

FCC Radio Test Report

FCC ID: UFOOPN3002N

Report No. : BTL-FCCP-1-2106T028
Equipment : Bluetooth Barcode Scanner

Model Name : OPN-3002n Brand Name : OPTICON

Applicant : OPTOELECTRONICS Co., Ltd.

Address : 4-12-17, Tsukagoshi, Warabi-shi, Saitama Pref., 335-0002 Japan

Manufacturer : OPTOELECTRONICS Co., Ltd.

Address : 4-12-17, Tsukagoshi, Warabi-shi, Saitama Pref., 335-0002 Japan

Radio Function : Bluetooth EDR

FCC Rule Part(s) : FCC Part15, Subpart C (15.247)

Measurement Procedure(s)

: ANSI C63.10-2013

Date of Receipt : 2013/3/5

2021/6/29

Date of Test : 2013/3/5 ~ 2013/3/19

2021/6/29~ 2021/9/28

Issued Date : 2021/10/28

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by

Approved by

Jerry Ch**ưa**ng, Supervisor

Peter Chen, Vice Manager

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com

Project No.: 2106T028 Page 1 of 69 Report Version: R00

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2106T028 Page 2 of 69 Report Version: R00

CONTENTS REVISON HISTORY 5 SUMMARY OF TEST RESULTS 6 1.1 **TEST FACILITY** 7 MEASUREMENT UNCERTAINTY 1.2 7 1.3 **TEST ENVIRONMENT CONDITIONS** 8 1.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING 8 1.5 **DUTY CYCLE** 9 2 **GENERAL INFORMATION** 10 **DESCRIPTION OF EUT** 2.1 10 2.2 **TEST MODES** 12 2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 13 2.4 SUPPORT UNITS 13 3 AC POWER LINE CONDUCTED EMISSIONS TEST 14 3.1 LIMIT 14 **TEST PROCEDURE** 3.2 14 3.3 **DEVIATION FROM TEST STANDARD** 14 3.4 **TEST SETUP** 15 3.5 **TEST RESULT** 15 4 RADIATED EMISSIONS TEST 16 4.1 LIMIT 16 4.2 **TEST PROCEDURE** 17 4.3 **DEVIATION FROM TEST STANDARD** 17 4.4 **TEST SETUP** 17 **EUT OPERATING CONDITIONS** 4.5 18 4.6 TEST RESULT - BELOW 30 MHZ 19 4.7 TEST RESULT - 30 MHZ TO 1 GHZ 19 4.8 TEST RESULT – ABOVE 1 GHZ 19 5 NUMBER OF HOPPING CHANNEL 20 APPLIED PROCEDURES 5.1 20 5.2 **TEST PROCEDURE** 20 5.3 **DEVIATION FROM STANDARD** 20 **TEST SETUP** 20 5.4 5.5 **EUT OPERATION CONDITIONS** 20 5.6 **TEST RESULTS** 20 AVERAGE TIME OF OCCUPANCY 6 21 6.1 APPLIED PROCEDURES / LIMIT 21 **TEST PROCEDURE** 6.2 21 **DEVIATION FROM STANDARD** 6.3 21 6.4 **TEST SETUP** 21 **EUT OPERATION CONDITIONS** 6.5 21 **TEST RESULTS** 21 6.6 HOPPING CHANNEL SEPARATION MEASUREMENT 22 7 APPLIED PROCEDURES / LIMIT 7.1 22 7.2 **TEST PROCEDURE** 22 **DEVIATION FROM STANDARD** 7.3 22 7.4 **TEST SETUP** 22 7.5 **TEST RESULTS** 22

8	BANDWI	DTH TEST	23
8.1	APPL	IED PROCEDURES	23
8.2	TEST	PROCEDURE	23
8.3	DEVIA	ATION FROM STANDARD	23
8.4	TEST	SETUP	23
8.5	EUT C	OPERATION CONDITIONS	23
8.6	TEST	RESULTS	23
9	OUTPUT	POWER TEST	24
9.1	APPL	IED PROCEDURES / LIMIT	24
9.2	TEST	PROCEDURE	24
9.3	DEVIA	ATION FROM STANDARD	24
9.4	TEST	SETUP	24
9.5	EUT C	OPERATION CONDITIONS	24
9.6	TEST	RESULTS	24
10	ANTENN	IA CONDUCTED SPURIOUS EMISSION	25
10.1	APPL	IED PROCEDURES / LIMIT	25
10.2	TEST	PROCEDURE	25
10.3	DEVIA	ATION FROM STANDARD	25
10.4	TEST	SETUP	25
10.5	EUT C	OPERATION CONDITIONS	25
10.6	TEST	RESULTS	25
11	LIST OF	MEASURING EQUIPMENTS	26
12	EUT TES	ST PHOTO	28
13	EUT PHO	OTOS	28
APPEND	IX A	AC POWER LINE CONDUCTED EMISSIONS	29
APPEND	IX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	34
APPEND	IX C	RADIATED EMISSIONS - ABOVE 1 GHZ	37
APPEND	IX D	NUMBER OF HOPPING CHANNEL	54
APPEND	IX E	AVERAGE TIME OF OCCUPANCY	56
APPEND	IXF	HOPPING CHANNEL SEPARATION MEASUREMENT	59
APPEND	IX G	BANDWIDTH	62
APPEND	IX H	OUTPUT POWER	65
APPEND	IX I	ANTENNA CONDUCTED SPURIOUS EMISSION	67

Project No.: 2106T028 Page 4 of 69 Report Version: R00

REVISON HISTORY

Report No.	Version	Description	Issued Date
BTL-FCCP-1-2106T028	R00	Original Report.	2021/10/28

Project No.: 2106T028 Page 5 of 69 Report Version: R00

SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

FCC Part 15, Subpart C (15.247)								
Standard(s) Section	Description	Test Result	Judgement	Remark				
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass					
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C	Pass					
15.247 (a)(1)(iii)	Number of Hopping Frequency	APPENDIX D	Pass					
15.247 (a)(1)(iii)	Average Time of Occupancy	APPENDIX E	Pass					
15.247 (a)(1)	Hopping Channel Separation	APPENDIX F	Pass					
15.247 (a)(1)	Bandwidth	APPENDIX G	Pass					
15.247 (b)(1)	Output Power	APPENDIX H	Pass					
15.247(d)	Antenna conducted Spurious Emission	APPENDIX I	Pass					
15.203	Antenna Requirement		Pass					

NOTE:

- (1) "N/A" denotes test is not applicable in this Test Report.(2) The report format version is TP.1.1.1.

Project No.: 2106T028 Page 6 of 69 Report Version: R00

1.1 TEST FACILITY

The test facilities used to collect the test data in this report:

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan The test sites and facilities are covered under FCC RN: 674415 and DN: TW0659.

 \boxtimes C05 \square CB08 \square CB11 \boxtimes CB15 \square CB16

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = \mathbf{2}$, providing a level of confidence of approximately 95 %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 $\mathbf{U}_{\text{cispr}}$ requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C05	CISPR	150 kHz ~ 30 MHz	3.44

B. Radiated emissions test:

Test Site	Measurement Frequency Range	U,(dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB15	1 GHz ~ 6 GHz	5.21
CB15	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

C. Conducted test:

Test Item	U,(dB)
Occupied Bandwidth	0.5338
Output power	0.3659
Conducted Spurious emissions	0.5416
Conducted Band edges	0.5348
Dwell time	0.6606
Channel separation	0.6606
Channel numbers	0.6606

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

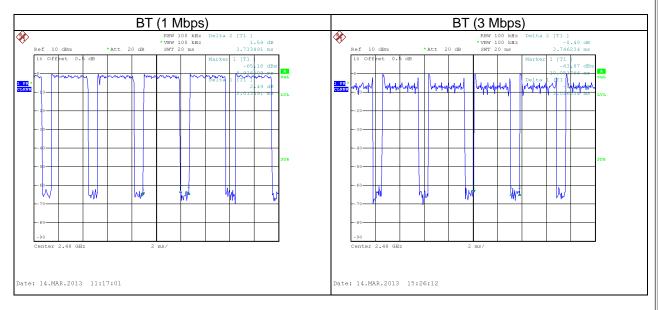
Project No.: 2106T028 Page 7 of 69 Report Version: R00

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	23 °C, 55 %	AC 120V	Tim Lian
Radiated emissions below 1 GHz	23 °C, 55 %	AC 120V	Jay Kao
Radiated emissions above 1 GHz	23 °C, 55 %	AC 120V	Jay Kao
Number of Hopping Frequency	26 °C, 60 %	AC 120V	Josh Lin
Average Time of Occupancy	26 °C, 60 %	AC 120V	Josh Lin
Hopping Channel Separation	26 °C, 60 %	AC 120V	Josh Lin
Bandwidth	26 °C, 60 %	AC 120V	Josh Lin
Output Power	25.9 °C, 34 %	AC 120V	Paul Shen
Antenna conducted Spurious Emission	26 °C, 60 %	AC 120V	Josh Lin

1.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING

Test Software		CI	ИD	
Modulation Mode	2402 MHz	2441 MHz	2480 MHz	Data Rate
GFSK	0	0	3	1 Mbps
π/4-DQPSK	8	8	8	2 Mbps
8DPSK	8	8	8	3 Mbps


Project No.: 2106T028 Page 8 of 69 Report Version: R00

1.5 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

Remark	Delta 1			Delta 2	On Time/Period	10 log(1/Duty Cycle)
Mode	ON	Numbers	On Time (B)	Period (ON+OFF)	Duty Cycle	Duty Factor
lviode	(ms)	(ON)	(ms)	(ms)	(%)	(dB)
BT (1 Mbps)	3.013	1	3.013	3.733	80.71%	0.93
BT (3 Mbps)	3.026	1	3.026	3.746	80.78%	0.93

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	Bluetooth Barcode Scanner			
Model Name	OPN-3002n			
Brand Name	OPTICON			
Model Difference	N/A			
Power Source	#1 Supplied from USB port. #2 Supplied from battery.			
Power Rating	#1 I/P: DC 5V #2 I/P: DC 3.7V, 600mAh(Li-ion)			
Products Covered	N/A			
Operation Band	2400 MHz ~ 2483.5 MHz			
Operation Frequency	2402 MHz ~ 2480 MHz			
Modulation Type	GFSK, π/4-DQPSK, 8DPSK			
Modulation Technology	FHSS			
Transfer Rate	1 Mbps, 2 Mbps, 3Mbps			
Output Power Max.	1 Mbps: -2.89 dBm (0.0005W) 2 Mbps: 1.33 dBm (0.0014W) 3 Mbps: 1.42 dBm (0.0014W)			
Test Model	OPN-3002n			
Sample Status	Engineering Sample			
EUT Modification(s)	N/A			

NOTE:

- (1) For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- (2) This is a supplement report of NEI-FCCP-2-1303025 report. The differences compared with original report are changed antenna and battery model.

 After evaluated, the changes with respect to the original one, only AC power line conducted emissions, radiated emissions and output power tests need to be verified.

Project No.: 2106T028 Page 10 of 69 Report Version: R00

(3) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

(4) Table for Filed Antenna:

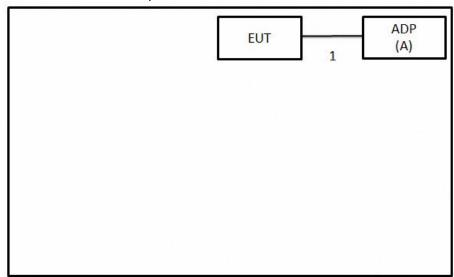
Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	OPTOELECTRO NICS CO., LTD.	2.4G PCB Antenna	PCB Layout	N/A	-0.86

2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	1 Mbps	00	-
Transmitter Radiated Emissions	1/3 Mbps	00/78	Bandedge
(above 1GHz)	1/3 Mbps	00/39/78	Harmonic
Number of Hopping Frequency	1/3 Mbps	00~78	-
Average Time of Occupancy	1/3 Mbps	00/39/78	-
Hopping Channel Separation	1/3 Mbps	00/39/78	-
Bandwidth	1/3 Mbps	00/39/78	-
Peak Output Power	1/2/3 Mbps	00/39/78	-
Antenna conducted Spurious Emission	1/3 Mbps	00/39/78	-

NOTE:

- (1) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Horizontal) is recorded.
- (2) All X, Y and Z axes are evaluated, but only the worst case (Z axis) is recorded.


Project No.: 2106T028 Page 12 of 69 Report Version: R00

2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

AC power line conducted emissions

Radiated Emissions

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	Adapter	GARMIN	TC U250	N/A	Furnished by test lab.
В	NB	Acer	MS2351	N/A	Furnished by test lab.

Iter	n Shielded	Ferrite Core	Length	Cable Type	Remarks
1	N/A	N/A	1m	Mini USB Cable	Supplied by test requester

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBμV)		
(MHz)	Quasi-peak	Average	
0.15 - 0.5	66 - 56 *	56 - 46 *	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
38.22	+	3.45	=	41.67

Measurement Value	Limit Value		Margin Level
41.67	60	=	-18.33

The following table is the setting of the receiver.

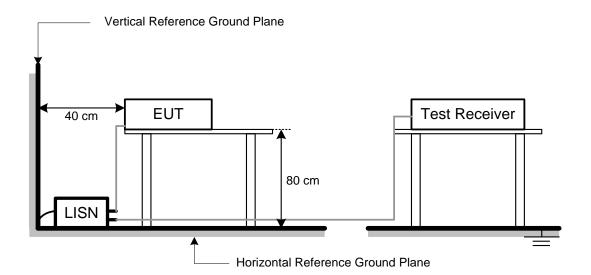
Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 - All other support equipment were powered from an additional LISN(s).
 - The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center.
 - The end of the cable will be terminated, using the correct terminating impedance.
 - The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:

- (1) In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.


3.3 DEVIATION FROM TEST STANDARD

No deviation.

Project No.: 2106T028 Page 14 of 69 Report Version: R00

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency		Emissions V/m)	Measurement Distance
(MHz)	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

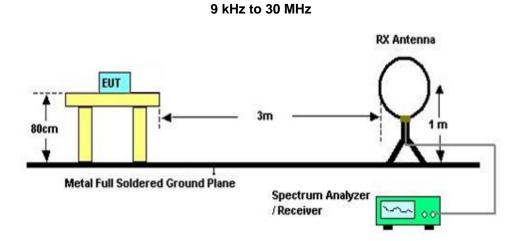
Reading Level		Correct Factor		Measurement Value
35.45	+	-11.37	=	24.08

Measurement Value		Limit Value		Margin Level
24.08	-	40	-	-15.92

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average

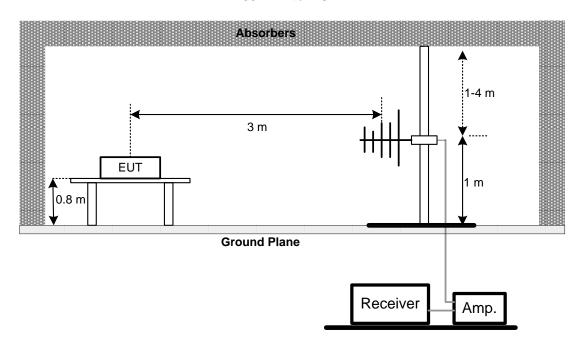
Spectrum Parameter	Setting		
Attenuation	Auto		
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector		
Start ~ Stop Frequency	90KHz~110KHz for QP detector		
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector		
Start ~ Stop Frequency	490KHz~30MHz for QP detector		
Start ~ Stop Frequency	30MHz~1000MHz for QP detector		

Project No.: 2106T028 Page 16 of 69 Report Version: R00

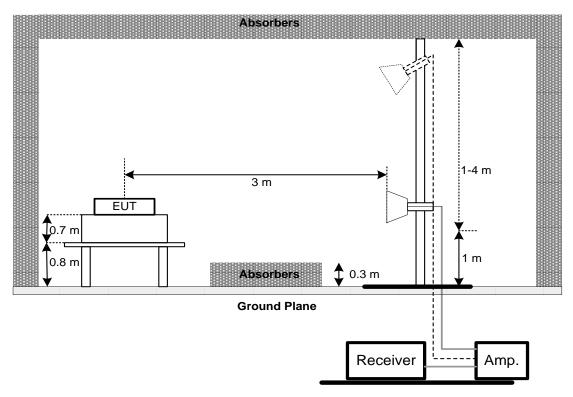

4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

4.3 DEVIATION FROM TEST STANDARD


No deviation.

4.4 TEST SETUP



30 MHz to 1 GHz

Above 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULT - BELOW 30 MHZ

There were no emissions found below 30 MHz within 20 dB of the limit.

4.7 TEST RESULT - 30 MHZ TO 1 GHZ

Please refer to the APPENDIX B.

4.8 TEST RESULT - ABOVE 1 GHZ

Please refer to the APPENDIX C.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

Project No.: 2106T028 Page 19 of 69 Report Version: R00

5 NUMBER OF HOPPING CHANNEL

5.1 APPLIED PROCEDURES

	FCC Part15 (15.247) , Subpart C					
	Section Test Item Frequency Range (MHz) Result					
15.247(a)(1)(iii) Number of Hopping Channel		2400-2483.5	PASS			

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> Operating Frequency Range
RBW	100 KHz
VBW	100 KHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=100KHz, VBW=100KHz, Sweep time = Auto.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

EUT		SPECTRUM	
		ANALYZER	

5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULTS

Please refer to the APPENDIX D.

Project No.: 2106T028 Page 20 of 69 Report Version: R00

AVERAGE TIME OF OCCUPANCY

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C				
Section Test Item Limit Frequency Range (MHz) Result				
15.247(a)(1)(iii)	Average Time of Occupancy	0.4sec	2400-2483.5	PASS

6.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer
- b. Set RBW of spectrum analyzer to 1MHz and VBW to 1MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- h. Measure the maximum time duration of one single pulse.
- i. Measure the maximum time duration of one single pulse.

A Period Time = (channel number) * 0.4

For Non-AFH Mode (79 Channel):

DH1 Time Solt: Reading * (1600/6)/79 * (0.4 * 79)

DH3 Time Solt: Reading * (1600/6)/79 * (0.4 * 79)

DH5 Time Solt: Reading * (1600/6)/79 * (0.4 * 79)

For AFH Mode (20 Channel):

DH1 Time Solt: Reading * (800/6)/20 * (0.4 * 20)

DH3 Time Solt: Reading * (800/6)/20 * (0.4 * 20) DH5 Time Solt: Reading * (800/6)/20 * (0.4 * 20)

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

6.6 TEST RESULTS

Please refer to the APPENDIX E.

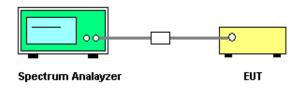
Project No.: 2106T028 Page 21 of 69 Report Version: R00

7 Hopping Channel Separation Measurement

7.1 APPLIED PROCEDURES / LIMIT

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 KHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> Measurement Bandwidth or Channel Separation
RBW	30 KHz
VBW	100 KHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto


7.2 TEST PROCEDURE

- a. The EUT must have its hopping function enabled
- b. Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span Video (or Average) Bandwidth (VBW) ≥ RBW Sweep = Auto Detector function = Peak Trace = Max Hold

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 TEST RESULTS

Please refer to the APPENDIX F.

Project No.: 2106T028 Page 22 of 69 Report Version: R00

8 BANDWIDTH TEST

8.1 APPLIED PROCEDURES

	FCC Part15 (15.247), Subpart C	
Section	Test Item	Frequency Range (MHz)
15.247(a)(2)	Bandwidth	2400-2483.5

Spectrum Parameter	Setting		
Attenuation	Auto		
Span Frequency	> Measurement Bandwidth or Channel Separation		
RBW	30 KHz (20dB Bandwidth) / 30 KHz (Channel Separation)		
VBW	100 KHz (20dB Bandwidth) / 100 KHz (Channel Separation)		
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 30KHz, VBW=100KHz, Sweep Time = Auto.

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

EUT	SPECTRUM		
	ANALYZER		

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

8.6 TEST RESULTS

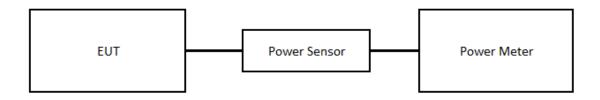
Please refer to the APPENDIX G.

Project No.: 2106T028 Page 23 of 69 Report Version: R00

9 OUTPUT POWER TEST

9.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C				
Section Test Item Limit Frequency Range (MHz) Result				
15.247(b)(1)	Peak Output Power	0.125Watt or 21dBm	2400-2483.5	PASS


9.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 3MHz, VBW= 3MHz, Sweep time = Auto.

9.3 DEVIATION FROM STANDARD

No deviation.

9.4 TEST SETUP

9.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

9.6 TEST RESULTS

Please refer to the APPENDIX H.

Project No.: 2106T028 Page 24 of 69 Report Version: R00

10 ANTENNA CONDUCTED SPURIOUS EMISSION

10.1 APPLIED PROCEDURES / LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

10.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=100KHz, Sweep time = Auto.
- c. Offset=antenna gain+cable loss

10.3 DEVIATION FROM STANDARD

No deviation.

10.4 TEST SETUP

EUT SPECTRUM ANALYZER

10.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

10.6 TEST RESULTS

Please refer to the APPENDIX I.

Project No.: 2106T028 Page 25 of 69 Report Version: R00

11 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions							
Item Kind of Equipment		Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until		
1	TWO-LINE V-NETWORK	R&S	ENV216	101339	2021/3/10	2022/3/9		
2	Test Cable	EMCI	EMCRG58-BM-B M-9000	210501	2021/5/3	2022/5/2		
3	EMI Test Receiver	R&S	ESR 7	101433	2020/12/11	2021/12/10		
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A		

Radiated Emissions									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until			
1	Preamplifier	EMCI	EMC02325B	980217	2021/4/8	2022/4/7			
2	Preamplifier	EMCI	EMC012645B	980267	2021/4/8	2022/4/7			
3	Preamplifier	EMCI	EMC001340	980555	2021/4/8	2022/4/7			
4	Test Cable	EMCI	FMC-SM-SM-100		2021/4/8	2022/4/7			
5	Test Cable	EMCI	EMC104-SM-SM- 3000	151205	2021/4/8	2022/4/7			
6	Test Cable	EMCI	EMC-SM-SM-700 0	180408	2021/4/8	2022/4/7			
7	MXE EMI Receiver	Agilent	N9038A	MY554200087	2021/5/27	2022/5/26			
8	Signal Analyzer	Agilent	N9010A	MY56480554	2021/8/25	2022/8/24			
9	Loop Ant	Electro-Metrics	EMCI-LPA600	274	2021/6/1	2022/5/31			
10	Horn Ant	SCHWARZBECK	BBHA 9120D	9120D-1342	2021/6/2	2022/6/1			
11	Horn Ant	Schwarzbeck	BBHA 9170	BBHA 9170340	2021/7/9	2022/7/8			
12	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	VULB 9168-352	2021/8/11	2022/8/10			
13	5dB Attenuator	EMCI	EMCI-N-6-05	AT-N0625	2021/8/11	2022/8/10			
14	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A			

	Number of Hopping Frequency									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Until					
1	Spectrum Analyzer	R&S	FSP-40	100129	Oct. 01, 2013					

	Average Time of Occupancy								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Until				
1	Spectrum Analyzer	R&S	FSP-40	100129	Oct. 01, 2013				

	Hopping Channel Separation									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Until					
1	Spectrum Analyzer	R&S	FSP-40	100129	Oct. 01, 2013					

Bandwidth								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Until			
1	Spectrum Analyzer	R&S	FSP-40	100129	Oct. 01, 2013			

Output Power								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until		
1	Power Meter	Anritsu	ML2495A	1128008	2021/5/26	2022/5/25		
2	Power Sensor	Anritsu	MA2411B	1126001	2021/5/26	2022/5/25		

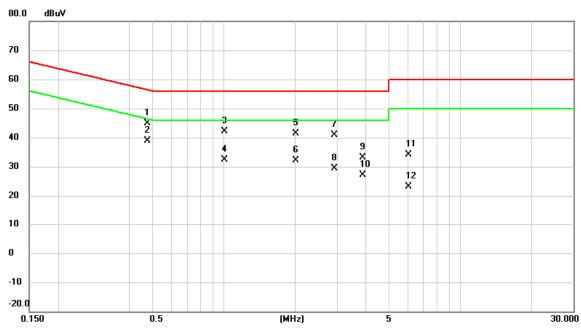
	Antenna conducted Spurious Emission									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Until					
1	Spectrum Analyzer	R&S	FSP-40	100129	Oct. 01, 2013					

Remark:

Project No.: 2106T028 Page 27 of 69 Report Version: R00

12 EUT TEST PHOTO
Please refer to document Appendix No.: TP-2106T028-FCCP-1 (APPENDIX-TEST PHOTOS).
13 EUT PHOTOS
Please refer to document Appendix No.: EP-2106T028-2 (APPENDIX-EUT PHOTOS).

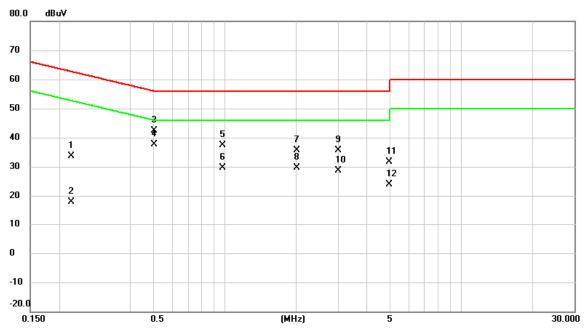
Project No.: 2106T028 Page 28 of 69 Report Version: R00



APPENDIX A	AC POWER LINE CONDUCTED EMISSIONS

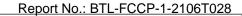
Project No.: 2106T028 Page 29 of 69 Report Version: R00

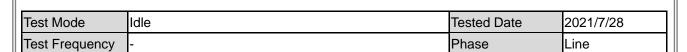
Test Mode	Normal	Tested Date	2021/7/28
Test Frequency	-	Phase	Line

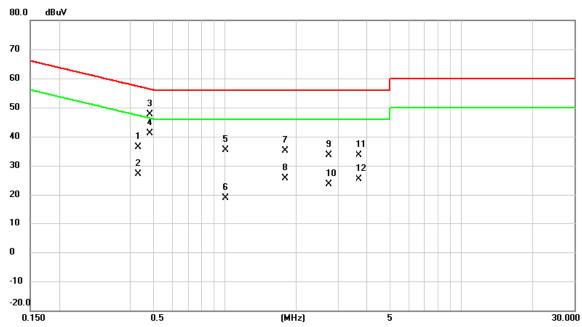


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1		0.4762	35.19	9.71	44.90	56.41	-11.51	QР	
2	*	0.4762	29.28	9.71	38.99	46.41	-7.42	AVG	
3		1.0095	32.44	9.72	42.16	56.00	-13.84	QP	
4		1.0095	22.75	9.72	32.47	46.00	-13.53	AVG	
5		2.0130	31.69	9.76	41.45	56.00	-14.55	QP	
6		2.0130	22.46	9.76	32.22	46.00	-13.78	AVG	
7		2.9333	31.09	9.79	40.88	56.00	-15.12	QP	
8		2.9333	19.52	9.79	29.31	46.00	-16.69	AVG	
9		3.8828	23.28	9.88	33.16	56.00	-22.84	QP	
10		3.8828	17.32	9.88	27.20	46.00	-18.80	AVG	
11		6.0428	24.22	10.00	34.22	60.00	-25.78	QP	
12		6.0428	13.16	10.00	23.16	50.00	-26.84	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

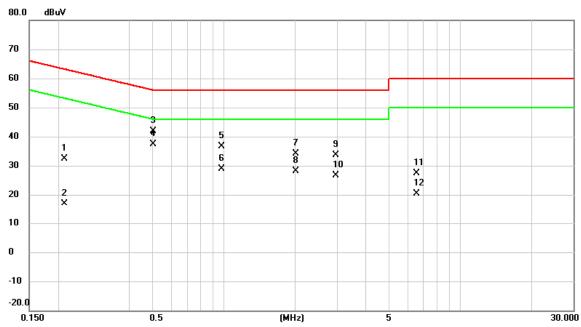



Test Mode	Normal	Tested Date	2021/7/28
Test Frequency	-	Phase	Neutral



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1		0.2243	24.02	9.70	33.72	62.66	-28.94	QР	
2		0.2243	8.30	9.70	18.00	52.66	-34.66	AVG	
3		0.5032	32.58	9.71	42.29	56.00	-13.71	QР	
4	*	0.5032	27.98	9.71	37.69	46.00	-8.31	AVG	
5		0.9802	27.63	9.73	37.36	56.00	-18.64	QР	
6		0.9802	19.88	9.73	29.61	46.00	-16.39	AVG	
7		2.0130	25.98	9.75	35.73	56.00	-20.27	QP	
8		2.0130	19.82	9.75	29.57	46.00	-16.43	AVG	
9		3.0188	25.75	9.79	35.54	56.00	-20.46	QP	
10		3.0188	18.91	9.79	28.70	46.00	-17.30	AVG	
11		4.9560	21.66	9.98	31.64	56.00	-24.36	QР	
12		4.9560	14.00	9.98	23.98	46.00	-22.02	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

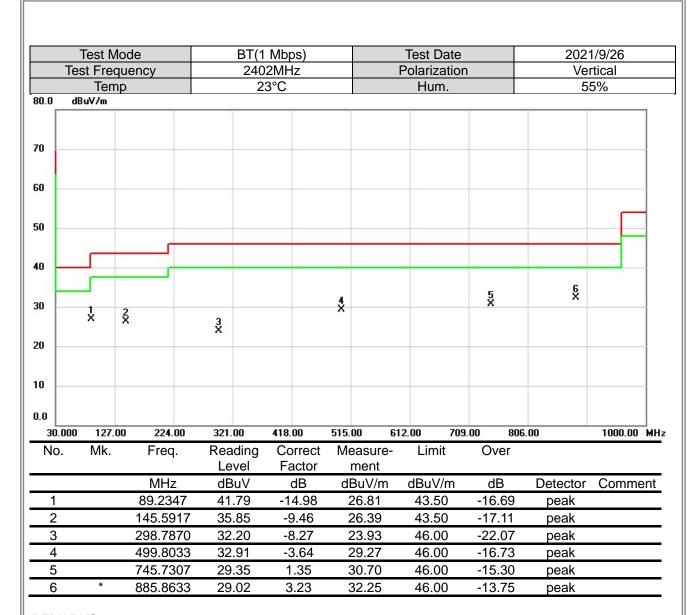


			Deside	O t	N.4				
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∀	dB	dBu∨	dBu∨	dB	Detector	Comment
1		0.4312	26.68	9.71	36.39	57.23	-20.84	QР	
2		0.4312	17.50	9.71	27.21	47.23	-20.02	AVG	
3		0.4830	37.88	9.71	47.59	56.29	-8.70	QP	
4	*	0.4830	31.49	9.71	41.20	46.29	-5.09	AVG	
5		1.0095	25.77	9.72	35.49	56.00	-20.51	QР	
6		1.0095	9.25	9.72	18.97	46.00	-27.03	AVG	
7		1.7948	25.47	9.76	35.23	56.00	-20.77	QP	
8		1.7948	15.96	9.76	25.72	46.00	-20.28	AVG	
9		2.7465	23.80	9.78	33.58	56.00	-22.42	QP	
10		2.7465	13.85	9.78	23.63	46.00	-22.37	AVG	
11		3.7050	23.87	9.86	33.73	56.00	-22.27	QP	
12		3.7050	15.61	9.86	25.47	46.00	-20.53	AVG	

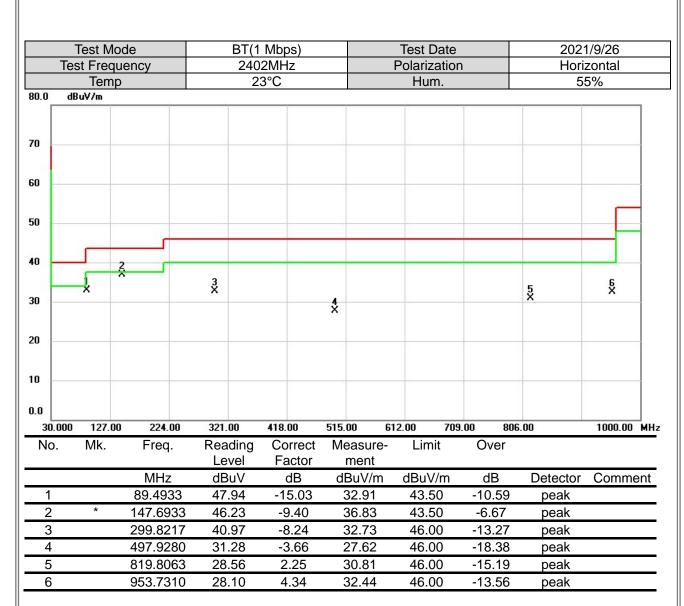
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2021/7/28
Test Frequency	-	Phase	Neutral

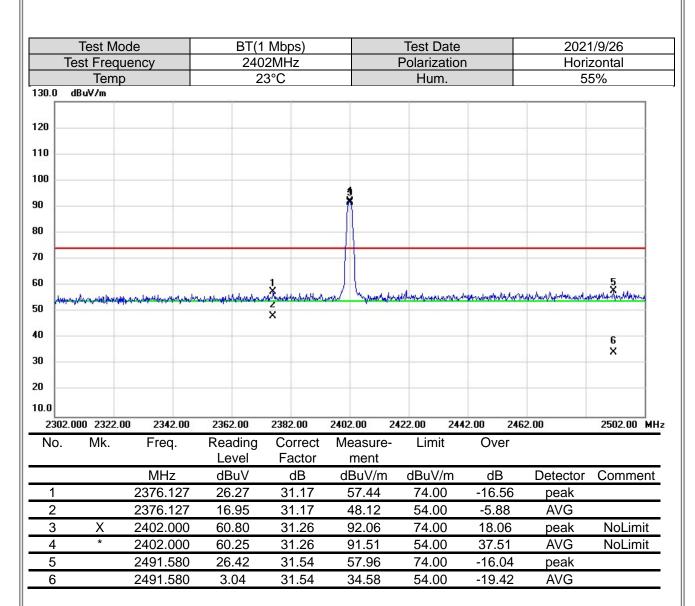
			Reading	Correct	Measure-				
No.	Mk.	Freq.	Level	Factor	ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1		0.2107	22.61	9.70	32.31	63.18	-30.87	QP	
2		0.2107	7.10	9.70	16.80	53.18	-36.38	AVG	
3		0.5032	32.28	9.71	41.99	56.00	-14.01	QP	
4	*	0.5032	27.77	9.71	37.48	46.00	-8.52	AVG	
5		0.9802	26.87	9.73	36.60	56.00	-19.40	QP	
6		0.9802	19.18	9.73	28.91	46.00	-17.09	AVG	
7		2.0107	24.48	9.75	34.23	56.00	-21.77	QP	
8		2.0107	18.41	9.75	28.16	46.00	-17.84	AVG	
9		2.9647	23.92	9.79	33.71	56.00	-22.29	QP	
10		2.9647	16.73	9.79	26.52	46.00	-19.48	AVG	
11		6.5602	17.36	10.03	27.39	60.00	-32.61	QP	
12		6.5602	10.43	10.03	20.46	50.00	-29.54	AVG	


- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

APPENDIX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ


Project No.: 2106T028 Page 34 of 69 Report Version: R00

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX C	RADIATED EMISSIONS - ABOVE 1 GHZ

Project No.: 2106T028 Page 37 of 69 Report Version: R00

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

	Test Mo	de	BT(1	Mbps)		Test Date		2021	1/9/26
Te	est Frequ			0MHz		Polarization	ſ		zontal
	Temp)	2	3°C		Hum.		5	5%
30.0 d	BuV/m								
20									
10	1/4		100	10					
00					9				
00					Ĭ				
30									
70 🗀	10								
50									i
	1 Mary and and	had the same of th	harast track	perography Mathemany	west manual	eleccurioly electron to	hander of my only a the	make all howevery	Kironanda moderfilmingara
io	-			T Comment				- 6	
10								>	•
80	2 X								
20									
0.0									
	00 2400.0		2440.00	2460.00	20,000,000,000,000,000,000,000,000			0.00	2580.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2388.840	25.05	31.21	56.26	74.00	-17.74	peak	Commont
2		2388.840	3.07	31.21	34.28	54.00	-19.72	AVG	
3	Х	2480.000	63.50	31.51	95.01	74.00	21.01	peak	NoLimit
4	*	2480.000	63.07	31.51	94.58	54.00	40.58	AVG	NoLimit
5		2561.480	27.07	31.74	58.81	74.00	-15.19	peak	
<u> </u>									

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo	de	BT(3	3 Mbps)		Test Date		202	1/9/26
Te	st Frequ	iency)2MHz		Polarizatio	n		zontal
	Temp		2	:3°C		Hum.		5	5%
130.0 dE	BuV/m								
120									
110									
100					2				
90					3				
80	1								
70				1/2					
60				1 X			h	parkamakakakak	5 X
50	hamaly graphy beautiful	to delight and the second	approximate and physical actions	**************************************	April April 1944	Kar-ipidhibiladi baka	diamental de la companya de la compa	lest dans des les des	or - trafficultivation
40									6
30			5,5	- I	, , , , , , , , , , , , , , , , , , ,		100		×
20					7.				
10.0									
100000000000000000000000000000000000000	0 2322.0		2362.00	2382.00				2.00	2502.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2388.287	25.36	31.21	56.57	74.00	-17.43	peak	
2		2388.287	16.01	31.21	47.22	54.00	-6.78	AVG	
3	Χ	2402.000	58.29	31.26	89.55	74.00	15.55	peak	NoLimit
4	*	2402.000	55.47	31.26	86.73	54.00	32.73	AVG	NoLimit
5		2489.220	26.15	31.53	57.68	74.00	-16.32	peak	
6		2489.220	3.01	31.53	34.54	54.00	-19.46	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

Т	est Mo	de		Mbps)		Test Date			1/9/26
Tes	t Frequ			0MHz		Polarization	1		zontal
	Temp		2	3°C		Hum.		5	5%
130.0 dBu	uV/m								
120									
110									
100							-		
90					*		1		
80					-				
70									
60	ال بالمالية	modernature and problems	ahaa ahaanaa	od an an worked	North Name of Paris	deconsulations class	mermental remains	mhumuriku	hillian hallanda ya
50	MAN SHALLOW SHALLOW	alab tanantan takan ara	Markova, c. co. susta.	* * M * C * C * C * C * C * C * C * C *	21 10-1		1 1 1 1 1 1 1 1	6	
40 2 X								×	
30									
20					2				
10.0 2380.000	2400.0	0 2420.00	2440.00	2460.00	2480.00 25	500.00 252	20.00 254	0.00	2580.00 MF
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2380.547	25.03	31.18	56.21	74.00	-17.79	peak	
2		2380.547	2.88	31.18	34.06	54.00	-19.94	AVG	
3	Χ	2480.000	59.44	31.51	90.95	74.00	16.95	peak	NoLimit
4	*	2480.000	55.56	31.51	87.07	54.00	33.07	AVG	NoLimit
5		2555.627	27.12	31.73	58.85	74.00	-15.15	peak	
6		2555.627	12.36	31.73	44.09	54.00	-9.91	AVG	· · · · · · · · · · · · · · · · · · ·

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test I					1 Mbps)		Test Date			1/9/26
T	est Fre	_	ency			02MHz		Polarizatio	n		rtical
	Ter	np				23°C		Hum.		5	5%
130.0	dBuV/m						-				
120											
10		4	-						-		
100											
90					- 4						
30 _											
0		i i									
io											
io			2								
ю			7655								
30			3								
20											
10.0											5
	.000 355		6100.	25,0167	8650.00	11200.00				100.00	26500.00 MH
No.	Mk.		Freq.		Reading Level	Correct Factor	Measure- ment	- Limit	Over		
			MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1			4804.00	00	59.67	-9.84	49.83	74.00	-24.17	peak	
2	*		4804.00	00	57.46	-9.84	47.62	54.00	-6.38	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			Mbps)		Test Date			1/9/26
les	t Frequ			2MHz		Polarizatio	n		zontal
30.0 dB	Temp			:3°C		Hum.		5	5%
30.0 UB	uv/III								
20									
10							42		
00									
0									
:0									
0									
0		1							
0		ž ×							
0 -									
0	-				S .			× .	
0						6			
0.0									
	0 3550.00	0.0000000000000000000000000000000000000	8650.00	11200.00				00.00	26500.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.000	63.96	-9.84	54.12	74.00	-19.88	peak	
2	*	4804.000	61.73	-9.84	51.89	54.00	-2.11	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		t Mo				BT(1						Test D					1/9/26	
	Test F						1MH	Z				Polariz)			rtical	
		emp				2	3°C					Hun	า.			5	5%	
30.0	dBuV/	m							-			-		1				
20																		
10		- 10	-		55				8.						30			
00																		
0																		
io																		
0																		
0									-									
io			1															
0			x															
:0					1.5				8			-						
20																		
0.0																		
	.000 3				8650		1120		1375			300.00		50.00		00.00	26500.001	МН
No.	M	lk.	Freq	•	Rea Le			rrect ctor		easur ment	e-	Lim	IT	Ove	er			
			MHz		dB	uV	(dΒ	dl	3uV/r	n	dBuV	/m	dB	3	Detector	Commer	nt
1			4882.0	00	57.	43	-9	.77	4	17.66		74.0	0	-26.3	34	peak		
2		*	4882.0	00	52.	84	-9	.77		13.07		54.0	0	-10.9	93	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test					Mbps)				Test Da				1/9/26
	Test Fr		ency			1MHz			P	<u>olariza</u>				zontal
30.0	dBuV/m	mp			2	3°C				Hum			5	5%
30.0	aBn4/w		-			-								
120														
10						- 10								
00										6.				
90						10								
30						19							2	
o														
io														
io			Ž								- 1			
10														
80						lo.				12	12			
20						(
0.0														
1000	.000 35	50.00	6100.00	D 86!	50.00	11200.00	137	50.00	163	00.00	18850	.00 2	1400.00	26500.00 MH
No.	Mk		Freq.		ading evel	Correct Factor		easure ment)-	Limit	i	Over		
			MHz		∃uV	dB		BuV/m		dBuV/	m	dB	Detector	Comment
1			4882.000) 62	2.62	-9.77		52.85		74.00)	-21.15		
2	*		4882.000) 60	0.92	-9.77		51.15		54.00)	-2.85	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Te	st Mo	ode			BT(1						Test D					1/9/26
			uency				0MH	Z				Polariza)			rtical
		Temp)			2	3°C					Hun	n.			5	5%
30.0	dBuV	/m							-								
20															<u></u>		
10		1/4			155				8						<u> </u>		
00			9						- 2								
10														6			
io									-								
0									-								
o																	
0			1 X X						Į.								
0			X						-								
0					-									12			
0																	
0.0																	
	27/25/11	3550.0			8650		1120			0.00		300.00		50.00	\$-60 pt 100	00.00	26500.00 M
No.	N	∕lk.	Fred	-	Rea Le	ding vel		rrect ctor		easur ment		Limi	it	Ov	er		
			MHz	<u> </u>	dB	uV	(dΒ	dl	3uV/r	m	dBuV	/m	dE	3	Detector	Comment
1			4960.0	000	57	.17	-9	.68	4	17.49)	74.0	0	-26.	51	peak	
2		*	4960.0	000	53.	52	-9	.68	4	13.84		54.0	0	-10.	16	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test					Mbps)				est Da				1/9/26
	Test Fr		ency			0MHz				larizat				zontal
30.0	dBuV/m	mp			2:	3°C				Hum.			5	5%
50.0	ubu¥/III	·				-	7							
120														
10				99		- 8	(8)					<u> </u>		
100														
90														
30														
70						, i						- 1		
60														
io		- 2	3 2											
10						N								
80						.0								
20														
10.0														
1000	.000 35	50.00	6100.00	8650	0.00	11200.00	1375	0.00	16300	0.00	18850.00	2140	00.00	26500.00 MH
No.	Mk	ζ.	Freq.	Rea Le	ding vel	Correct Factor		asure- nent		Limit	Ov	er		
			MHz	dB		dB		BuV/m	d	BuV/n	n dl	В	Detector	Comment
1_			4960.000	62.	.88	-9.68	5	3.20	•	74.00	-20	.80	peak	
2	*		4960.000	60.	.31	-9.68	5	0.63	į	54.00	-3.	37	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		Мо					Mbps)				Test D				1/9/26
T	est F						2MHz				Polariza				rtical
		emp				2	3°C				Hum	۱.		5	5%
130.0	dBuV/i	n					-		-						
120															
10		-			9		- 10					48			
00			9												
90															
80															
o 🗀															
io															
50															
10			1 X 2												
80			x												
20															
0.0															
1000.	000 3	550.0	0 6100	.00	8650	.00	11200.00) 1	3750.00	16	300.00	18850	.00 2	21400.00	26500.00 MH
No.	M	k.	Freq	•	Read Lev		Corre Facto		Measur ment		Limit	t	Over	•	
			MHz		dB		dB		dBuV/ı	m	dBuV/	m	dB	Detector	Comment
1			4804.0	00	52.	57	-9.84		42.73	3	74.00)	-31.27	7 peak	
2	*		4804.0	00	44.	76	-9.84		34.92	2	54.00)	-19.08	8 AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Tes	t Mo	de			BT (3						Test D				202	1/9/26	
7	Test F						2MH	Z			F	Polariza)			zontal	
		emp				2	3°C					Hun	า.			5	5%	
30.0	dBuV/	m							-					1				
20																		
10		- 10			10.00													
00			-														-	
10																		
io																		
о 🗀		7																
0			-															
0			1															
.0			1 2 X															
:0		-	3															
20																		
0.0																		
	.000 3				8650		1120		1375			300.00		50.00	1-11-2	00.00	26500.00	ΜН
No.	M	k.	Freq		Rea Le			rrect ctor		easur ment	e-	Limi	it	Ove	er			
			MHz	<u>. </u>	dB	uV	C	lΒ	dl	3uV/r	n	dBuV	/m	dE	}	Detector	Commer	nt
1			4804.0	00	55.	40	-9	.84	4	15.56		74.0	0	-28.	44	peak		
2	,	k	4804.0	00	48.	71	-9	.84	- :	38.87		54.0	0	-15.	13	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode Test Frequency			(3 Mbps)		Test Date			1/9/26	
		24	141MHz		Polarizatio		rtical		
30.0	Temp dBuV/m)		23°C		Hum.		5	5%
50.0	aba v / iii							1	
20									
10									
00 🕌									
o 📙									
0									
0									
0									
٠ 									
0									
0		1 X 2							
		X							
0									
0									
0.0									
	000 3550.0		8650.00	11200.00				100.00	26500.00 MH
No.	Mk.	Freq.	Reading			- Limit	Over		
		MHz	Level dBuV	Factor dB	ment dBuV/m	dBuV/m	dB	Detector	Comment
1		4882.00	52.36	-9.77	42.59	74.00	-31.41	peak	Comment
2	*	4882.00	44.19	-9.77	34.42	54.00	-19.58	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode Test Frequency			BT(3						Test D					1/9/26			
				1MH	Z				Polariza)			zontal			
		mp				2	3°C					Hun	า.			5	5%
30.0	dBuV/m								-			-		1			
20																	
10		1/4	5		9,9				8.								
00		-															
0																	
:0												100					
o																	
0 _																	
0		-	1														
0			1 X 2 X														
0			^														
0																	
0.0																	
1000.	.000 35!	50.00	6100	.00	8650	.00	1120	0.00	1375	0.00	16	300.00	188	50.00	2140	0.00	26500.00 M
No.	Mk		Freq		Rea Le			rrect ctor		easur ment	e-	Limi	t	Ove	er		
			MHz		dB		C	βB	dl	3uV/n	n	dBuV	/m	dB	}	Detector	Commen
1			4882.0		54.		-9	.77		14.88		74.0	0	-29.	12	peak	
2	*		4882.0	00	47.	36	-9	.77	- (37.59		54.0	0	-16.4	41	AVG	

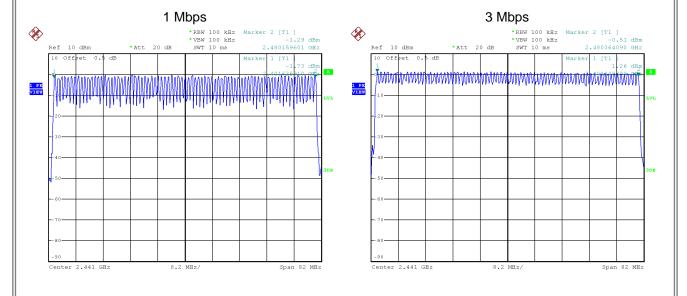
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode Test Frequency					Mbp					Test Da				1/9/26	
			2480MHz 23°C					Р	olariza				rtical		
30.0 c	Temp dBuV/m)			2	3°C					Hum.			5	55%
30.0 (JDUY/III							-							
20								,							
10															
00								-			<u></u>				
o 📙															
0															
0								- 1							
0															
0															y = 1
		1 ×													
0		2 X													
0 —		×										42			
0															
0.0															
	000 3550.0	00 6100	.00	8650	.00	1120	0.00	1375	50.00	163	00.00	18850	.00 21	400.00	26500.00 MF
No.	Mk.	Freq		Rea			rect		easure	22.2	Limit		Over		
		<u> </u>		Lev		Fa	ctor		ment						
	•	MHz		dBı			В		3uV/m		dBuV/r		dB	Detector	Comment
1		4960.0		53.			.68		14.25		74.00		-29.75	peak	
2	*	4960.0	00	43.	09	-9	.68	3	33.41		54.00)	-20.59	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode					Mbps				Test D					1/9/26	
les	st Frequency					0MHz	<u> </u>			Polariza					zontal
30.0 dE	Temp)			2.	3°C				Hun	1.			5	5%
30.0 GL	7477111			-		-		-							
20															
10		8										12			
10.00															
00															
0															
o															
. —								-							
0								-							
0	- 2	1											-		
0		X X													
0		2 X													
0										0					
0.0	0.0550			2050		4400		407		 200 00	400	FO 00	04.46	20.00	
	00 3550.I			8650.		11200			0.00 easur	300.00 Limi		50.00 Ove		00.00	26500.00 MI
No.	Mk.	Freq	•	Read Lev			rect		ment	LIIIII	ι	OV	E1		
		MHz		dBu			В		3uV/r	dBuV	/m	dE	3	Detector	Comment
1		4960.0		53.3			.68		13.63	74.0		-30.		peak	
2	*	4960.0	00	43.2	29	-9.	.68	3	33.61	54.0	0	-20.	39	AVG	

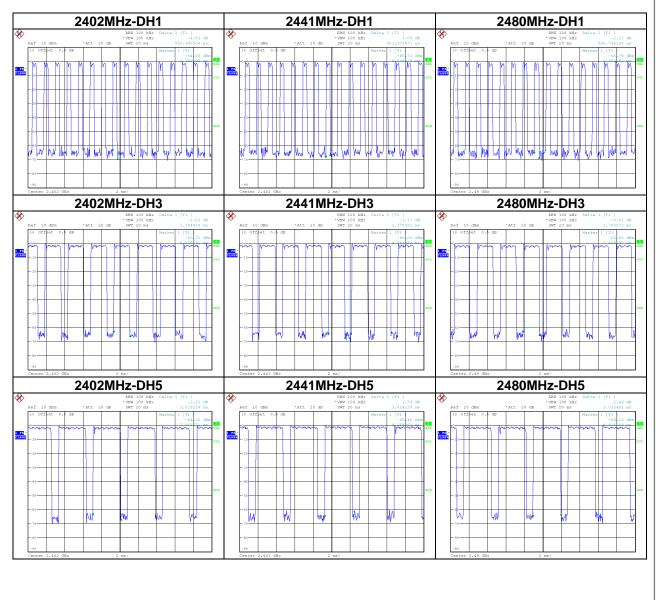
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.


APPENDIX D	NUMBER OF HOPPING CHANNEL

Project No.: 2106T028 Page 54 of 69 Report Version: R00

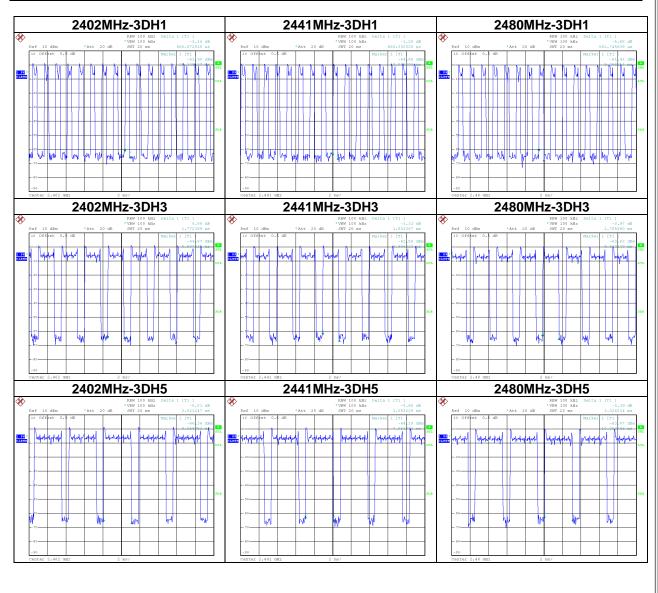
١.		
	Test Mode	1/3Mbps
	Test Date	2013/3/15

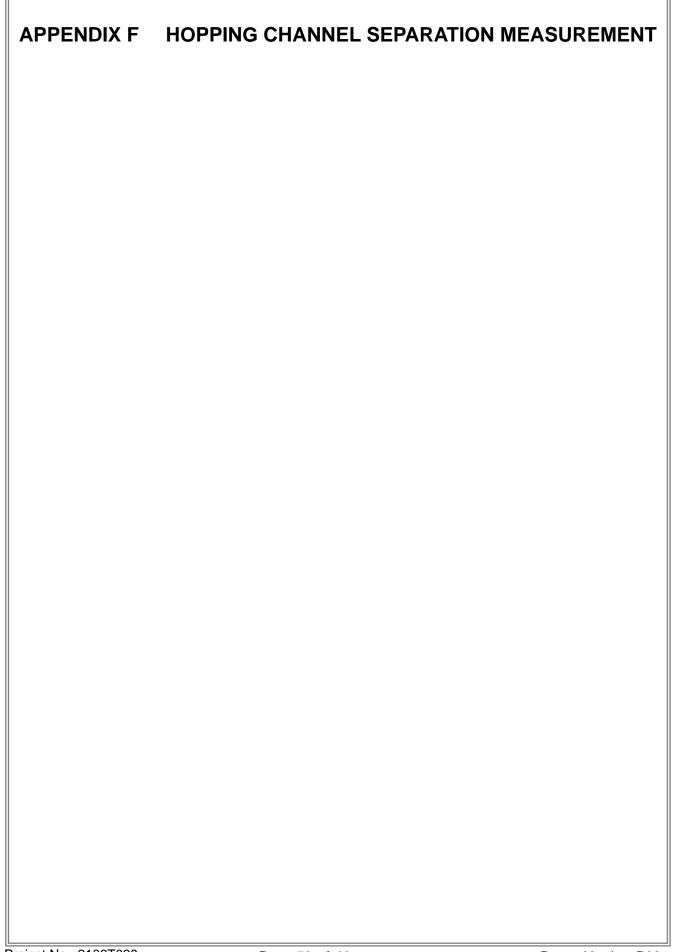
Test Mode	Number of Hopping Channel	≥ Limit	Test Result		
1 Mbps	79	15	Pass		
3 Mbps	79	15	Pass		


I————		Report No.: DTE 1 COL 1 2 1001 020
	A DDENIDIV E	AVED A OF TIME OF COOLIDANOV
	APPENDIX E	AVERAGE TIME OF OCCUPANCY

Project No.: 2106T028 Page 56 of 69 Report Version: R00

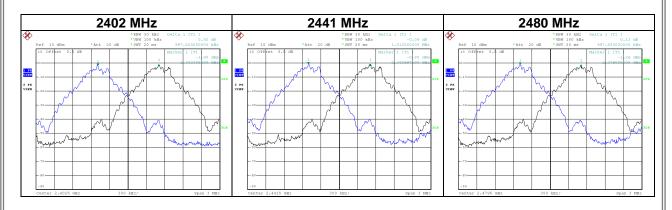
Test Mode	1Mbps
Test Date	2013/3/15


Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limits (s)	Test Result
DH5	2402	3.0282	0.3230	0.4	Pass
DH3	2402	1.7845	0.2855	0.4	Pass
DH1	2402	0.5510	0.1763	0.4	Pass
DH5	2441	3.0242	0.3226	0.4	Pass
DH3	2441	1.7754	0.2841	0.4	Pass
DH1	2441	0.5014	0.1604	0.4	Pass
DH5	2480	3.0135	0.3214	0.4	Pass
DH3	2480	1.7609	0.2817	0.4	Pass
DH1	2480	0.5407	0.1730	0.4	Pass



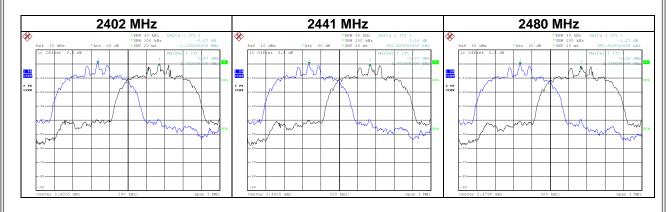
Test Mode	3Mbps
Test Date	2013/3/15

Data Packet	Frequency (MHz)	Pulse Duration(ms)	Dwell Time(s)	Limits(s)	Test Result
3DH5	2402	3.0212	0.3223	0.4	Pass
3DH3	2402	1.7724	0.2836	0.4	Pass
3DH1	2402	0.5609	0.1795	0.4	Pass
3DH5	2441	3.0582	0.3262	0.4	Pass
3DH3	2441	1.8034	0.2885	0.4	Pass
3DH1	2441	0.5600	0.1792	0.4	Pass
3DH5	2480	3.0262	0.3228	0.4	Pass
3DH3	2480	1.7659	0.2825	0.4	Pass
3DH1	2480	0.5517	0.1766	0.4	Pass



Project No.: 2106T028 Page 59 of 69 Report Version: R00

Test Mode	Hopping on _1Mbps
Test Date	2013/3/15


Frequency (MHz)	Channel Separation 2/3 of 20dB Bandwidth (MHz) (MHz)		Test Result
2402	1.00	0.629	Pass
2441	1.01	0.625	Pass
2480	1.00	0.625	Pass

Test Mode	Hopping on _3Mbps
Test Date	2013/3/15

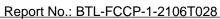
Frequency (MHz)	Channel Separation 2/3 of 20dB Bandwid (MHz) (MHz)		Test Result
2402	1.01	0.845	Pass
2441	1.00	0.841	Pass
2480	1.00	0.841	Pass

APPENDIX G	BANDWIDTH

Project No.: 2106T028 Page 62 of 69 Report Version: R00

Test Mode	1Mbps
Test Date	2013/3/15

Frequency (MHz)	20dB Bandwidth (MHz)	99% Occupied BW (MHz)	Test Result
2402	0.943	0.870	Pass
2441	0.938	0.870	Pass
2480	0.938	0.870	Pass



Test Mode	3Mbps
Test Date	2013/3/15

Frequency (MHz)	20dB Bandwidth 99% Occupied B (MHz) (MHz)		Test Result
2402	1.267	1.175	Pass
2441	1.262	1.170	Pass
2480	1.262	1.170	Pass

APPENDIX H	OUTPUT POWER

Project No.: 2106T028 Page 65 of 69 Report Version: R00

Report No.: BTL-FCCP-1-2106T028

Test Mode	1Mbps Tested Date 2021/7/2		2021/7/21		
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	-3.86	0.0004	21.00	0.1259	Pass
2441	-3.59	0.0004	21.00	0.1259	Pass
2480	-2.89	0.0005	21.00	0.1259	Pass

Test Mode 2Mbps Tested Date 2021/7/21

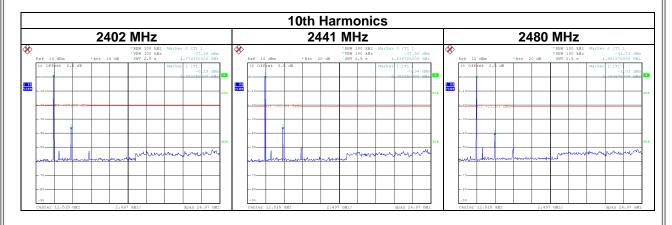
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	1.33	0.0014	21.00	0.1259	Pass
2441	1.09	0.0013	21.00	0.1259	Pass
2480	0.67	0.0012	21.00	0.1259	Pass

Test Mode	3Mbps		2021/7/21
-----------	-------	--	-----------

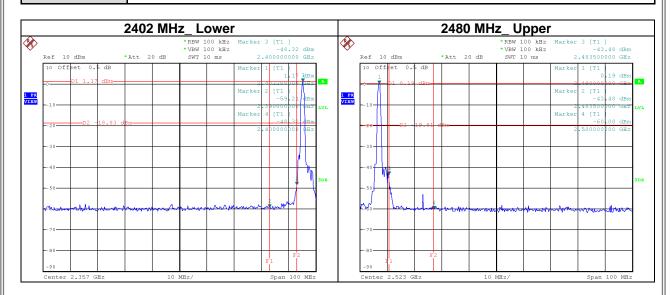
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	1.42	0.0014	21.00	0.1259	Pass
2441	1.10	0.0013	21.00	0.1259	Pass
2480	0.86	0.0012	21.00	0.1259	Pass

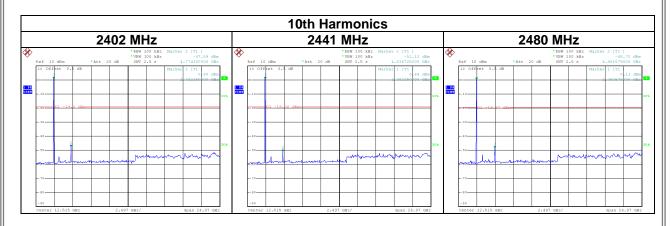
Project No.: 2106T028 Page 66 of 69 Report Version: R00




APPENDIX I	ANTENNA CONDUCTED SPURIOUS EMISSION

Project No.: 2106T028 Page 67 of 69 Report Version: R00


	[
Test Mode	1Mbps
Test Date	2013/3/15



Test Mode	3Mbps
Test Date	2013/3/15

End of Test Report