RF Exposure Evaluation declaration

Product Name	: 54Mbps Wireless Builder
Model No.	: V11
FCC ID	: UFHV11

- Applicant : SDT Information Technology
- Address : 2F, Samil B/D 5-63, Hyochang-dong, Yongsan-ku, Seoul, Korea 140-120

Date of Receipt	: 2007/09/07
Issued Date	: 2007/09/17
Report No.	: 079S027-RF-US

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by CNLA, NVLAP, NIST or any agency of the Government.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation.

1. RF Exposure Evaluation

1.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm2)	Average Time (Minutes)	
(A) Limits for C	(A) Limits for Occupational/ Control Exposures				
300-1500			F/300	6	
1500-100,000			5	6	
(B) Limits for General Population/ Uncontrolled Exposures					
300-1500			F/1500	6	
1500-100,000			1	30	

F= Frequency in MHz

Friis Formula

Friis transmission formula: $Pd = (Pout^{*}G)/(4^{*}pi^{*}r^{2})$

Where

Pd = power density in mW/cm2

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd id the limit of MPE, 1 mW/cm2. If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

QuieTek

1.2. Test Procedure

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

The temperature and related humidity: 18° C and 78% RH.

1.3. Test Result of RF Exposure Evaluation

Product	:	54Mbps Wireless Builder	
Test Item	:	RF Exposure Evaluation	
Test Site	:	AC-3	
Test Mode	:	Mode 1: Transmitter by 802.11b	

Antenna Gain:

Antenna Gain: The maximum Gain measured in fully anechoic chamber is 2.0 dBi or 1.58 in linear scale.

Channel	Channel Frequency (MHz)	Output Power to Antenna (mW)	Power Density at R = 20 cm (mW/cm2)
01	2412.00	20.7970	0.006557
06	2437.00	23.9332	0.007546
11	2462.00	23.1739	0.007307

Output Power Into Antenna & RF Exposure Evaluation Distance:

Note:

The power density Pd (4th column) at a distance of 20 cm calculated from the Friis transmission formula is far below the limit of 1 mW/cm2.

Product	:	54Mbps Wireless Builder		
Test Item	:	RF Exposure Evaluation		
Test Site	:	AC-3		
Test Mode	:	Mode 2: Transmitter by 802.11g		

Antenna Gain:

Antenna Gain: The maximum Gain measured in fully anechoic chamber is 2.0 dBi or 1.58 in linear scale.

Output Power Into Antenna & RF Exposure Evaluation Distance:

Channel	Channel Frequency (MHz)	Output Power to Antenna (mW)	Power Density at R = 20 cm (mW/cm2)
01	2412.00	26.0615	0.008217
06	2437.00	24.1546	0.007616
11	2462.00	35.0752	0.011059

Note:

The power density Pd (4th column) at a distance of 20 cm calculated from the Friis transmission formula is far below the limit of 1 mW/cm2.