

Testing Laborator

FCC Radio Test Report

FCC ID: UFOOPC3301I

Report No. : BTL-FCCP-1-2107T063

Equipment: Handheld Bluetooth 1D CCD Scanner

Model Name : OPC-3301i Brand Name : OPTICON

Applicant : OPTOELECTRONICS Co., Ltd.

Address : 4-12-17, Tsukagoshi, Warabi-shi, Saitama Pref., 335-0002 Japan

Manufacturer : OPTOELECTRONICS Co., Ltd.

Address : 4-12-17, Tsukagoshi, Warabi-shi, Saitama Pref., 335-0002 Japan

Radio Function : Bluetooth EDR

FCC Rule Part(s) : FCC Part15, Subpart C (15.247)

Measurement : ANSI C63.10-2013

Procedure(s)

Date of Receipt : 2021/7/16

Date of Test : 2021/7/16~ 2021/10/13

Issued Date : 2021/12/9

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by

Approved by

Jerry Chuang, Supervisor

Peter Chen, Vice Manager

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com

Project No.: 2107T063 Page 1 of 46 Report Version: R00

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2107T063 Page 2 of 46 Report Version: R00

CONTENTS

REVISO	N HISTOR	Υ	4
1	SUMMA	RY OF TEST RESULTS	5
1.1	TEST	FACILITY	6
1.2	MEAS	UREMENT UNCERTAINTY	6
1.3	TEST	ENVIRONMENT CONDITIONS	6
1.4	TABLE	OF PARAMETERS OF TEST SOFTWARE SETTING	6
2	GENER/	AL INFORMATION	7
2.1	DESC	RIPTION OF EUT	7
2.2	TEST	MODES	9
2.3	BLOC	K DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	10
2.4	SUPP	ORT UNITS	10
3	AC POW	ER LINE CONDUCTED EMISSIONS TEST	11
3.1	LIMIT		11
3.2	TEST	PROCEDURE	11
3.3	DEVIA	ATION FROM TEST STANDARD	11
3.4	TEST	SETUP	12
3.5	TEST	RESULT	12
4	RADIATE	ED EMISSIONS TEST	13
4.1	LIMIT		13
4.2	TEST	PROCEDURE	14
4.3	DEVIA	ATION FROM TEST STANDARD	14
4.4	TEST	SETUP	14
4.5	EUT C	PERATING CONDITIONS	15
4.6	TEST	RESULT – BELOW 30 MHZ	16
4.7	TEST	RESULT – 30 MHZ TO 1 GHZ	16
4.8	TEST	RESULT – ABOVE 1 GHZ	16
5	OUTPUT	POWER TEST	17
5.1	APPLI	ED PROCEDURES / LIMIT	17
5.2	TEST	PROCEDURE	17
5.3	DEVIA	ATION FROM STANDARD	17
5.4	TEST	SETUP	17
5.5	EUT C	PERATION CONDITIONS	17
5.6	TEST	RESULTS	17
6	LIST OF	MEASURING EQUIPMENTS	18
7	EUT TES	ST PHOTO	19
8	EUT PHO	DTOS	19
APPEND	OIX A	AC POWER LINE CONDUCTED EMISSIONS	20
APPEND	IX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	25
APPEND	OIX C	RADIATED EMISSIONS - ABOVE 1 GHZ	28
APPEND	OIX D	OUTPUT POWER	45

REVISON HISTORY

Report No.	Version	Description	Issued Date
BTL-FCCP-1-2107T063	R00	Original Report.	2021/12/9

Project No.: 2107T063 Page 4 of 46 Report Version: R00

1 SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

FCC Part 15, Subpart C (15.247)							
Standard(s) Section	Description	Test Result	Judgement	Remark			
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass				
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C	Pass				
15.247 (b)(1)	Output Power	APPENDIX D	Pass				

NOTE:

- (1) "N/A" denotes test is not applicable in this Test Report.
- (2) The report format version is TP.1.1.1.
- (3) This is to request a Class II permissive change for FCC ID: UFOOPC3301I.

The major change filed under this application is:

Changed antenna, the antenna type is change to PCB layout, the antenna gain is lower than the original application. Changed battery, equipment name and adapter.

Since the RF module has been certificated, after evaluation, above test items were criticized and reconfirmed in this report.

(4) After spot check, this revision does not change original radio parameters.

Project No.: 2107T063 Page 5 of 46 Report Version: R00

1.1 TEST FACILITY

The test facilities used to collect the test data in this report:

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan The test sites and facilities are covered under FCC RN: 674415 and DN: TW0659.

oxtimes C05 oxtimes CB08 oxtimes CB11 oxtimes CB15 oxtimes CB16

⊠ SR05

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = \mathbf{2}$, providing a level of confidence of approximately 95 %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 $\mathbf{U}_{\text{cispr}}$ requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C05	CISPR	150 kHz ~ 30MHz	3.44

B. Radiated emissions test:

Test Site	Measurement Frequency Range	U,(dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB15	1 GHz ~ 6 GHz	5.21
CB15	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

C. Conducted test:

Test Item	U,(dB)
Output Power	1.06

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	23 °C, 55 %	AC 120V	Tim Lee
Radiated emissions below 1 GHz	Refer to data	AC 120V	Vincent Lee
Radiated emissions above 1 GHz	Refer to data	AC 120V	Vincent Lee
Output Power	23 °C, 45 %	AC 120V	Tim Lee

1.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING

Test Software		CI	ИD	
Modulation Mode	2402 MHz	2441 MHz	2480 MHz	Data Rate
GFSK	max	max	max	1 Mbps
π/4-DQPSK	max	max	max	2 Mbps
8DPSK	max	max	max	3 Mbps

Project No.: 2107T063 Page 6 of 46 Report Version: R00

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	Handhald Plustacth 1D CCD Seepnor
Equipment	Handheld Bluetooth 1D CCD Scanner
Model Name	OPC-3301i
Brand Name	OPTICON
Model Difference	N/A
Power Source	#1 DC Voltage supplied from AC/DC adapter via charger.
Fower Source	#2 Supplied from battery.
Power Rating	#1 I/P: 100-240V~ 50/60Hz 0.5A / O/P: 6.0V 2.0A 12.0W
rower Rating	#2 3.7V=== 1100mAh 4.1Wh
	1 * Adapter: OPTICON / S018BAM0600200
Products Covered	1 * Charger: OPTICON / CHG-3201
	1 * Battery: OPTICON / OPR33015505-0-02
Operation Band	2400 MHz ~ 2483.5 MHz
Operation Frequency	2402 MHz ~ 2480 MHz
Modulation Type	GFSK, π/4-DQPSK, 8DPSK
Modulation Technology	FHSS
Transfer Rate	1 Mbps, 2 Mbps, 3Mbps
	1 Mbps: -0.97 dBm (0.0008 W)
Output Power Max.	2 Mbps: -1.70 dBm (0.0007 W)
	3 Mbps: -1.51 dBm (0.0007 W)
Test Model	OPC-3301i
Sample Status	Engineering Sample
EUT Modification(s)	N/A

NOTE

(1) For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

Project No.: 2107T063 Page 7 of 46 Report Version: R00

(2) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

(3) Table for Filed Antenna:

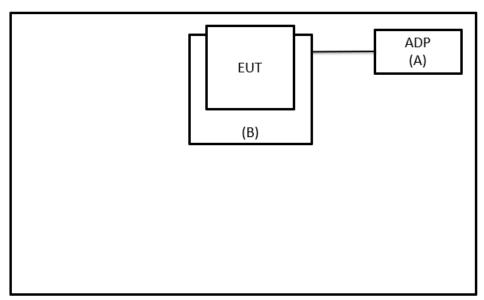
Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	OPTOELECTRO NICS CO., LTD.	2.4G PCB Antenna	PCB Layout	N/A	-0.86

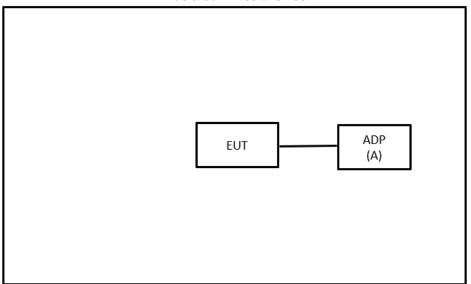
2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	1 Mbps	78	-
Transmitter Radiated Emissions	1/3 Mbps	00/78	Bandedge
(above 1GHz)	1/3 Mbps	00/39/78	Harmonic
Output Power	1/2/3 Mbps	00/39/78	-

NOTE:

- (1) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Horizontal) is recorded.
- (2) All X, Y and Z axes are evaluated, but only the worst case (X axis) is recorded.


Project No.: 2107T063 Page 9 of 46 Report Version: R00


2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

AC Power Line Conducted Emissions Test

Radiated Emissions Test

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
А	Adapter	OTPICON	S018BAM060020 0	N/A	Supplied by test requester
В	CHARGER	OTPICON	CHG-3201	N/A	Supplied by test requester

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
_	-	-	-	-	-

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dΒμV)
(MHz)	Quasi-peak	Average
0.15 - 0.5	66 - 56 *	56 - 46 *
0.50 - 5.0	56	46
5.0 - 30.0	60	50

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
38.22	+	3.45	=	41.67

Measurement Value	Limit Value		Margin Level
41.67	60	=	-18.33

The following table is the setting of the receiver.

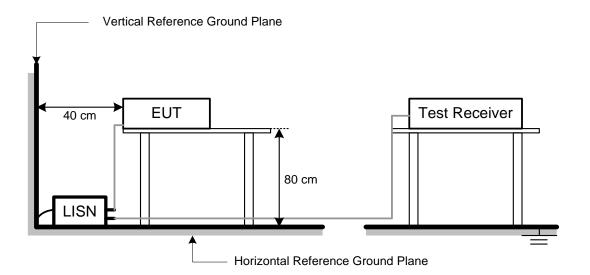
Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 - All other support equipment were powered from an additional LISN(s).
 - The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center.
 - The end of the cable will be terminated, using the correct terminating impedance.
 - The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:

- (1) In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.


3.3 DEVIATION FROM TEST STANDARD

No deviation.

Project No.: 2107T063 Page 11 of 46 Report Version: R00

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency		Emissions V/m)	Measurement Distance
(MHz)	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

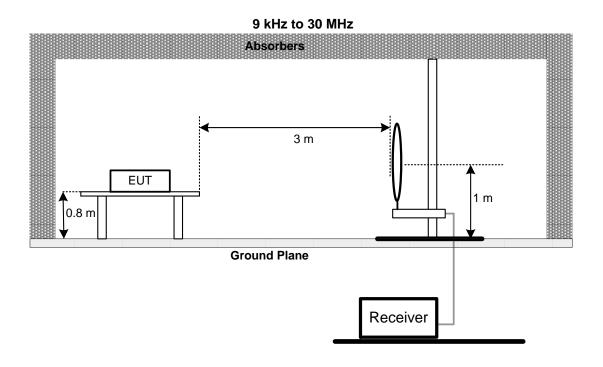
Reading Level		Correct Factor		Measurement Value
19.11	+	2.11	II	21.22

Measurement Value		Limit Value		Margin Level
21.22	-	54	=	-32.78

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average

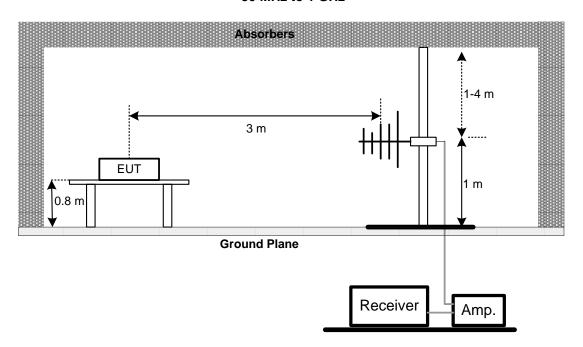
Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

Project No.: 2107T063 Page 13 of 46 Report Version: R00

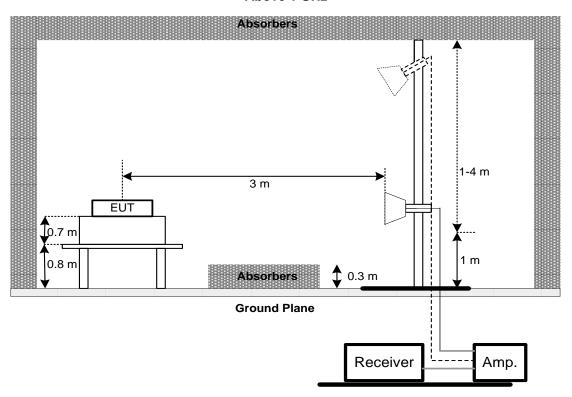

4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

4.3 DEVIATION FROM TEST STANDARD


No deviation.

4.4 TEST SETUP



30 MHz to 1 GHz

Above 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULT - BELOW 30 MHZ

There were no emissions found below 30 MHz within 20 dB of the limit.

4.7 TEST RESULT - 30 MHZ TO 1 GHZ

Please refer to the APPENDIX B.

4.8 TEST RESULT - ABOVE 1 GHZ

Please refer to the APPENDIX C.

NOTE:

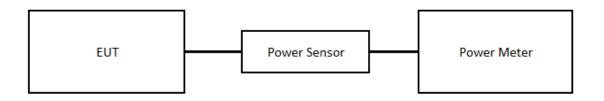
(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

Project No.: 2107T063 Page 16 of 46 Report Version: R00

5 OUTPUT POWER TEST

5.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C									
Section Test Item Limit Frequency Range (MHz) Result									
15.247(b)(1)	Peak Output Power	0.125Watt or 21dBm	2400-2483.5	PASS					


5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 3MHz, VBW= 3MHz, Sweep time = Auto.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULTS

Please refer to the APPENDIX D.

6 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions												
Item Kind of Equipment Manufac		Manufacturer	Type No. Serial No.		Calibrated Date	Calibrated Until							
1	TWO-LINE V-NETWORK	R&S	ENV216	101339	2021/3/10	2022/3/9							
2	Test Cable	EMCI	EMCRG58-BM-B M-9000	210501	2021/5/3	2022/5/2							
3	EMI Test Receiver	R&S	ESR 7	101433	2020/12/11	2021/12/10							
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A							

	Radiated Emissions										
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until					
1	Preamplifier	EMCI	EMC02325B	980217	2021/4/8	2022/4/7					
2	Preamplifier	EMCI	EMC012645B	980267	2021/4/8	2022/4/7					
3	Preamplifier	EMCI	EMC001340	980555	2021/4/8	2022/4/7					
4	Test Cable	EMCI	EMC-SM-SM-100 0	180809	2021/4/8	2022/4/7					
5	Test Cable	EMCI	EMC104-SM-SM- 3000	151205	2021/4/8	2022/4/7					
6	Test Cable	EMCI	EMC-SM-SM-700 0	180408	2021/4/8	2022/4/7					
7	MXE EMI Receiver	Agilent	N9038A	MY554200087	2021/5/27	2022/5/26					
8	Signal Analyzer	Agilent	N9010A	MY56480554	2021/8/25	2022/8/24					
9	Loop Ant	Electro-Metrics	EMCI-LPA600	274	2021/6/1	2022/5/31					
10	Horn Ant	SCHWARZBECK	BBHA 9120D	9120D-1342	2021/6/2	2022/6/1					
11	Horn Ant	Schwarzbeck	BBHA 9170	BBHA 9170340	2021/7/9	2022/7/8					
12	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	VULB 9168-352	2021/8/11	2022/8/10					
13	5dB Attenuator	5dB Attenuator EMCI		AT-N0625	2021/8/11	2022/8/10					
14	Measurement		EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A					

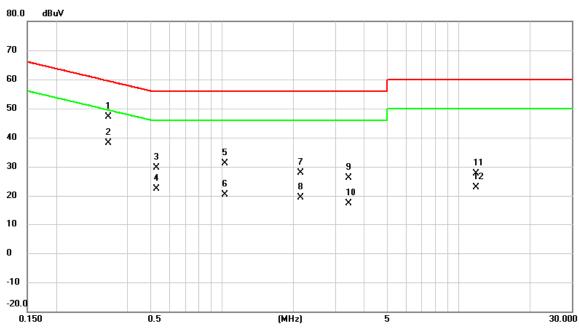
	Output Power											
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until						
1	Power Meter	Anritsu	ML2495A	1128008	2021/5/26	2022/5/25						
2	Power Sensor	Anritsu	MA2411B	1126001	2021/5/26	2022/5/25						

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

Project No.: 2107T063 Page 18 of 46 Report Version: R00

7 EUT TEST PHOTO										
Please refer to document Appendix No.: TP-2107T063-FCCP-1 (APPENDIX-TEST PHOTOS).										
8 EUT PHOTOS										
Please refer to document Appendix No.: EP-2107T063-2 (APPENDIX-EUT PHOTOS).										

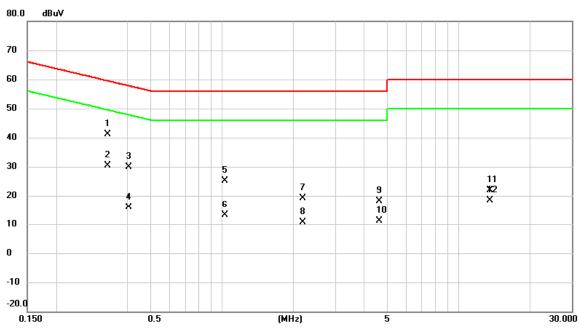
Project No.: 2107T063 Page 19 of 46 Report Version: R00



APPENDIX A	AC POWER LINE CONDUCTED EMISSIONS

Project No.: 2107T063 Page 20 of 46 Report Version: R00

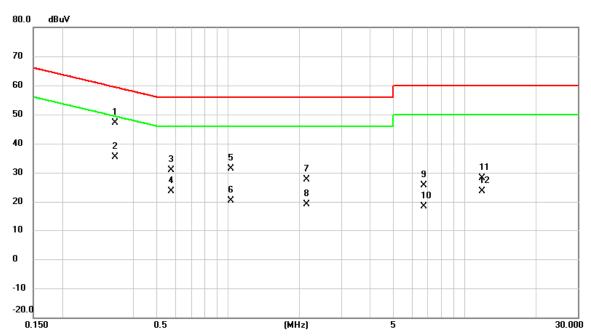
Test Mode	Normal	Tested Date	2021/7/30
Test Frequency	-	Phase	Line



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1		0.3322	37.39	9.70	47.09	59.40	-12.31	QР	
2	*	0.3322	28.42	9.70	38.12	49.40	-11.28	AVG	
3		0.5280	19.90	9.71	29.61	56.00	-26.39	QР	
4		0.5280	12.75	9.71	22.46	46.00	-23.54	AVG	
5		1.0275	21.46	9.72	31.18	56.00	-24.82	QР	
6		1.0275	10.56	9.72	20.28	46.00	-25.72	AVG	
7		2.1368	18.15	9.76	27.91	56.00	-28.09	QP	
8		2.1368	9.68	9.76	19.44	46.00	-26.56	AVG	
9		3.4283	16.29	9.84	26.13	56.00	-29.87	QР	
10		3.4283	7.46	9.84	17.30	46.00	-28.70	AVG	
11		11.8298	17.44	10.16	27.60	60.00	-32.40	QР	
12		11.8298	12.80	10.16	22.96	50.00	-27.04	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

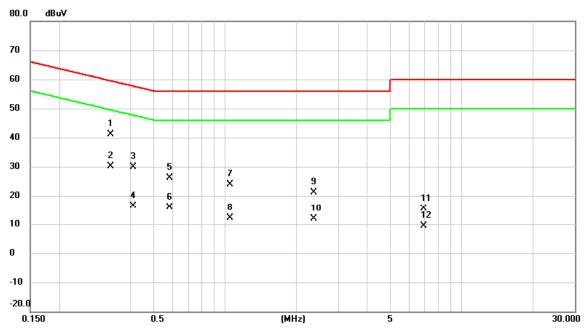
Test Mode	Normal	Tested Date	2021/7/30
Test Frequency	-	Phase	Neutral



No	Mk.	Freq.	Reading	Correct Factor	Measure-	Limit	Over		
110.	IVIN.	r req.	Level	гасия	m ent		0 7 01		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1	*	0.3300	31.37	9.70	41.07	59.45	-18.38	QP	
2		0.3300	20.56	9.70	30.26	49.45	-19.19	AVG	
3		0.4042	20.24	9.71	29.95	57.77	-27.82	QР	
4		0.4042	6.07	9.71	15.78	47.77	-31.99	AVG	
5		1.0275	15.39	9.73	25.12	56.00	-30.88	QP	
6		1.0275	3.48	9.73	13.21	46.00	-32.79	AVG	
7		2.1908	9.33	9.76	19.09	56.00	-36.91	QP	
8		2.1908	0.88	9.76	10.64	46.00	-35.36	AVG	
9		4.6253	8.18	9.95	18.13	56.00	-37.87	QP	
10		4.6253	1.14	9.95	11.09	46.00	-34.91	AVG	
11		13.5173	11.56	10.21	21.77	60.00	-38.23	QP	
12		13.5173	8.12	10.21	18.33	50.00	-31.67	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

I	Test Mode	Idle	Tested Date	2021/7/30
	Test Frequency	-	Phase	Line



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1	*	0.3345	37.32	9.70	47.02	59.34	-12.32	QР	
2		0.3345	25.72	9.70	35.42	49.34	-13.92	AVG	
3		0.5775	21.29	9.71	31.00	56.00	-25.00	QР	
4		0.5775	13.99	9.71	23.70	46.00	-22.30	AVG	
5		1.0275	21.55	9.72	31.27	56.00	-24.73	QР	
6		1.0275	10.73	9.72	20.45	46.00	-25.55	AVG	
7		2.1390	17.94	9.76	27.70	56.00	-28.30	QP	
8		2.1390	9.35	9.76	19.11	46.00	-26.89	AVG	
9		6.7560	15.55	10.03	25.58	60.00	-34.42	QР	
10		6.7560	8.33	10.03	18.36	50.00	-31.64	AVG	
11		11.8230	17.87	10.16	28.03	60.00	-31.97	QΡ	
12		11.8230	13.44	10.16	23.60	50.00	-26.40	AVG	

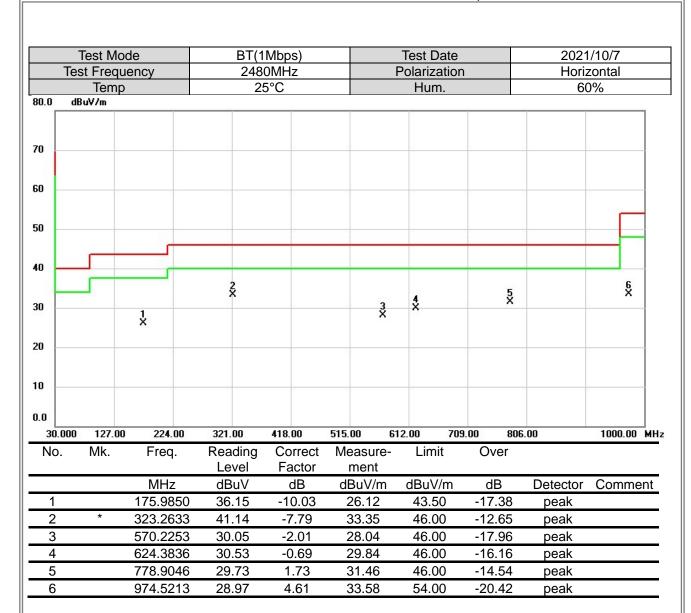
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2021/7/30
Test Frequency	-	Phase	Neutral

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1	*	0.3300	31.39	9.70	41.09	59.45	-18.36	QР	
2		0.3300	20.55	9.70	30.25	49.45	-19.20	AVG	
3		0.4110	20.27	9.71	29.98	57.63	-27.65	QР	
4		0.4110	6.64	9.71	16.35	47.63	-31.28	AVG	
5		0.5842	16.30	9.71	26.01	56.00	-29.99	QР	
6		0.5842	6.27	9.71	15.98	46.00	-30.02	AVG	
7		1.0522	14.09	9.73	23.82	56.00	-32.18	QР	
8		1.0522	2.48	9.73	12.21	46.00	-33.79	AVG	
9		2.3640	11.25	9.76	21.01	56.00	-34.99	QР	
10		2.3640	2.07	9.76	11.83	46.00	-34.17	AVG	
11		6.9383	5.45	10.04	15.49	60.00	-44.51	QР	
12		6.9383	-0.77	10.04	9.27	50.00	-40.73	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

APPENDIX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ


Project No.: 2107T063 Page 25 of 46 Report Version: R00

-	Test Mo	de		BT(1	Mbps)			Test Date		2021	/10/7	
Tes	st Frequ	iency			0MHz			Polarization	ı		tical	
	Temp)		2	5°C			Hum.		60)%	
80.0 dB	uV/m						1					٦
70							N a		42			
50		1							9			
50							*					-
10											6	
80		_	2 X			3 X	S	*		\$ *	×	
20		*	0.5%						9			
0												
).0												
30.000	127.00	224.00	321.	.00	418.00	51	5.00 6	12.00 70	9.00 806	5.00	1000.00	_мн
No.	Mk.	Freq.		iding vel	Corre Facto		leasure- ment	Limit	Over			
		MHz	dB	₿uV	dB		dBuV/m	dBuV/m	dB	Detector	Comme	ent
1		175.9850) 31	.82	-10.0	3	21.79	43.50	-21.71	peak		
2		289.4103	33	.55	-8.51		25.04	46.00	-20.96	peak		
3		485.5767		.71	-3.85		26.86	46.00	-19.14	peak		
4		644.4627		.38	-0.38		30.00	46.00	-16.00	peak		
5		806.3232	2 29	.46	2.05		31.51	46.00	-14.49	peak		
6	*	959.3893	3 28	.42	4.42		32.84	46.00	-13.16	peak	·	_

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX C RADIATED EMISSIONS - ABOVE 1 GHZ

Project No.: 2107T063 Page 28 of 46 Report Version: R00

T	est Mod	de		BT(1	Mbps)			Test Da	ate	2021	/10/7	
Test	t Frequ	ency			2MHz			Polariza	tion		zontal	
	Temp			25	5°C			Hum.		60)%	
130.0 dBu	JV/m		-		-					-		_
120												
110												-
100		-			<u></u>		\$ *					
90					-				9			
80					100							
70												
60	a destruct a freeza	apoling of the office of the open such the	a produced A	1	Managementership	January .	Mudana	and and and a second	Andrewskinskinskinskinsk	an programment	5 yan Aryanlyan	u.
50	Walter aller						20					
40				2 X	!						6 X	1
30	-									31		1
20					<u> </u>			<u></u>				
10.0 2302.000	2322.00	0 2342.00	2362.	00	2382.00	240	2.00 2	2422.00	2442.00 246	52.00	2502.00	_ _ MH
No.	Mk.	Freq.	Read Lev		Correct Factor		easure- ment	Limit	Over			
		MHz	dΒι	ιV	dB	d	BuV/m	dBuV/ı	m dB	Detector	Comme	ent
1		2372.933	26.0	68	31.16		57.84	74.00	-16.16	peak		
2		2372.933	6.9	9	31.16		38.15	54.00		AVG		
3	Χ	2402.000	66.		31.26		97.76	74.00		peak	NoLim	
4	*	2402.000	66.0	05	31.26		97.31	54.00	43.31	AVG	NoLim	nit
5		2487.820	26.0	61	31.53		58.14	74.00	-15.86	peak		
6		2487.820	3.3	3	31.53		34.86	54.00	-19.14	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

-	Test Mo Test Frequency			BT(1N 2480				Date ization			1/10/7 zontal	
	Temp			25				um.			2011(a) 0%	
30.0	dBuV/m							uiii.			<u> </u>	
20												
10					10			-				l
00						3						ł
10												
30										7		
70												
io	ı					5			•			
iO —	atternational production of the state of the	eprolitions and the	hadlyffylldigendd	addfdl/2000	arear and the definition of	b X	44-rul-fu-lifters	aybrayabiridhyabidadi	hily-aproximatelisasialisasia	mar of representations	Here with the second of the se	4
10	2					^						
	X											
30	**	-										-
20												
0.0	0.000 2400.	00 2420.0	0 244	0.00	2460.00	2480.00	2500.00	2520	.00 25	40.00	2580.00	MH
0.0		00 2420.0 Freq.	Rea	o.oo ding vel	2460.00 Correct Factor	2480.00 Measu	ire- Li	2520 mit	.00 25 Over	40.00	2580.00	MI
0.0 2380	0.000 2400.		Rea Le	ding	Correct	Measu	ıre- Li t	A 030000000	(22-5)	40.00 Detector	2580.00 Comme	
0.0	0.000 2400.	Freq.	Rea Le dB	ding vel	Correct Factor	Measu men	ire- Li t /m dBı	mit	Over			
0.0 2380 No.	0.000 2400.	Freq. MHz	Rea Le dB 0 26	ding vel uV	Correct Factor dB	Measu men dBuV	ire- Li t /m dBu 1 74	mit uV/m	Over dB	Detector		
0 0.0 2380 No.	0.000 2400.	Freq. MHz 2388.260	Rea Le dB 0 26 0 3.	ding vel uV .60	Correct Factor dB 31.21	Measu men dBuV 57.8	ire- Li t /m dBu 1 74 4 54	mit uV/m I.00	Over dB -16.19	Detector peak		ent
0.0 2380 No.	0.000 2400. Mk.	Freq. MHz 2388.260 2388.260	Rea Le dB 0 26 0 3.	ding vel uV .60 43	Correct Factor dB 31.21 31.21	Measu men dBuV 57.8 34.6	re- Li t /m dBu 1 74 4 54 0 74	wit uV/m I.00	Over dB -16.19 -19.36	Detector peak AVG	Comme	ent it
2380 No.	0.000 2400. Mk.	Freq. MHz 2388.260 2388.260 2480.000	Rea Le dB 0 26 0 3. 0 66 0 66	ding vel uV .60 43	Correct Factor dB 31.21 31.21 31.51	Measu men dBuV 57.8 34.6 97.8	rire- Li t /m dBu 1 74 4 54 0 74 3 54	wit aV/m 1.00 1.00	Over dB -16.19 -19.36 23.80	Detector peak AVG peak	Comme	ent it

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mo			BMbps)		Test Date			/10/7
Tes	t Frequ			2MHz		Polarizatio	n		zontal
	Temp)	2	5°C		Hum.		60)%
30.0 dB	uV/m					To the second			
20									
10	1/4	1			8		42		
00									
00					*				
0					$ \mathbb{A}$	U.			
o 🗀									
	1		(1			
0			-						
o 🗀				1	1				5
Marcha	a supplemental land	many the more of the service of	more distributions plat	Mary Land	more your	And all the second property of the second	majorat Aparthus and to	New Market Market Market	-drywythown
0	1000		2 61						
.0				2					6
_				×					×
0									
:0						<u></u>			
0.0									
2302.00	2322.0	0 2342.00	2362.00	2382.00	2402.00	2422.00 24	142.00 246	52.00	2502.00 Mi
No.	Mk.	Freq.	Reading	Correct	Measure-	- Limit	Over		
			Level	Factor	ment				
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2388.273	26.95	31.21	58.16	74.00	-15.84	peak	
2		2388.273	5.51	31.21	36.72	54.00	-17.28	AVG	
3	Χ	2402.000	65.69	31.26	96.95	74.00	22.95	peak	NoLimit
4	*	2402.000	61.80	31.26	93.06	54.00	39.06	AVG	NoLimit
5		2493.953	27.25	31.55	58.80	74.00	-15.20	peak	
6		2493.953	3.43	31.55	34.98	54.00	-19.02	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

		st Mo					Mbps					est Da				1/10/7	
	rest		uency				OMH ₂	<u>-</u>			P	olarizat				zontal	
130.0	dBu\	Temp)			2	5°C					Hum.			60	0%	
JU.U	ubu	*/															
120																	
20																	
10		- 10		,	0.		-		8.							4	+
00									-								
00									2								
30 <u> </u>									ſ					,			-
BO																	
												1	- 1				
70		- 6	-		1,000												-
so	1									5							
NA.	Mayor.	and about	millionership	بالرسياطيله	wytophelian project	James A. All	May mark	platy dive	year	Mound	MWW/W	hilperminations	whowe	who we had his hope	and made of the desired of the second of the second	reducedations	v
50			2							x							1
40	2																
	X																
30																	1
20									2.								4
10.0																	
238	0.000	2400.0	00 2420	0.00	2440.	00	2460.	.00	2480	.00	250	0.00	2520	.00 254	40.00	2580.00	_мн
No.		Mk.	Freq		Read	ling	Cor	rect	Me	asure	-	Limit		Over			
					Lev	el	Fa	ctor	r	ment							
			MHz		dBu	ı۷	d	ΙB	dE	3uV/m		dBuV/r	n	dB	Detector	Comm	ent
1			2384.9	53	26.0)1	31	.19	5	7.20		74.00		-16.80	peak		
2			2384.9	53	3.2	0	31	.19	3	34.39		54.00		-19.61	AVG		
3		Χ	2480.0	00	64.9			.51		6.50		74.00)	22.50	peak	NoLin	
4		*	2480.0	000	61.2	24	31	.51	9	2.75		54.00		38.75	AVG	NoLin	nit
5			2483.5	00	27.9	97	31	.52	5	9.49		74.00)	-14.51	peak		
6			2483.5	00	17.7	71	31	.52	4	9.23	_	54.00)	-4.77	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo				BT(1						Test Da					1/10/7	
Те	st Frequ					2MH	Z			P	<u>olarizat</u>					rtical	
120.0 1	Temp BuV/m)			2	5°C					Hum.				6	0%	
130.0 d	Buv/m		7				-					-		-			_
120																	
110																v.	
00																	
90				9													-
30																	4
, <u> </u>																	
60								*									
io <u> </u>		X X															
10		×							-								
10											44	42					
20																	
10.0																	
21010	00 3550.0	2000		8650		1120		5150 575	50.00		00.00	18850		21400	.00	26500.	UU MI
No.	Mk.	Freq	-	Kea Le	ding vel		rrect		easure ment	-	Limit		Ove	Γ			
		MHz	7	dB			dΒ		3uV/m		dBuV/r	n	dB		Detector	Comm	nent
1		4804.0	000	58.	.27	-6	.84	4	18.43		74.00)	-25.5	7	peak		
2	*	4804.0	000	54.	87	-6	.84	4	15.03		54.00)	-8.97	7	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mo				1Mbps)		Test Date			1/10/7
Tes	t Frequ				2MHz		Polarizatio	on		zontal
130.0 dB	Temp uV/m)		2	25°C		Hum.		60	0%
130.0 aB	uv/m									
120					N.					
110										
100										
30										
30										
	× .									
0										
50										
50	- 2	ģ ×							Š	
10		×			- N					
80		-								
20							<u></u>			
10.0										
1000.000				8650.00	11200.00	13750.00			400.00	26500.00 MH
No.	Mk.	Freq	•	Reading Level	Correct Factor	Measure ment	- Limit	Over		
		MHz	<u> </u>	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.0	000	60.38	-9.84	50.54	74.00	-23.46	peak	
2	*	4804.0	000	57.02	-9.84	47.18	54.00	-6.82	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			T(1Mbps)		Test Date			1/10/7
Te	est Frequ		2	441MHz		Polarizatio	on		rtical
00.0	Temp)		25°C		Hum.		60	0%
30.0 d	lBuV/m			-	-		_		
20				<u> </u>					
10									
00				<u> </u>	<u> </u>				
o									
٠ <u> </u>	<u> </u>						1		
0									
0									
0		yk X							
0		^							
•									
0			55	9	0				4
0				<u></u>	9				
0.0									
1000.0	000 3550.0	00 6100.0	0 8650.00	11200.00	13750.00	16300.00 1	8850.00 21	400.00	26500.00 MH
No.	Mk.	Freq.	Readir Leve		Measure ment	- Limit	Over		
		MHz	dBu∖		dBuV/m	dBuV/m	dB	Detector	Comment
1		4882.00	0 61.08	-9.77	51.31	74.00	-22.69	peak	
2	*	4882.00	0 57.92	-9.77	48.15	54.00	-5.85	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test M	/lode			BT(1	Mbp:	s)				Test Da	ate			202	1/10/7	
Т	est Free	quenc	;y			1MH	Z			Р	olariza	tion			Hori	zontal	
	Ten	np			2	5°C					Hum	١.			6	0%	
30.0	dBuV/m																1
20																	
10				-													
00							5	2.									
0 _							3										
0		N.															
0																	
0																	
0		ģ X															
0		X															
0																	
o				9			5						,				
0.0																	
	.000 3550		6100.00	865	V 2007	1120		1375	100000		300.00			21400.0	D	26500.00	МН
No.	Mk.		Freq.		iding vel		rrect ctor		easure ment)-	Limit	t	Over	•			
			MHz	dE	₿uV	(dΒ	dE	3uV/m)	dBuV/	m_	dB	De	etector	Comme	nt
1		48	82.000	59	.22	-9	.77		19.45		74.00)	-24.5	5	peak		
2	*	48	82.000	55	.95	-9	.77		16.18		54.00))	-7.82	<u> </u>	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo				BT(1						Test Da					/10/7	
Te	est Frequ					0MH	Z			Р	<u>olariza</u>					tical	
130.0 d	Temp BuV/m)			2	5°C					Hum.				60	0%	
130.0 0	IRAA/W							-				_					7
120																	
10													8				
50.02																	
00																	1
00							i i						3				-
80																	
. –																	4
0							7										1
0		1															1
io		3 X												- 8			1
0		2															
_																	
0																	1
20							<u> </u>	2			0		2				-
0.0																	
	000 3550.0			8650		10000000	00.00	5 50 57	50.00		00.00		50.00	2140	0.00	26500.0	O ME
No.	Mk.	Freq		Rea Le			rrect		easure ment	!-	Limit	•	Ove	r			
		MHz		dB			dB		3uV/m	1	dBuV/ı	m	dB		Detector	Comme	ent
1		4960.1	50	63.	34	-6	9.68	Ę	3.66		74.00)	-20.3	34	peak		
2	*	4960.1	50	60.	19	-6	9.68	Ę	50.51		54.00)	-3.4	9	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo					Mbps)				est Da				1/10/7
Tes	st Frequ					OMHz			Po	olarizat	ion			zontal
130.0 dE	Temp)			25	5°C				Hum.			60	0%
130.U GE	uv/m						-							
120						- N								
110														
100		-					2			0.				
30														
30														
							Î			1				
70						, , , , , , , , , , , , , , , , , , ,								
50		-												
50		ż												
		×												
10														
30	10					10				100				4
20										6.				
10.0														
1000.00	0 3550.0	00 6100	0.00	8650.0	00	11200.00	1375	0.00	1630	00.00	18850.0	00 21	400.00	26500.00 MH
No.	Mk.	Freq		Read Leve		Correct Factor		easure- ment	-	Limit	(Over		
		MHz		dBu		dB		3uV/m	(dBuV/r	n	dB	Detector	Comment
1		4960.0		60.3		-9.68	Ę	0.62		74.00	-2	23.38	peak	
2	*	4960.0	00	56.0	9	-9.68	4	16.41		54.00	-	7.59	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test M					Mbps					Test Da					/10/7
Te	est Freq					2MHz				Р	<u>olarizat</u>					tical
30.0	Tem dBuV/m	р			2	5°C					Hum.				60)%
30.0	OBUY/M															
20																
10																
10																
00		9						- 2								
0																
:0																
_	1							- 2								
0																
0								- 9								
io 🗀																
0		1 ×														
		2 X														
0		^				40						-				
20						-		2								
0.0																
1000.0	000 3550.	00 6100	0.00	8650	.00	11200	.00	1375	0.00	163	00.00	18850	.00 2	1400.00		26500.00 MI
No.	Mk.	Fred	.	Rea Le		Cori			easure ment	-	Limit		Over			
		MHz	<u> </u>	dB		dl			3uV/m		dBuV/r	n	dB	Dete	ctor	Comment
1		4804.0	000	52.		-9.	84		2.27		74.00)	-31.73			
2	*	4804.0	000	42.	52	-9.	84	3	32.68		54.00)	-21.32	AV	G	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test M					Mbps					Test Da					1/10/7
Te	est Freq					2MHz	<u> </u>			Р	olarizat					zontal
20.0	Tem	р			2	5°C					Hum.				60	0%
30.0 c	dBuV/m					-		-				-				
20																
10																
00								- 2								
0																
0																
0																
o ⊨								į								
o		*														
		2 X														
0		^		92					-					24		
0 —								-								
0.0																
1000.0	000 3550.	.00 6100	0.00	8650	.00	1120	0.00	1375	0.00	163	00.00	18850	.00 2	1400.00		26500.00 M
No.	Mk.	Fred	.	Read Lev			rect ctor		easure ment	;-	Limit		Over			
		MHz	7	dBı			В		3uV/m	1	dBuV/r	n	dB	Dete	ctor	Commen
1		4804.0	000	53.	51	-9	.84		13.67		74.00)	-30.33			
2	*	4804.0	000	42.	32	-9	.84	3	32.48		54.00)	-21.52	AV	′G	

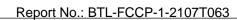
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			BMbps)		Test Date			/10/7
Т	est Frequ			1MHz		Polarization	n		tical
130.0	Temp		2	5°C		Hum.		60	0%
130.0	ubu¥/III								
120									
110									
100000									
100									
90						V.			
80									
70									
60									
50									
40		1 X							
40		2 X							
30		X			8		12		
20							,		
10.0									
1000.	000 3550.0	0 6100.00	8650.00	11200.00	13750.00	16300.00 18	850.00 214	100.00	26500.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure ment	- Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4882.000		-9.77	43.63	74.00	-30.37	peak	
2	*	4882.000	42.76	-9.77	32.99	54.00	-21.01	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo					Mbps					Test Da					1/10/7
Te	est Freq					1MHz				Р	olarizat					zontal
	Temp)			2	5°C					Hum.				60	0%
30.0	dBuV/m							-				_				
20																
10																
000 E																
00								2								
0																
o																
_												-				
0 —																
0		1020										- 1				
0		X X														
		2 X														
0		^														
0 —		-				18		- 2								
0.0																
	000 3550.			8650.		11200			0.00	2002	300.00	18850	5.0	1400.00		26500.00 M
No.	Mk.	Freq		Read		Cor			easure ment) -	Limit		Over			
		MHz		dBu		d			3uV/m)	dBuV/r	n	dB	Det	ector	Commen
1		4882.0	00	53.		-9.	77		13.41		74.00)	-30.59		eak	
2	*	4882.0	00	42.2	26	-9.	77	3	32.49		54.00		-21.51	A\	VG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.


	Test Mo					Mbps)				est Dat				/10/7
le	est Freque					OMHz			Р	olarizati	on			tical
30.0 c	Temp dBuV/m)			25	5°C				Hum.			60	0%
30.0 (JDUY/III					1					1			
20														
10														
00 -							-				<u> </u>			
0														
0													2	
0														
o														
io 📙														
0		1 X												
.0		2												
0	-	X		10.0		10								
0														
0.0														
1000.0	000 3550.0	00 6100	.00	8650.0	0	11200.00	137	50.00	163	00.00	18850.00	214	00.00	26500.00 M
No.	Mk.	Freq	•	Readi Leve		Correct Factor		easure ment	-	Limit	O۷	er		
		MHz	,	dBu\		dB		BuV/m		dBuV/m	n d	В	Detector	Comment
1		4960.0		52.6		-9.68		42.94		74.00	-31		peak	
2	*	4960.0		42.8		-9.68	;	33.15		54.00	-20	.85	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			Mbps)		Test Date			/10/7
10	est Frequ			0MHz		Polarization	1		zontal
130.0	Temp			5°C		Hum.		60	0%
	abarriii					İ	1		
120									
110									
110									
100					7				
90									
80									
70									
60									
50	2								
40		1 X							
40		2							
30		X					-		
20					, , , , , , , , , , , , , , , , , , ,		,		
10.0									
1000.	000 3550.00	0 6100.00	8650.00	11200.00	13750.00	16300.00 18	850.00 214	100.00	26500.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	- Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.000	53.73	-9.68	44.05	74.00	-29.95	peak	
2	*	4960.000	42.68	-9.68	33.00	54.00	-21.00	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

APPENDIX D OUTPUT POWER

Project No.: 2107T063 Page 45 of 46 Report Version: R00

Test Mode :	BT(1 Mbps)	Tested Date	2021/8/4
	\ -1 -1		

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	-0.97	0.0008	21.00	0.1259	Pass
2441	-1.28	0.0007	21.00	0.1259	Pass
2480	-1.93	0.0006	21.00	0.1259	Pass

Test Mode :	BT(2 Mbps)	Tested Date	2021/8/4
-------------	------------	-------------	----------

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	-1.70	0.0007	21.00	0.1259	Pass
2441	-2.36	0.0006	21.00	0.1259	Pass
2480	-2.55	0.0006	21.00	0.1259	Pass

Test Mode :	BT(3 Mbps)	Tested Date	2021/8/4
-------------	------------	-------------	----------

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	-1.51	0.0007	21.00	0.1259	Pass
2441	-2.13	0.0006	21.00	0.1259	Pass
2480	-2.41	0.0006	21.00	0.1259	Pass

End of Test Report