5	2402	2.9200	0.3115	0.4000	Pass
DH3	2402	1.6400	0.2624	0.4000	Pass
DH1	2402	0.4050	0.1296	0.4000	Pass
DH5	2441	2.8800	0.3072	0.4000	Pass
DH3	2441	1.6600	0.2656	0.4000	Pass
DH1	2441	0.3950	0.1264	0.4000	Pass
DH5	2480	2.9200	0.3115	0.4000	Pass
DH3	2480	1.6600	0.2656	0.4000	Pass
DH1	2480	0.3950	0.1264	0.4000	Pass

Test Mode	3Mbps				
Data Packet	Frequency (MHz)	Pulse Duration(ms)	Dwell Time(s)	Limits(s)	Test Result
3DH5	2402	2.9200	0.3115	0.4000	Pass
3DH3	2402	1.6600	0.2656	0.4000	Pass
3DH1	2402	0.4200	0.1344	0.4000	Pass
3DH5	2441	2.9200	0.3115	0.4000	Pass
3DH3	2441	1.6400	0.2624	0.4000	Pass
3DH1	2441	0.4100	0.1312	0.4000	Pass
3DH5	2480	2.9200	0.3115	0.4000	Pass
3DH3	2480	1.6800	0.2688	0.4000	Pass
3DH1	2480	0.4150	0.1328	0.4000	Pass



APPENDIX F HOPPING CHANNEL SEPARATION MEASUREMENT



Test Mode Hopping on _1Mbps								
Frequency (MHz)	Channel Separation (MHz)	2/3 of 20dB Bandwidth (MHz)	Test Result					
2402	0.995	0.677	Pass					
2441	1.005	0.627	Pass					
2480	0.990	0.689	Pass					

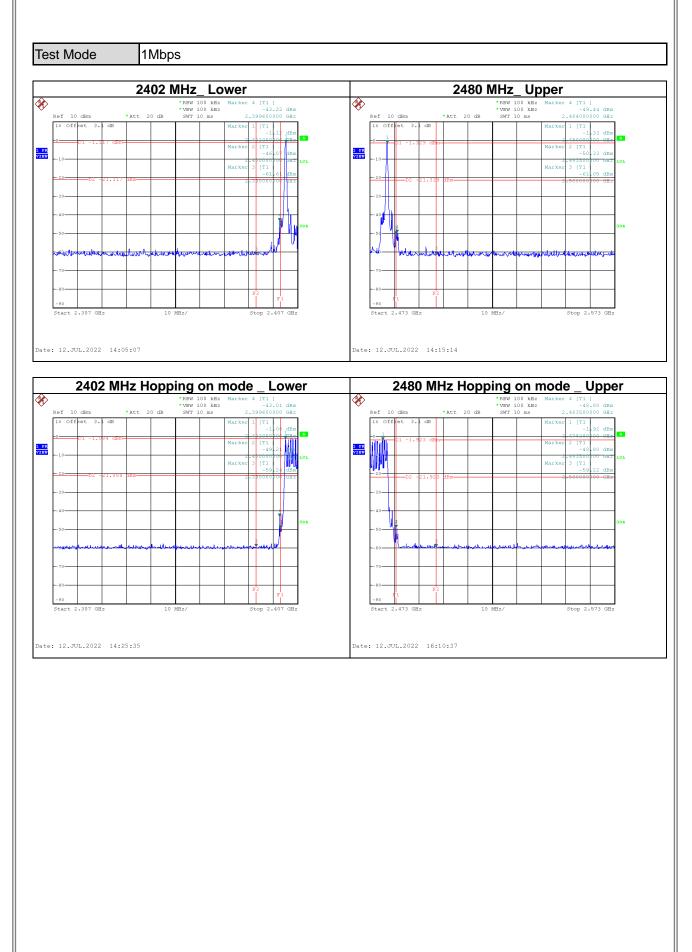
Test Mode Hopping on _3Mbps								
Frequency (MHz)	Channel Separation (MHz)	2/3 of 20dB Bandwidth (MHz)	Test Result					
2402	0.996	0.835	Pass					
2441	0.999	0.863	Pass					
2480	0.999	0.837	Pass					

BIL

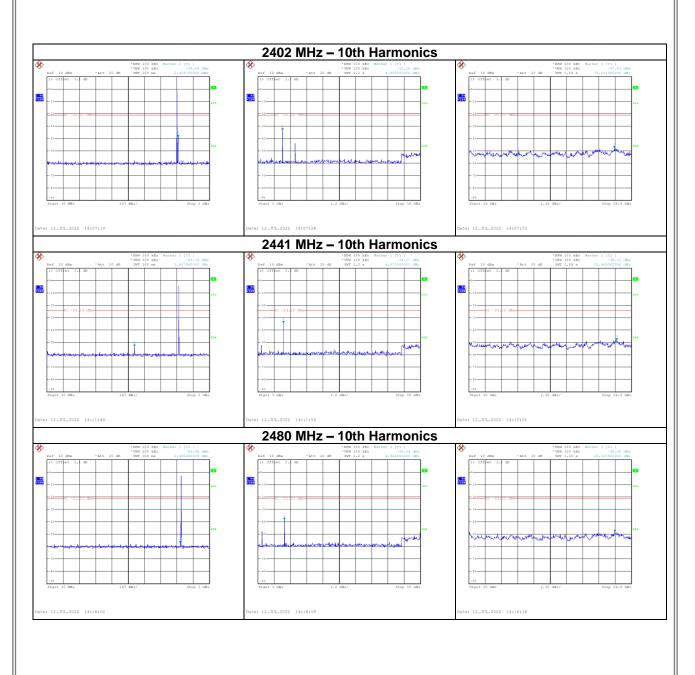
Test Mode 1Mbps								
Frequency (MHz)	20dB Bandwidth (MHz)	99% Occupied BW (MHz)	Test Result					
2402	1.016	0.896	Pass					
2441	0.940	0.900	Pass					
2480	1.034	0.896	Pass					

Test Mode 3Mbps								
Frequency (MHz)	20dB Bandwidth (MHz)	99% Occupied BW (MHz)	Test Result					
2402	1.252	1.196	Pass					
2441	1.294	1.200	Pass					
2480	1.256	1.196	Pass					

APPENDIX H OUTPUT POWER



Test Mode	1Mbps		Teste	d Date 2	2022/7/12			
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result			
2402	2.40	0.0017	20.97	0.1250	Pass			
2441	2.13	0.0016	20.97	0.1250	Pass			
2480	1.85	0.0015	20.97	0.1250	Pass			
Test Mode	2Mbps		Teste	d Date 2	2022/7/12			
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result			
2402	1.23	0.0013	20.97	0.1250	Pass			
2441	0.93	0.0012	20.97	0.1250	Pass			
2480	0.23	0.0011	20.97	0.1250	Pass			
Test Mode	3Mbps		Teste	d Date 2	2022/7/12			
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result			
2402	1.37	0.0014	20.97	0.1250	Pass			
2441	0.97	0.0013	20.97	0.1250	Pass			
2480	0.38	0.0011	20.97	0.1250	Pass			



APPENDIX I ANTENNA CONDUCTED SPURIOUS EMISSION

