

FCC Radio Test Report

FCC ID: UFOOPN2002I

: BTL-FCCP-1-2106T022 Report No. Equipment : Laser Data Collector

Model Name : OPN-2002i **Brand Name** : OPTICON

Applicant : OPTOELECTRONICS Co., Ltd.

Address : 4-12-17, Tsukagoshi, Warabi-shi, Saitama Pref., 335-0002 Japan

Manufacturer : OPTOELECTRONICS Co., Ltd.

Address : 4-12-17, Tsukagoshi, Warabi-shi, Saitama Pref., 335-0002 Japan

Radio Function : Bluetooth EDR

FCC Rule Part(s) : FCC Part15, Subpart C (15.247)

Measurement Procedure(s)

: ANSI C63.10-2013

: 2012/7/30 **Date of Receipt** 2021/6/22

Date of Test : 2012/7/30~ 2012/9/20

2021/6/22~ 2022/4/27

Issued Date : 2022/5/19

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by

Approved by

Peter Chen, Vice Manager

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com

Project No.: 2106T022 Page 1 of 69 Report Version: R01

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2106T022 Page 2 of 69 Report Version: R01

CONTENTS REVISION HISTORY 5 SUMMARY OF TEST RESULTS 6 1.1 **TEST FACILITY** 7 MEASUREMENT UNCERTAINTY 1.2 7 1.3 **TEST ENVIRONMENT CONDITIONS** 8 1.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING 8 1.5 **DUTY CYCLE** 9 2 **GENERAL INFORMATION** 10 **DESCRIPTION OF EUT** 2.1 10 2.2 **TEST MODES** 12 2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 13 2.4 SUPPORT UNITS 13 3 AC POWER LINE CONDUCTED EMISSIONS TEST 14 3.1 LIMIT 14 **TEST PROCEDURE** 3.2 14 3.3 **DEVIATION FROM TEST STANDARD** 14 3.4 **TEST SETUP** 15 3.5 **TEST RESULT** 15 4 RADIATED EMISSIONS TEST 16 4.1 LIMIT 16 4.2 **TEST PROCEDURE** 17 4.3 **DEVIATION FROM TEST STANDARD** 17 4.4 **TEST SETUP** 17 **EUT OPERATING CONDITIONS** 4.5 18 4.6 TEST RESULT - BELOW 30 MHZ 19 4.7 TEST RESULT - 30 MHZ TO 1 GHZ 19 4.8 TEST RESULT – ABOVE 1 GHZ 19 5 NUMBER OF HOPPING CHANNEL 20 APPLIED PROCEDURES 5.1 20 5.2 **TEST PROCEDURE** 20 5.3 **DEVIATION FROM STANDARD** 20 **TEST SETUP** 20 5.4 5.5 **EUT OPERATION CONDITIONS** 20 5.6 **TEST RESULTS** 20 AVERAGE TIME OF OCCUPANCY 6 21 6.1 APPLIED PROCEDURES / LIMIT 21 **TEST PROCEDURE** 6.2 21 **DEVIATION FROM STANDARD** 6.3 21 6.4 **TEST SETUP** 21 **EUT OPERATION CONDITIONS** 6.5 21 **TEST RESULTS** 21 6.6 HOPPING CHANNEL SEPARATION MEASUREMENT 22 7 APPLIED PROCEDURES / LIMIT 7.1 22 7.2 **TEST PROCEDURE** 22 **DEVIATION FROM STANDARD** 7.3 22 7.4 **TEST SETUP** 22 7.5 **TEST RESULTS** 22

•	DANIDI	AUDTUTEOT	00
8		WIDTH TEST	23
8.1		PLIED PROCEDURES	23
8.2	_	T PROCEDURE	23
8.3		/IATION FROM STANDARD	23
8.4		T SETUP	23
8.5		OPERATION CONDITIONS	23
8.6		T RESULTS	23
9		JT POWER TEST	24
9.1	APP	PLIED PROCEDURES / LIMIT	24
9.2	TES	T PROCEDURE	24
9.3	DEV	/IATION FROM STANDARD	24
9.4	TES	T SETUP	24
9.5	EUT	OPERATION CONDITIONS	24
9.6	TES	T RESULTS	24
10	ANTEN	INA CONDUCTED SPURIOUS EMISSION	25
10.1	APP	LIED PROCEDURES / LIMIT	25
10.2	TES	T PROCEDURE	25
10.3	DEV	/IATION FROM STANDARD	25
10.4	TES	T SETUP	25
10.5	EUT	OPERATION CONDITIONS	25
10.6	TES	T RESULTS	25
11	LIST O	F MEASURING EQUIPMENTS	26
12	EUT TI	EST PHOTO	28
13	EUT P	HOTOS	28
APPE	NDIX A	AC POWER LINE CONDUCTED EMISSIONS	29
APPE	NDIX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	34
APPE	NDIX C	RADIATED EMISSIONS - ABOVE 1 GHZ	37
APPE	NDIX D	NUMBER OF HOPPING CHANNEL	54
APPE	NDIX E	AVERAGE TIME OF OCCUPANCY	56
APPE	NDIX F	HOPPING CHANNEL SEPARATION MEASUREMENT	59
APPE	NDIX G	BANDWIDTH	62
APPE	NDIX H	OUTPUT POWER	65
APPE	NDIX I	ANTENNA CONDUCTED SPURIOUS EMISSION	67

Project No.: 2106T022 Page 4 of 69 Report Version: R01

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-1-2106T022	R00	Original Report.	2021/10/5	Invalid
BTL-FCCP-1-2106T022	R01	Revised report to address TCB's comments.	2022/5/19	Valid

Project No.: 2106T022 Page 5 of 69 Report Version: R01

SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

FCC Part 15, Subpart C (15.247)								
Standard(s) Section	Description	Test Result	Judgement	Remark				
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass					
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C	Pass					
15.247 (a)(1)(iii)	Number of Hopping Frequency	APPENDIX D	Pass					
15.247 (a)(1)(iii)	Average Time of Occupancy	APPENDIX E	Pass					
15.247 (a)(1)	Hopping Channel Separation	APPENDIX F	Pass					
15.247 (a)(1)	Bandwidth	APPENDIX G	Pass					
15.247 (b)(1)	Output Power	APPENDIX H	Pass					
15.247(d)	Antenna conducted Spurious Emission	APPENDIX I	Pass					
15.203	Antenna Requirement		Pass					

(1) "N/A" denotes test is not applicable in this Test Report.(2) The report format version is TP.1.1.1.

Project No.: 2106T022 Page 6 of 69 Report Version: R01

□ CB16

1.1 TEST FACILITY

The test facilities used to collect the test data in this report:

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

The test sites and facilities are covered under FCC RN: 674415 and DN: TW0659.

□ CB08 □ CB11 □ CB15

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = \mathbf{2}$, providing a level of confidence of approximately $\mathbf{95}$ %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 $\mathbf{U}_{\text{cispr}}$ requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C05	CISPR	150 kHz ~ 30 MHz	3.44

B. Radiated emissions test:

Test Site	Measurement Frequency Range	U,(dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB15	1 GHz ~ 6 GHz	5.21
CB15	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

C. Conducted test:

Test Item	U,(dB)
Occupied Bandwidth	0.5338
Output power	0.3659
Conducted Spurious emissions	0.5416
Conducted Band edges	0.5348
Dwell time	0.6606
Channel separation	0.6606
Channel numbers	0.6606

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

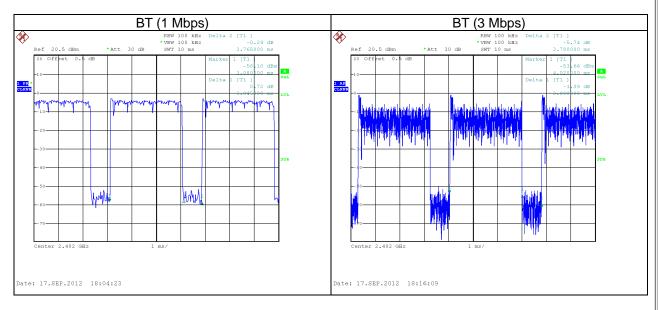
Project No.: 2106T022 Page 7 of 69 Report Version: R01

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	23 °C, 70 %	AC 120V	Paul Shen
Radiated emissions below 1 GHz	23 °C, 57 %	AC 120V	Vincent Lee
Radiated emissions above 1 GHz	23 °C, 57 %	AC 120V	Vincent Lee
Number of Hopping Frequency	26 °C, 60 %	AC 120V	Rush
Average Time of Occupancy	26 °C, 60 %	AC 120V	Rush
Hopping Channel Separation	26 °C, 60 %	AC 120V	Rush
Bandwidth	26 °C, 60 %	AC 120V	Rush
Output Power	24.3 °C, 53 %	AC 120V	Angela Wang
Antenna conducted Spurious Emission	26 °C, 60 %	AC 120V	Rush

1.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING

Test Software	CMD					
Modulation Mode	2402 MHz	2441 MHz	2480 MHz	Data Rate		
GFSK	PM2E	PM2E	PM2E	1 Mbps		
π/4-DQPSK	PM2E	PM2E	PM2E	2 Mbps		
8DPSK	PM2E	PM2E	PM2E	3 Mbps		


Project No.: 2106T022 Page 8 of 69 Report Version: R01

1.5 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

Remark	Delta 1			Delta 2	On Time/Period	10 log(1/Duty Cycle)
Mode	ON	Numbers	On Time (B)	Period (ON+OFF)	Duty Cycle	Duty Factor
iviode	(ms)	(ON)	(ms)	(ms)	(%)	(dB)
BT (1 Mbps)	3.045	1	3.045	3.765	80.88%	0.92
BT (3 Mbps)	3.000	1	3.000	3.780	79.37%	1.00

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Courings and	Lacar Data Collector		
Equipment	Laser Data Collector		
Model Name	OPN-2002i		
Brand Name	OPTICON		
Model Difference	N/A		
Power Source	#1 DC voltage supplied from USB Port.		
r ower source	#2 Supplied from battery.		
Power Rating	#1 I/P: DC 5V		
rower realing	#2 3.7Vdc 230mAh		
Products Covered	N/A		
Operation Band	2400 MHz ~ 2483.5 MHz		
Operation Frequency	2402 MHz ~ 2480 MHz		
Modulation Type	GFSK, π/4-DQPSK, 8DPSK		
Modulation Technology	FHSS		
Transfer Rate	1 Mbps, 2 Mbps, 3Mbps		
	1 Mbps: 0.55 dBm (0.0011 W)		
Output Power Max.	2 Mbps: -0.72 dBm (0.0008 W)		
	3 Mbps: -1.21 dBm (0.0008 W)		
Test Model	OPN-2002i		
Sample Status	Engineering Sample		
EUT Modification(s)	N/A		

NOTE:

- (1) For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- (2) This is a supplement report of NEI-FCCP-1-1207180 report. The differences compared with original report are changed antenna and battery model.

 After evaluated, the changes with respect to the original one, only AC power line conducted emissions, radiated emissions and output power tests need to be verified.

Project No.: 2106T022 Page 10 of 69 Report Version: R01

(3) Channel List:

Official files					
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

(4) Table for Filed Antenna:

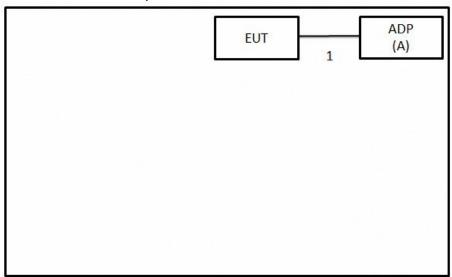
Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	OPTOELECTRO NICS CO., LTD.	2.4G PCB Antenna	PCB Layout	N/A	-0.86

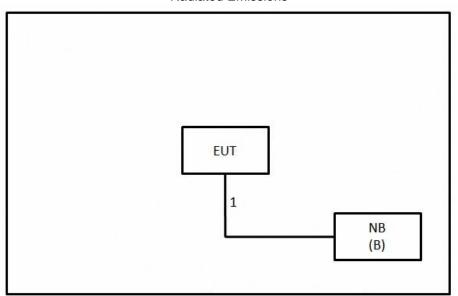
2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	1 Mbps	78	-
Transmitter Radiated Emissions	1/3 Mbps	00/78	Bandedge
(above 1GHz)	1/3 Mbps	00/39/78	Harmonic
Number of Hopping Frequency	1/3 Mbps	00~78	-
Average Time of Occupancy	1/3 Mbps	00/39/78	-
Hopping Channel Separation	1/3 Mbps	00/39/78	-
Bandwidth	1/3 Mbps	00/39/78	-
Peak Output Power	1/2/3 Mbps	00/39/78	-
Antenna conducted Spurious Emission	1/3 Mbps	00/39/78	-

NOTE:

- (1) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Horizontal) is recorded.
- (2) All X, Y and Z axes are evaluated, but only the worst case (X axis) is recorded.


Project No.: 2106T022 Page 12 of 69 Report Version: R01


2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

AC power line conducted emissions

Radiated Emissions

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	Adapter	GARMIN	ADP-58W	N/A	Furnished by test lab.
В	NB	Acer	MS2351	N/A	Furnished by test lab.

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	N/A	N/A	1m	Mini USB Cable	Supplied by test requester

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBµV)		
(MHz)	Quasi-peak	Average	
0.15 - 0.5	66 - 56 *	56 - 46 *	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
38.22	+	3.45	=	41.67

Measurement Value		Limit Value		Margin Level
41.67	•	60	=	-18.33

The following table is the setting of the receiver.

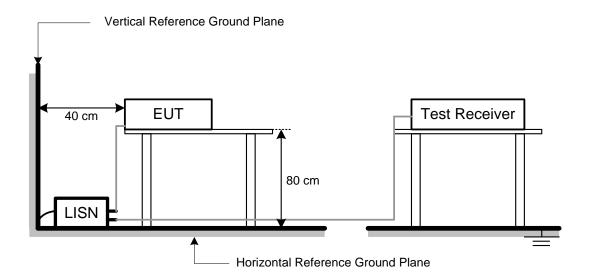
Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 - All other support equipment were powered from an additional LISN(s).
 - The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center.
 - The end of the cable will be terminated, using the correct terminating impedance.
 - The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:

- (1) In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.


3.3 DEVIATION FROM TEST STANDARD

No deviation.

Project No.: 2106T022 Page 14 of 69 Report Version: R01

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	Radiated (dBu	Measurement Distance	
(IVITZ)	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

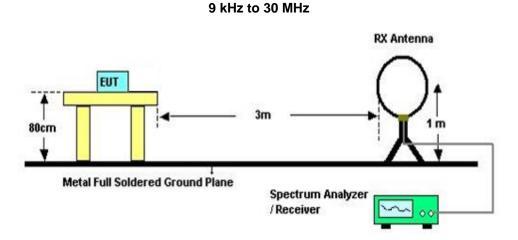
Reading Level		Correct Factor		Measurement Value
35.45	+	-11.37	=	24.08

Measurement Value		Limit Value		Margin Level
24.08	-	40	=	-15.92

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average

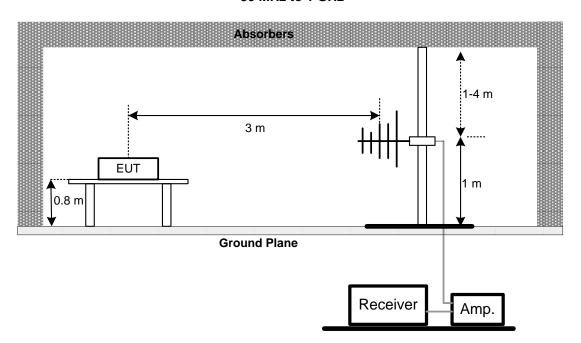
Spectrum Parameter	Setting		
Attenuation	Auto		
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector		
Start ~ Stop Frequency	90KHz~110KHz for QP detector		
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector		
Start ~ Stop Frequency	490KHz~30MHz for QP detector		
Start ~ Stop Frequency	30MHz~1000MHz for QP detector		

Project No.: 2106T022 Page 16 of 69 Report Version: R01

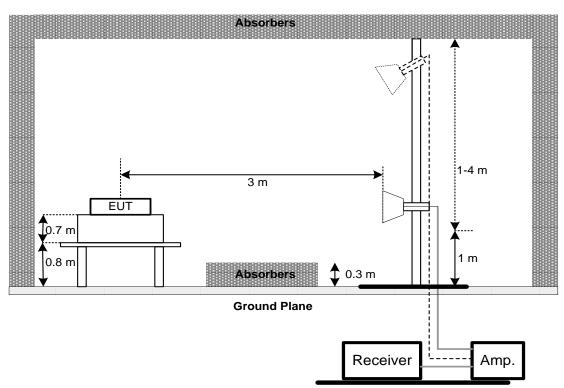

4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. (below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

4.3 DEVIATION FROM TEST STANDARD


No deviation.

4.4 TEST SETUP



30 MHz to 1 GHz

Above 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULT - BELOW 30 MHZ

There were no emissions found below 30 MHz within 20 dB of the limit.

4.7 TEST RESULT - 30 MHZ TO 1 GHZ

Please refer to the APPENDIX B.

4.8 TEST RESULT - ABOVE 1 GHZ

Please refer to the APPENDIX C.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

Project No.: 2106T022 Page 19 of 69 Report Version: R01

5 NUMBER OF HOPPING CHANNEL

5.1 APPLIED PROCEDURES

FCC Part15 (15.247) , Subpart C			
Section Test Item Frequency Range (MHz) Result			
15.247(a)(1)(iii) Number of Hopping Channel		2400-2483.5	PASS

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> Operating Frequency Range
RBW	100 KHz
VBW	100 KHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=100KHz, VBW=100KHz, Sweep time = Auto.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULTS

Please refer to the APPENDIX D.

Project No.: 2106T022 Page 20 of 69 Report Version: R01

AVERAGE TIME OF OCCUPANCY

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C					
Section	Section Test Item Limit Frequency Range (MHz) Result				
15.247(a)(1)(iii)	Average Time of Occupancy	0.4sec	2400-2483.5	PASS	

6.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer
- b. Set RBW of spectrum analyzer to 1MHz and VBW to 1MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- h. Measure the maximum time duration of one single pulse.
- i. Measure the maximum time duration of one single pulse.

A Period Time = (channel number) * 0.4

For Non-AFH Mode (79 Channel):

DH1 Time Solt: Reading * (1600/6)/79 * (0.4 * 79)

DH3 Time Solt: Reading * (1600/6)/79 * (0.4 * 79)

DH5 Time Solt: Reading * (1600/6)/79 * (0.4 * 79)

For AFH Mode (20 Channel):

DH1 Time Solt: Reading * (800/6)/20 * (0.4 * 20)

DH3 Time Solt: Reading * (800/6)/20 * (0.4 * 20) DH5 Time Solt: Reading * (800/6)/20 * (0.4 * 20)

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

6.6 TEST RESULTS

Please refer to the APPENDIX E.

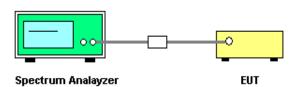
Project No.: 2106T022 Page 21 of 69 Report Version: R01

7 Hopping Channel Separation Measurement

7.1 APPLIED PROCEDURES / LIMIT

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 KHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> Measurement Bandwidth or Channel Separation
RBW	30 KHz
VBW	100 KHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto


7.2 TEST PROCEDURE

- a. The EUT must have its hopping function enabled
- b. Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span Video (or Average) Bandwidth (VBW) ≥ RBW Sweep = Auto Detector function = Peak Trace = Max Hold

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 TEST RESULTS

Please refer to the APPENDIX F.

Project No.: 2106T022 Page 22 of 69 Report Version: R01

8 BANDWIDTH TEST

8.1 APPLIED PROCEDURES

	FCC Part15 (15.247), Subpart C	
Section Test Item		Frequency Range (MHz)
15.247(a)(2)	Bandwidth	2400-2483.5

Spectrum Parameter	Setting		
Attenuation	Auto		
Span Frequency	> Measurement Bandwidth or Channel Separation		
RBW	30 KHz (20dB Bandwidth) / 30 KHz (Channel Separation)		
VBW	100 KHz (20dB Bandwidth) / 100 KHz (Channel Separation)		
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 30KHz, VBW=100KHz, Sweep Time = Auto.

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

EUT	SPECTRUM		
	ANALYZER		

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

8.6 TEST RESULTS

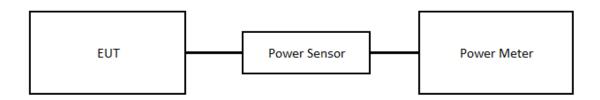
Please refer to the APPENDIX G.

Project No.: 2106T022 Page 23 of 69 Report Version: R01

9 OUTPUT POWER TEST

9.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C					
Section	Section Test Item Limit Frequency Range (MHz) Result				
15.247(b)(1)	Peak Output Power	2400-2483.5	PASS		


9.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 3MHz, VBW= 3MHz, Sweep time = Auto.

9.3 DEVIATION FROM STANDARD

No deviation.

9.4 TEST SETUP

9.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

9.6 TEST RESULTS

Please refer to the APPENDIX H.

Project No.: 2106T022 Page 24 of 69 Report Version: R01

10 ANTENNA CONDUCTED SPURIOUS EMISSION

10.1 APPLIED PROCEDURES / LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

10.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=100KHz, Sweep time = Auto.
- c. Offset=antenna gain+cable loss

10.3 DEVIATION FROM STANDARD

No deviation.

10.4 TEST SETUP

EUT SPECTRUM ANALYZER

10.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

10.6 TEST RESULTS

Please refer to the APPENDIX I.

Project No.: 2106T022 Page 25 of 69 Report Version: R01

11 LIST OF MEASURING EQUIPMENTS

	= = = = =					
	AC Power Line Conducted Emissions					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	TWO-LINE V-NETWORK	R&S	ENV216	101339	2021/3/10	2022/3/9
2	Test Cable	EMCI	EMCRG58-BM-B M-9000	210501	2021/5/3	2022/5/2
3	EMI Test Receiver	R&S	ESR 7	101433	2020/12/11	2021/12/10
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A

	Radiated Emissions									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until				
1	Preamplifier	EMCI	EMC02325B	980217	2021/4/8	2022/4/7				
2	Preamplifier	EMCI	EMC012645B	980267	2021/4/8	2022/4/7				
3	Preamplifier	EMCI	EMC001340	980555	2021/4/8	2022/4/7				
4	Test Cable	EMCI	EMC-SM-SM-100 0	180809	2021/4/8	2022/4/7				
5	Test Cable	EMCI	EMC104-SM-SM- 3000	151205	2021/4/8	2022/4/7				
6	Test Cable	EMCI	EMC-SM-SM-700 0	180408	2021/4/8	2022/4/7				
7	MXE EMI Receiver	Agilent	N9038A	N9038A MY554200087		2022/5/26				
8	Signal Analyzer	Agilent	N9010A	MY52220990	2021/8/18	2022/8/17				
9	Loop Ant	Electro-Metrics	EMCI-LPA600	274	2021/6/1	2022/5/31				
10	Horn Ant	SCHWARZBECK	BBHA 9120D	9120D-1342	2021/6/2	2022/6/1				
11	Horn Ant	Schwarzbeck	BBHA 9170	BBHA 9170340	2021/7/9	2022/7/8				
12	Trilog-Broadband Schwarzbeck		VULB 9168	VULB 9168 VULB 9168-352		2022/8/10				
13	5dB Attenuator	EMCI	EMCI-N-6-05	AT-N0625	2021/8/11	2022/8/10				
14	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A				

	Number of Hopping Frequency										
Item	tem Kind of Equipment Manufacturer Type No. Serial No. Calibrated Until										
1	Spectrum Analyzer	R&S	FSP-40	100129	Oct. 06, 2012						

	Average Time of Occupancy										
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Until						
1	Spectrum Analyzer	R&S	FSP-40	100129	Oct. 06, 2012						

	Hopping Channel Separation										
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Until						
1	Spectrum Analyzer	R&S	FSP-40	100129	Oct. 06, 2012						

	Bandwidth										
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Until						
1	Spectrum Analyzer	R&S	FSP-40	100129	Oct. 06, 2012						

	Output Power										
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until					
1 Power Meter Anritsu ML2495A 1128008 2021/5/26 202						2022/5/25					
2	Power Sensor	Anritsu	MA2411B	1126001	2021/5/26	2022/5/25					

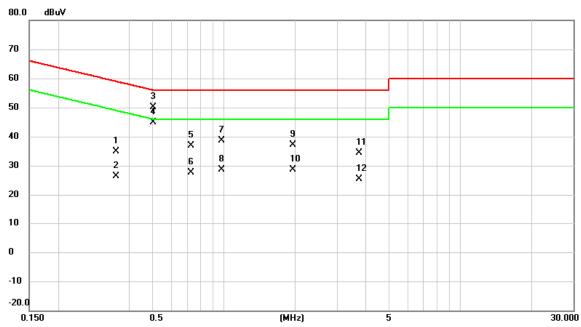
	Antenna conducted Spurious Emission										
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Until						
1	Spectrum Analyzer	R&S	FSP-40	100129	Oct. 06, 2012						

Remark:

Project No.: 2106T022 Page 27 of 69 Report Version: R01

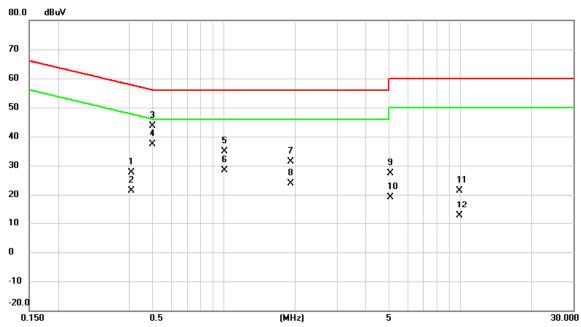
12 EUT TEST PHOTO
Please refer to document Appendix No.: TP-2106T022-FCCP-1 (APPENDIX-TEST PHOTOS).
13 EUT PHOTOS
Please refer to document Appendix No.: EP-2106T022-4 (APPENDIX-EUT PHOTOS).

Project No.: 2106T022 Page 28 of 69 Report Version: R01



APPENDIX A AC POWER LINE CONDUCTED EMISSIONS

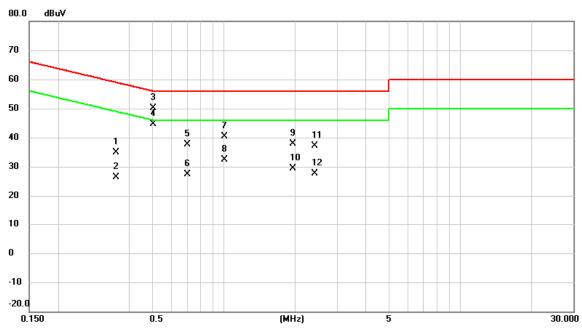
Project No.: 2106T022 Page 29 of 69 Report Version: R01


Test Mode	Normal	Tested Date	2021/7/23
Test Frequency	-	Phase	Line

			Reading	Correct	Measure-				
No.	Mk.	Freq.	Level	Factor	ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1		0.3525	25.22	9.70	34.92	58.90	-23.98	QP	
2		0.3525	16.73	9.70	26.43	48.90	-22.47	AVG	
3		0.5032	40.36	9.71	50.07	56.00	-5.93	QP	
4	*	0.5032	35.06	9.71	44.77	46.00	-1.23	AVG	
5		0.7282	27.06	9.71	36.77	56.00	-19.23	QP	
6		0.7282	18.03	9.71	27.74	46.00	-18.26	AVG	
7		0.9780	28.80	9.72	38.52	56.00	-17.48	QP	
8		0.9780	18.79	9.72	28.51	46.00	-17.49	AVG	
9		1.9590	27.34	9.76	37.10	56.00	-18.90	QP	
10		1.9590	18.84	9.76	28.60	46.00	-17.40	AVG	
11		3.7433	24.51	9.86	34.37	56.00	-21.63	QP	
12		3.7433	15.59	9.86	25.45	46.00	-20.55	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

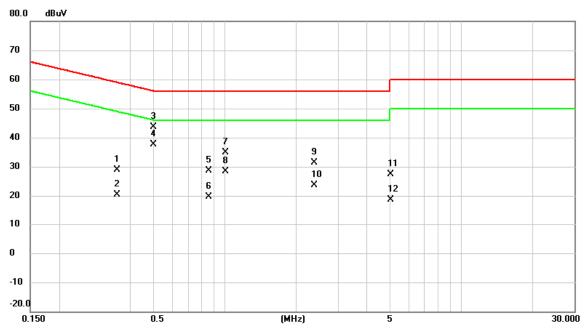
Test Mode	Normal	Tested Date	2021/7/23
Test Frequency	-	Phase	Neutral



No. 1	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∀	dB	dBu∨	dBu∀	dB	Detector	Comment
1		0.4065	17.89	9.71	27.60	57.72	-30.12	QP	
2		0.4065	11.62	9.71	21.33	47.72	-26.39	AVG	
3		0.5010	33.85	9.71	43.56	56.00	-12.44	QP	
4	*	0.5010	27.64	9.71	37.35	46.00	-8.65	AVG	
5		1.0050	25.16	9.73	34.89	56.00	-21.11	QΡ	
6		1.0050	18.63	9.73	28.36	46.00	-17.64	AVG	
7		1.9118	21.65	9.75	31.40	56.00	-24.60	QP	
8		1.9118	14.03	9.75	23.78	46.00	-22.22	AVG	
9		5.0820	17.47	9.98	27.45	60.00	-32.55	QР	
10		5.0820	9.06	9.98	19.04	50.00	-30.96	AVG	
11		9.9623	11.20	10.14	21.34	60.00	-38.66	QР	
12		9.9623	2.44	10.14	12.58	50.00	-37.42	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

l	Test Mode	Idle	Tested Date	2021/7/23	
	Test Frequency	-	Phase	Line	

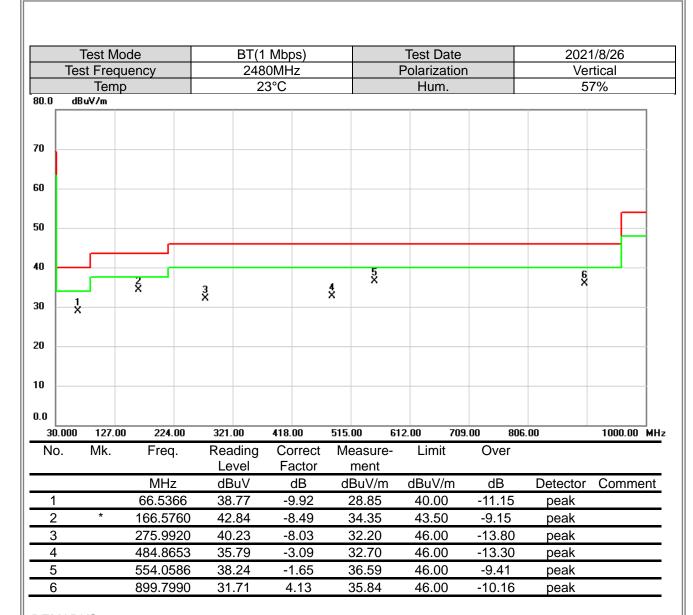


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∀	dB	Detector	Comment
1		0.3525	25.29	9.70	34.99	58.90	-23.91	QP	
2		0.3525	16.78	9.70	26.48	48.90	-22.42	AVG	
3		0.5032	40.33	9.71	50.04	56.00	-5.96	QP	
4	*	0.5032	35.00	9.71	44.71	46.00	-1.29	AVG	
5		0.7035	27.85	9.71	37.56	56.00	-18.44	QР	
6		0.7035	17.62	9.71	27.33	46.00	-18.67	AVG	
7		1.0050	30.72	9.72	40.44	56.00	-15.56	QP	
8		1.0050	22.54	9.72	32.26	46.00	-13.74	AVG	
9		1.9590	28.22	9.76	37.98	56.00	-18.02	QP	
10		1.9590	19.59	9.76	29.35	46.00	-16.65	AVG	
11		2.4113	27.30	9.77	37.07	56.00	-18.93	QP	
12		2.4113	17.74	9.77	27.51	46.00	-18.49	AVG	

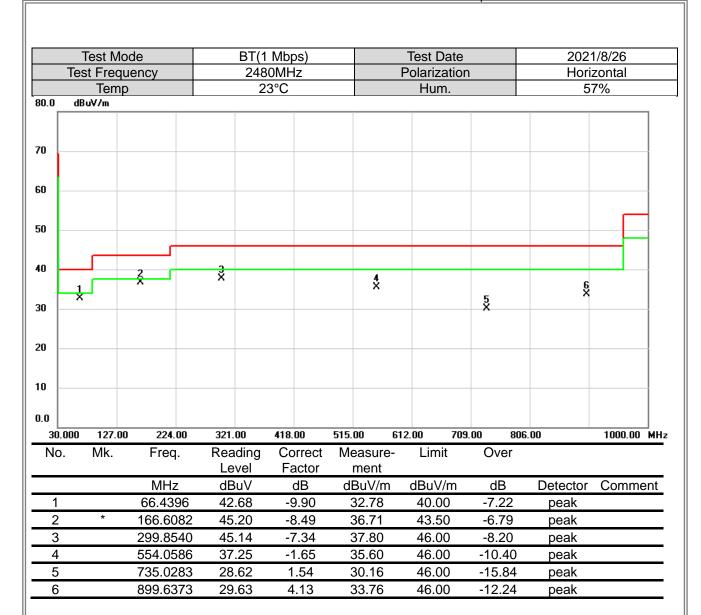
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2021/7/23
Test Frequency	-	Phase	Neutral

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∀	dB	Detector	Comment
1		0.3525	19.16	9.70	28.86	58.90	-30.04	QР	
2		0.3525	10.57	9.70	20.27	48.90	-28.63	AVG	
3		0.5010	33.91	9.71	43.62	56.00	-12.38	QP	
4	*	0.5010	28.03	9.71	37.74	46.00	-8.26	AVG	
5		0.8565	19.01	9.73	28.74	56.00	-27.26	QР	
6		0.8565	9.88	9.73	19.61	46.00	-26.39	AVG	
7		1.0050	25.18	9.73	34.91	56.00	-21.09	QP	
8		1.0050	18.66	9.73	28.39	46.00	-17.61	AVG	
9		2.3910	21.65	9.76	31.41	56.00	-24.59	QP	
10		2.3910	13.88	9.76	23.64	46.00	-22.36	AVG	
11		5.0572	17.42	9.98	27.40	60.00	-32.60	QР	
12		5.0572	8.58	9.98	18.56	50.00	-31.44	AVG	


- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

APPENDIX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ


Project No.: 2106T022 Page 34 of 69 Report Version: R01

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX C RADIATED EMISSIONS - ABOVE 1 GHZ

Project No.: 2106T022 Page 37 of 69 Report Version: R01

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

	est Mo	de	BT(1	Mbps)		Test Date		2021	1/8/26
Tes	t Frequ	ency		0MHz		Polarization	1		zontal
	Temp		2	3°C		Hum.		57	7%
130.0 dB	uV/m								
120									
110									
100					\$				
90					Ň				
80									
70									
60 ₁	haran Mad	Maryan	wheremanne	andra Andreach	Mary Mary Mary Mary Mary Mary Mary Mary	which and the state of the stat	5 	ne to be a second of the second of the second	and the second
50							6		
40 2							×		
30									
20									
10.0 2380 00	0 2400.00	0 2420.00	2440.00	2460.00	2480.00 25	500.00 252	20.00 254	0.00	2580.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	0.00	2000.00
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2381.013	25.28	31.18	56.46	74.00	-17.54	peak	
2		2381.013	2.74	31.18	33.92	54.00	-20.08	AVG	
3	Χ	2480.000	61.47	31.51	92.98	74.00	18.98	peak	NoLimit
4	*	2480.000	61.16	31.51	92.67	54.00	38.67	AVG	NoLimit
5		2532.533	26.60	31.67	58.27	74.00	-15.73	peak	
6		2532.533	11.39	31.67	43.06	54.00	-10.94	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

Та	Test Mo			3 Mbps) 02MHz		Test Date Polarization	2		1/8/26 zontal
16	est Frequ			23°C			1		zontai 7%
30.0 d	Temp BuV/m			23-0		Hum.		5	1%
00.0	Darriii								
120									
10									
00					3				
10					X				
80									
70									
io			1 X					Manufallagande	5
50	________\		Hardy Adrian	Approve - Artisty	harman Kalam	استرسط العمار مساخلان بلامخاره وخلط	hadadhadhadhadh	- Mary Hay Mary Harder	arenthe a Mari
			2						
to			X						6
30									×
20									
10.0									
	000 2322.0	0 2342.00	2362.00	2382.00	2402.00 2	422.00 244	12.00 246	2.00	2502.00 Mi
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over		
		·	Level	Factor	ment				
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2356.460	25.85	31.11	56.96	74.00	-17.04	peak	
2		2356.460	8.75	31.11	39.86	54.00	-14.14	AVG	
3	X *	2402.000	64.04	31.26	95.30	74.00	21.30	peak	NoLimit
4	*	2402.000	60.27	31.26	91.53	54.00	37.53	AVG	NoLimit
5		2497.480	25.97	31.56	57.53	74.00	-16.47	peak	
6		2497.480	2.79	31.56	34.35	54.00	-19.65	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo	ode	BT(3	Mbps)		Test Date		2021	1/8/26
T	est Freq	uency	248	0MHz		Polarization	า	Horiz	zontal
	Tem	р	2	3°C		Hum.		57	7%
130.0	dBuV/m								
120									
110 —									
100 -									
90					3				
80					$ \mathbb{A}$				
70									
60	1							harman Angrahatha phalain	5
50 📇	A THE PARTY OF THE	printing of the state of many factors	Trange of the particular of the	halanara a talah karanta bayar	and Marketine	hyperformation of the property	al-thire illumination (ill)	kulusus Angrikaliya (h	<u>m</u>
40	2								×
30	×								
20									
10.0									
	000 2400.		2440.00	2460.00				0.00	2580.00 MF
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2387.993	25.29	31.21	56.50	74.00	-17.50	peak	
2		2387.993	2.81	31.21	34.02	54.00	-19.98	AVG	
3	Χ	2480.000	58.64	31.51	90.15	74.00	16.15	peak	NoLimit
4	*	2480.000	54.71	31.51	86.22	54.00	32.22	AVG	NoLimit
5		2573.260	26.00	31.78	57.78	74.00	-16.22	peak	
6		2573.260	11.07	31.78	42.85	54.00	-11.15	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo			Mbps)		Test Date			1/8/26
To	est Frequ			2MHz		Polarizatio	n		rtical
	Temp)	2	3°C		Hum.		5	7%
130.0	dBuV/m								
120									
110									
100									
90									
80									
70									
60		•							
50		2							
40									
30									
20									
10.0	000 3550.0	0 6100.00	8650.00	11200.00	13750.00	16300.00 18	850.00 21 4	00.00	26500.00 MHz
No.	Mk.	Freq.	Reading	Correct	Measure-		Over	00.00	20300.00 MTZ
110.	14117.	1 104.	Level	Factor	ment		0101		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.000		-9.84	53.18	74.00	-20.82	peak	
2	*	4804.000	60.97	-9.84	51.13	54.00	-2.87	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo	ode			BT(1	Mbp	s)				Test Da	ate		20	021/8/26	
Te	est Freq					2MH					Polariza				orizontal	
	Tem				2	3°C					Hum.				57%	
130.0	dBuV/m															_
120																
110																
100																-
30																_
30																
50																
'o <u> </u>																\dashv
60 <u> </u>																-
50		\$ X														_
10																
30																
20 —																-
10.0																
	000 3550.			8650		1120			50.00		300.00	18850		400.00	26500.0	10 MH
No.	Mk.	Freq		Read Lev			rect ctor		easure ment) -	Limit		Over			
		MHz	7	dB			IB		BuV/m	1	dBuV/r	m	dB	Detect	or Comm	ent
1		4804.0	000	62.	47	-9	.84	Ę	52.63		74.00)	-21.37	peak		
2	*	4804.0	000	60.	19	-9	.84	5	50.35		54.00)	-3.65	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo					Mbp					Test Da				1/8/26
l	est Frequ					1MH	<u> </u>			<u> </u>	olariza				rtical
20.0	Temp				2	3°C					Hum.				57%
30.0	dBuV/m														
20															
10															
00															
10															
80															
'o															
io			1												
io <u> </u>			1 2 X												
10															
90 -															
20															
0.0															
	000 3550.00		00	8650		1120		1375				18850		400.00	26500.00 MF
No.	Mk.	Freq.		Rea Le			rect		easure ment	· -	Limit		Over		
		MHz		dB			В		3uV/m		dBuV/r	n	dB	Detector	Comment
1		7323.00	00	56.			.75		53.82		74.00		-20.18	peak	
2	*	7323.00	00	50.	44	-2	.75		17.69		54.00)	-6.31	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			1 Mbps)		Test Date			1/8/26
T	est Frequ			41MHz		Polarizatio	n		zontal
	Temp			23°C		Hum.		5	7%
130.0	dBuV/m								
120									
110									
100									
90									
80									
70									
60			1 ¥ ×						
50			x						
40									
30									
20									
10.0									
1000.	000 3550.00	0 6100.00		11200.00			850.00 214	00.00	26500.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure ment	- Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		7323.000		-2.75	56.90	74.00	-17.10	peak	
2	*	7323.000	54.66	-2.75	51.91	54.00	-2.09	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mod				Mbps)			Test Da			1/8/26
Te	est Frequ				0MHz			Polarizat	ion		rtical
	Temp			2	3°C			Hum.		5	7%
130.0	dBuV/m										
120											
110											
100											
90											
80											
70											
60			1.								
50			1 2 X								
40											
30											
20											
10.0											
	000 3550.00			0.00	11200.00	13750.00				1400.00	26500.00 MHz
No.	Mk.	Freq.		ading evel	Correct Factor	Measu men		Limit	Over		
		MHz		BuV	dB	dBuV/		dBuV/m	n dB	Detector	Comment
1_		7440.00		.63	-2.19	54.44		74.00	-19.56		
2	*	7440.00	0 50	.68	-2.19	48.49	9	54.00	-5.51	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo				Mbps)			Test Da			1/8/26
!	est Frequ Temp	•			<u>0MHz</u> 3°C			<u>Polariza</u> Hum			zontal 7%
130.0	dBuV/m				3 0			Hulli	•		1 /0
120											
110											
100 -											
90 <u> </u>											
30											
o 🗀											
io			1 X								
0			X								
10 <u> </u>											
80											
20 10.0											
1000.	000 3550.0	0 6100.00	8650	.00	11200.00	13750.00	16	6300.00	18850.00	21400.00	26500.00 MH
No.	Mk.	Freq.	Rea Le		Correct Factor	Measu mer		Limit	Ove	er	
		MHz	dB		dB	dBuV		dBuV/r	m dE	B Detector	Comment
1		7440.000	57.	60	-2.19	55.4	1	74.00) -18.		
2	*	7440.000	54.	10	-2.19	51.9	1	54.00) -2.(9 AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		st Mo					Mbps					Test D					1/8/26
			uency				<u>2MHz</u> 3°C					Polariza Hun		<u> </u>			rtical 7%
130.0	dBuV	Temp /m)				3 C					Hull	1.			<u> </u>	1 70
20																	
10 —																	
00																	
30 <u> </u>																	
30 <u> </u>																	
o																	
0																	
io			-														
10			1 × 2														
:0			X														
20																	
0.0																	
1000	.000	3550.0	00 6100).00	8650	.00	11200.	00	1375	0.00	16	300.00	188	50.00	2140	00.00	26500.00 MI
No.	N	∕lk.	Freq		Rea Le		Corr Fac			easur ment	e-	Limi	it	Ove	er		
			MHz	<u>-</u>	dB		d			3uV/r	n	dBuV	/m	dE	}	Detector	Comment
1			4804.0	000	54.	.06	-9.8	34		14.22		74.0		-29.	78	peak	
2		*	4804.0	000	45.	.26	-9.8	34	3	35.42		54.0	0	-18.	58	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo	ode				Mbps)			•	Test Da	ite		202	1/8/26
T	est Frequ					2MHz			Р	olarizat				zontal
	Temp)			2	3°C				Hum.			5	7%
130.0	dBuV/m													
120														
110														
100														
90														
80														
00														
70														
60														
50														
40		X X												
30		2 X												
20														
10.0														
	000 3550.0	00 6100	.00	8650.	00	11200.00	137	50.00	163	00.00	18850.00	214	00.00	26500.00 MHz
No.	Mk.	Freq		Read		Correct Factor		easure ment) -	Limit	O ₁	ver		
		MHz		dBu		dB		BuV/m	1	dBuV/n	n d	В	Detector	Comment
1		4804.0		53.0		-9.84		43.25		74.00).75	peak	
2	*	4804.0	00	44.6	39	-9.84		34.85		54.00	-19).15	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		t Mo					Mbps					Test D					1/8/26	
			ency				1MHz					Polariz		1			rtical	
30.0	dBuV/i	emp					3°C					Hun	n.			5	7%	_
20																		
10 📙																		
00																		
0																		
0																		
0																		
0																		
0																		
o			1 X 2															
"			2 X														ĺ	
0 -																		
o																		
0.0																		
	.000 3				8650		11200		1375			300.00		50.00		00.00	26500.00 N	ИH
No.	М	k.	Freq		Rea Le	ding vel	Cor			easur ment		Lim	it	Ove	er			
			MHz		dB		dl			3uV/r		dBuV	/m	dE	3	Detector	Commer	٦t
1			4882.0		52.		-9.	77		13.22		74.0		-30.		peak		
2	4		4882.0	00	45	44	-9.	77	3	35.67	'	54.0	0	-18.	33	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test						Mbp					Test D					1/8/26	
Test Frequency					1MHz	<u>z</u>				Polariza					zontal			
		emp				2	3°C					Hun	٦.			5	7%	
30.0	dBuV/r	n																7
20																		-
10																		-
00																		-
0																		-
0																		-
o																		-
0																		-
0 =																		-
o			1 X 2															
			x															
0																		
0.0																		
1000	.000 3!	550.0	0 6100	0.00	8650	.00	1120	0.00	1375	0.00	16	300.00	188	50.00	2140	0.00	26500.00	ј мн
No.	M	k.	Freq		Rea Le			rect ctor		easur ment	e-	Limi	t	Ove	er			
			MHz		dB			В		3uV/r	n	dBuV	/m	dB		Detector	Comme	ent
1			4882.0	00	52.	.63	-9	.77	4	12.86		74.0	0	-31.1	14	peak		
2	*		4882.0	000	44.	.91	-9	.77	- (35.14		54.0	0	-18.8	36	AVG		

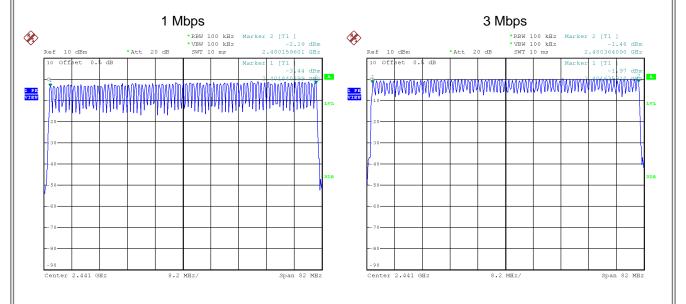
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		st Mo					Mbp					Test D					1/8/26	
Test Frequency				2480MHz					Polarization							tical		
		Temp)			2	3°C					Hum	า.			5	7%	
30.0	dBuV.	/m																7
20																		-
10																		-
00																		-
00																		-
io																		-
o																		_
0																		
0			1 X															-
0			2 X															1
0			^															1
20																		-
0.0	0.000	2550 0	0 6100	1 00	8650	00	1120	0.00	1375	0.00	10	300.00	100	50.00	2140	0.00	26500.00	
No.		/1k.	Freq		Rea			rect		easur		Limi		Ove		0.00	20300.00	, m []
					Le			ctor		ment								
			MHz		dB	uV	C	ΙB	dl	3uV/n	n	dBuV	/m	dB		Detector	Comme	ent
1			4960.0	000	54.	.20	-9	.68		14.52		74.0	0	-29.4	18	peak		
2		*	4960.0	000	43.	57	-9	.68	- :	33.89		54.0	0	-20.1	11	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test M	ode			BT(3	Mbps	s)				Test Da	ate		202	1/8/26
Test Frequency				248	0MHz				F	Polariza	tion			izontal	
	Tem	р			2	3°C					Hum			5	57%
130.0	dBuV/m														
120															
10															
100															
90															
30															
, <u> </u>															
50															
io <u> </u>															
10		X X													
80		2 X													
20															
10.0															
1000.0	000 3550.	00 6100).00	8650	.00	11200	.00	1375	0.00	163	300.00	18850).00 21	400.00	26500.00 MF
No.	Mk.	Freq		Rea Le		Cor Fac			easure ment	-	Limit		Over		
		MHz	<u>-</u>	dB		d			3uV/m)	dBuV/r	m	dB	Detector	Comment
1		4960.0		52.		- 9.			13.02		74.00		-30.98	peak	
2	*	4960.0	000	43.	28	-9.	68	3	33.60		54.00)	-20.40	AVG	

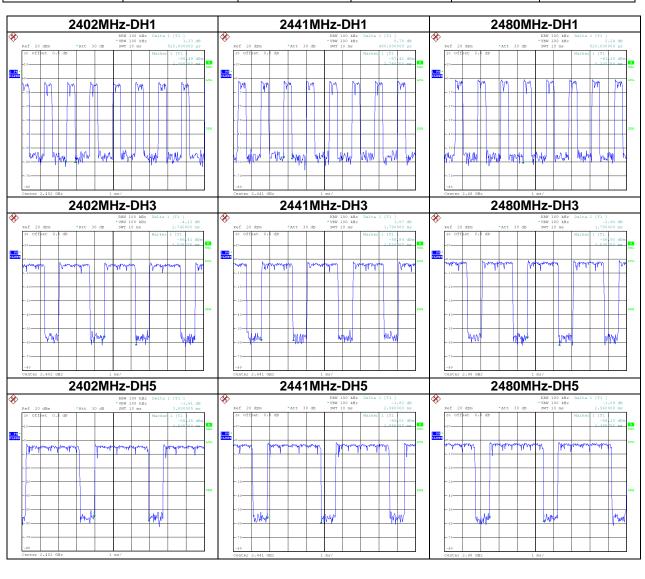
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.


APPENDIX D	NUMBER OF HOPPING CHANNEL

Project No.: 2106T022 Page 54 of 69 Report Version: R01

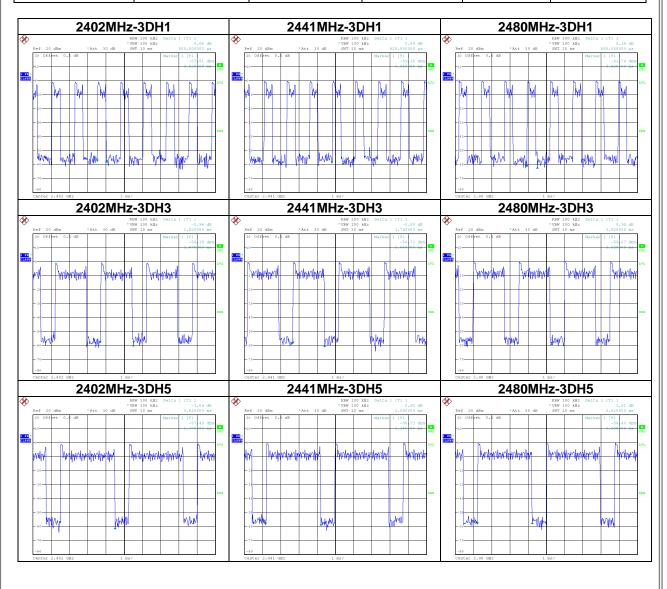
Test Mode	1/3Mbps
Test Date	2012/9/18

Test Mode	Number of Hopping Channel	≥ Limit	Test Result
1 Mbps	79	15	Pass
3 Mbps	79	15	Pass


Report No.: BTL-FCCP-1-2106T022 APPENDIX E AVERAGE TIME OF OCCUPANCY

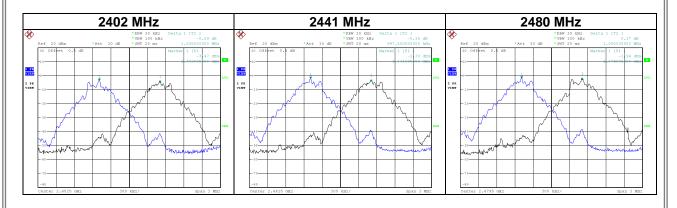
Project No.: 2106T022 Page 56 of 69 Report Version: R01

Test Mode	1Mbps
Test Date	2012/9/18


Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limits (s)	Test Result
DH5	2402	3.0000	0.3200	0.4	Pass
DH3	2402	1.7400	0.2784	0.4	Pass
DH1	2402	0.5200	0.1664	0.4	Pass
DH5	2441	2.9600	0.3157	0.4	Pass
DH3	2441	1.7800	0.2848	0.4	Pass
DH1	2441	0.4600	0.1472	0.4	Pass
DH5	2480	2.9600	0.3157	0.4	Pass
DH3	2480	1.7800	0.2848	0.4	Pass
DH1	2480	0.5200	0.1664	0.4	Pass

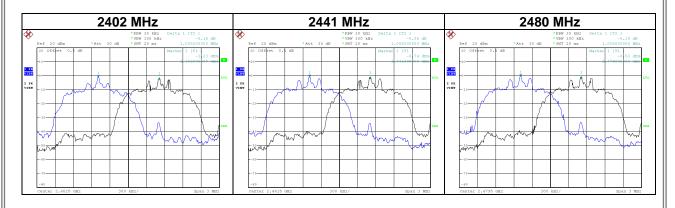
Test Mode	3Mbps
Test Date	2012/9/18

Data Packet	Frequency (MHz)	Pulse Duration(ms)	Dwell Time(s)	Limits(s)	Test Result
3DH5	2402	3.0200	0.3221	0.4	Pass
3DH3	2402	1.8200	0.2912	0.4	Pass
3DH1	2402	0.5000	0.1600	0.4	Pass
3DH5	2441	3.0600	0.3264	0.4	Pass
3DH3	2441	1.7400	0.2784	0.4	Pass
3DH1	2441	0.6200	0.1984	0.4	Pass
3DH5	2480	3.0200	0.3221	0.4	Pass
3DH3	2480	1.8200	0.2912	0.4	Pass
3DH1	2480	0.5800	0.1856	0.4	Pass


APPENDIX F	HOPPING CHANNEL SEPARATION MEASUREMENT
Project No. : 2406T022	

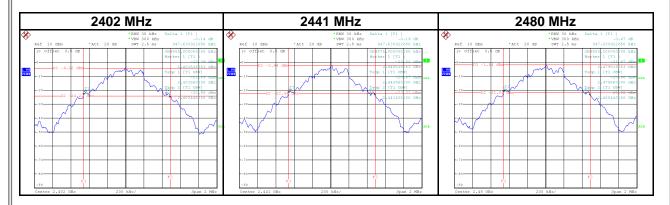
Project No.: 2106T022 Page 59 of 69 Report Version: R01

Test Mode	Hopping on _1Mbps
Test Date	2012/9/18


Frequency (MHz)	Channel Separation (MHz)	2/3 of 20dB Bandwidth (MHz)	Test Result
2402	1.01	0.632	Pass
2441	1.00	0.632	Pass
2480	1.01	0.632	Pass

Test Mode	Hopping on _3Mbps
Test Date	2012/9/18

Frequency (MHz)	Channel Separation (MHz)	2/3 of 20dB Bandwidth (MHz)	Test Result
2402	1.01	0.845	Pass
2441	1.01	0.841	Pass
2480	1.01	0.874	Pass


APPENDIX G	BANDWIDTH

Project No.: 2106T022 Page 62 of 69 Report Version: R01

Test Mode	1Mbps
Test Date	2012/9/18

Frequency (MHz)	20dB Bandwidth (MHz)	99% Occupied BW (MHz)	Test Result
2402	0.948	0.885	Pass
2441	0.948	0.875	Pass
2480	0.948	0.880	Pass

Test Mode	3Mbps
Test Date	2012/9/18

Frequency (MHz)	20dB Bandwidth (MHz)	99% Occupied BW (MHz)	Test Result
2402	1.267	1.180	Pass
2441	1.262	1.175	Pass
2480	1.312	1.190	Pass

	<u> Report No</u>	.: BTL-FCCP-1-21061022
APPENDIX H	OUTPUT POWER	

Project No.: 2106T022 Page 65 of 69 Report Version: R01

Report No.: BTL-FCCP-1-2106T022

Test Mode	1Mbps T			d Date 2	2022/4/27
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	0.55	0.0011	21.00	0.1259	Pass
2441	0.14	0.0010	21.00	0.1259	Pass
2480	0.06	0.0010	21.00	0.1259	Pass

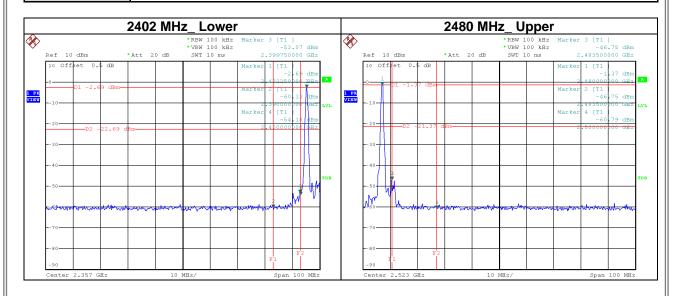
-	Test Mode	2Mbps	2022/4/27
		•	

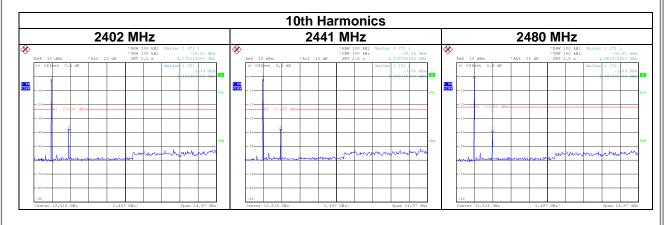
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	-0.72	0.0008	21.00	0.1259	Pass
2441	-1.15	0.0008	21.00	0.1259	Pass
2480	-1.74	0.0007	21.00	0.1259	Pass

Test Mode	3Mbps	Tested Date	2022/4/27
-----------	-------	-------------	-----------

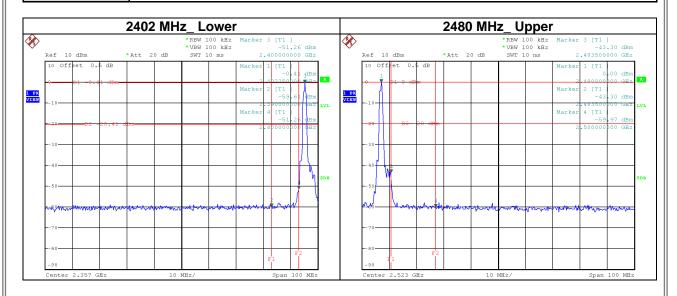
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	-1.21	0.0008	21.00	0.1259	Pass
2441	-1.34	0.0007	21.00	0.1259	Pass
2480	-1.95	0.0006	21.00	0.1259	Pass

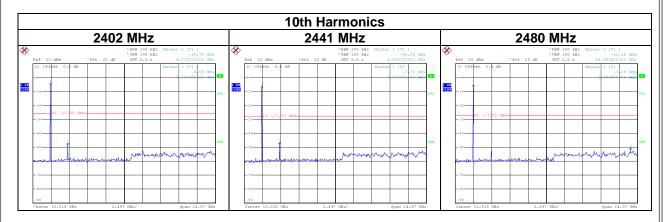
Project No.: 2106T022 Page 66 of 69 Report Version: R01




APPENDIX I	ANTENNA CONDUCTED SPURIOUS EMISSION	

Project No.: 2106T022 Page 67 of 69 Report Version: R01


	To an
Test Mode	1Mbps
Test Date	2012/9/18



Test Mode	3Mbps
Test Date	2012/9/18

End of Test Report