

Radio Test Report

FCC ID: UFOOPN3200N

This report concerns (check one) : 🛛 Original Grant 🗌 Class II Change

Project No. Model Name Equipment Applicant Address

: 1405027 : Handy Image Scanner : OPN-3200n : OPTOELECTRONICS CO., LTD. : 4-12-17, Tsukagoshi, Warabi-shi, Saitama Pref., 335-0002, Japan

Kao

(Andv

hiu)

Date of Receipt : May. 06, 2014 Issued Date Tested by

Date of Test : May. 06, 2014 ~ Sep. 19, 2014 : Sep. 23, 2014 : BTL Inc.

Testing Engineer

Technical Manager

Authorized Signatory

BTL IN

B1, No.37, Lane 365, Yang Guang St., Nei-Hu District, Taipei City 114, Taiwan. TEL:+886-2-2657-3299 FAX: +886-2- 2657-3331

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with the standards traceable to National Measurement Laboratory (**NML**) of **R.O.C.**, or National Institute of Standards and Technology (**NIST**) of **U.S.A.**

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

BTL's reports must not be used by the client to claim product endorsement by the authorities or any agency of the Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and **BTL-self**, extracts from the test report shall not be reproduced except in full with **BTL**'s authorized written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO Guide 17025 requirements, and accredited by the conformity assessment authorities listed in this test report.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Table of Contents

REPOR	T ISSUED HISTORY	6
1	CERTIFICATION	7
2.	SUMMARY OF TEST RESULTS	8
2.1	TEST FACILITY	9
2.2	MEASUREMENT UNCERTAINTY	9
3	GENERAL INFORMATION	10
3.1	GENERAL DESCRIPTION OF EUT	10
3.2	DESCRIPTION OF TEST MODES	12
3.3	TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING	13
3.4	BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	14
3.5	DESCRIPTION OF SUPPORT UNITS	15
4	CONDUCTED EMISSION	16
4.1	LIMIT	16
4.2	MEASUREMENT INSTRUMENTS LIST	16
4.3	TEST PROCEDURES	17
4.4	TEST SETUP LAYOUT	17
4.5	DEVIATION FROM TEST STANDARD	17
4.6	EUT OPERATING CONDITIONS	17
4.7	TEST RESULTS	18
5	ANTENNA CONDUCTED SPURIOUS EMISSION	20
5.1	LIMIT	20
5.2	MEASUREMENT INSTRUMENTS LIST	20
5.3	TEST PROCEDURES	20
5.4	TEST SETUP LAYOUT	20
5.5	DEVIATION FROM TEST STANDARD	20
5.6	EUT OPERATING CONDITIONS	20
5.7	TEST RESULTS	21
6	HOPPING CHANNEL SEPARATION	29
6.1	LIMIT	29
6.2	MEASUREMENT INSTRUMENTS LIST	29
6.3	MEASURING INSTRUMENTS SETTING	29
6.4	TEST PROCEDURES	29
6.5	TEST SETUP LAYOUT	29
6.6	DEVIATION FROM TEST STANDARD	29
6.7	EUT OPERATING CONDITIONS	29
6.8	TEST RESULTS	30
7	MAXIMUM PEAK CONDUCTED OUTPUT POWER	38
7.1	LIMIT	38

Table of Contents

7.2	MEASUREMENT INSTRUMENTS LIST	38
7.3	TEST PROCEDURES	38
7.4	TEST SETUP LAYOUT	38
7.5	DEVIATION FROM TEST STANDARD	38
7.6	EUT OPERATING CONDITIONS	38
7.7	TEST RESULTS	39
8	RADIATED SPURIOUS EMISSION (9 KHZ TO 1 GHZ)	43
8.1	LIMIT	43
8.2	MEASUREMENT INSTRUMENTS LIST	44
8.3	MEASURING INSTRUMENTS SETTING	44
8.4	TEST PROCEDURES	44
8.5	DEVIATION FROM TEST STANDARD	45
8.6	TEST SETUP LAYOUT	45
8.7	EUT OPERATING CONDITIONS	45
8.8	TEST RESULTS	46
8.9	TEST RESULTS	47
9	RADIATED SPURIOUS EMISSION (ABOVE 1 GHZ)	49
9.1	LIMIT	49
9.2	MEASUREMENT INSTRUMENTS LIST	50
9.3	MEASURING INSTRUMENTS SETTING	50
9.4	TEST PROCEDURES	50
9.5	DEVIATION FROM TEST STANDARD	51
9.6	TEST SETUP LAYOUT	51
9.7	EUT OPERATING CONDITIONS	51
9.8	TEST RESULTS	52
9.9	TEST RESULTS (RESTRICTED BANDS)	76
10	NUMBER OF HOPPING FREQUENCY	84
10.1	LIMIT	84
10.2	MEASUREMENT INSTRUMENTS LIST	84
10.3	MEASURING INSTRUMENTS SETTING	84
10.4	TEST PROCEDURES	84
10.5	TEST SETUP LAYOUT	84
10.6	DEVIATION FROM TEST STANDARD	84
10.7	EUT OPERATING CONDITIONS	84
10.8	TEST RESULTS	85
11	AVERAGE TIME OF OCCUPANCY	87
11.1	LIMIT	87
11.2	MEASUREMENT INSTRUMENTS LIST	87

Table of Contents

11.3	TEST PROCEDURES	87
11.4	TEST SETUP LAYOUT	87
11.5	DEVIATION FROM TEST STANDARD	87
11.6	EUT OPERATING CONDITIONS	87
11.7	TEST RESULTS	88
12	EUT TEST PHOTO	100

REPORT ISSUED HISTORY

Issue No.	Description	Issued Date
Issue No. BTL-FCCP-2-1405027	Description Original report.	Issued Date Sep. 23, 2014

1 CERTIFICATION

Equipment :	Handy Image Scanner
Brand Name :	OPTICON
Model Name :	OPN-3200n
Applicant :	OPTOELECTRONICS CO., LTD.
Manufacturer :	OPTOELECTRONICS CO., LTD.
Address :	4-12-17, Tsukagoshi, Warabi-shi, Saitama Pref., 335-0002, Japan
Factory :	Hokkaido Electronic Industry Co., Ltd.
Address :	118-122 Kamiashibetsu-cho, Ashibetsu-shi, Hokkaido 079-1371 Japan.
Date of Test :	May. 06, 2014 ~ Sep. 19, 2014
Standard(s) :	FCC Part 15, Subpart C: 2013
	ANSI C63.4-2009

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. BTL-FCCP-2-1405027) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of TAF according to the ISO-17025 quality assessment standard and technical standard(s).

2. SUMMARY OF TEST RESULTS

Standard Clause	Test Item	Result
15.207	Conducted Emission	PASS
15.247 (c)	Antenna conducted Spurious Emission	PASS
15.247 (a)(1)	Hopping Channel Separation	PASS
15.247 (b)	Maximum Peak Conducted Output Power	PASS
15.247 (c)	Radiated Spurious Emission	PASS
15.247 (b)(1)	Number of Hopping Frequency	PASS
15.247 (a)(1)	Average time of occupancy	PASS
15.205	Restricted Bands	PASS
15.203	Antenna Requirement	PASS

NOTE:

1. N/A: denotes test is not applicable in this Test Report

2.1 TEST FACILITY

The test facilities used to collect the test data in this report:

Conducted emission Test:

C02: (VCCI RN: C-3477; FCC RN: 614388; FCC DN: TW1054)

1F., No. 61, Ln. 77, Sing-ai Rd., Neihu Dist., Taipei City 114, Taiwan (R.O.C.)

Radiated emission Test (Below 1 GHz):

CB08: (FCC RN: 614388; FCC DN: TW1054; IC Assigned Code: 4428C-1)

1F., No. 61, Ln. 77, Sing-ai Rd., Neihu Dist., Taipei City 114, Taiwan (R.O.C.)

Radiated emission Test (Above 1 GHz):

CB08: (VCCI RN: G-91; FCC RN: 614388; FCC DN: TW1054; IC Assigned Code: 4428C-1) 1F., No. 61, Ln. 77, Sing-ai Rd., Neihu Dist., Taipei City 114, Taiwan (R.O.C.)

2.2 MEASUREMENT UNCERTAINTY

The measurement uncertainty is not specified by FCC rules and for reference only.

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2.

A. Conducted emission test:

Test Site	Measurement Frequency Range	U , (dB)	NOTE
C02	150 kHz ~ 30 MHz	1.94	

B. Radiated emission test:

Test Site	Item	Measurement Frequency Range		Uncertainty	NOTE			
			30 - 200MHz	3.35 dB				
	Radiated emission at 3m		200 - 1000MHz	3.11 dB				
			1 - 18GHz	3.97 dB				
CB08			18 - 40GHz	4.01 dB				
CBUO		3m		30 - 200MHz	3.22 dB			
				Vertical Polarization	Vertical	200 - 1000MHz	3.24 dB	
					1 - 18GHz	4.05 dB		
			18 - 40GHz	4.04 dB				

Our calculated Measurement Instrumentation Uncertainty is shown in the tables above. These are our U_{lab} values in CISPR 16-4-2 terminology.

Since Table 1 of CISPR 16-4-2 has values of measurement instrumentation uncertainty, called U_{CISPR} , as follows:

Conducted Disturbance (mains port) – 150 kHz – 30 MHz : 3.6 dB

Radiated Disturbance (electric field strength on an open area test site or alternative test site) – 30 MHz - 1000 MHz : 5.2 dB

It can be seen that our U_{lab} values are smaller than $U_{\text{CISPR}}.$

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	Handy Image Scanner			
Brand Name	OPTICON			
Model Name	OPN-3200n			
OEM Brand/Model Name	N/A			
Model Difference	N/A			
	Operation Frequency	2402 MHz~ 2480 MHz		
	Modulation Type	FHSS(GFSK 丶 π /4-DQPSK 丶 8DPSK)		
	Bit Rate of Transmitter	1/2/3 Mbps		
	Number Of Channel	Please refer to the Note 2.		
Product Description	Antenna Designation	Please refer to the Note 3.		
	Antenna Gain(Peak)	Please refer to the Note 3.		
		1 Mbps: -0.76dBm (0.0008W)		
		3 Mbps: 2.44dBm (0.0018W)		
	More details of EUT technical specification please refer to the User's Manual.			
	1# DC Voltage supplied from AC/DC adapter via charger (CHG-3201)			
Power Source	Model Name: SFP0602000P-PSE/Ver.2			
	2# Supplied from lithium-ion battery			
	Brand/Name: OPTICON, OPR33015505-0-00			
Power Rating	1# I/P: AC 100-240V 50/60Hz 0.5A / O/P: DC 6V 2000mA 2# 3.7V 1100mAh 4.1Wh			
Connecting I/O Port(s)	Please refer to the User's Manual			

NOTE:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual. 2. Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

3. Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	Panasonic	EBMGH5A245GJ	Chip antenna	N/A	0.50

3.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Test Items	Mode	Data Rate	Tested Channel/Mode
Conducted Emission	FHSS(GFSK)	1 Mbps	2441 MHz
Antenna conducted Spurious Emission	FHSS(GFSK)	1 Mbps 3 Mbps	2402 MHz, 2441 MHz, 2480 MHz
Hopping Channel Separation	FHSS(GFSK)	1 Mbps 3 Mbps	2402 MHz, 2441 MHz, 2480 MHz
Maximum Peak Conducted Output Power	FHSS(GFSK)	1 Mbps 3 Mbps	2402 MHz, 2441 MHz, 2480 MHz
Radiated Spurious Emission (30 MHz to 1 GHz)	FHSS(GFSK)	1 Mbps	2441 MHz
Radiated Spurious Emission (above 1 GHz)	FHSS(GFSK)	1 Mbps 3 Mbps	2402 MHz, 2441 MHz, 2480 MHz
Number of Hopping Frequency	FHSS(GFSK)	1 Mbps 3 Mbps	2402 MHz ~ 2480 MHz
Average time of occupancy	FHSS(GFSK)	1 Mbps 3 Mbps	2402 MHz, 2441 MHz, 2480 MHz
Restricted Bands	FHSS(GFSK)	1 Mbps 3 Mbps	2402 MHz, 2441 MHz, 2480 MHz
Antenna Requirement	FHSS(GFSK)		

NOTE: (1)The measurements are performed at the highest, middle, lowest available channels.

(2)Both adapter and battery are evaluated, operated the adapter is the worst and recorded as below test data.

3.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Data Rate	1 Mbps							
Test software Version	N/A							
Frequency	2402 MHz	2441 MHz	2480 MHz					
Parameter	N/A	N/A	N/A					

Data Rate	3 Mbps							
Test software Version	N/A							
Frequency	2402 MHz	2441 MHz	2480 MHz					
Parameter	N/A N/A N/A							

3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

EUT

3.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Series No.	Note
-	-	-	-	-	-	-

Item	Shielded Type	Ferrite Core	Length	Note
-	-	-	-	-

NOTE: The support equipment was authorized by Declaration of Conformity (DOC).

4 CONDUCTED EMISSION

4.1 LIMIT

FREQUENCY	Class A	(dBuV)	Class B (dBuV)		
(MHz)	Quasi-peak	Average	Quasi-peak	Average	
0.15 - 0.5	79.00	66.00	66 - 56 *	56 - 46 *	
0.50 - 5.0	73.00	60.00	56.00	46.00	
5.0 - 30.0	73.00	60.00	60.00	50.00	

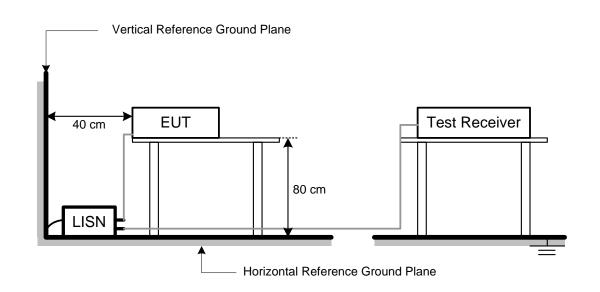
NOTE:

- The tighter limit applies at the band edges.
 The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- 3. The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor(if use) Margin Level = Measurement Value - Limit Value

4.2 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	LISN	Schwarzbeck	NSLK 8127	8127685	Jan. 08, 2015
2	Test Cable	TIMES	CFD300-NL	C01	Jun. 15, 2015
3	Spectrum Analyzer	Agilent	N9020A	MY51160196	Jun. 19, 2015
4	4 Measurement EZ		EZ_EMC (Version NB-02A) N/A		N/A

NOTE: N/A: denotes No Model Name, No Serial No. or No Calibration specified.


4.3 TEST PROCEDURES

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.

e. For the actual test configuration, please refer to the related Item –EUT Test Photos. **NOTE:**

- a. Reading in which marked as Peak, QP or AVG means measurements by using are Quasi-Peak or Average Mode with Detector BW=9 kHz (6 dB Bandwidth).
- b. All readings are Peak Mode value unless otherwise stated QP or AVG in column of Note. If the Peak or QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only Peak or QP Mode was measured, but AVG Mode didn't perform.

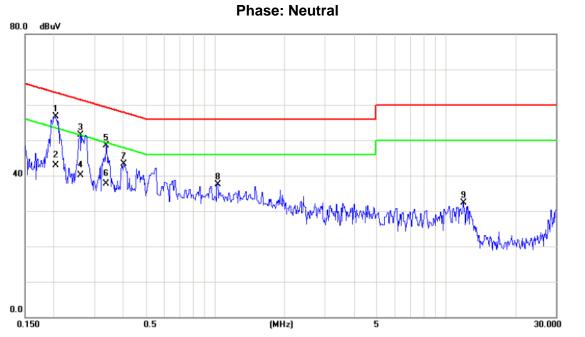
4.4 TEST SETUP LAYOUT

4.5 DEVIATION FROM TEST STANDARD


No deviation

4.6 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.


4.7 TEST RESULTS

EUT	Handy Image Scanner	Model Name	OPN-3200n				
Temperature	24°C	Relative Humidity	46%				
Test Voltage	AC 120V/60Hz						
Test Mode	Bluetooth/1 Mbps/2441 MHz						

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
_	1	*	0.2025	47.37	9.29	56.66	63.51	- <mark>6.8</mark> 5	peak	
	2		0.2025	33.32	9.29	42.61	53.51	-10.90	AVG	
	3		0.2662	42.54	8.87	51.41	61.24	-9.83	peak	
	4		0.2662	29.57	8.87	38.44	51.24	-12.80	AVG	
_	5		0.3404	38.82	8.75	47.57	59.19	-11.62	peak	
	6		0.3404	27.42	8.75	36.17	49.19	-13.02	AVG	
	7		0.4027	34.68	8.91	43.59	57.80	-14.21	peak	
	8		0.5270	32.31	8.97	41.28	56.00	-14.72	peak	
	9		29.7998	25.63	10.33	35.96	60.00	-24.04	peak	

EUT	Handy Image Scanner	Model Name	OPN-3200n
Temperature	24°C	Relative Humidity	46%
Test Voltage	AC 120V/60Hz		
Test Mode	Bluetooth/1 Mbps/2441 MHz		

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1 *	0.2040	47.36	9.28	56.64	63.45	-6.81	peak	
2	0.2040	33.58	9.28	42.86	53.45	-10.59	AVG	
3	0.2600	42.51	8.92	51.43	61.43	-10.00	peak	
4	0.2600	31.10	8.92	40.02	51.43	-11.41	AVG	
5	0.3370	39.75	8.75	48.50	59.28	-10.78	peak	
6	0.3370	28.94	8.75	37.69	49.28	-11.59	AVG	
7	0.4013	34.32	8.91	43.23	57.83	-14.60	peak	
8	1.0220	28.49	8.95	37.44	56.00	-18.56	peak	
9	11.9000	22.27	9.98	32.25	60.00	-27.75	peak	

5 ANTENNA CONDUCTED SPURIOUS EMISSION

5.1 LIMIT

Test Item	Frequency Range (MHz)	Limit	
Antenna conducted Spurious Emission	30-25000	20 dB less than the peak value of fundamental frequency	

5.2 MEASUREMENT INSTRUMENTS LIST

I	ltem	Kind of Equipment	Manufacturer Type No.		Serial No.	Calibrated until
	1	Spectrum Analyzer	R&S	FSP-30	100854	Sep. 08, 2015

NOTE: N/A: denotes No Model Name, No Serial No. or No Calibration specified.

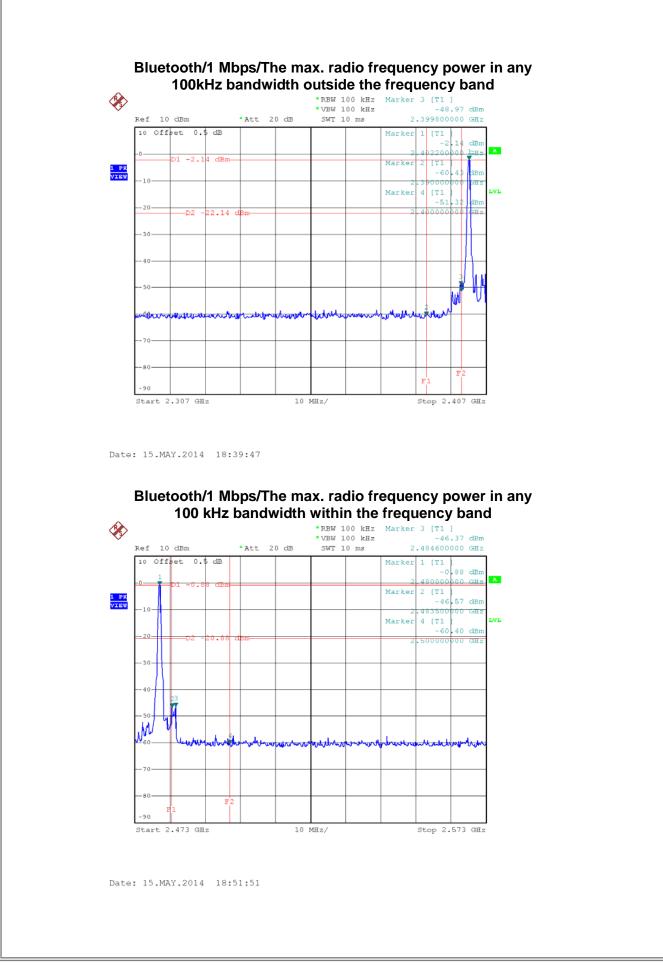
5.3 TEST PROCEDURES

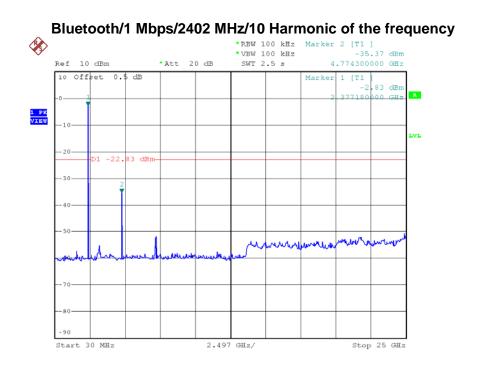
- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 100KHz, VBW=100KHz, Sweep time = Auto.

5.4 TEST SETUP LAYOUT

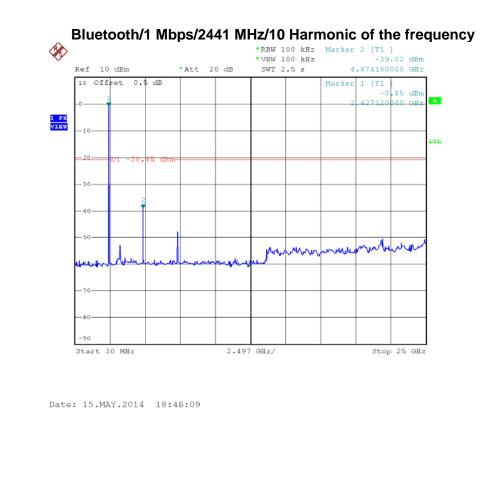
5.5 DEVIATION FROM TEST STANDARD

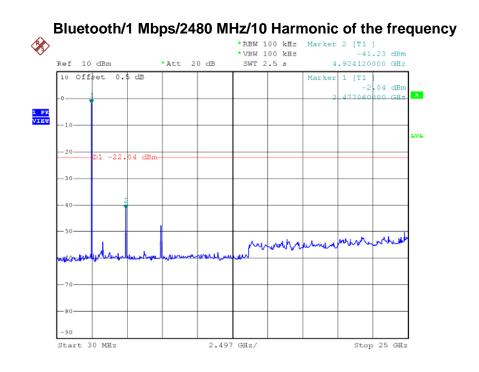
No deviation


5.6 EUT OPERATING CONDITIONS

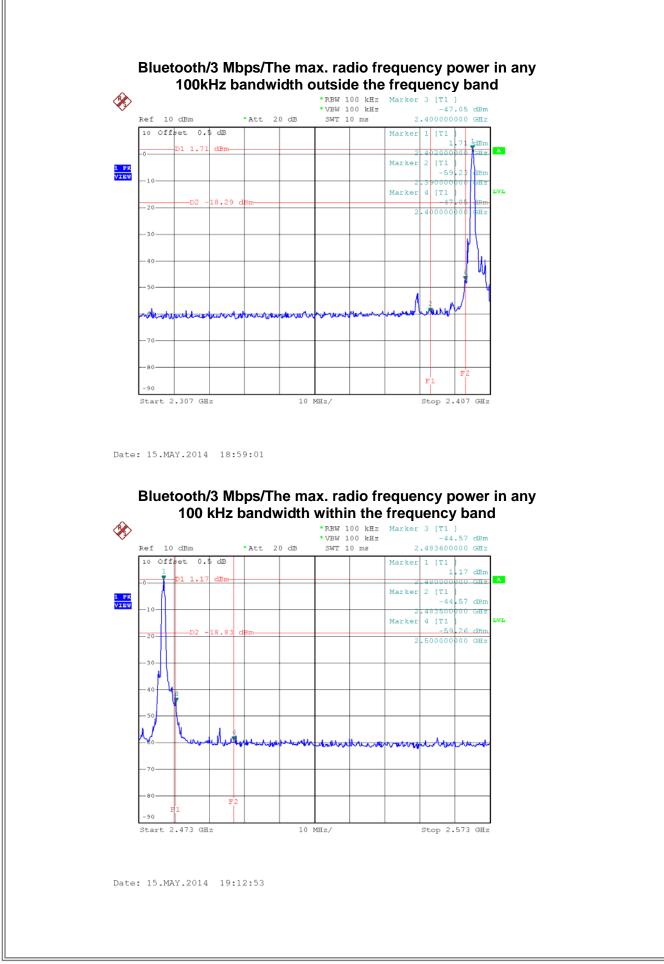

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

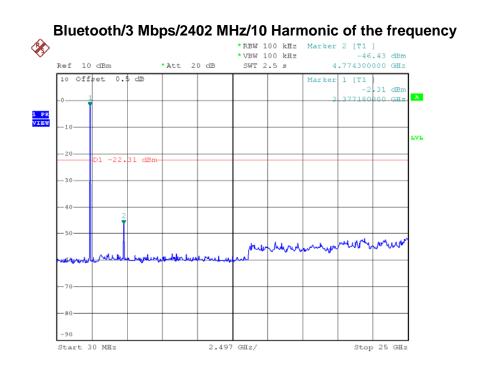
5.7 TEST RESULTS


EUT	Handy Image Scanner	Model Name	OPN-3200n
Temperature	26°C	Relative Humidity	46%
Test Voltage	AC 120V/60Hz		
Test Mode	Bluetooth/1 Mbps		

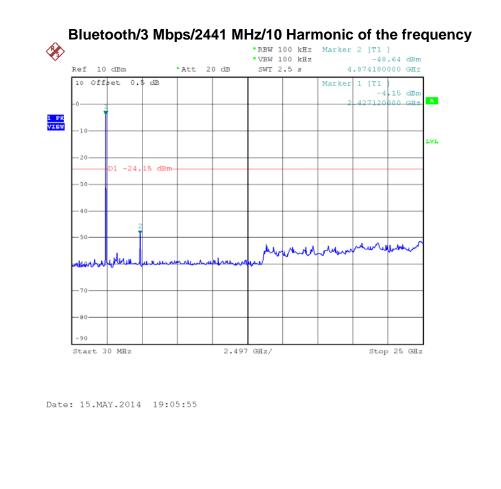

Channel of Worst Data						
The max. radio frequenc bandwidth outside the free		The max. radio frequency power in any 100 kHz bandwidth within the frequency band.				
FREQUENCY(MHz)	POWER(dBm)	FREQUENCY(MHz)	POWER(dBm)			
2399.80 -48.97		2484.60	-46.37			
	Result					
In any 100kHz bandwidth outside the frequency band, the radio frequency power is at least 20dB below that in the 100kHz bandwidth within the band that contains the highest lever of the desired power.						

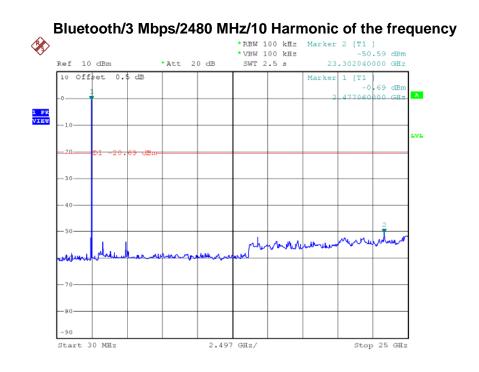
Date: 15.MAY.2014 18:41:25




Date: 15.MAY.2014 18:50:57

EUT	Handy Image Scanner	Model Name	OPN-3200n
Temperature	26°C	Relative Humidity	46%
Test Voltage	AC 120V/60Hz		
Test Mode	Bluetooth/3 Mbps		


Channel of Worst Data						
The max. radio frequenc bandwidth outside the free		The max. radio frequency power in any 100 kHz bandwidth within the frequency band.				
FREQUENCY(MHz)	POWER(dBm)	FREQUENCY(MHz)	POWER(dBm)			
2400.00 -47.05		2483.60	-44.57			
	Result					
In any 100kHz bandwidth outside the frequency band, the radio frequency power is at least 20dB below that in the 100kHz bandwidth within the band that contains the highest lever of the desired power.						



Report No.: BTL-FCCP-2-1405027

Date: 15.MAY.2014 18:58:14

Date: 15.MAY.2014 19:12:08

6 HOPPING CHANNEL SEPARATION

6.1 LIMIT

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

6.2 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum Analyzer	R&S	FSP-30	100854	Sep. 08, 2015

NOTE: N/A: denotes No Model Name, No Serial No. or No Calibration specified.


6.3 MEASURING INSTRUMENTS SETTING

EMI Test Receiver	Parameter Setting
Attenuation	Auto
Span Frequency	> Measurement Bandwidth or Channel Separation
RB	30 kHz (20dB Bandwidth) / 100 kHz (Channel Separation)
VB	100 kHz (20dB Bandwidth) / 300 kHz (Channel Separation)
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

6.4 TEST PROCEDURES

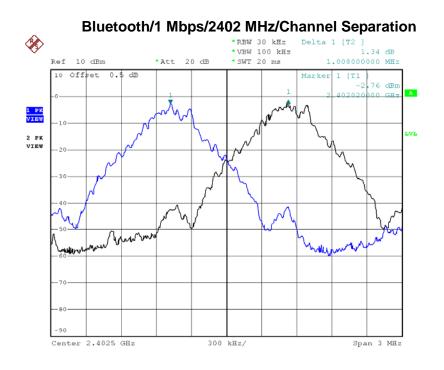
- a. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- b. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for 20 dB bandwidth measurement.
- c. The resolution bandwidth of 100 kHz and the video bandwidth of 300 kHz were utilised for channel separation measurement.

6.5 TEST SETUP LAYOUT

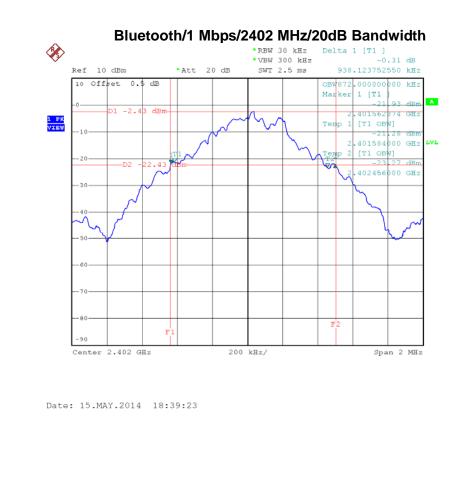
6.6 DEVIATION FROM TEST STANDARD

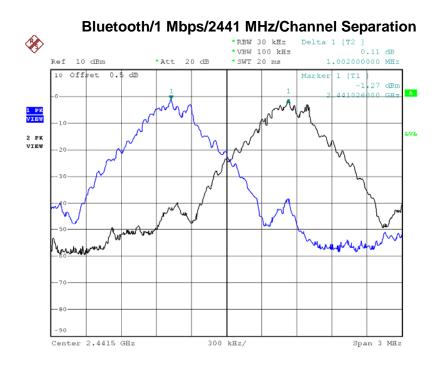
No deviation

6.7 EUT OPERATING CONDITIONS

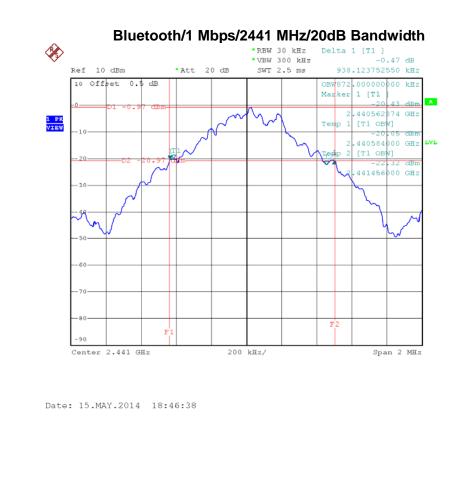

The EUT tested system was configured as the statements of 5.6 Unless otherwise a special operating condition is specified in the follows during the testing.

6.8 TEST RESULTS

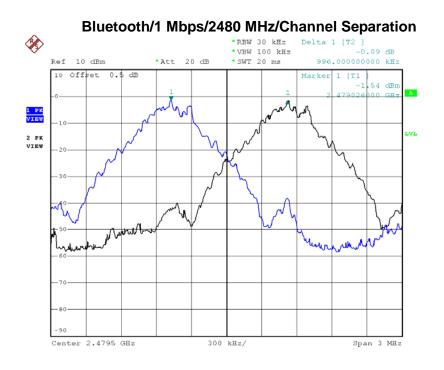

EUT	Handy Image Scanner	Model Name	OPN-3200n
Temperature	26°C	Relative Humidity	46%
Test Voltage	AC 120V/60Hz		
Test Mode	Bluetooth/1 Mbps/2402 MHz, 2441 MHz, 2480 MHz		

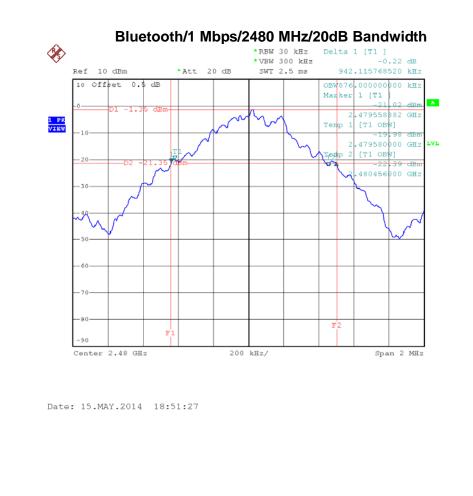

Frequency	Channel Separation (MHz)	20 dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Two-thirds of the 20 dB Bandwidth	Result
2402 MHz	1.008	0.938	0.872	0.625	PASS
2441 MHz	1.002	0.938	0.872	0.625	PASS
2480 MHz	0.996	0.942	0.876	0.628	PASS

NOTE: Ch. Separation Limits: >25 KHz or >2/3 of 20dB bandwidth

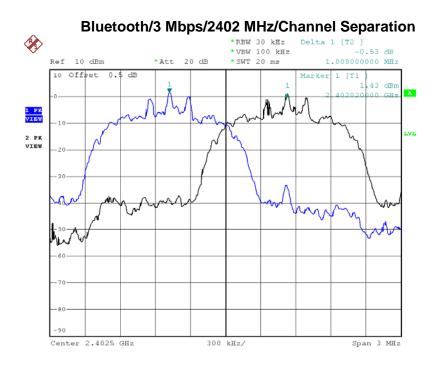


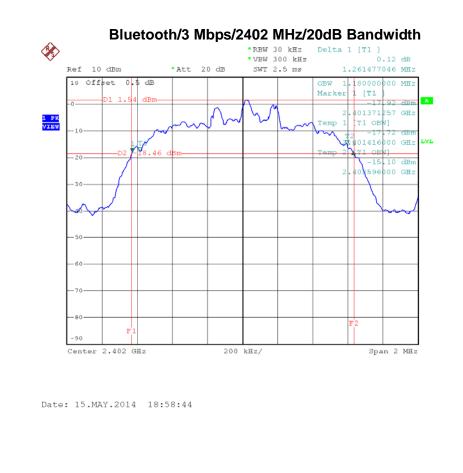
Date: 15.MAY.2014 18:42:43

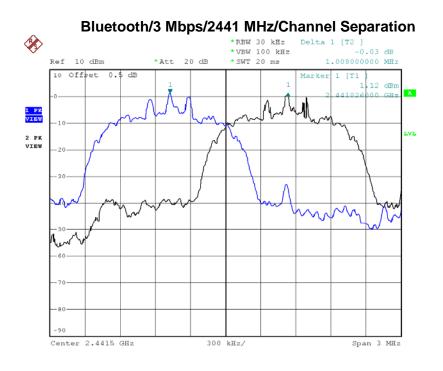



Date: 15.MAY.2014 18:48:11

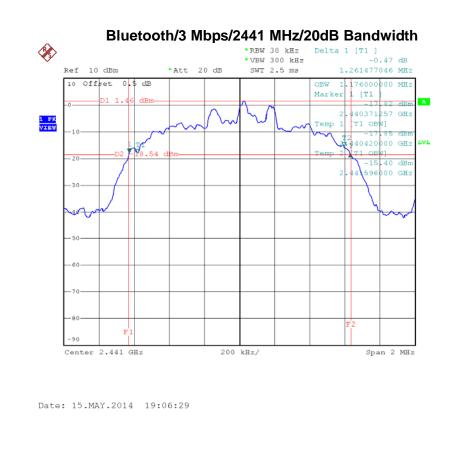
Report No.: BTL-FCCP-2-1405027

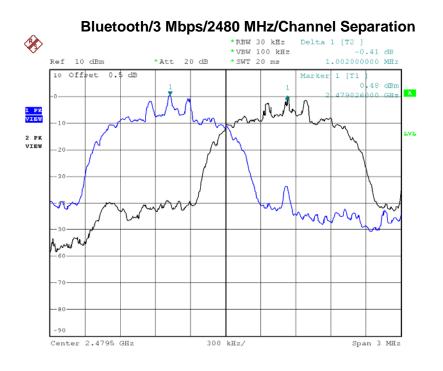

Date: 15.MAY.2014 18:53:45

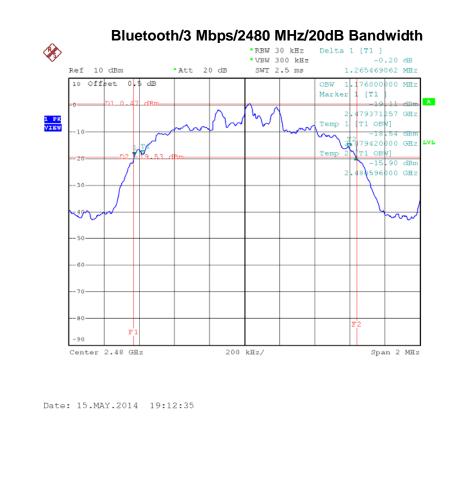

EUT	Handy Image Scanner	Model Name	OPN-3200n	
Temperature	26°C	Relative Humidity	46%	
Test Voltage	AC 120V/60Hz			
Test Mode	Bluetooth/3 Mbps/2402 MHz, 2441 MHz, 2480 MHz			


Frequency	Channel Separation (MHz)	20 dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Two-thirds of the 20 dB Bandwidth	Result
2402 MHz	1.008	1.261	1.180	0.841	PASS
2441 MHz	1.008	1.261	1.176	0.841	PASS
2480 MHz	1.002	1.265	1.176	0.844	PASS

NOTE: Ch. Separation Limits: >25 KHz or >2/3 of 20dB bandwidth




Date: 15.MAY.2014 19:02:56



Date: 15.MAY.2014 19:18:16

Date: 15.MAY.2014 19:14:35

7 MAXIMUM PEAK CONDUCTED OUTPUT POWER

7.1 LIMIT

Test Item	Frequency Range (MHz)	Limit
Maximum Peak Conducted Output Power	2400-2483.5	1 watt or 30 dBm

7.2 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum Analyzer	R&S	FSP-30	100854	Sep. 08, 2015

NOTE: N/A: denotes No Model Name, No Serial No. or No Calibration specified.

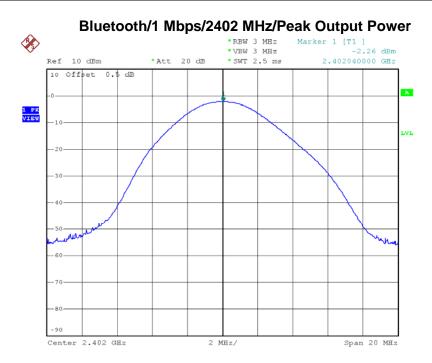
7.3 TEST PROCEDURES

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 3 MHz, VBW= 3 MHz, Sweep time = Auto.

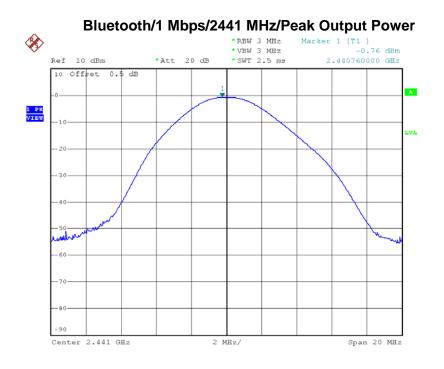
7.4 TEST SETUP LAYOUT

7.5 DEVIATION FROM TEST STANDARD

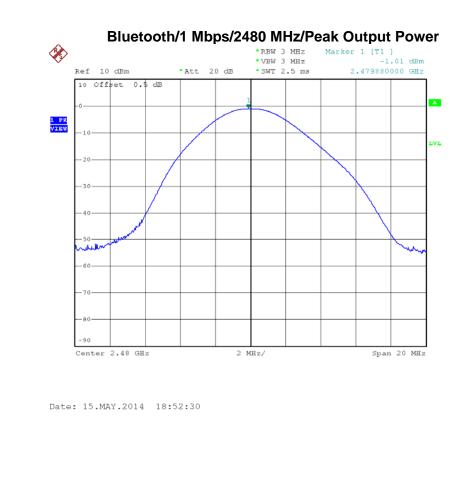
No deviation


7.6 EUT OPERATING CONDITIONS

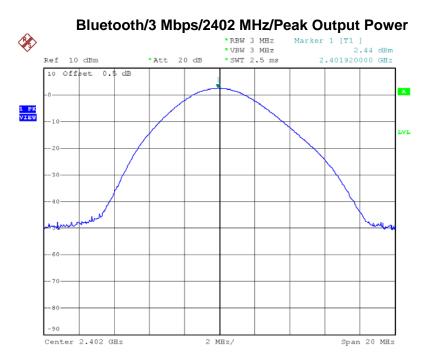
The EUT tested system was configured as the statements of 5.6 Unless otherwise a special operating condition is specified in the follows during the testing.


7.7 TEST RESULTS

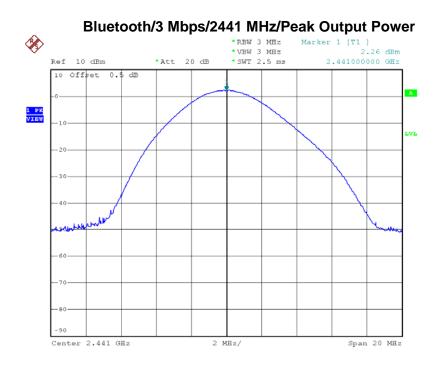
EUT	Handy Image Scanner	Model Name	OPN-3200n
Temperature	26°C	Relative Humidity	46%
Test Voltage	AC 120V/60Hz		
Test Mode	Bluetooth/1 Mbps/2402 MHz, 2441	MHz, 2480 MHz	


Fraguanay	Peak Output Power		Limit		Deput	
Frequency	(dBm)	(W)	(dBm)	(W)	Result	
2402 MHz	-2.26	0.0006	30	1	PASS	
2441 MHz	-0.76	0.0008	30	1	PASS	
2480 MHz	-1.01	0.0008	30	1	PASS	

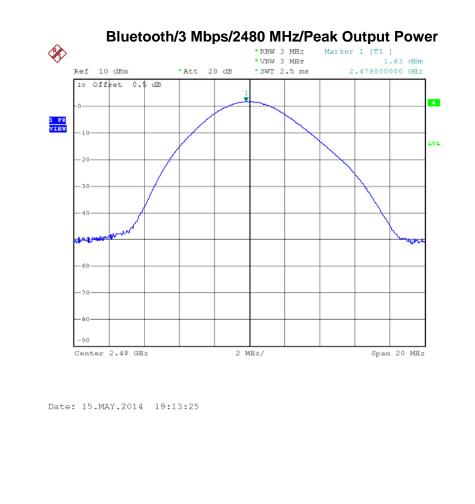
Date: 15.MAY.2014 18:40:36



Date: 15.MAY.2014 18:47:25



EUT	Handy Image Scanner	Model Name	OPN-3200n		
Temperature	26°C	Relative Humidity	46%		
Test Voltage	AC 120V/60Hz				
Test Mode	Bluetooth/3 Mbps/2402 MHz, 2441	Bluetooth/3 Mbps/2402 MHz, 2441 MHz, 2480 MHz			


Fraguanay	Peak Output Power		Limit		Popult	
Frequency	(dBm)	(W)	(dBm)	(W)	Result	
2402 MHz	2.44	0.0018	30	1	PASS	
2441 MHz	2.26	0.0017	30	1	PASS	
2480 MHz	1.63	0.0015	30	1	PASS	

Date: 15.MAY.2014 18:59:46

Date: 15.MAY.2014 19:07:17

8 RADIATED SPURIOUS EMISSION (9 KHZ TO 1 GHZ)

8.1 LIMIT

20 dB in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency Range: 9 kHz to 1 GHz						
FREQUENCY (MHz)	5					
0.009~0.490	2400/F(kHz)	300				
0.490~1.705	24000/F(kHz)	30				
1.705~30.0	30	30				
30~88	100	3				
88~216	150	3				
216~960	200	3				
Above 960	500	3				

Frequency Range: above 1 GHz					
FREQUENCY	Class A (dBu	V/m) (at 3m)	Class B (dBuV/m) (at 3m		
(MHz)	PEAK	AVERAGE	PEAK	AVERAGE	
above 1 GHz	80	60	74	54	

NOTE:

(1) The limit for radiated test was performed according to FCC PART 15B.

(2) The tighter limit applies at the band edges.
(3) Emission level (dBuV/m)=20log Emission level (uV/m).

(4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	1 Spectrum Analyzer R&S		FSP-30	100854	Sep. 08, 2015
2	Horn Antenna	Schwarzbeck	BBHA 9120	D-325	Apr. 14, 2015
3	Microwave Pre_amplifier	Agilent	8449B	3008A01714	Apr. 15, 2015
4	Microflex Cable	Harbour industries	27478LL142	1m	May. 12, 2015
5	Microflex Cable EMC		S104-SMA	8m	May. 12, 2015
6	Microflex Cable Harbour industries		27478LL142	3m	May. 12, 2015
7	Test Cable	LMR	LMR-400	12m	May. 13, 2015
8	Test Cable LMR		LMR-400	3m	May. 13, 2015
9	Pre-Amplifier	Anritsu	MH648A	M92649	Jun. 17, 2015
10	Log-Bicon Antenna	Schwarzbeck	VULB9168-352	9168-352	Jun. 10, 2015

8.2 MEASUREMENT INSTRUMENTS LIST

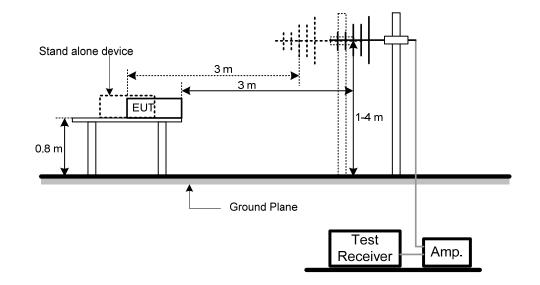
Remark: "N/A" denotes No Model Name, No Serial No. or No Calibration specified.

8.3 MEASURING INSTRUMENTS SETTING

EMI Test Receiver	Parameter Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

8.4 TEST PROCEDURES

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1 GHz. For frequencies above 1 GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3m Semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item -EUT Test Photos.
- g. The testing follows the guidelines in ANSI C63.4 and FCC Public Notice DA 00-705 Measurement Guidelines. In case the emission is fail due to the used RBW/VBW is too wide, marker-delta method of FCC Public Notice DA 00-705 will be followed.


NOTE:

- a. Reading in which marked as QP or Peak means measurements by using are Quasi-Peak Mode with Detector BW=120 kHz; SPA setting in RBW=100 kHz, VBW =100 kHz, Swp. Time = 0.3 sec./ MHz.
- b. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.

8.5 DEVIATION FROM TEST STANDARD

No deviation

8.6 TEST SETUP LAYOUT

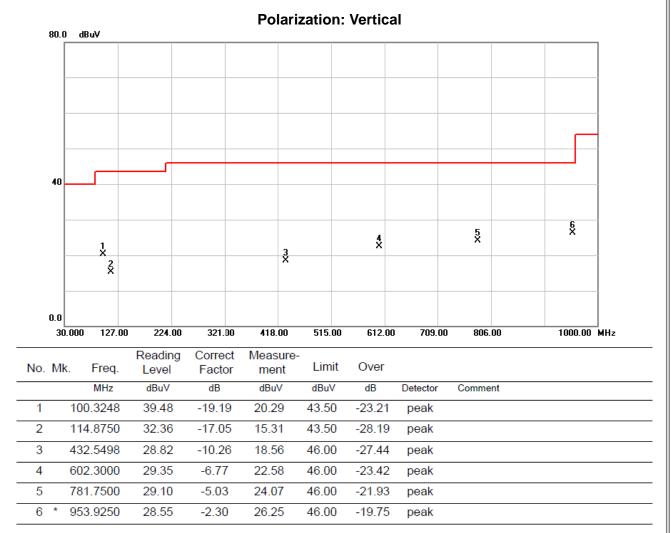
8.7 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 5.6 Unless otherwise a special operating condition is specified in the follows during the testing.

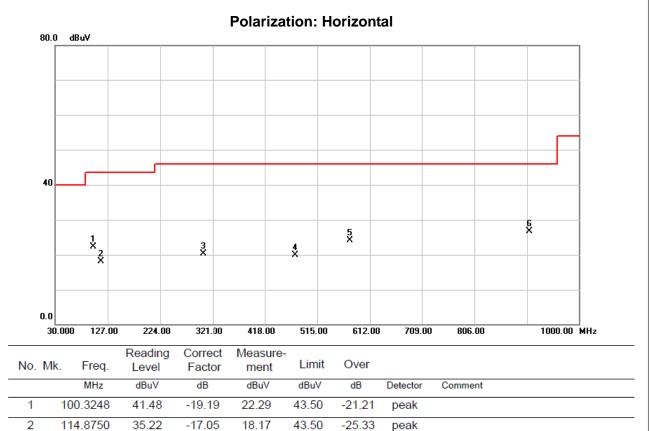
8.8 TEST RESULTS

EUT	Handy Image Scanner	Model Name	OPN-3200n
Temperature	26°C	Relative Humidity	60%
Test Voltage	AC 120V/60Hz		
Test Mode	TX Mode		

Freq.	Ant.	Reading(RA)	Corr.Factor(CF)	Measured(FS)	Limits(QP)	Margin	Note
(MHz)	0°/90°	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	NOLE
0.0240	0°	44.03	22.05	66.08	120.00	-53.92	PEAK
0.0240	0°	33.14	22.05	55.19	120.00	-64.81	AV
0.0460	0°	44.21	21.50	65.71	114.35	-48.64	PEAK
0.0460	0°	31.41	21.50	52.91	114.35	-61.44	AV
0.0730	0°	36.34	21.03	57.37	110.34	-52.97	PEAK
0.0730	0°	24.17	21.03	45.20	110.34	-65.14	AV
0.4680	0°	32.18	19.90	52.08	94.20	-42.12	PEAK
0.4680	0°	22.70	19.90	42.60	94.20	-51.60	AV
1.3400	0°	33.46	20.26	53.72	65.06	-11.34	QP
3.0400	0°	34.34	19.48	53.82	69.54	-15.72	QP


Freq.	Ant.	Reading(RA)	Corr.Factor(CF)	Measured(FS)	Limits(QP)	Margin	Note
(MHz)	0°/90°	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Note
0.0240	90°	45.42	22.05	67.47	120.00	-52.53	PEAK
0.0240	90°	33.17	22.05	55.22	120.00	-64.78	AV
0.0460	90°	44.33	21.50	65.83	114.35	-48.52	PEAK
0.0460	90°	31.74	21.50	53.24	114.35	-61.11	AV
0.0730	90°	37.45	21.03	58.48	110.34	-51.86	PEAK
0.0730	90°	25.10	21.03	46.13	110.34	-64.21	AV
0.4680	90°	33.25	19.90	53.15	94.20	-41.05	PEAK
0.4680	90°	21.12	19.90	41.02	94.20	-53.18	AV
1.3400	90°	32.15	20.26	52.41	65.06	-12.65	QP
3.0400	90°	33.64	19.48	53.12	69.54	-16.42	QP

Remark:


- (1) The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.
- (2) Distance extrapolation factor = 40 log (specific distance / test distance) (dB);
- (3) Limit line = specific limits (dBuV) + distance extrapolation factor.

8.9 TEST RESULTS

EUT	Handy Image Scanner	Model Name	OPN-3200n					
Temperature	26°C	Relative Humidity	60%					
Test Voltage	AC 120V/60Hz							
Test Mode	Bluetooth/1 Mbps/2441 MHz							

	-								
EUT	Handy Image Scanner	Model Name	OPN-3200n						
Temperature	26°C	Relative Humidity	60%						
Test Voltage	AC 120V/60Hz								
Test Mode	Bluetooth/1 Mbps/2441 MHz								

3

4

5

6 *

304.0250

473.7750

575.6250

907.8500

34.09

29.45

31.52

30.29

-13.78

-9.63

-7.47

-3.49

20.31

19.82

24.05

26.80

46.00

46.00

46.00

46.00

-25.69

-26.18

-21.95

-19.20

peak

peak

peak

peak

9 RADIATED SPURIOUS EMISSION (ABOVE 1 GHZ)

9.1 LIMIT

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency Range: 9 kHz to 1 GHz						
FREQUENCY (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)				
0.009~0.490	2400/F(kHz)	300				
0.490~1.705	24000/F(kHz)	30				
1.705~30.0	30	30				
30~88	100	3				
88~216	150	3				
216~960	200	3				
Above 960	500	3				

Frequency Range: above 1 GHz							
FREQUENCY	Class A (dBu	IV/m) (at 3m)	Class B (dBuV/m) (at 3m)				
(MHz)	PEAK	AVERAGE	PEAK	AVERAGE			
above 1 GHz	80	60	74	54			

NOTE:

(1) The limit for radiated test was performed according to FCC PART 15B.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

(4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss – Amplifier Gain(if use) Margin Level = Measurement Value – Limit Value

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum Analyzer	R&S	FSP-30	100854	Sep. 08, 2015
2	Horn Antenna	Schwarzbeck	BBHA 9120	D-325	Apr. 14, 2015
3	Microwave Pre_amplifier	Agilent	8449B	3008A01714	Apr. 15, 2015
4	Microflex Cable	Harbour industries	27478LL142	1m	May. 12, 2015
5	Microflex Cable	EMC	S104-SMA	8m	May. 12, 2015
6	Microflex Cable	Harbour industries	27478LL142	3m	May. 12, 2015
7	Test Cable	LMR	LMR-400	12m	May. 13, 2015
8	Test Cable	LMR	LMR-400	3m	May. 13, 2015
9	Pre-Amplifier	Anritsu	MH648A	M92649	Jun. 17, 2015
10	Log-Bicon Antenna	Schwarzbeck	VULB9168-352	9168-352	Jun. 10, 2015

9.2 MEASUREMENT INSTRUMENTS LIST

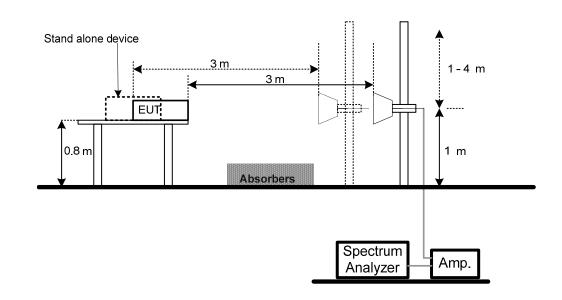
Remark: "N/A" denotes No Model Name, No Serial No. or No Calibration specified.

9.3 MEASURING INSTRUMENTS SETTING

Spectrum Analyzer	Parameter Setting				
Attenuation	Auto				
Start Frequency	1000 MHz				
Stop Frequency	10th carrier harmonic				
RB / VB (emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average				
RB / VB (other emission)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average				

9.4 TEST PROCEDURES

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1 GHz. For frequencies above 1 GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3m Semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item -EUT Test Photos.
- g. The testing follows the guidelines in ANSI C63.4 and FCC Public Notice DA 00-705 Measurement Guidelines. In case the emission is fail due to the used RBW/VBW is too wide, marker-delta method of FCC Public Notice DA 00-705 will be followed.

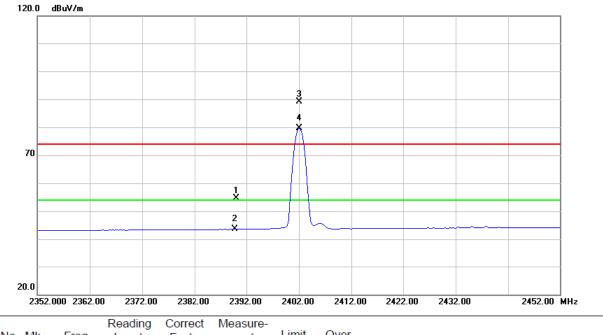

NOTE:

- a. Reading in which marked as Peak means measurements by using are Peak Mode with instrument setting in RBW= 1 MHz, VBW= 1 MHz, Swp. Time = Auto. Reading in which marked as AV means measurements by using are Average Mode with instrument setting in RBW= 1 MHz, VBW= 10 Hz, Swp. Time = Auto.
- b. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform.

9.5 DEVIATION FROM TEST STANDARD

No deviation

9.6 TEST SETUP LAYOUT

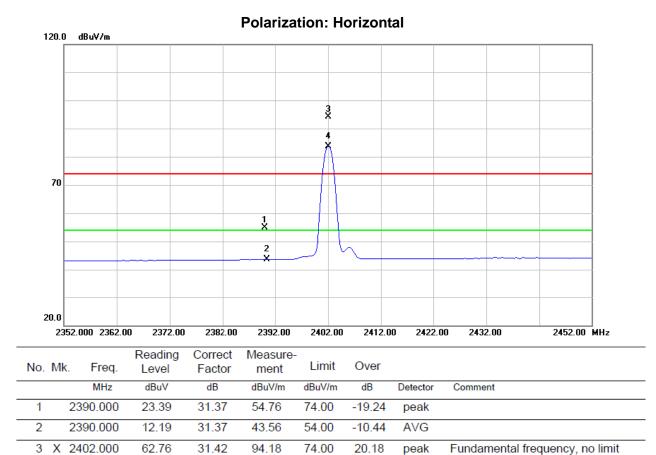

9.7 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 5.6 Unless otherwise a special operating condition is specified in the follows during the testing.

9.8 TEST RESULTS

EUT	Handy Image Scanner	Model Name	OPN-3200n					
Temperature	26°C	Relative Humidity	60%					
Test Voltage	AC 120V/60Hz							
Test Mode	Bluetooth/1 Mbps/2402 MHz							

Polarization: Vertical


No.	Mk	. Freq.	Level	Factor	ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2390.000	23.34	31.37	54.71	74.00	-19.29	peak	
2		2390.000	12.17	31.37	43.54	54.00	-10.46	AVG	
3	Х	2402.000	57.83	31.42	89.25	74.00	15.25	peak	Fundamental frequency, no limit
4	*	2402.000	48.24	31.42	79.66	54.00	25.66	AVG	Fundamental frequency, no limit

EUT	Handy Image Scanner	Model Name	OPN-3200n						
Temperature	26°C	Relative Humidity	60%						
Test Voltage	AC 120V/60Hz								
Test Mode	Bluetooth/1 Mbps/2402 MHz								

Polarization: Vertical 120.0 dBuV 70 3 X 1 2 X 4 X 20.0 1000.000 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 MHz Reading Correct Measure-

No.	Mk.	Freq.	Level	Factor	ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		4804.479	46.26	5.57	51.83	74.00	-22.17	peak	
2		4804.479	39.48	5.57	45.05	54.00	-8.95	AVG	
3	-	7206.625	45.22	12.25	57.47	74.00	-16.53	peak	
4	*	7206.625	33.18	12.25	45.43	54.00	-8.57	AVG	

EUT	Handy Image Scanner	Model Name	OPN-3200n					
Temperature	26°C	Relative Humidity	60%					
Test Voltage	AC 120V/60Hz							
Test Mode	Bluetooth/1 Mbps/2402 MHz							

31.42

31.42

52.29

94.18

83.71

74.00

54.00

20.18

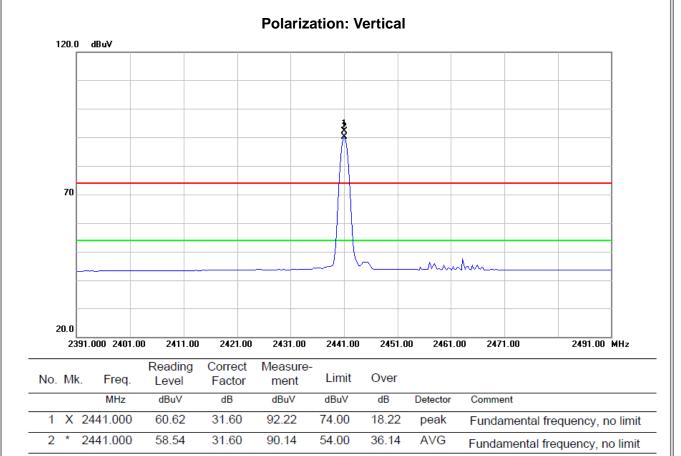
29.71

peak

AVG

Fundamental frequency, no limit

Fundamental frequency, no limit


4 *

EUT	Handy Image Scanner	Model Name	OPN-3200n
Temperature	26°C	Relative Humidity	60%
Test Voltage	AC 120V/60Hz		
Test Mode	Bluetooth/1 Mbps/2402 MHz		

Polarization: Horizontal

EUT	Handy Image Scanner	Model Name	OPN-3200n
Temperature	26°C	Relative Humidity	60%
Test Voltage	AC 120V/60Hz		
Test Mode	Bluetooth/1 Mbps/2441 MHz		

Report No.: BTL-FCCP-2-1405027

EUT	Handy Image Scanner	Model Name	OPN-3200n
Temperature	26°C	Relative Humidity	60%
Test Voltage	AC 120V/60Hz		
Test Mode	Bluetooth/1 Mbps/2441 MHz		

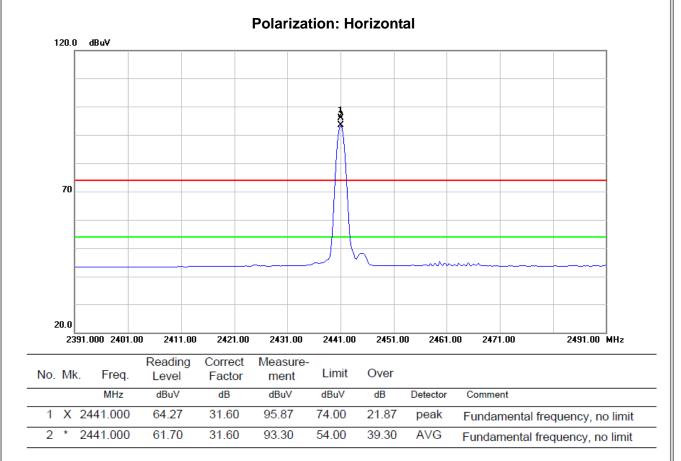
Polarization: Vertical

4 *

7322.893

33.66

12.70

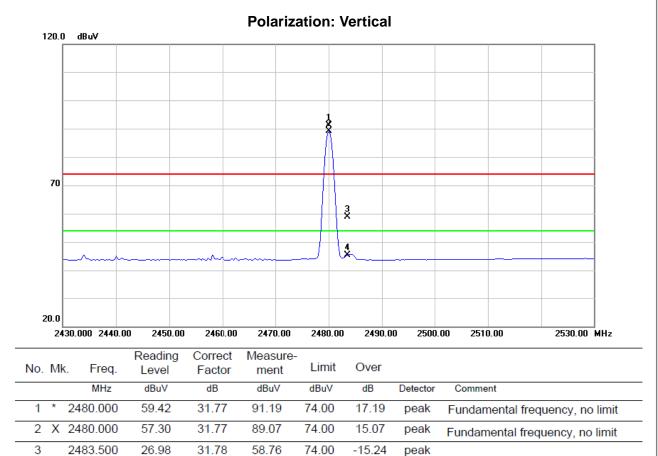

46.36

54.00

-7.64

AVG

EUT	Handy Image Scanner	Model Name	OPN-3200n
Temperature	26°C	Relative Humidity	60%
Test Voltage	AC 120V/60Hz		
Test Mode	Bluetooth/1 Mbps/2441 MHz		


Report No.: BTL-FCCP-2-1405027

EUT	Handy Image Scanner	Model Name	OPN-3200n
Temperature	26°C	Relative Humidity	60%
Test Voltage	AC 120V/60Hz		
Test Mode	Bluetooth/1 Mbps/2441 MHz		

Polarization: Horizontal

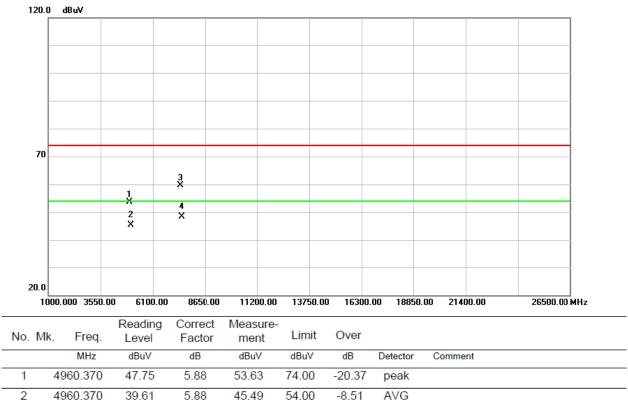
EUT	Handy Image Scanner	Model Name	OPN-3200n
Temperature	26°C	Relative Humidity	60%
Test Voltage	AC 120V/60Hz		
Test Mode	Bluetooth/1 Mbps/2480 MHz		

45.49

74.00

-28.51

peak


31.78

2483.500

4

EUT	Handy Image Scanner	Model Name	OPN-3200n
Temperature	26°C	Relative Humidity	60%
Test Voltage	AC 120V/60Hz		
Test Mode	Bluetooth/1 Mbps/2480 MHz		

Polarization: Vertical

peak

AVG

-14.49

-5.53

3

4 *

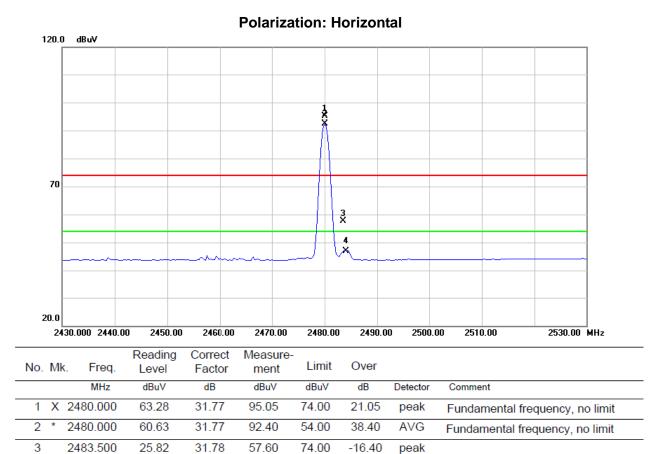
7440.286

7440.286

46.36

35.32

13.15


13.15

59.51

48.47

74.00

EUT	Handy Image Scanner	Model Name	OPN-3200n
Temperature	26°C	Relative Humidity	60%
Test Voltage	AC 120V/60Hz		
Test Mode	Bluetooth/1 Mbps/2480 MHz		

peak

AVG

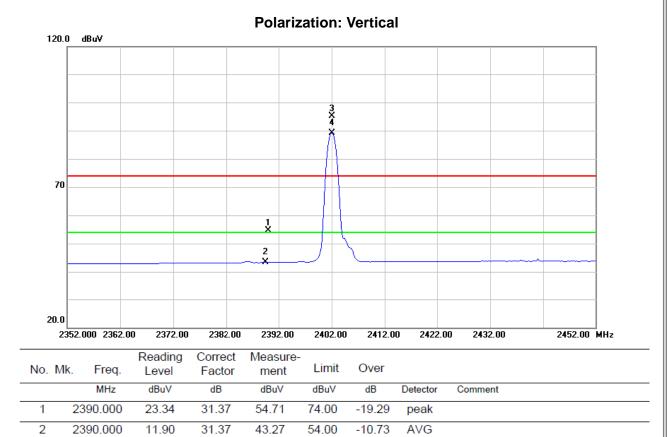
-7.06

2483.500

4

15.16

31.78


46.94

EUT	Handy Image Scanner	Model Name	OPN-3200n
Temperature	26°C	Relative Humidity	60%
Test Voltage	AC 120V/60Hz		
Test Mode	Bluetooth/1 Mbps/2480 MHz		

Polarization: Horizontal

EUT	Handy Image Scanner	Model Name	OPN-3200n
Temperature	26°C	Relative Humidity	60%
Test Voltage	AC 120V/60Hz		
Test Mode	Bluetooth/3 Mbps/2402 MHz		

Report No.: BTL-FCCP-2-1405027

3

4 *

X 2402.000

2402.000

63.71

57.83

31.42

31.42

95.13

89.25

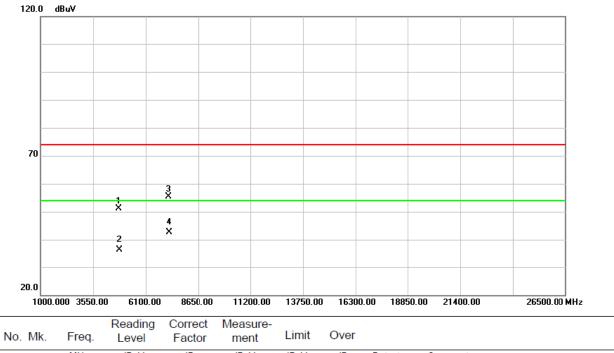
74.00

54.00

21.13

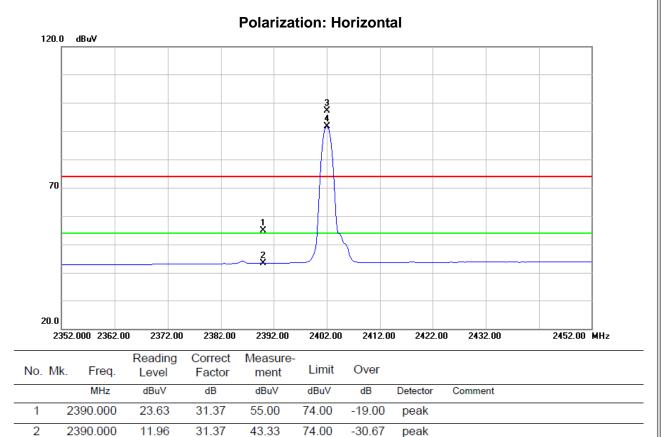
35.25

peak


AVG

Fundamental frequency, no limit

Fundamental frequency, no limit


EUT	Handy Image Scanner	Model Name	OPN-3200n
Temperature	26°C	Relative Humidity	60%
Test Voltage	AC 120V/60Hz		
Test Mode	Bluetooth/3 Mbps/2402 MHz		

Polarization: Vertical

	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	4803.724	45.47	5.57	51.04	74.00	-22.96	peak	
2	4803.724	30.86	5.57	36.43	54.00	-17.57	AVG	
3	7205.298	43.25	12.24	55.49	74.00	-18.51	peak	
4 *	7205.298	30.42	12.24	42.66	54.00	-11.34	AVG	

EUT	Handy Image Scanner	Model Name	OPN-3200n					
Temperature	26°C	Relative Humidity	60%					
Test Voltage	AC 120V/60Hz							
Test Mode	Bluetooth/3 Mbps/2402 MHz							

3 *

2402.000

4 X 2402.000

65.59

60.27

31.42

31.42

97.01

91.69

74.00

74.00

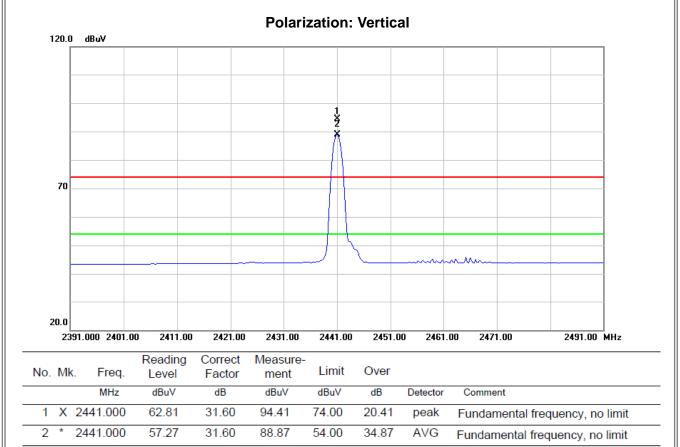
23.01

17.69

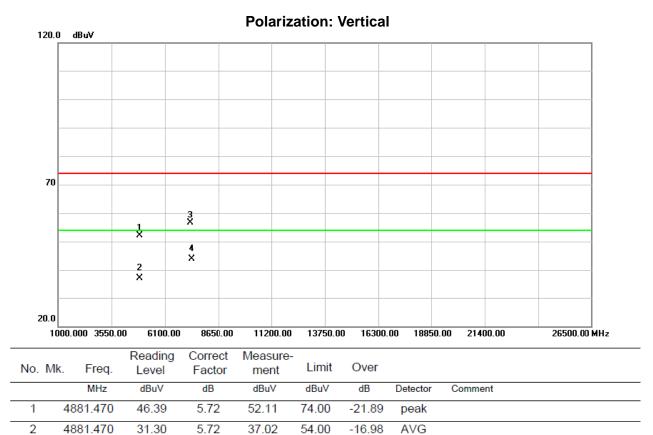
peak

peak

Fundamental frequency, no limit


Fundamental frequency, no limit

E	UT	Handy Image Scanner	Model Name	OPN-3200n
Т	emperature	26°C	Relative Humidity	60%
T	est Voltage	AC 120V/60Hz		
T	est Mode	Bluetooth/3 Mbps/2402 MHz		



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	4	4804.382	43.84	5.57	49.41	74.00	-24.59	peak	
2	4	4804.382	30.65	5.57	36.22	54.00	-17.78	AVG	
3	7	7205.558	43.38	12.25	55.63	74.00	-18.37	peak	
4	* 7	7205.558	30.54	12.25	42.79	54.00	-11.21	AVG	

EUT	Handy Image Scanner	Model Name	OPN-3200n
Temperature	26°C	Relative Humidity	60%
Test Voltage	AC 120V/60Hz		
Test Mode	Bluetooth/3 Mbps/2441 MHz		

EUT	Handy Image Scanner	Model Name	OPN-3200n					
Temperature	26°C	Relative Humidity	60%					
Test Voltage	AC 120V/60Hz							
Test Mode	Bluetooth/3 Mbps/2441 MHz							

7322.754

7322.754

3

4 *

12.70

12.70

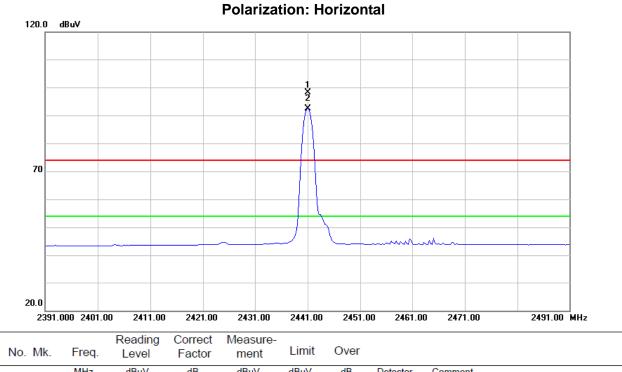
56.57

43.77

74.00

54.00

-17.43

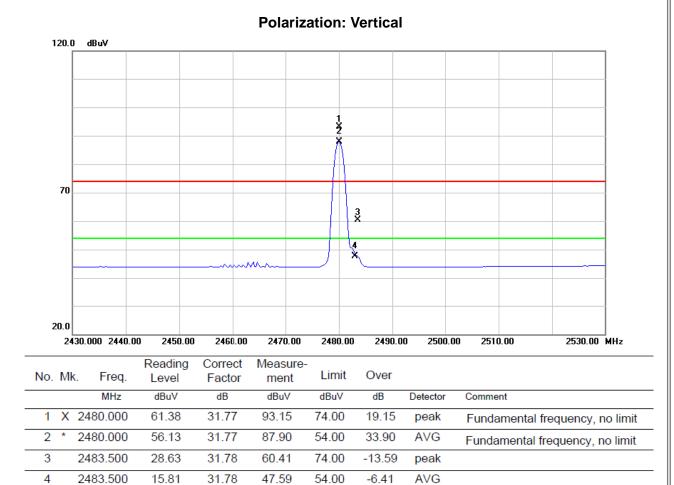

-10.23

peak

AVG

43.87

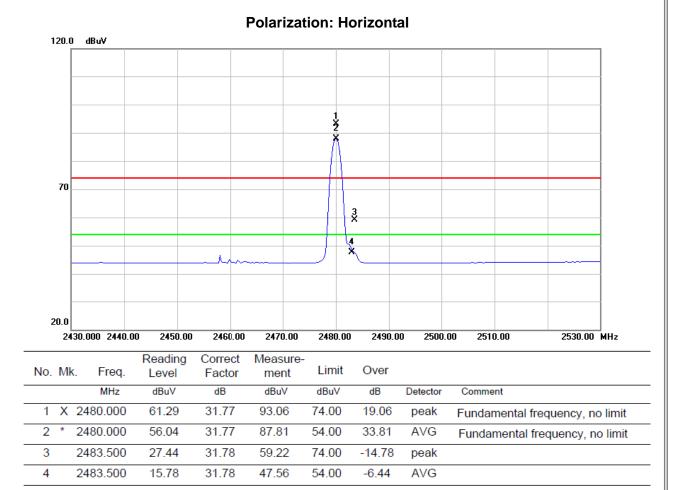

EUT	Handy Image Scanner	Model Name	OPN-3200n					
Temperature	26°C	Relative Humidity	60%					
Test Voltage	AC 120V/60Hz							
Test Mode	Bluetooth/3 Mbps/2441 MHz							


	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1 X	2441.000	66.42	31.60	98.02	74.00	24.02	peak	Fundamental frequency, no limit
2 *	2441.000	60.90	31.60	92.50	54.00	38.50	AVG	Fundamental frequency, no limit

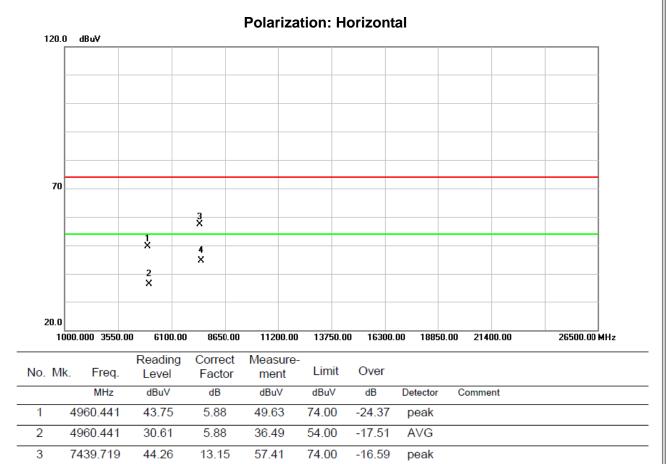
EUT	Handy Image Scanner	Model Name	OPN-3200n					
Temperature	26°C	Relative Humidity	60%					
Test Voltage	AC 120V/60Hz							
Test Mode	Bluetooth/3 Mbps/2441 MHz							

Polarization: Horizontal

EUT	Handy Image Scanner	Model Name	OPN-3200n
Temperature	26°C	Relative Humidity	60%
Test Voltage	AC 120V/60Hz		
Test Mode	Bluetooth/3 Mbps/2480 MHz		


Report No.: BTL-FCCP-2-1405027

EUT	Handy Image Scanner	Model Name	OPN-3200n
Temperature	26°C	Relative Humidity	60%
Test Voltage	AC 120V/60Hz		
Test Mode	Bluetooth/3 Mbps/2480 MHz		


Polarization: Vertical

EUT	Handy Image Scanner	Model Name	OPN-3200n
Temperature	26°C	Relative Humidity	60%
Test Voltage	AC 120V/60Hz		
Test Mode	Bluetooth/3 Mbps/2480 MHz		

EUT	Handy Image Scanner	Model Name	OPN-3200n
Temperature	26°C	Relative Humidity	60%
Test Voltage	AC 120V/60Hz		
Test Mode	Bluetooth/3 Mbps/2480 MHz		

*

4

7439.719

31.52

13.15

44.67

54.00

-9.33

AVG

9.9 TEST RESULTS (RESTRICTED BANDS)

UT	Handy	Image S	canner		M	odel Nar	no	OPN-3200n		
emperature	24°C	maye 0				elative H		46%		
•					R		unnuny	40 /0		
est Voltage)V/60Hz	10.400							
est Mode		Bluetooth/1 Mbps/2402 MHz The transmitter was setup to transmit at the lowest channel and the field strength wa								
OTE		red at 23			ansmit	at the lov	west cha	innel and the l	ield strength wa	
120.0 d	Bu∀/m			Polari	zation:	Vertica	I			
					Δ					
70										
				1 X						
				2						
				×		\sim				
20.0	00 2362.00	2372.00	2382.00	2392.00	2402.	00 2412.0	0 2422.0	0 2432.00	2452.00 MHz	
								50 2432.00	24J2.00 MNZ	
No. Mk.	Freq.	Reading Level	Correct Factor	Measure	e- Limit	Over				
	MHz	dBuV	dB	dBuV/m	dBuV/n	n dB	Detector	Comment		
1 23	90.000	23.34	31.37	54.71	74.00	-19.29	peak			
	90.000	12.17	31.37	43.54	54.00		AVG			

emperature		image S	canner			N	lodel Na	ame	OPN-320)0n	
emperature	24°C	24°C						Humidity	46%		
Fest Voltage	AC 120	AC 120V/60Hz									
Fest Mode	Bluetoc	oth/1 Mb	ps/2480	MHz							
NOTE		nsmitter easured					at the h	nighest ch	annel and	I the field stre	ngth
120.0 df	2.11			Pola	ariza	tion	: Vertic	al			
120.0 4	ouv										1
											ĺ
70											
						-+	1 X				
						\Box	2				
20.0											
2430.00	0 2440.00	2450.00	2460.00	2470	D.00	2480	.00 2490	0.00 2500.0	0 2510.00	2530.00	MHz
No. Mk.	Freq.	Reading Level	Correct Factor	Meas mei		Limi	t Over				
	MHz	dBuV	dB	dBu		dBuV		Detector	Comment		
	33.500 33.500	26.98 13.71	31.78 31.78	58.7 45.4		74.00 74.00					

UT	Handy Imag	ge Scann	er		Model Na	ame	OPN-3200n		
emperature	24°C				Relative I	Humidity	46%		
est Voltage	AC 120V/6	OHz							
Fest Mode	Bluetooth/1	Mbps/24	02 MH	Z					
NOTE	The transm measured a				it at the lo	owest cha	innel and the	field strengt	th wa
120.0 0			Pola	rization	: Horizor	ntal			
120.0 dB	u¥7m								
				(\				
70									
			1 X						
			2 X						
20.0									
20.0 2352.00) 2362.00 237	2.00 238 2.	00 2392	2.00 2402	2.00 2412.0	00 2422.00	2432.00	2452.00 MHz	:
	Readi	ng Correc	t Meas	ure-					
No. Mk.	Freq. Leve	Facto							
	MHz dBuV		dBuV			Detector	Comment		
	0.000 23.39					peak			
2 * 239	0.000 12.19	31.37	43.5	6 54.0	0 -10.44	AVG			

UT	Handy Ima	Handy Image Scanner Model Name OPN-3200n							
emperature	24°C	-	46%						
Fest Voltage	AC 120V/6	0Hz							
Fest Mode	Bluetooth/1	Mbps/2480) MHz						
NOTE		itter was se ired at 2483			highest ch	annel and the	e field stre	ength	
120.0 dB	υV		Polarizati	on: Horizo	ntal				
70									
20.0	0 2440.00 245	0.00 2460.00	2470.00	2480.00 2490	0.00 2500.00	2510.00	2530.00	MHz	
No. Mk.	Readii Freq. Leve	Factor	mont	Limit Over	Detector	Comment			
1 248	3.500 25.82			4.00 -16.4		Comment			
	3.500 25.02 3.500 15.10			4.00 -7.06					

UT	Han	dy Image	e Scann	er		Model Na	me	OPN-3200n	1
emperature	e 24°0	2				Relative I	Humidity	46%	
est Voltage	AC	AC 120V/60Hz							
est Mode	Blue	etooth/3 N	/lbps/24	102 MHz	2				
NOTE		transmit				it at the lo	owest cha	innel and the	field strength w
120.0	dBuV			Pol	arizatio	n: Vertica	al		
						Λ			
70									
				1 X					
				2					
				×					
20.0									
2352.	000 2362	.00 2372.	00 2382	2.00 239:	2.00 240)2.00 2412	.00 2422.0	0 2432.00	2452.00 MHz
No. Mk.	Freq.	Reading Level	g Corre Facto			nit Over			
	MHz	dBuV	dB	dBu	V dBu	uV dB	Detector	Comment	
1 23	390.000	23.34	31.3	7 54.7	1 74.0	00 -19.29) peak		

43.27 54.00 -10.73 AVG

2 * 2390.000

11.90

31.37

UT	Handy	Image	Scanne	er		Мо	del Na	me	OPN-3200n	
emperature	24°C					Re	lative H	lumidity	46%	
Fest Voltage	AC 120)V/60H	lz							
Fest Mode	Blueto	Bluetooth/3 Mbps/2480 MHz								
NOTE			er was s d at 248				it the hi	ighest ch	annel and the	e field strengtl
120.0 d	IBuV			Pola	arizatio	n:	Vertica	d		
70							1 2 X			
20.0 2430.0	00 2440.00) 2450.	00 2460.	.00 247	0.00 2	480.0	0 2490	.00 2500.(2510.00	2530.00 MHz
	00 2440.00 Freq.	2450. Reading Level		ct Meas	sure-	180.0	0 2490 Over	.00 2500.0	00 2510.00	2530.00 MHz
110. IVIA.	MHz	dBuV	dB	or me dBu	inc.	BuV	dB	Detector	Comment	
1 24	83.500	28.63	31.78	60.4	1 74	.00	-13.59) peak		

	ige Scann	er	me	OPN-3200n					
24°C				Relative H	lumidity	46%			
AC 120V/6	AC 120V/60Hz								
Bluetooth/3	3 Mbps/24	02 MHz	Z						
				it at the lo	west cha	nnel and the	field stre	ngth w	
uV		Pola	rization	: Horizon	tal				
]	
		1 X						ĺ	
		2							
		×						1	
	_								
0 2362.00 23	72.00 2382.	.00 2392	2.00 240	2.00 2412.0	0 2422.00	2432.00	2452.00	MHz	
Freq. Leve	el Facto		nt Lim						
					Detector	Comment			
0.000 23.6					peak peak				
	Bluetooth/3 The transm measured a uv 0 2362.00 233 Read Freq. Leve	The transmitter was measured at 2310-2 v v v v v Reading Correc Freq. Level Facto MHz dBuV dB	Bluetooth/3 Mbps/2402 MHz The transmitter was setup to measured at 2310-2390 MH Pola v Pola	Bluetooth/3 Mbps/2402 MHz The transmitter was setup to transmineasured at 2310-2390 MHz. Polarization V Polarization V 0 2362.00 2372.00 2382.00 2392.00 240 Reading Correct Measure- Freq. Level Factor ment Lim MHz dBuV dB dBuV dBu	Bluetooth/3 Mbps/2402 MHz The transmitter was setup to transmit at the lo measured at 2310-2390 MHz. Polarization: Horizont V 0 2362.00 2372.00 2382.00 2392.00 2402.00 2412.0 Reading Correct Measure- Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dBuV dB	Bluetooth/3 Mbps/2402 MHz The transmitter was setup to transmit at the lowest cha measured at 2310-2390 MHz. Polarization: Horizontal v Polarization: Horizontal v 20 2362.00 2372.00 2382.00 2392.00 2402.00 2412.00 2422.00 Reading Correct Measure- Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dBuV dB Detector	Bluetooth/3 Mbps/2402 MHz The transmitter was setup to transmit at the lowest channel and the measured at 2310-2390 MHz. Polarization: Horizontal V Polarization: Horizontal V 0 2362.00 2372.00 2382.00 2392.00 2402.00 2412.00 2422.00 2432.00 Reading Correct Measure- Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dB Detector Comment	Bluetooth/3 Mbps/2402 MHz The transmitter was setup to transmit at the lowest channel and the field strenmeasured at 2310-2390 MHz. Polarization: Horizontal V Polarization: Horizontal V Polari Polarization:	

UT	Handy	Image S	canner			Μ	odel Na	ame	OPN-3200n		
emperature	24°C						elative l	Humidity	46%		
est Voltage	AC 120	AC 120V/60Hz									
est Mode	Bluetoo	oth/3 Mb	ps/2480	MHz							
NOTE		nsmitter easured					at the h	nighest ch	annel and the	e field stre	ngth
120.0 dl	3uV			Polar	izati	on: l	Horizor	ntal			
	3UY										1
70							1 X				
						+	2 X				
20.0											
	0 2440.00	2450.00	2460.00	2470	D.00	2480.	00 2490).00 2500.0	0 2510.00	2530.00	l MHz
No. Mk.	Freq.	Reading Level	Correct Factor	Meas me	nt	Limit					
	MHz	dBuV	dB	dBu		dBuV	dB	Detector	Comment		
1 248	33.500	27.44	31.78	59.2	2	74.00	-14.78	8 peak			

10 NUMBER OF HOPPING FREQUENCY

10.1LIMIT

Test Item	Frequency Range (MHz)	Limit
Number of Hopping Channel	2400-2483.5	shall use at least 15 channels

10.2MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum Analyzer	R&S	FSP-30	100854	Sep. 08, 2015

NOTE: N/A: denotes No Model Name, No Serial No. or No Calibration specified.

10.3MEASURING INSTRUMENTS SETTING

Spectrum Analyzer	Parameter Setting
Attenuation	Auto
Span Frequency	> Operating Frequency Range
RB	100 kHz
VB	100 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

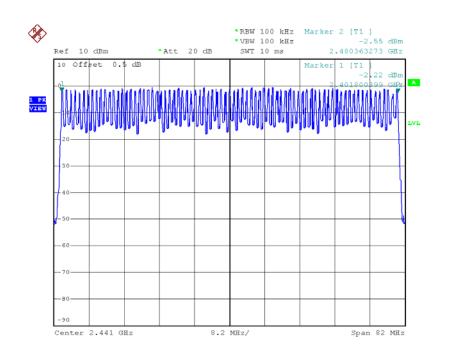
10.4TEST PROCEDURES

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW= 100 kHz, VBW=100 kHz, Sweep time = Auto.

10.5TEST SETUP LAYOUT

10.6 DEVIATION FROM TEST STANDARD

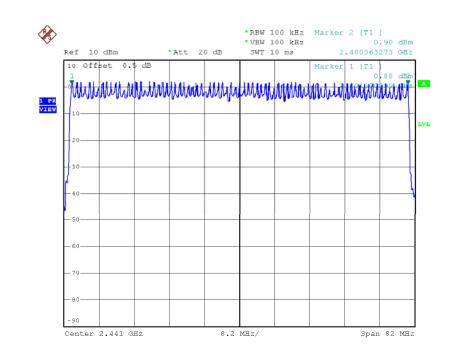
No deviation


10.7EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 5.6 Unless otherwise a special operating condition is specified in the follows during the testing.

10.8TEST RESULTS

EUT	Handy Image Scanner	Model Name	OPN-3200n
Temperature	26°C	Relative Humidity	60%
Test Voltage	AC 120V/60Hz		
Test Mode	Bluetooth/1 Mbps		


Number of Hopping Channel	Limit	Result
79	15	Pass

Date: 15.MAY.2014 18:55:08

EUT	Handy Image Scanner	Model Name	OPN-3200n
Temperature	26°C	Relative Humidity	60%
Test Voltage	AC 120V/60Hz		
Test Mode	Bluetooth/3 Mbps		

Number of Hopping Channel	Limit	Result
79	15	Pass

Date: 15.MAY.2014 19:24:00

11 AVERAGE TIME OF OCCUPANCY

11.1LIMIT

Test Item	Frequency Range (MHz)	Limit
Average time of occupancy	2400-2483 5	shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

11.2MEASUREMENT INSTRUMENTS LIST

Iten	N Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum Analyzer	R&S	FSP-30	100854	Sep. 08, 2015

NOTE: N/A: denotes No Model Name, No Serial No. or No Calibration specified.

11.3TEST PROCEDURES

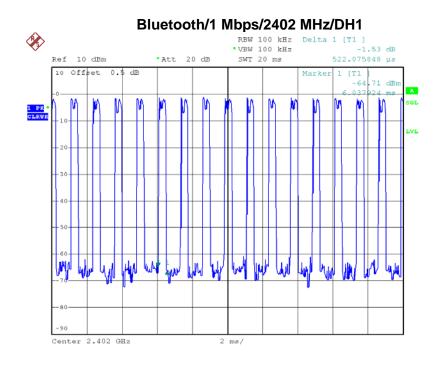
- a. The transmitter output (antenna port) was connected to the spectrum analyzer
- b. Set RBW of spectrum analyzer to 100 kHz and VBW to 100 kHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- h. Measure the maximum time duration of one single pulse.
- i. DH5 Packet permit maximum 1600/ 79 / 6 = 3.37 hops per second in each channel (5 time slots RX, 1 time slot TX). So, the dwell time is the time duration of the pulse times 3.37 x 31.6 = 106.6 within 31.6 seconds.
- j. DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots RX, 1 time slot TX). So, the dwell time is the time duration of the pulse times $5.06 \times 31.6 = 160$ within 31.6 seconds.
- k. DH1 Packet permit maximum 1600 / 79 / 2 = 10.12 hops per second in each channel (1 time slot RX, 1 time slot TX). So, the dwell time is the time duration of the pulse times $10.12 \times 31.6 = 320$ within 31.6 seconds.

11.4TEST SETUP LAYOUT

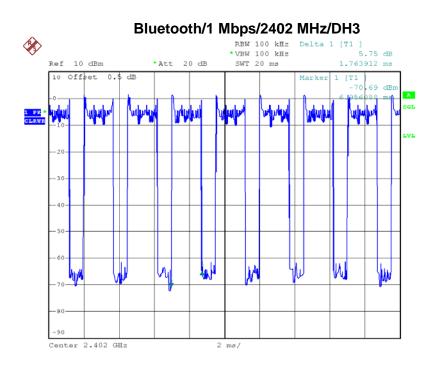
EUT	SPECTRUM
	ANALYZER

11.5DEVIATION FROM TEST STANDARD

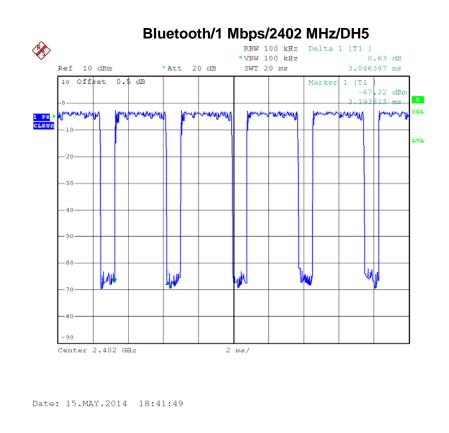
No deviation


11.6EUT OPERATING CONDITIONS

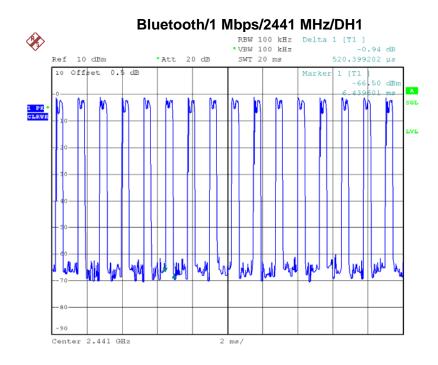
The EUT tested system was configured as the statements of 5.6 Unless otherwise a special operating condition is specified in the follows during the testing.


11.7TEST RESULTS

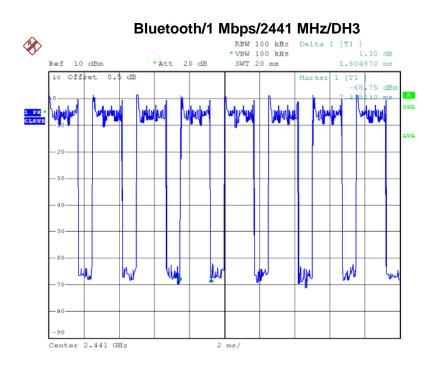
EUT	Handy Image Scanner	Model Name	OPN-3200n
Temperature	26°C	Relative Humidity	46%
Test Voltage AC 120V/60Hz			
Test Mode Bluetooth/1 Mbps/2402 MHz			


Data Packet	Frequency	Pulse Duration (ms)	Dwell Time (s)	Limit (s)	Result
DH5	2402 MHz	3.0464	0.3249	0.4	PASS
DH3	2402 MHz	1.7639	0.2822	0.4	PASS
DH1	2402 MHz	0.5221	0.1671	0.4	PASS

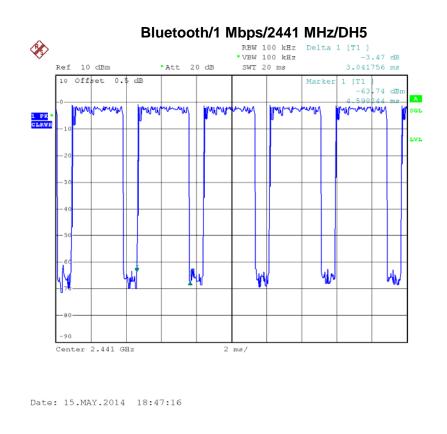
Date: 15.MAY.2014 18:44:00



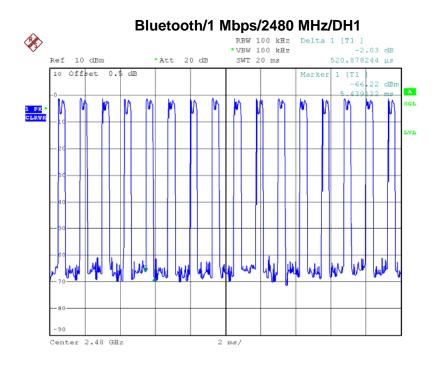
Date: 15.MAY.2014 18:45:18



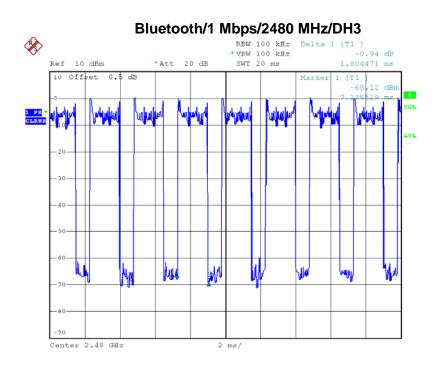
EUT	Handy Image Scanner	Model Name	OPN-3200n
Temperature	26°C	Relative Humidity	46%
Test Voltage	AC 120V/60Hz		
Test Mode	Bluetooth/1 Mbps/2441 MHz		


Data Packet	Frequency	Pulse Duration (ms)	Dwell Time (s)	Limit (s)	Result
DH5	2441 MHz	3.0418	0.3245	0.4	PASS
DH3	2441 MHz	1.8049	0.2888	0.4	PASS
DH1	2441 MHz	0.5204	0.1665	0.4	PASS

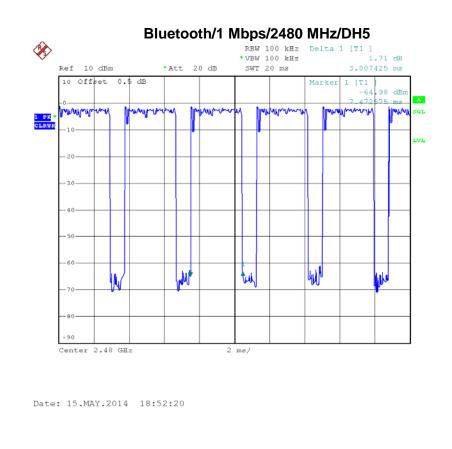
Date: 15.MAY.2014 19:40:12



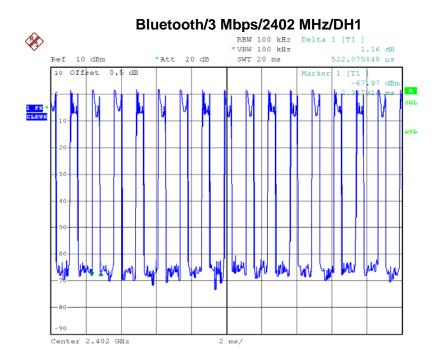
Date: 15.MAY.2014 18:49:59



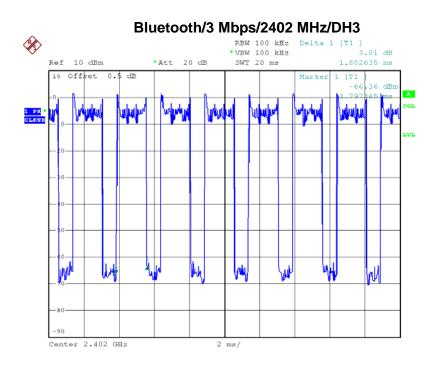
EUT	Handy Image Scanner	Model Name	OPN-3200n
Temperature	26°C	Relative Humidity	46%
Test Voltage	AC 120V/60Hz		
Test Mode	Bluetooth/1 Mbps/2480 MHz		


Data Packet	Frequency	Pulse Duration (ms)	Dwell Time (s)	Limit (s)	Result
DH5	2480 MHz	3.0074	0.3208	0.4	PASS
DH3	2480 MHz	1.8045	0.2887	0.4	PASS
DH1	2480 MHz	0.5209	0.1667	0.4	PASS

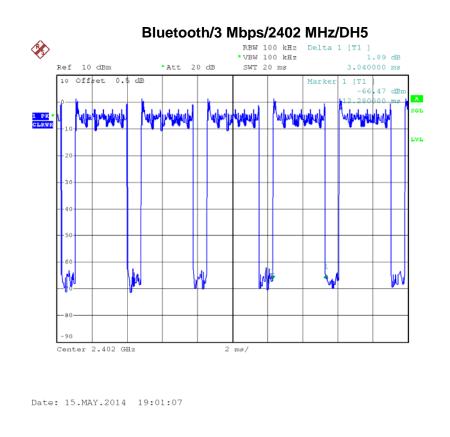
Date: 15.MAY.2014 18:56:08



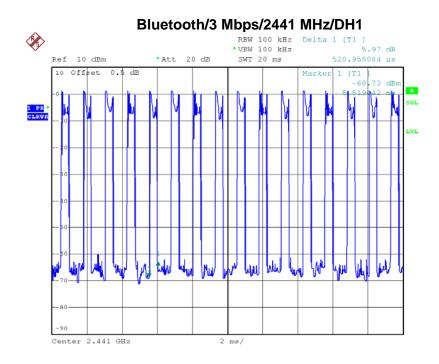
Date: 15.MAY.2014 18:57:04



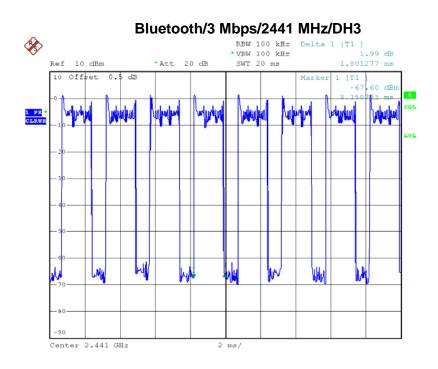
EUT	Handy Image Scanner	Model Name	OPN-3200n
Temperature	26°C	Relative Humidity	46%
Test Voltage	AC 120V/60Hz		
Test Mode	Bluetooth/3 Mbps/2402 MHz		


Data Packet	Frequency	Pulse Duration (ms)	Dwell Time (s)	Limit (s)	Result
DH5	2402 MHz	3.0400	0.3243	0.4	PASS
DH3	2402 MHz	1.8026	0.2884	0.4	PASS
DH1	2402 MHz	0.5221	0.1671	0.4	PASS

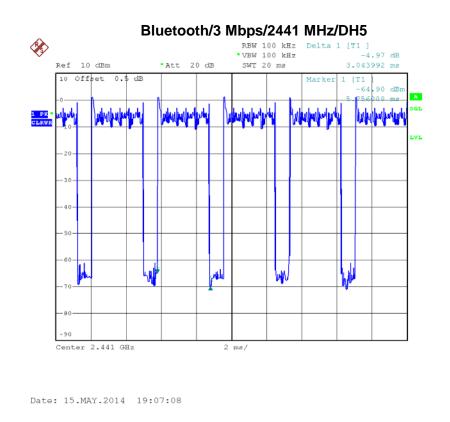
Date: 15.MAY.2014 19:04:12



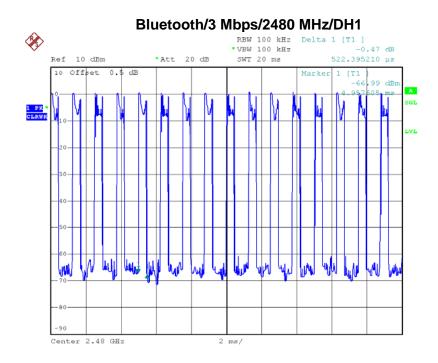
Date: 15.MAY.2014 19:05:01



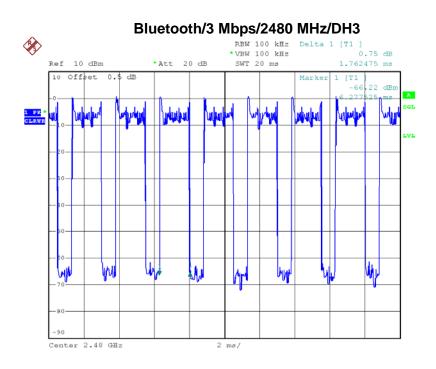
EUT	Handy Image Scanner	Model Name	OPN-3200n
Temperature	26°C	Relative Humidity	46%
Test Voltage	AC 120V/60Hz		
Test Mode	Bluetooth/3 Mbps/2441 MHz		


Data Packet	Frequency	Pulse Duration (ms)	Dwell Time (s)	Limit (s)	Result
DH5	2441 MHz	3.0440	0.3247	0.4	PASS
DH3	2441 MHz	1.8013	0.2882	0.4	PASS
DH1	2441 MHz	0.5210	0.1667	0.4	PASS

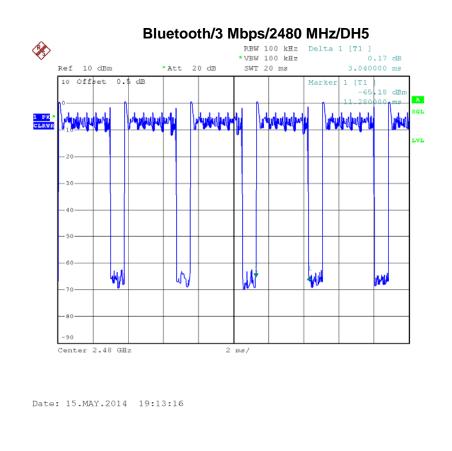
Date: 15.MAY.2014 19:10:17



Date: 15.MAY.2014 19:11:01



EUT	Handy Image Scanner	Model Name	OPN-3200n
Temperature	26°C	Relative Humidity	46%
Test Voltage	AC 120V/60Hz		
Test Mode	Bluetooth/3 Mbps/2480 MHz		

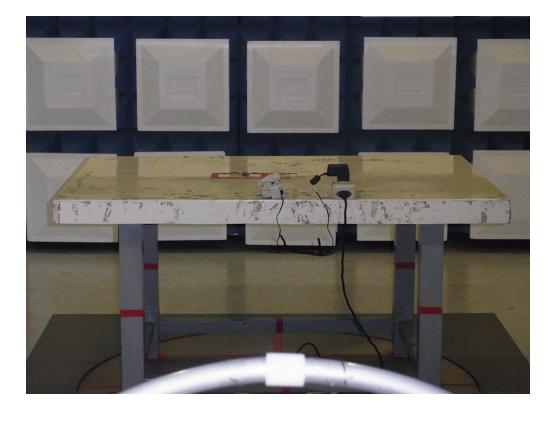

Data Packet	Frequency	Pulse Duration (ms)	Dwell Time (s)	Limit (s)	Result
DH5	2480 MHz	3.0400	0.3243	0.4	PASS
DH3	2480 MHz	1.7625	0.2820	0.4	PASS
DH1	2480 MHz	0.5224	0.1672	0.4	PASS

Date: 15.MAY.2014 19:16:07

Date: 15.MAY.2014 19:16:53

12 EUT TEST PHOTO

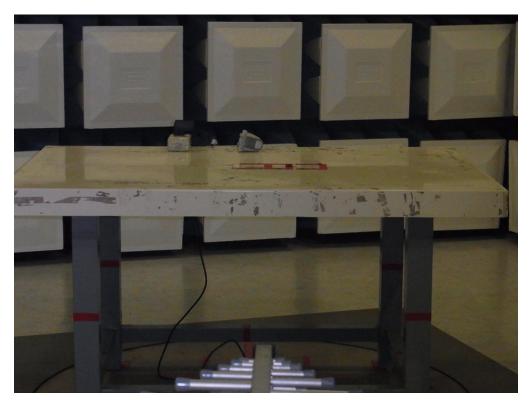
Conducted emission test photos

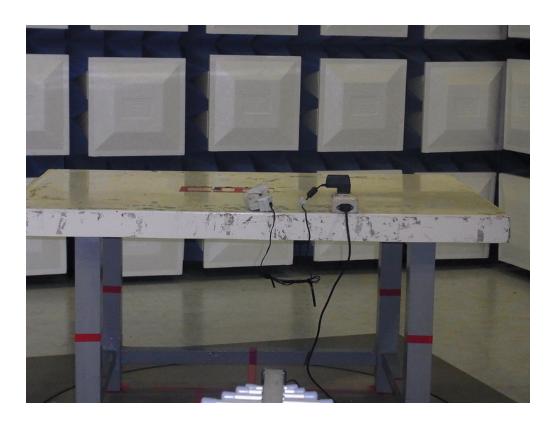

Report No.: BTL-FCCP-2-1405027

Page 100 of 103

Radiated spurious emission test photos

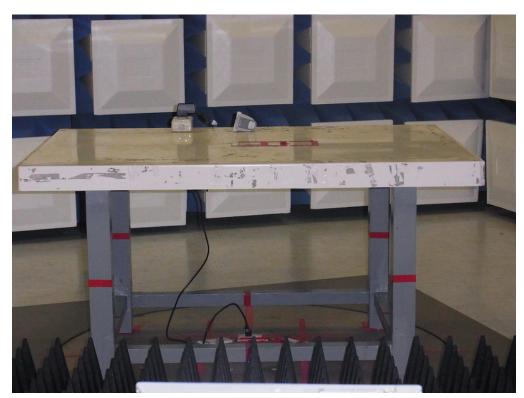
9K-30MHz

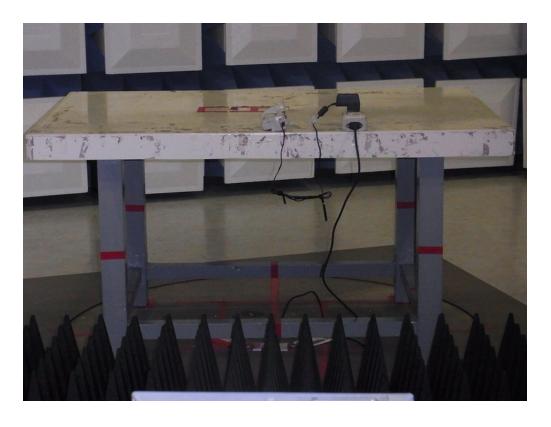




Report No.: BTL-FCCP-2-1405027

Radiated spurious emission test photos


Below 1G



Radiated spurious emission test photos

Above 1G

