

iRobot Corporation TEST REPORT

SCOPE OF WORK FCC PART 15.247 TRANSMITTERS CO-LOCATION

REPORT NUMBER 104798049BOX-001

ISSUE DATE 02/15/2022

[REVISED DATE] Original Issue

PAGES 33

DOCUMENT CONTROL NUMBER

Non-Specific Radio Report Shell Rev. December 2017 $\ensuremath{\mathbb{C}}$ 2017 INTERTEK

TRANSMITTERS CO-LOCATION TEST REPORT

(FULL COMPLIANCE)

Report Number: 104798049BOX-001 **Project Number:** G104798049

Report Issue Date: 02/15/2022

Model(s) Tested: CREATE 3 Model(s) Partially Tested: None Model(s) Not Tested but declared equivalent by the client: None

> Standards: CFR47 FCC Part 15.247 Subpart C: 02/2022, CFR47 FCC Part 15 Subpart B: 02/2022, RSS-247 Issue 2 February 2017, ICES-003 Issue 7, October 2020, RSS-Gen Issue 5 April 2018, RSS-102 Issue 5 March 2015 (Transmitters Co-location)

Tested by: Intertek Testing Services NA, Inc. 70 Codman Hill Road Boxborough, MA 01719 USA Client: iRobot Corporation 8 Crosby Dr Mail Stop 12-2 Bedford, MA 01730 USA

Report prepared by

Methana Don

Vathana Ven / EMC Engineering Supervisor

Report reviewed by

Kouma Sinn / EMC Engineering Supervisor

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Table of Contents

1	Introduction and Conclusion	4
2	Test Summary	4
3	Client Information	5
4	Description of Equipment Under Test and Variant Models	. 5
5	System Setup and Method	6
6	Human RF exposure	. 7
7	Transmitter spurious emissions	10
8	Band Edge Compliance	26
9	Revision History	33

1 Introduction and Conclusion

The tests indicated in section 2.0 were performed on the product constructed as described in section 4.0. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested **complies** with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

2 Test Summary

Section	Test full name	Result
3	Client Information	
4	Description of Equipment Under Test and Variant Models	
5	System Setup and Method	
6	Human RF exposure CFR47 FCC Part 15 Subpart C:01/2022, Section 15.247 (b)(3) RSS-247 Issue 2 February 2017, RSS-102 Issue 5 March 2015	Pass
7	Transmitter spurious emissions CFR47 FCC Part 15 Subpart C: 01/2022, Section 15.247 (d) RSS-247 Issue 2 February 2017	Pass
8	Band Edge Compliance CFR47 FCC Part 15 Subpart C: 01/2022, Section 15.247 (d) RSS-247 Issue 2: 02/2017)	Pass
9	Revision History	

*Notes: Co-location testing with two radios incorporated in the EUT.

3 Client Information

This EUT was tested at the request of:

Client:	iRobot Corporation 8 Crosby Dr Mail Stop 12-2 Bedford, MA 01730 USA
Contact:	Kyle Neffendorf
Telephone:	+1 (781) 430-3061
Fax:	None
Email:	kneffendorf@irobot.com

4 Description of Equipment Under Test and Variant Models

Manufacturer:	iRobot Corporation
	8 Crosby Dr Mail Stop 12-2
	Bedford, MA 01730
	USA

Equipment Under Test					
Description Manufacturer Model Number Serial Number					
Robot	iRobot Corporation	CREATE 3	RCI3020J210813E102219		

Receive Date:	09/14/2021
Received Condition:	Good
Type:	Production

Description of Equipment Under Test (provided by client)

The EUT is robot which has the following pre-approved transmitters incorporated.

1) Bluetooth BLE Module 2402.0MHz - 2480.0MHz TX +7.76dBm (Conducted) 0.008W (EIRP)

Laird Technologies, Inc. FCC ID: SQGBT850 IC: Not available Antenna : Antegral antenna, Peak Gain: 2dBi .

2) WiFi Module 2412.0MHz - 2462.0MHz TX +25.02dBm 0.80W EIRP

iRobot Corporation FCC ID: UFE-AXFY1 IC: Not available Antenna: Antegral antenna, Peak Gain: 4dBi

Equipment Under Test Power Configuration					
Rated Voltage Rated Current Rated Frequency Number of Phases					
Internal Battery	N/A	N/A	N/A		

Operating modes of the EUT:

No.	Descriptions of EUT Exercising
1	All transmitters transmit simultaneously

Software used by the EUT:

No.	Descriptions of EUT Exercising
1	Each radio was pre-programmed to transmit low, mid, high channels using Tera Term

Variant Models:

The following variant models were not tested as part of this evaluation, but have been identified by the manufacturer as being electrically identical models, depopulated models, or with reasonable similarity to the model(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

None

5 System Setup and Method

Cables						
ID	Description	Length (m)	Shielding	Ferrites	Termination	
	None					

Support Equipment					
Description Manufacturer Model Number Serial Number					
None					

5.1 Method:

Configuration as required by Configuration as required by FCC Part 15 Subpart C 15.247: 01/2022, FCC Part 15 Subpart B: 01/2022, RSS 247 Issue 2: 02/2017, ISED ICES-003 Issue 7, October 2020, ANSI C 63.10: 2013, ANSI C 63.4: 2014 and KDB 551693 Grant Comments DR02-42299.

5.2 EUT Block Diagram:

6 Human RF exposure

6.1 Results:

The sample tested was found to Comply. The calculated maximum power density at 20 cm distance is less than the limits for general population / uncontrolled exposure.

6.2 Human RF Exposure Calculation

The EUT incorporated two radios as indicated below.

FCC §1.1310 Radiofrequency radiation exposure limits

Table 1 below sets forth limits for Maximum Permissible Exposure (MPE) to radiofrequency electromagnetic field.

Table 1 – Limits for Maximum Permissible Exposure (MPE)							
Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power Density (mW/cm²)	Averaging time (minutes)			
	(A) Limits	for Occupational/Cont	rolled Exposure				
0.3-3.0	614	1.63	*100	6			
3.0-30	1842/f	4.89/f	*900/f ²	6			
30-300	61.4	0.163	1.0	6			
300-1,500			f/300	6			
1,500-100,000			5	6			
	(B) Limits for General Population/Uncontrolled Exposure						
0.3-1.34	614	1.63	*100	30			
1.34-30	842/f	2.19/f	*180/f ²	30			
30-300	27.5	0.073	0.2	30			
300-1,500			f/1500	30			
1,500-100,000			1.0	30			

F = frequency in MHz * = Plane-wave equivalent power density

ISED RSS-102 Issue 5

Table 2 below sets forth limits for the RF field strength.

Table 2 – RF Field Strength Limits for Devices Used by the General Public (Uncontrolled Environment)

Frequency range (MHz)	Electric field strength (V/m rms)	Magnetic field strength (A/m rms)	Power Density (W/m²)	Reference Period (minutes)
0.003-10	83	90	-	Instantaneous*
0.1-10	-	0.73/ f	-	6**
1.1-10	87/ f ^{0.5}	-	-	6**
10-20	27.46	0.0728	-2	6
20-48	58.07/ f ^{0.25}	0.1540/ f ^{0.25}	8.944/ f ^{0.5}	6
48-300	22.06	0.05852	1.291	6
300-6000	3.142 f ^{0.3417}	0.008335 f ^{0.3417}	0.02619 f ^{0.6834}	6
6000-15000	61.4	0.163	10	6
15000-150000	61.4	0.163	10	616000/ f ^{1.2}
150000-300000	0.158 f ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616000/f ^{1.2}

Note: f is frequency in MHz. *Based on nerve stimulation (NS)

**Based on specific absorption rate (SAR)

6.3 Method

An MPE evaluation was performed in order to show that the device was compliant with FCC §2.1091 and ISED RSS-102. The maximum power density was calculated for each transmitter at a separation distance of 20 cm. The calculation was performed using the maximum gain from the internal and external antennas declared by the manufacturer.

The maximum permissible exposure (MPE) is predicted by using the following equation:

 $S = PG/4\pi R^2$

where: S = power density (in appropriate units, e.g. mW/cm²)

P = power input to the antenna (in appropriate units, e.g., mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Technology	Frequency (MHz)	Conductied Power (dBm)	Antenna Gain (dBi)	EIRP Power (dBm)	EIRP Power (mW)	PD @ 20cm (mW/cm ²)	FCC PD Limits (mW/cm ²)	% of FCC Limit
2.4 GHz WiFi Radio	2442	25.02	4.00	29.02	797.99	0.1588	1	15.88
BLE	2441	7.76	2.00	9.02	7.98	0.0016	1	0.16

Total %: 16.03

*Output power data were taken from Intertek test report #104076035BOX-001c

and International Certification Corp. test report #FR791801AD

Technology	Frequency (MHz)	Conductied Power (dBm)	Antenna Gain (dBi)	EIRP Power (dBm)	EIRP Power (mW)	PD @ 20cm (W/cm ²)	ISED PD Limits (W/cm ²)	% of FCC Limit
2.4 GHz WiFi Radio	2442	25.02	4.00	29.02	797.99	1.5876	5.41	29.34
BLE	2441	7.76	2.00	9.02	7.98	0.0159	5.41	0.29

Total %: 29.64

*Output power data were taken from Intertek test report #104076035BOX-001c

and International Certification Corp. test report #FR791801AD

Using the following equation to calculate total power density:

$$\sum_{i=1}^{n} \frac{S_i}{(MPE)_i} \leq 1$$

Where S_i – power density for i = 1, 2,..., n

n – number of antennas transmitting simultaneously, (MPE)_i – limit of MPE for i = 1, 2,..., n

FCC: $\Sigma(S_i/MPE_i) = 15.88 + 0.16 = 16.03 \% < 100 \%$ ISED Canada: $\Sigma(S_i/MPE_i) = 29.34 + 0.29 = 29.64 \% < 100 \%$

Intertek

Test Personnel: Supervising/Reviewing	Vathana Ven	Test Date:	02/02/2022
Engineer:	N/A		
	FCC Part 15.247. RSS-247		
Product Standard:	RSS-102	Limit Applied:	Per Co-location Requirements
Input Voltage:	Internal Battery Powered		
Pretest Verification w/		Ambient Temperature:	N/A
Ambient Signals or			
BB Source:	N/A	Relative Humidity:	N/A
		Atmospheric Pressure:	N/A

Deviations, Additions, or Exclusions: None

Intertek

7 Transmitter spurious emissions

7.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C 15.247, FCC Part 15 Subpart B, RSS 247 ICES 003, ANSI C 63.10, and ANSI C 63.4.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	4.6dB	6.3 dB
Radiated Emissions, 3m	30-1000 MHz	5.3 dB	6.3 dB
Radiated Emissions, 3m	1-6 GHz	4.5 dB	5.2 dB
Radiated Emissions, 3m	6-15 GHz	5.2 dB	5.5 dB
Radiated Emissions, 3m	15-18 GHz	5.0 dB	5.5 dB
Radiated Emissions, 3m	18-40 GHz	5.0 dB	5.5 dB

As shown in the table above our radiated emissions U_{lab} is less than the corresponding U_{CISPR} reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

Intertek

 $\begin{array}{ll} FS = RA + AF + CF - AG \\ Where & FS = Field \ Strength \ in \ dB\mu V/m \\ RA = Receiver \ Amplitude \ (including \ preamplifier) \ in \ dB\mu V \\ CF = Cable \ Attenuation \ Factor \ in \ dB \\ AF = Antenna \ Factor \ in \ dB \\ AG = Amplifier \ Gain \ in \ dB \end{array}$

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = $52.0 \text{ dB}\mu\text{V}$ AF = 7.4 dB/mCF = 1.6 dBAG = 29.0 dBFS = $32 \text{ dB}\mu\text{V/m}$

To convert from $dB\mu V$ to μV or mV the following was used:

UF = $10^{(NF/20)}$ where UF = Net Reading in μV NF = Net Reading in $dB\mu V$

Example:

FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0 UF = $10^{(32 \text{ dB}\mu\text{V}/20)}$ = 39.8 $\mu\text{V/m}$

Alternately, when BAT-EMC Emission Software is used, the "Level" includes all losses and gains and is compared directly in the "Margin" column to the "Limit". The "Correction" includes Antenna Factor, Preamp, and Cable Loss. These are already accounted for in the "Level" column.

7.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
				MS19121200		
DAV007`	Weather Station Vantage Vue	Davis	6250	3	03/22/2021	03/22/2022
145108`	EMI Test Receiver (20Hz – 40GHz)	Rohde & Schwarz	ESIB40	100209	06/22/2021	06/22/2022
145-406'	10m Track A In-floor Cable #1	Huber + Suhner	sucoflex 160-19220mm	001	07/22/2021	07/22/2022
HS002`	DC-18GHz cable 1.4m long	Huber & Suhner	SucoFlex 106A	HS002	11/25/2020	11/25/2021
PRE10'	30-1000MHz pre-amp	ITS	PRE10	PRE10	02/17/2021	02/17/2022
IW006'	DC-18GHz cable 8.4m long	Insulated Wire	2800-NPS	IW006	11/25/2020	11/25/2021
145145'	Broadband Hybrid Antenna 30 MHz - 3 GHz	Sunol Sciences Corp.	JB3	A122313	06/09/2021	06/09/2022
PRE12`	500MHz – 18GHz 40dB Gain Preamp	COM-POWER	PAM-118A	18040117	12/07/2020	12/07/2021
ETS002'	1-18GHz DRG Horn Antenna	ETS Lindgren	3117	00143260	08/24/2021	08/24/2022
145-420'	Receiver to floor cable	Utiflex	UFB311A-2-0591-70070	145-420	02/17/2021	02/17/2022
145-422'	10Amp Pre-amp to under floor	Utiflex	UFB311A-0-2756-70070	145-422	02/17/2021	02/17/2022
REA004'	3GHz High Pass Filter	Reactel, Inc	7HSX-3G/18G-S11	06-1	02/19/2021	02/19/2022
HS003'	10m under floor cable	Huber-Schuner	10m-1	HS003	02/17/2021	02/17/2022
REA008'	band reject filter 2.4GHz	Reactel, Inc	12RX7-2441.75-x140 S	17-01	07/28/2021	07/28/2022
PRE9'	100MHz-40GHz Preamp	MITEQ	NSP4000-NFG	1260417	09/24/2020	09/24/2021
CBLHF2012-						
5M-2'	5m 9kHz-40GHz Coaxial Cable - SET2	Huber & Suhner	SF102	252676002	02/19/2021	02/19/2022
IW001'	2 meter cable	Insulated Wire	2801-NPS	001	01/08/2020	10/08/2021
145-424'	9kHz to 40GHz Cable	Huber and Suhner	Sucoflex	145-424	02/17/2021	02/17/2022
ROS005-1'	Signal and Spectrum Analyzer	Rohde and Shwartz	FSW43	100646	10/27/2020	10/27/2021
CBLSHF204'	Cable, SMA - SMA, 9kHz -40GHz, (Cable Kit 5)	Huber + Suhner	Sucoflex 102EA	234714001	12/10/2020	12/10/2021

Software Utilized:

Name	Manufacturer	Version
BAT-EMC	Nexio	3.17.0.3
EMI Boxborough.xls	Intertek	08/27/2010

7.3 Results:

The sample tested was found to Comply.

15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c))

7.4 Setup Photographs:

Intertek

Radiated Emissions Test Setup, 1-18 GHz

Radiated Emissions Test Setup, 18-26 GHz

7.5 Plots/Data:

All Radios Transmit @ Low Channel, 30-1000 MHz

Test Information:

Date and Time	9/14/2021 5:47:41 PM
Client and Project Number	iRobot_G104798049
Engineer	Vathana Ven
Temperature	24 deg C
Humidity	38%
Atmospheric Pressure	1008 mB
Comments	RE 30-1000MHz_Battery_802.11n HT40, MCS6, 40MHz BW_Low CH (2412MHz),
	BLE Tx Low CH (2412MHz)

Graph:

Results:

QuasiPeak (PASS) (4)

Frequency	Level	Limit	Margin	Azimuth (°)	Height (m)	Pol.	RBW (Hz)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)					(dB)
37.74736842	11.27	30.00	-18.73	118.00	3.68	Vertical	120000.00	-17.98
108	17.43	33.50	-16.07	69.00	2.62	Horizontal	120000.00	-20.17
217.7894737	7.19	36.00	-28.81	233.00	1.36	Vertical	120000.00	-21.33
778.3473684	19.18	36.00	-16.82	359.00	2.75	Horizontal	120000.00	-8.12

All Radios Transmit @ Low Channel, 1-3 GHz

Test Information:

Date and Time	9/14/2021 10:44:40 PM
Client and Project Number	iRobot_G104798049
Engineer	Vathana Ven
Temperature	24 deg C
Humidity	38%
Atmospheric Pressure	1008 mB
Comments	RE 1 to 3GHz_Battery_802.11n HT40, MCS6, 40MHz BW_Low CH (2412MHz), BLE
	Tx Low CH (2412MHz)

Graph:

Results:

Peak (PASS) (2)

Frequency (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	RBW (Hz)	Correction (dB)
2364.210526	58.68	74.00	-15.32	157.00	3.30	Vertical	1000000.00	-3.29
2376.578947	61.46	74.00	-12.54	152.00	3.74	Vertical	1000000.00	-3.24

Average (PASS) (2)

Frequency	Level	Limit	Margin	Azimuth (°)	Height (m)	Pol.	RBW (Hz)	Correction	
(MHz)	(dBµV/m)	(dBµV/m)	(dB)					(dB)	
2364.210526	43.09	54.00	-10.91	157.00	3.30	Vertical	1000000.00	-3.29	
2376.578947	46.84	54.00	-7.16	152.00	3.74	Vertical	1000000.00	-3.24	

All Radios Transmit @ Low Channel, 3-13 GHz

Test Information:

Date and Time	9/14/2021 10:56:21 PM
Client and Project Number	iRobot_G104798049
Engineer	Vathana Ven
Temperature	24 deg C
Humidity	38%
Atmospheric Pressure	1008 mB
Comments	RE 3 to 13GHz_Battery_802.11n HT40, MCS6, 40MHz BW_Low CH (2412MHz),
	BLE Tx Low CH (2412MHz)

Graph:

Results:

Peak (PASS) (6) Frequency Level Limit Margin Azimuth (°) Height (m) Pol. RBW (Hz) Correction (MHz) (dBµV/m) (dBµV/m) (dB) (dB) 11433.94737 350.00 2.30 100000.00 12.51 53.09 74.00 Horizontal -20.91 12313.68421 55.28 74.00 -18.72 39.00 2.45 Horizontal 100000.00 13.42 1.35 12412.10526 54.33 74.00 -19.67 0.00 Horizontal 100000.00 13.50 12864.21053 74.00 -19.91 82.00 1.15 14.90 54.09 1000000.00 Horizontal 12879.73684 54.15 74.00 -19.85 204.00 3.89 Horizontal 1000000.00 14.95 12995.78947 54.65 74.00 -19.35 4.00 2.85 Vertical 1000000.00 15.19

Average (PASS) (6)

Frequency	Level	Limit	Margin	Azimuth (°)	Height (m)	Pol.	RBW (Hz)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)					(dB)
11433.94737	42.09	54.00	-11.91	350.00	2.30	Horizontal	1000000.00	12.51
12313.68421	41.71	54.00	-12.29	39.00	2.45	Horizontal	1000000.00	13.42
12412.10526	41.63	54.00	-12.37	0.00	1.35	Horizontal	1000000.00	13.50
12864.21053	42.13	54.00	-11.87	82.00	1.15	Horizontal	1000000.00	14.90
12879.73684	40.68	54.00	-13.32	204.00	3.89	Horizontal	1000000.00	14.95
12995.78947	41.43	54.00	-12.57	4.00	2.85	Vertical	100000.00	15.19

All Radios Transmit @ Mid Channel, 30-1000 MHz

Test Information:

Date and Time	9/14/2021 6:46:41 PM
Client and Project Number	iRobot_G104798049
Engineer	Vathana Ven
Temperature	24 deg C
Humidity	38%
Atmospheric Pressure	1008 mB
Comments	RE 30-1000MHz_Battery_802.11n HT40, MCS6, 40MHz BW_Mid CH (2442MHz),
	BLE Tx Mid CH (2442MHz)

Graph:

Results:

QuasiPeak (PASS) (4)

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	RBW (Hz)	Correction (dB)
37.31578947	11.48	30.00	-18.52	119.00	3.41	Vertical	120000.00	-17.72
38.30526316	10.91	30.00	-19.09	52.00	1.55	Vertical	120000.00	-18.34
108	18.84	33.50	-14.66	125.00	3.31	Horizontal	120000.00	-20.17
785.2736842	19.40	36.00	-16.60	355.00	1.80	Horizontal	120000.00	-7.90

All Radios Transmit @ Mid Channel, 1-3 GHz

Test Information:

Date and Time	9/14/2021 10:15:10 PM
Client and Project Number	iRobot_G104798049
Engineer	Vathana Ven
Temperature	24 deg C
Humidity	38%
Atmospheric Pressure	1008 mB
Comments	RE 1 to 3GHz_Battery_802.11n HT40, MCS6, 40MHz BW_Mid CH (2442MHz), BLE
	Tx Mid CH (2442MHz)

Graph:

Results:

Peak (PASS) (2) Frequency Level Limit Margin Azimuth (°) Height (m) Pol. RBW (Hz) Correction (MHz) (dBµV/m) (dBµV/m) (dB) (dB) 2344.210526 74.00 147.00 3.35 100000.00 52.88 Vertical -3.39 -21.12 2531.052632 53.39 74.00 -20.61 146.00 3.64 Vertical 100000.00 -3.16

Average (PASS) (2)

	/ \ /							
Frequency	Level	Limit	Margin	Azimuth (°)	Height (m)	Pol.	RBW (Hz)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)					(dB)
2344.210526	39.14	54.00	-14.86	147.00	3.35	Vertical	1000000.00	-3.39
2531.052632	40.20	54.00	-13.80	146.00	3.64	Vertical	1000000.00	-3.16

All Radios Transmit @ Mid Channel, 3-13 GHz

Test Information:

Date and Time	9/14/2021 9:47:50 PM
Client and Project Number	iRobot_G104798049
Engineer	Vathana Ven
Temperature	24 deg C
Humidity	38%
Atmospheric Pressure	1008 mB
Comments	RE 3 to 13GHz_Battery_802.11n HT40, MCS6, 40MHz BW_Mid CH (2442MHz),
	BLE Tx Mid CH (2442MHz)

Graph:

Results:

Peak (PASS) (5) Frequency Level Limit Margin Azimuth (°) Height (m) (MHz) (dBµV/m) (dBµV/m) (dB) 11412.36842 74.00 24.00 3.84 53.23 -20.77 11752.89474 54.23 74.00 -19.77 290.00 1.00 12258.68421 54.35 74.00 -19.65 248.00 3.69

-19.43

-19.12

74.00

74.00

Average (PASS) (5)

54.57

54.88

12401.05263

12922.36842

Thorage (1710)	0)(0)							
Frequency	Level	Limit	Margin	Azimuth (°)	Height (m)	Pol.	RBW (Hz)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)					(dB)
11412.36842	40.19	54.00	-13.81	24.00	3.84	Vertical	1000000.00	12.40
11752.89474	41.23	54.00	-12.77	290.00	1.00	Vertical	1000000.00	13.16
12258.68421	41.35	54.00	-12.65	248.00	3.69	Horizontal	1000000.00	13.39
12401.05263	41.46	54.00	-12.54	31.00	3.89	Vertical	1000000.00	13.50
12922.36842	42.54	54.00	-11.46	291.00	1.00	Horizontal	1000000.00	15.06

31.00

291.00

3.89

1.00

Pol.

Vertical

Vertical

Vertical

Horizontal

Horizontal

RBW (Hz)

100000.00

100000.00

1000000.00

1000000.00

1000000.00

Correction

(dB)

12.40

13.16

13.39

13.50

15.06

All Radios Transmit @ High Channel, 30-1000 MHz

Test Information:

Date and Time	9/14/2021 7:52:27 PM
Client and Project Number	iRobot_G104798049
Engineer	Vathana Ven
Temperature	24 deg C
Humidity	38%
Atmospheric Pressure	1008 mB
Comments	RE 30-1000MHz_Battery_802.11n HT40, MCS6, 40MHz BW_High CH (2462MHz),
	BLE Tx High CH (2462MHz)

Graph:

Results:

QuasiPeak (PASS) (4)

Frequency	Level	Limit	Margin	Azimuth (°)	Height (m)	Pol.	RBW (Hz)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)					(dB)
37.06315789	11.73	30.00	-18.27	111.00	2.57	Vertical	120000.00	-17.57
37.98947368	11.12	30.00	-18.88	118.00	2.90	Vertical	120000.00	-18.13
108	18.56	33.50	-14.94	96.00	2.50	Horizontal	120000.00	-20.17
785.1894737	19.41	36.00	-16.59	24.00	1.30	Vertical	120000.00	-7.88

All Radios Transmit @ High Channel, 1-3 GHz

Test Information:

Date and Time	9/14/2021 8:54:56 PM
Client and Project Number	iRobot_G104798049
Engineer	Vathana Ven
Temperature	24 deg C
Humidity	38%
Atmospheric Pressure	1008 mB
Comments	RE 1 to 3GHz_Battery_802.11n HT40, MCS6, 40MHz BW_High CH (2462MHz),
	BLE Tx High CH (2462MHz)

Graph:

Results:

Peak (PASS) (3) Frequency Level Limit Margin Azimuth (°) Height (m) Pol. RBW (Hz) Correction (MHz) (dBµV/m) (dBµV/m) (dB) (dB) 2300 48.25 74.00 182.00 3.74 100000.00 -3.76 -25.75 Vertical 2507.894737 63.12 74.00 -10.88 189.00 3.59 Vertical 100000.00 -3.17 2540.263158 74.00 -24.84 191.00 3.49 100000.00 -3.15 49.16 Vertical

Average (PASS	S) (3)							
Frequency	Level	Limit	Margin	Azimuth (°)	Height (m)	Pol.	RBW (Hz)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)					(dB)
2300	35.56	54.00	-18.44	182.00	3.74	Vertical	1000000.00	-3.76
2507.894737	45.38	54.00	-8.62	189.00	3.59	Vertical	1000000.00	-3.17
2540.263158	36.20	54.00	-17.80	191.00	3.49	Vertical	1000000.00	-3.15

All Radios Transmit @ High Channel, 3-13 GHz

Test Information:

Date and Time	9/14/2021 9:16:01 PM
Client and Project Number	iRobot_G104798049
Engineer	Vathana Ven
Temperature	24 deg C
Humidity	38%
Atmospheric Pressure	1008 mB
Comments	RE 3 to 13GHz_Battery_802.11n HT40, MCS6, 40MHz BW_High CH (2462MHz),
	BLE Tx High CH (2462MHz)

Graph:

Results:

Peak (PASS) (5)

Frequency	Level	Limit	Margin	Azimuth (°)	Height (m)	Pol.	RBW (Hz)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)					(dB)
9818.684211	50.41	74.00	-23.59	262.00	3.69	Horizontal	1000000.00	7.84
11265	51.97	74.00	-22.03	133.00	3.10	Horizontal	1000000.00	11.75
11719.21053	54.49	74.00	-19.51	198.00	3.79	Vertical	1000000.00	13.16
12401.31579	54.71	74.00	-19.29	104.00	3.94	Vertical	1000000.00	13.50
12961.84211	54.69	74.00	-19.31	211.00	3.30	Vertical	100000.00	15.14

Average (PASS) (5)

	= / \ - /							
Frequency	Level	Limit	Margin	Azimuth (°)	Height (m)	Pol.	RBW (Hz)	Correction
	(ubµv/m)	(ubµv/iii)	(ub)					(ub)
9818.684211	37.53	54.00	-16.47	262.00	3.69	Horizontal	1000000.00	7.84
11265	40.80	54.00	-13.20	133.00	3.10	Horizontal	1000000.00	11.75
11719.21053	41.29	54.00	-12.71	198.00	3.79	Vertical	1000000.00	13.16
12401.31579	41.57	54.00	-12.43	104.00	3.94	Vertical	1000000.00	13.50
12961.84211	42.68	54.00	-11.32	211.00	3.30	Vertical	1000000.00	15.14

13-25 GHz on Low, Mid, and High Channels Radiated Emissions

Company:	iRobot Cor	poration					Antenna	a & Cables:	LF	Bands: N,	LF, HF, SHF
Model #:							Antenna:	EMC04		ETS002	
Serial #:	RCI3020J2	210813E102	219				Cable(s):	CBLHF201	2-5M-2	CBLSHF2	.04
Engineers:	Vathana V	en			Location:	10m Chamber	Barometer:	DAV007	Filter:	REA004	REA005
Project #:	G1038365	30	Date(s):	09/14/21							
Standard:	FCC Part 1	15.247 & 15.	209				Temp/Humic	lity/Pressure:	24C	38%	1008mbar
Receiver:	ROS005-1			Limit Dis	stance (m):	3					
PreAmp:	PRE9			Test Dis	stance (m):	3					
Р	reAmp Use	d? (Y or N):	Y	Voltage/F	Frequency:	Internal	Battery	Frequer	ncy Range:	13-2	5 GHz
Ν	let = Readi	ng (dBuV/m) + Antenna	Factor (dB	1/m) + Cab	ole Loss (dE	3) - Preamp	Factor (dB) - Distance	e Factor (d	B)
Peak: PK	Quasi-Pea	ak: QP Aver	age: AVG	RMS: RMS	; NF = Nois	e Floor, RE	3 = Restricte	ed Band; Ba	andwidth de	enoted as F	RBW/VBW
	Ant.			Antenna	Cable	Pre-amp	Distance				
Detector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth
Туре	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB	
Testing	was perfor	med manua	lly at 10cm	from the E	UT. No em	issions wer	e detected	at low, mid,	, and high o	channels or	n all axis
Te	est Personr	nel: <u>Vath</u> a	ana Ven	-V				Test Date	e: <u>09/14</u>	/2021	
Supervisi (Whei	ng/Review Engine re Applicat	ing eer: ble) N/A									
Prod	uct Standa	CFR4 ard: <u>RSS</u> -	47 FCC Pa 247	rt 15.247			Li	mit Applied	d: <u>See r</u>	eport secti	on 7.3
Pretest \	/erification	ge. <u>men</u> w/	lai ballery	Fowered			Ambient T	emperature	e: <u>24 °C</u>		
Ambie	ent Signals BB Sour	sor ce: <u>BBS</u>	ource				Relativ	ve Humidity	y: <u>38 %</u>		
							Atmospher	ic Pressure	e: 1008	mbars	

Deviations, Additions, or Exclusions: None

Issued: 02/15/2022

Intertek

eport	Number:	104/98049BOX-0

Intertek

8 Band Edge Compliance

8.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C 15.247 RSS 247, ANSI C 63.10, and ANSI C 63.4.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	4.6dB	6.3 dB
Radiated Emissions, 3m	30-1000 MHz	5.3 dB	6.3 dB
Radiated Emissions, 3m	1-6 GHz	4.5 dB	5.2 dB
Radiated Emissions, 3m	6-15 GHz	5.2 dB	5.5 dB
Radiated Emissions, 3m	15-18 GHz	5.0 dB	5.5 dB
Radiated Emissions, 3m	18-40 GHz	5.0 dB	5.5 dB

As shown in the table above our radiated emissions U_{lab} is less than the corresponding U_{CISPR} reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

Intertek

 $\begin{array}{ll} FS = RA + AF + CF - AG \\ Where & FS = Field \ Strength \ in \ dB\mu V/m \\ RA = Receiver \ Amplitude \ (including \ preamplifier) \ in \ dB\mu V \\ CF = Cable \ Attenuation \ Factor \ in \ dB \\ AF = Antenna \ Factor \ in \ dB \\ AG = Amplifier \ Gain \ in \ dB \end{array}$

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = 52.0 dB μ V AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB FS = 32 dB μ V/m

To convert from dB μ V to μ V or mV the following was used:

UF = $10^{(NF/20)}$ where UF = Net Reading in μV NF = Net Reading in $dB\mu V$

Example:

FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0 UF = $10^{(32 \text{ dB}\mu\text{V}/20)}$ = 39.8 $\mu\text{V/m}$

8.2 Test Equipment Used:

Test equipment used on 09/17/2021

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV007`	Weather Station Vantage Vue	Davis	6250	MS191212003	03/22/2021	03/22/2022
HS002`	DC-18GHz cable 1.4m long	Huber & Suhner	SucoFlex 106A	HS002	11/25/2020	11/25/2021
IW006'	DC-18GHz cable 8.4m long	Insulated Wire	2800-NPS	IW006	11/25/2020	11/25/2021
ETS002'	1-18GHz DRG Horn Antenna	ETS Lindgren	3117	00143260	08/24/2021	08/24/2022
145-420'	Receiver to floor cable	Utiflex	UFB311A-2-0591-70070	145-420	02/17/2021	02/17/2022
ROS005-1'	Signal and Spectrum Analyzer	Rohde and Shwartz	FSW43	100646	10/27/2020	10/27/2021

Test equipment used on 11/05/2021

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV007`	Weather Station Vantage Vue	Davis	6250	MS191212003	03/22/2021	03/22/2022
145108`	EMI Test Receiver (20Hz – 40GHz)	Rohde & Schwarz	ESIB40	100209	06/22/2021	06/22/2022
145-420'	Receiver to floor cable	Utiflex	UFB311A-2-0591-70070	145-420	02/17/2021	02/17/2022
145-414'	Cables 145-400 145-403 145-405 145-409	Huber + Suhner	3m Track A cables	multiple	07/09/2021	07/09/2022
145-422'	10Amp Pre-amp to under floor	Utiflex	UFB311A-0-2756-70070	145-422	02/17/2021	02/17/2022
145-421'	10m Ant to Pre-amp	Utiflex	UFB311A-0-3346-50050	145-421	02/16/2021	02/16/2022
ETS002'	1-18GHz DRG Horn Antenna	ETS Lindgren	3117	00143260	08/24/2021	08/24/2022

Software Utilized:

Name	Manufacturer	Version
None		

8.3 Results:

The sample tested was found to Comply.

15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c))

8.4 Setup Photograph:

8.5 Plots/Data:

Upper Band Edge With FCC § 15.247 (d), 20 dB down from the peak carrier Worst-case Polarity – Horizontal

Upper Band Edge With FCC 15.209 limits (74 dBµV/m Peak and 54 dBµV/m Average), Worst-case Polarity – Vertical

17:12:06 17.09.2021

Upper Band Edge With FCC § 15.247 (d), 20 dB down from the peak carrier Worst-case Polarity – Vertical

17:17:37 17.09.2021

Intertek

Radiated Emissions

C	Debet Com						Antonn	e 9 Cables		Danala: NL I			
Company:		poration					Antenna	a & Cables:		Bands: N, I			
Nodel #:		4004054000	10				Antenna:	2021-3MH 08	5_24_2022.txt	2021-3MH 08	3_24_2022.txt		
Serial #:	RCI3020J2	10813E1022	19				Cable(s):	145-416 3mTrkE	3 10-03-2014.txt	NONE.	NONE		
Engineers:	Vathana Ve	en			Location:	10M Chamber	Barometer:	DAV007		Filter:	NONE		
Project #:	G10479804	19	Date(s):	09/17/2021, 11/05/2021									
Standard:	FCC Part 1	5C, 15.247					Temp/Humic	dity/Pressure:	21, 21 deg C	22, 23%	1008, 986 mB		
Receiver:	R & S ESI	(145-108) 06	-22-2022	Limit Di	stance (m):	3							
PreAmp:	NONE.			Test Di	stance (m):	3							
F	PreAmp Use	ed? (Y or N):	N	Voltage/	Frequency:	Battery	/ power	Freque	ncy Range:	See	below		
	Net = Rea	ading (dBuV/r	n) + Antenr	na Factor (dl	31/m) + Cab	ole Loss (dB) - Preamp	Factor (dB)	 Distance F 	actor (dB)			
Peak:	PK Quasi-F	eak: QP Av	erage: AVG	RMS: RMS	S; NF = Nois	e Floor, RB	= Restricte	d Band; Bar	ndwidth deno	oted as RB\	W/VBW		
	Ant.			Antenna	Cable	Pre-amp	Distance						
Detector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth		
Туре	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB		FCC	IC
				Low	/er Band Ed	ge Complia	nce						
PK	Н	2390.000	28.04	31.80	7.10	0.00	0.00	66.94	74.00	-7.06	1/3 MHz	RB	RB
AVG	Н	2390.000	11.90	31.80	7.10	0.00	0.00	50.80	54.00	-3.20	1/3 MHz	RB	RB
	•			Upp	er Band Ed	ge Complia	nce	•					
PK	V	2483.500	23.51	32.51	6.99	0.00	0.00	63.01	74.00	-10.99	1/3 MHz	RB	
AVG	V	2483.500	13.81	32.51	6.99	0.00	0.00	53.31	54.00	-0.69	1/3 MHz	RB	
												•	
Т	est Perso	nnel: Ko	uma Sinn	LPS				Те	est Date:	09/17/20	021, 11/05	/2021	
Supervis	sina/Revie	wina									,		
•	Engir	neer:		21.12									
(Whe	ere Applica	able) Va	thana Ver	VSV									
`		Ć CF	R47 FCC	Part 15.2	47								
Pro	duct Stand	dard: RS	S-247					Limit	Applied:	See rep	ort section	8.3	

Product Standard: RSS-247 Input Voltage: Internal Battery Powered

Pretest Verification w/ Ambient Signals or BB Source: <u>BB Source</u>

Ambient Temperature:	21, 21 °C
Relative Humidity:	22, 23 %

Atmospheric Pressure: 1008, 986 mbars

Deviations, Additions, or Exclusions: None

9 Revision History

Revision Level	Date	Report Number	Prepared By	Reviewed By	Notes
0	02/15/2022	104798049BOX-001	VFV	KPS 45	Original Issue