

Nemko Test Report: 10219671RUS1

Applicant:

Banner Engineering Corp. 15755 32nd Avenue N. Plymouth, MN 55447 U.S.A.

Equipment Under Test: (E.U.T.)

> FCC ID.: UE3RM7023 IC: 7044A-RM7023

In Accordance With:

FCC Part 15, Subpart C, 15.247 and Industry Canada RSS-210, Issue 8 Frequency Hopping Transmitters

Tested By:

Nemko USA Inc. 802 N. Kealy Lewisville, Texas 75057-3136

DX80

TESTED BY:

DATE: 24 January 2012

David Light, Senior Wireless Engineer

APPROVED BY:

Michael Cantwell, GM

DATE: 25 January, 2012

Total Number of Pages: 55

Table of Contents

SECTION 1.	SUMMARY OF TEST RESULTS	3
SECTION 2.	EQUIPMENT UNDER TEST (E.U.T.)	5
SECTION 3.	CHANNEL SEPARATION	6
SECTION 4.	TIME OF OCCUPANCY	11
SECTION 5.	PEAK POWER OUTPUT	19
SECTION 6.	SPURIOUS EMISSIONS (CONDUCTED)	26
SECTION 7.	SPURIOUS EMISSIONS (RADIATED)	32
SECTION 8.	POWERLINE CONDUCTED EMISSIONS	39
SECTION 9.	TEST EQUIPMENT LIST	43
ANNEX A - TE	ST DETAILS	44
ANNEX B - TE	ST DIAGRAMS	53

Section 1. **Summary of Test Results**

Manufacturer: Banner Engineering Corp.

Model No.: **DX80**

Serial No.: None

General: All measurements are traceable to national standards.

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15, Subpart C, Paragraph 15.247 and Industry Canada RSS-210, Issue 8 for Frequency Hopping Spread Spectrum devices. Radiated tests were conducted is accordance with ANSI C63.4-2003. Radiated emissions are made on an open area test site.

A description of the test facility is on file with the FCC and Industry Canada.

\geq	\langle
	٦

New Submission

 \times **Production Unit**

Pre-Production Unit

Class II Permissive Change

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE.

See "Summary of Test Data".

Nemko USA Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko USA Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

FCC PART 15, SUBPART C & RSS-210, Issue 8 FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER PROJECT NO.:10219671RUS1

Summary Of Test Data

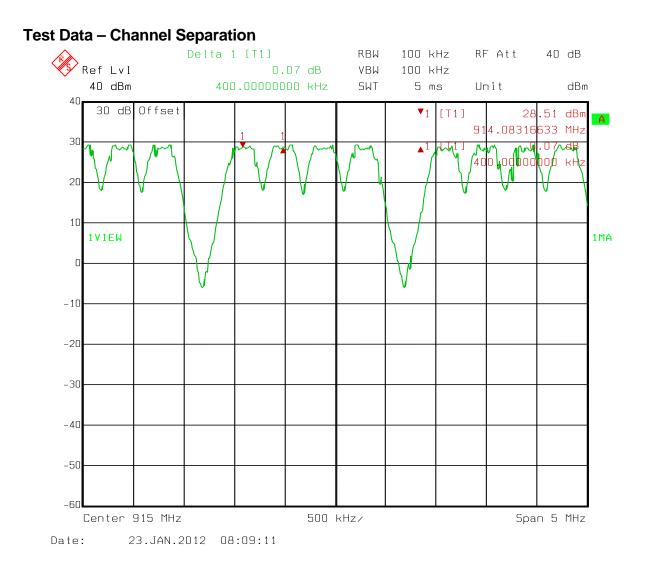
NAME OF TEST	PARA. NO.	RESULT
Powerline Conducted Emissions	FCC 15.207(a) / RSS-Gen 7.2.4	Complies
Channel Separation	FCC 15.247(a)(1) / RSS-210 A8.1(b)	Complies
Time of Occupancy	FCC 15.247(a)(1) / RSS-210 A8.1(c)	Complies
20 dB Occupied Bandwidth	FCC 15.247(a)(1) / RSS-210 A8.1(b)	Complies
Peak Power Output	FCC 15.247(b) / RSS-210 A8.4(1)	Complies
Spurious Emissions (Antenna Conducted)	FCC 15.247(d) / RSS-210 A8.5	Complies
Spurious Emissions (Radiated)	FCC 15.247(d) / RSS-Gen 7.2.2	Complies
Receiver Spurious Emissions	RSS GEN	Complies

Footnotes:

Section 2. Equipment Under Test (E.U.T.)

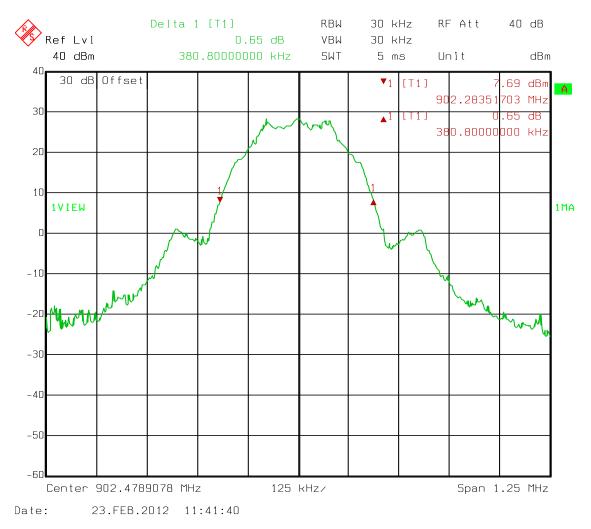
General Equipment Information

Frequency Band:	 № 902 – 928 MHz № 2400 – 2483.5 MHz № 5725 – 5850 MHz
Operating Frequency Range:	902.48 to 927.68 MHz
Number of Channels:	25 or 51
Channel Spacing:	400 kHz
Rated Power:	1 watt (51 hopping channels) 250 mW (25 hopping channels)
User Frequency Adjustment:	None


Description of EUT

EUT is a drop-in replacement for a module on Banner Engineering Corp's DX80 family of industrial sensor monitor and control modules.

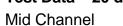
Section 3. Channel Separation

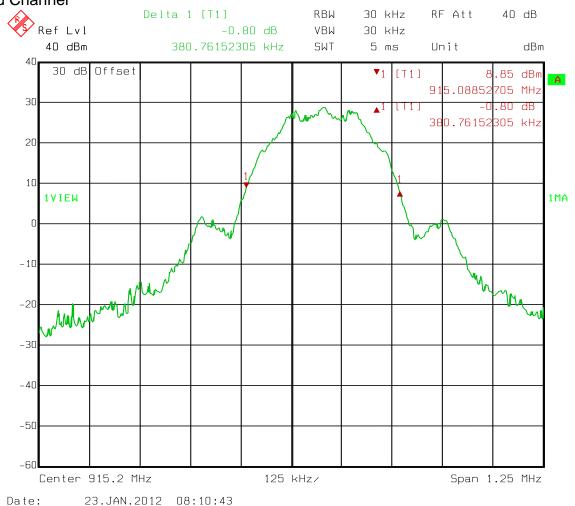

NAME OF TEST: Channel Separation	PARA. NO.: FCC 15.247(a)(1)
	RSS-210 A8.1(b)
TESTED BY: David Light	DATE: 23 January 2012

- Test Results: Complies.
- Measurement Data:See 20 dB BW plotMeasured 20 dB bandwidth:383 kHz MaxChannel Separation:400 kHz
- **Equipment Used:** 1036-1472-1469-1082
- Measurement Uncertainty: <u>1X10⁻⁷ ppm</u>
- Temperature: 23 °C
- **Relative Humidity:** 49 %

Test Data – 20 dB Bandwidth

Low Channel

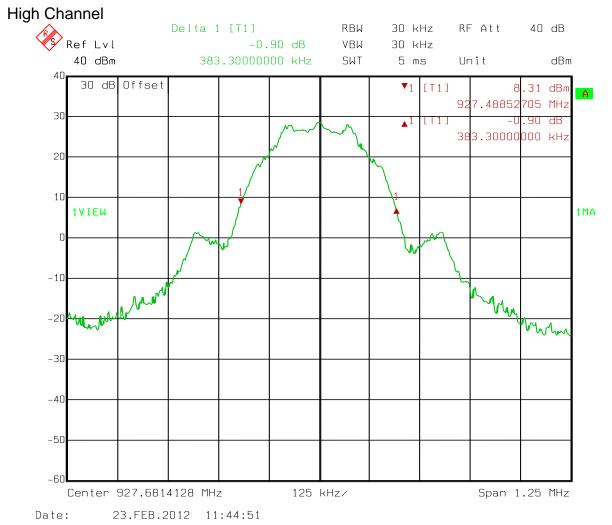



Nemko USA, Inc.

EQUIPMENT: DX80

FCC PART 15, SUBPART C & RSS-210, Issue 8 FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER PROJECT NO.:10219671RUS1

Test Data – 20 dB Bandwidth



Nemko USA, Inc.

FCC PART 15, SUBPART C & RSS-210, Issue 8 FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER PROJECT NO.:10219671RUS1

EQUIPMENT: DX80

Test Data – 20 dB Bandwidth

Section 4. Time of Occupancy

NAME OF TEST: Time of Occupancy	PARA. NO.: FCC 15.247(a)(1)
	RSS-210 A8.1(c)
TESTED BY: David Light	DATE: 23 January 2012

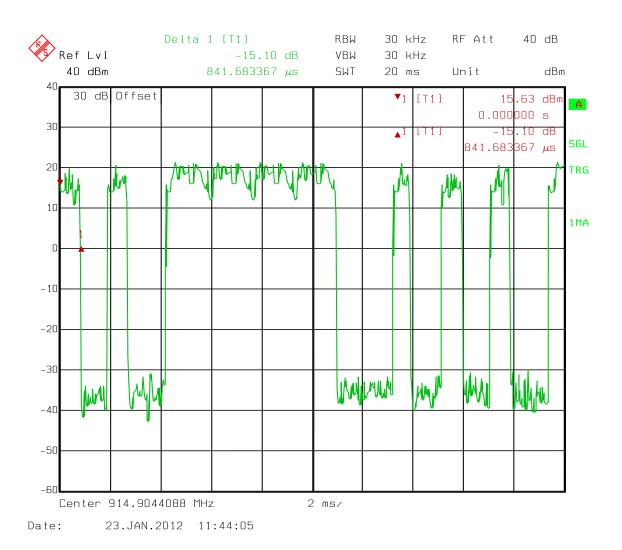
Complies.

Test Results:

Measurement Data:

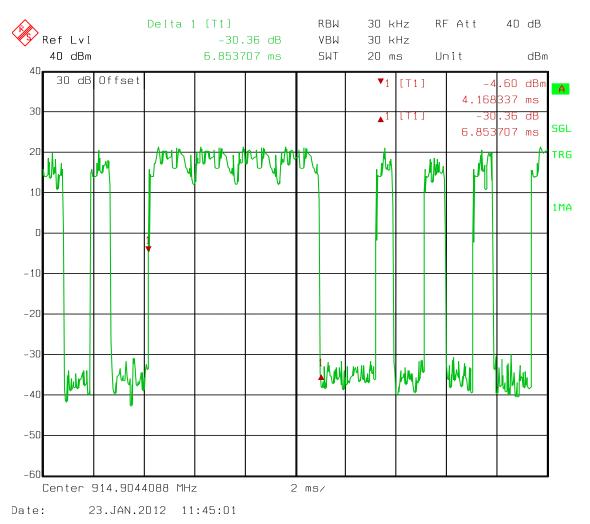
Maximum Dwell Time On Any Channel: 174 ms/10 seconds

Equipment Used: 1036-1472-1469-1082

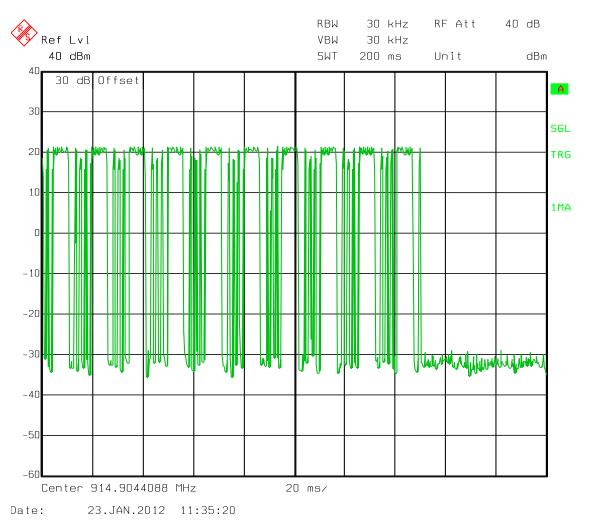

Measurement Uncertainty: <u>1X10⁻⁷</u>ppm

Temperature:23°C

Relative Humidity: 48 %


Test Data – Time of Occupancy

Narrow Pulse Width = 841 μ s


Test Data – Time of Occupancy

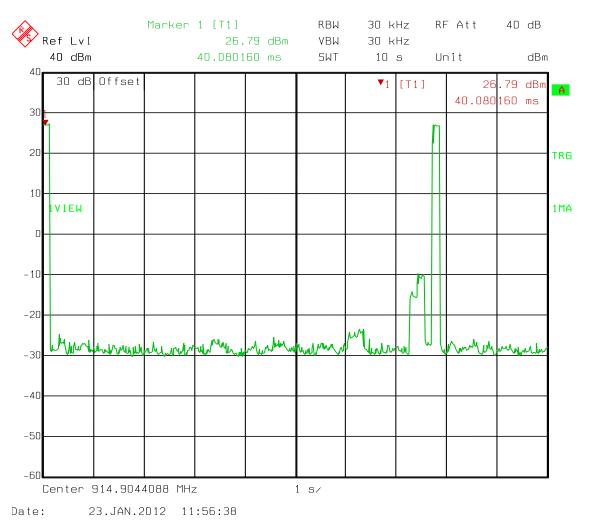
Wide Pulse Width = 6.9 ms

Test Data – Time of Occupancy

Total Time per Hop

30 Short pulses @ 0.841 ms 10 Long pulses @ 6.9 ms Time per hop = 0.58 seconds

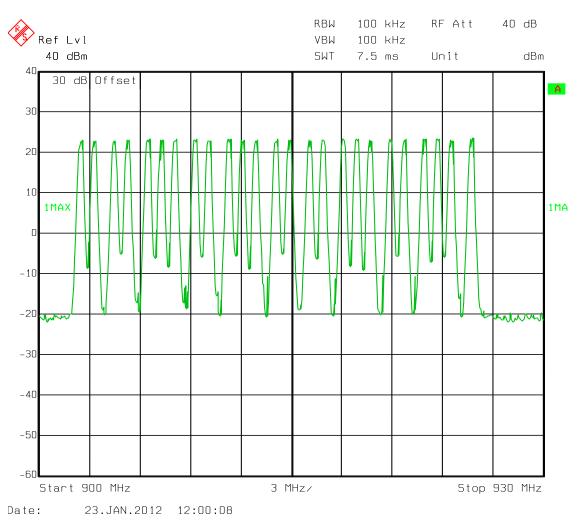
FCC PART 15, SUBPART C & RSS-210, Issue 8 FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER PROJECT NO.:10219671RUS1


ON Time in 25 Channel Mode RBW 30 kHz RF Att 40 dB Ref Lvl VBW 30 kHz 40 dBm SWT 10 s Unit dBm 40 30 dB Offset A 30 20 TRG 10 VIEW 1MA -10 -20 M Mart M America Ma MALAH LMI ملغ whether -30 -40 -50 -60 Center 914.9044088 MHz 1 s/ Date: 23.JAN.2012 11:50:00

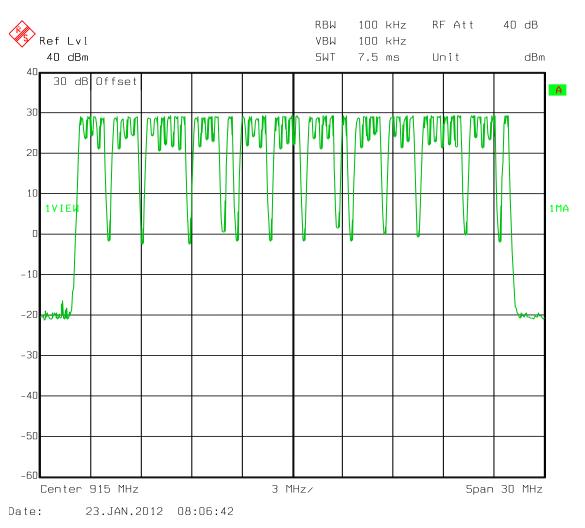
Test Data – Time of Occupancy

Hopping on 25 Channels Total ON time =174 ms in 10 seconds

Test Data – Time of Occupancy


ON Time in 51 Channel Mode

Hopping on 51 Channels Total ON time =116 ms in 10 seconds


Test Data – Number of Hopping Channels

25 Channels

Test Data – Number of Hopping Channels

51 Channels

Section 5. Peak Power Output

NAME OF TEST: Peak Power Output	PARA. NO.: FCC 15.247 (b)
	RSS-210 A8.4(1)
TESTED BY: David Light	DATE: 23 January 2012

Test Results: Complies.

Measurement Data: See attached plots.

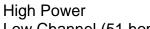
Detachable antenna?	🛛 Yes 🗌 No	
If yes, state the type of non-st	andard connector used:	R-SMA

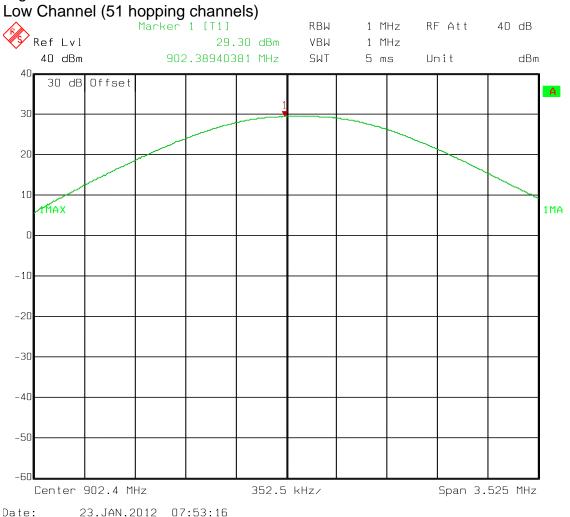
Antenna Types:	Monopole	7.2 dBi Gain
	Dipole	8.2 dBi Gain
	Yagi	12.2 dBi Gain

***Note:** There is a notation in installation instructions that the output power will require attenuation at radio output to meet the EIRP limit as indicated in FCC 15.247(b)(4) and RSS-210 A8.4(1)

- This device was tested at +/- 15% input power per 15.31(e), with no variation in output power.
- For battery powered equipment, the device was tested with a fresh battery per 15.31(e).

The device was tested on three channels per 15.31(I).


This test was performed radiated.


Equipment Used: 1036-1082-1472-1469

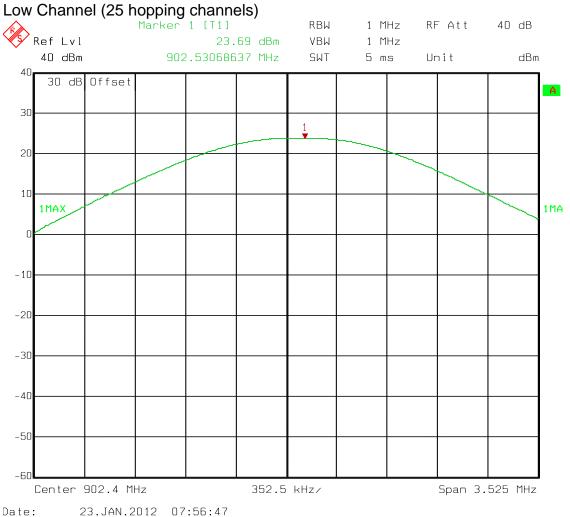
Measurement Uncertainty: 1.7 dB

Temperature: 23 °C

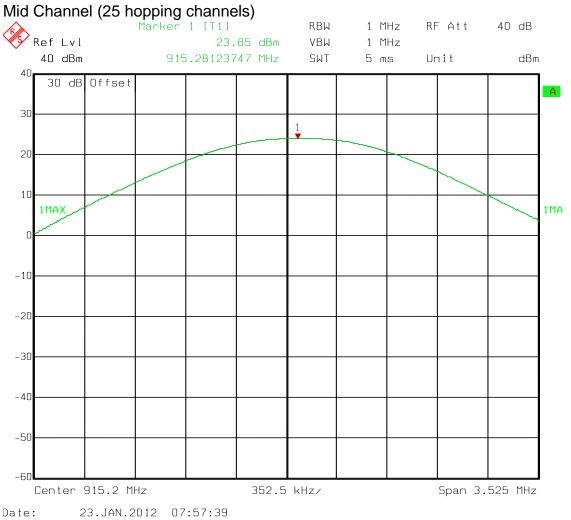
Relative Humidity: 48 %

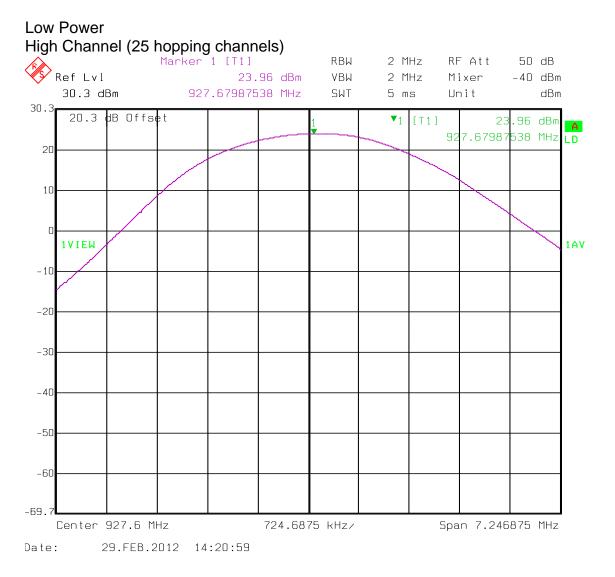
Nemko USA, Inc.

FCC PART 15, SUBPART C & RSS-210, Issue 8 FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER PROJECT NO.:10219671RUS1


EQUIPMENT: DX80

High Power Mid Channel (51 h	opping channels)						
	Marker 1 [T1]	RBW	1 M		- Att	40 dB	
📏 Ref Lvl	29.45 c		1 M				
40 dBm 40	915.38013527 M	1Hz SWT	5 m.	s Ur	пit	dBr	n
30 dB Offset							A
20		1					
30				~			
20							
10 TMAX							
PINAX							1MA
0							
- 10							
-20							
-30							
- 40							
-50							
-60							
Center 915.2 Mł	Hz 35	52.5 kHz/			Span 3.	525 MHz	
Date: 23.JAN.2	012 07:52:51						


Test Data – Peak Power


Low Power

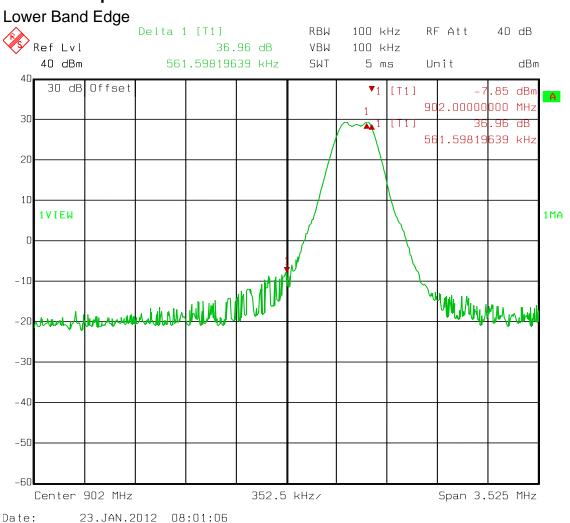
Test Data – Peak Power

Low Power

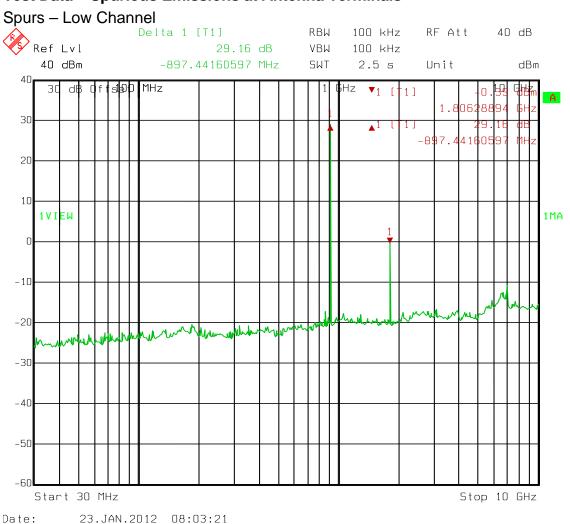
Section 6. Spurious Emissions (Conducted)

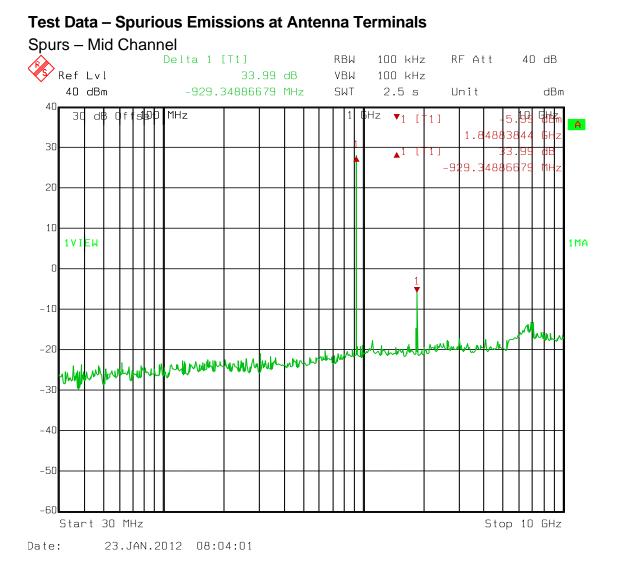
NAME OF TEST: Spurious Emissions (Conducted)	PARA. NO.: FCC 15.247(d)
	RSS-210 A8.5
TESTED BY: David Light	DATE: 23 January 2012

Test Results: Complies.

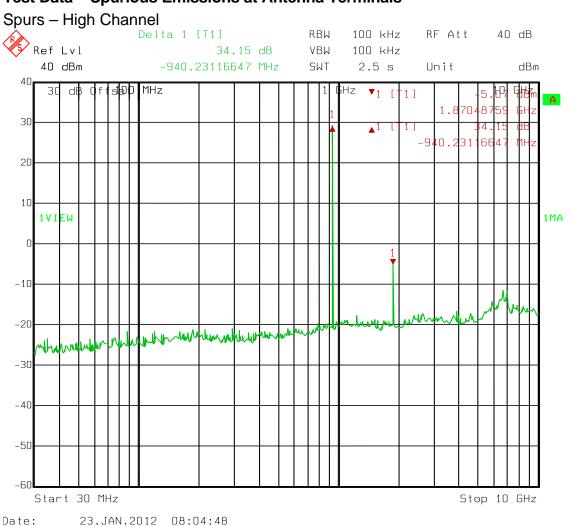

Measurement Data: See attached plots.

Equipment Used: 1036-1082-1472-1469


Measurement Uncertainty: 1X10⁻⁷ppm


Temperature: °C

Relative Humidity: %



Upper Band Edge Marker 1 [T1] RBW 100 kHz RF Att 40 dB Ref Lvl VBW 100 kHz 2.56 dBm 40 dBm 928.0000000 MHz SWT 5 ms dBm Unit 40 30 dB Offset ▼1 [T1] .56 dBm A 928.0000000 MHz 1 30 .53 dB $\overline{}$ ⊿1 [[1] 26 -236.64829<mark>659</mark> kHz 20 10 **1VIEW** 1MA -10 Yu -20 whill the while the light while -30 -40 -50 -60 352.5 kHz/ Center 928 MHz Span 3.525 MHz Date: 23.JAN.2012 08:00:22

Page 30 of 55

Section 7. Spurious Emissions (Radiated)

NAME OF TEST: Spurious Emissions (Radiated)	PARA. NO.: FCC 15.247(d)
	RSS-Gen 7.2.2
TESTED BY: David Light	DATE: 20 January 2012

Test Results:Complies. The worst case emission was 51.5 dBµV/m
at 2782.8 MHz. This is 2.5 dB below the specification
limit of 54 dBµV/m.

Measurement Data: See attached table.

Duty Cycle Calculation:

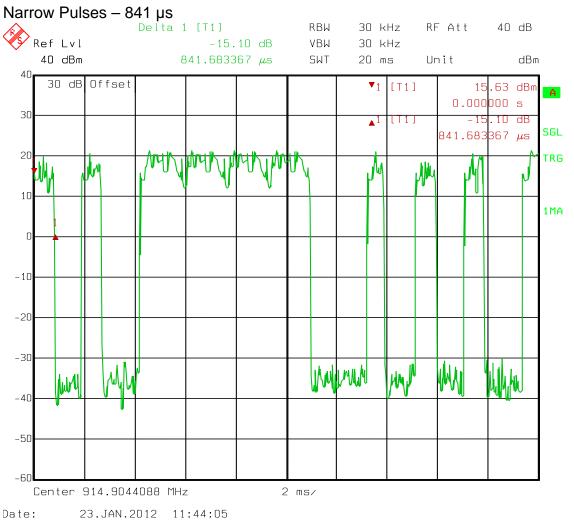
Duty Cycle correction factor(dB) = $20 \log (rf_{ON} \text{ in ms}/100 \text{ ms})$

Notes:

- The device was tested from 30 MHz to the tenth harmonic of the highest fundamental frequency per 15.33
- The device was tested on three channels per 15.31(I).
- All emissions within 20 dB of the specification limit are reported per 15.31(o).

Equipment Used: 1464-1783-1016-993-1025-1763

Measurement Uncertainty: +/-3.6 dB

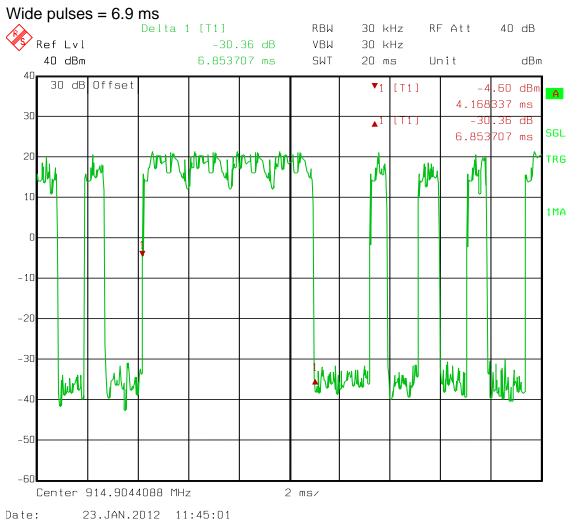

Temperature: 23 °C

Relative Humidity:48%

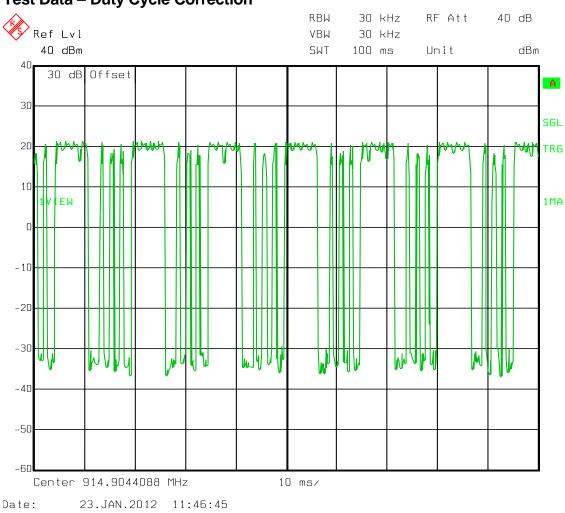
Analyzer Settings:

Peak Measurements	RBW/VBW = 1 MH	lz	Peak Detector
Average Measurements	RBW = 1 MHz	VBW = 1 kHz	Peak Detector

Test Data – Duty Cycle Correction



Nemko USA, Inc.


FCC PART 15, SUBPART C & RSS-210, Issue 8 FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER PROJECT NO.:10219671RUS1

EQUIPMENT: DX80

Test Data – Duty Cycle Correction

FCC PART 15, SUBPART C & RSS-210, Issue 8 FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER PROJECT NO.:10219671RUS1

Test Data – Duty Cycle Correction

Duty Cycle Correction 20 pulses @ 0.841 7 pulses@ 6.9 65.1 ms total

20 log (65.1/100) = -3.7 dB Correction

Test Data - Radiated Emissions

Monopole Antenna

Meas.	Ant.	Duty	Meter	Antenna	Path	RF	Corrected	Spec.	CR/SL	Pass		
Freq.	Pol.	Cycle	Reading	Factor	Loss	Gain	Reading	limit	Diff.	Fail		
(MHz)	(H/V)	(dB)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Unc.	Comment	
										Tx 902.4 MHz +30 dBm		
2707.2	V	-3.7	47.0	29.0	3.7	30.8	45.2	54.0	-8.8	Pass	Average	
3609.6	V	-3.7	46.3	29.9	3.5	31.7	44.3	54.0	-9.7	Pass	Average	
4512	V	-3.7	40.8	32.0	4.1	30.7	42.5	54.0	-11.5	Pass	Average	
5414.4	V	-3.7	37.1	33.6	4.7	30.3	41.4	54.0	-12.6	Pass	Average	
2707.2	Н	-3.7	48.0	29.0	3.7	30.8	46.2	54.0	-7.8	Pass	Average	
3609.6	Н	-3.7	47.0	29.9	3.5	31.7	45.0	54.0	-9.0	Pass	Average	
4512	Н	-3.7	44.0	32.0	4.1	30.7	45.7	54.0	-8.3	Pass	Average	
5414.4	Н	-3.7	43.0	33.6	4.7	30.3	47.3	54.0	-6.7	Pass	Average	
											Tx 915.4 MHz	
											+30 dBm	
2745.6	V	0.0	54.0	29.0	3.7	30.8	55.9	74.0	-18.1	Pass		
2745.6	V	-3.7	48.1	29.0	3.7	30.8	46.3	54.0	-7.7	Pass	Average	
3660.8	V	0.0	48.8	29.9	3.5	31.7	50.5	54.0	-3.5	Pass		
4576.0	V	-3.7	41.6	32.0	4.1	30.7	43.3	54.0	-10.7	Pass	Average	
5491.2	V	0.0	44.3	33.6	4.7	30.3	52.3	54.0	-1.7	Pass		
2745.6	Н	-3.7	49.3	29.0	3.7	30.8	47.5	54.0	-6.5	Pass	Average	
3660.8	Н	-3.7	47.8	29.9	3.5	31.7	45.8	54.0	-8.2	Pass	Average	
4576.0	Н	-3.7	45.0	32.0	4.1	30.7	46.7	54.0	-7.3	Pass	Average	
5491.2	Н	-3.7	43.0	33.6	4.7	30.3	47.3	54.0	-6.7	Pass	Average	
										Tx 927.6 MHz '+30 dBm		
2782.8	V	0.0	53.3	29.0	3.7	30.8	55.2	74.0	-18.8	Pass		
2782.8	V	-3.7	50.7	29.0	3.7	30.8	48.9	54.0	-5.1	Pass	Average	
3710.4	V	0.0	47.8	29.9	3.5	31.7	49.5	54.0	-4.5	Pass		
4638.0	V	-3.7	42.2	32.0	4.1	30.7	43.9	54.0	-10.1	Pass	Average	
5565.6	V	-3.7	37.5	33.6	4.7	30.3	41.8	54.0	-12.2	Pass	Average	
2782.8	Н	-3.7	49.8	29.0	3.7	30.8	48.0	54.0	-6.0	Pass	Average	
3710.4	Н	-3.7	48.8	29.9	3.5	31.7	46.8	54.0	-7.2	Pass	Average	
4638.0	Н	-3.7	44.8	32.0	4.1	30.7	46.5	54.0	-7.5	Pass	Average	
5565.6	Н	-3.7	44.1	33.6	4.7	30.3	48.4	54.0	-5.6	Pass	Average	

FCC PART 15, SUBPART C & RSS-210, Issue 8 FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER PROJECT NO.:10219671RUS1

Test Data - Radiated Emissions

Dipole Antenna

Meas.	Ant.	Det.	Meter	Antenna	Path	RF	Corrected	Spec.	CR/SL	Pass			
Freq.	Pol.	Atten.	Reading	Factor	Loss	Gain	Reading	limit	Diff.	Fail			
(MHz)	(H/V)	(dB)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Unc.	Comment		
										Tx 90	Tx 902.4 MHz +30 dBm		
2707.2	V	0.0	55.2	29.0	3.7	30.8	57.1	74.0	-16.9	Pass			
2707.2	V	-3.7	47.6	29.0	3.7	30.8	45.8	54.0	-8.2	Pass			
3610.6	V	-3.7	47.8	29.9	3.5	31.7	45.8	54.0	-8.2	Pass			
4512.0	V	0.0	49.0	32.0	4.1	30.7	54.4	74.0	-19.6	Pass			
4512.0	V	-3.7	43.6	32.0	4.1	30.7	45.3	54.0	-8.7	Pass			
2707.2	Н	-3.7	49.3	29.0	3.7	30.8	47.5	54.0	-6.5	Pass			
3609.6	Н	-3.7	50.8	29.9	3.5	31.7	48.8	54.0	-5.2	Pass			
											T: 045 0 B		
											Tx 915.2 M +30 dBm		
2745.6	V	0.0	55.0	29.0	3.7	30.8	56.9	74.0	-17.1	Pass			
2745.6	V	-3.7	47.8	29.0	3.7	30.8	46.0	54.0	-8.0	Pass	Average		
3660.8	V	-3.7	50.0	29.9	3.5	31.7	48.0	54.0	-6.0	Pass			
4576.0	V	-3.7	43.0	32.0	4.1	30.7	44.7	54.0	-9.3	Pass			
										-			
2745.6	Н	-3.7	49.0	29.0	3.7	30.8	47.2	54.0	-6.8	Pass			
3660.8	Н	-3.7	46.0	29.9	3.5	31.7	44.0	54.0	-10.0	Pass			
										Tx 927.6	MHz +30 dE	<u>.</u> 3m	
2782.8	V	0.0	55.0	29.0	3.7	30.8	56.9	74.0	-17.1	Pass			
2782.8	V	-3.7	53.2	29.0	3.7	30.8	51.4	54.0	-2.6	Pass	1		
3710.4	V	-3.7	46.0	29.9	3.5	31.7	44.0	54.0	-10.0	Pass			
4638.0	V	-3.7	44.0	32.0	4.1	30.7	45.7	54.0	-8.3	Pass			
2782.8	Н	-3.7	46.8	29.0	3.7	30.8	45.0	54.0	-9.0	Pass			
3710.4	Н	-3.7	46.0	29.9	3.5	31.7	44.0	54.0	-10.0	Pass			
3710.4	Η	-3.7	46.0	29.9	3.5	31.7	44.0	54.0	-10.0	Pass			

***Note:** Attenuation was added at radio output to ensure the EIRP was limited to 36 dBm as required by FCC 15.247(b)(4) and RSS-210 A8.4(1)

FCC PART 15, SUBPART C & RSS-210, Issue 8 FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER PROJECT NO.:10219671RUS1

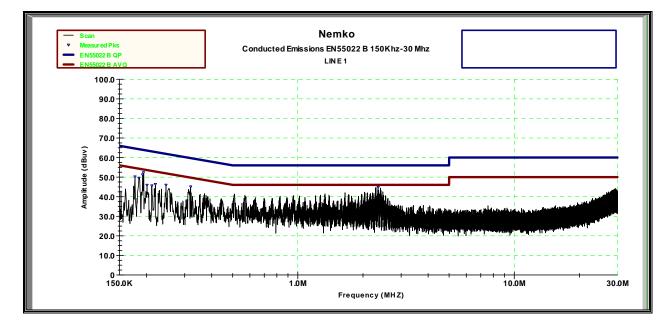
Test Data - Radiated Emissions

Yagi Antenna

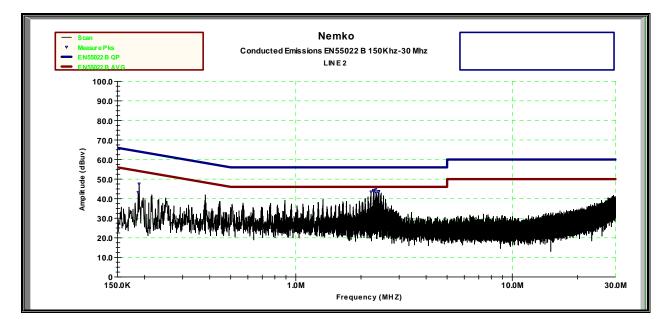
Meas.	Ant.	Det.	Meter	Antenna	Path	RF	Corrected	Spec.	CR/SL	Pass		
Freq.	Pol.	Atten.	Reading	Factor	Loss	Gain	Reading	limit	Diff.	Fail		
(MHz)	(H/V)	(dB)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Unc.	Comment	
					·					Tx 902.4 MHz +30 dBm		
2707.2	V	0.0	53.5	29.0	3.7	30.8	55.4	74.0	-18.6	Pass		
2707.2	V	-3.7	48.7	29.0	3.7	30.8	46.9	54.0	-7.1	Pass		
3609.6	V	-3.7	50.5	29.9	3.5	31.7	48.5	54.0	-5.5	Pass		
4512.0	V	-3.7	43.0	32.0	4.1	30.7	44.7	54.0	-9.3	Pass		
2707.2	Н	-3.7	45.6	29.0	3.7	30.8	43.8	54.0	-10.2	Pass		
3609.6	Н	-3.7	44.6	29.9	3.5	31.7	42.6	54.0	-11.4	Pass		
4512.0	Н	-3.7	43.5	32.0	4.1	30.7	45.2	54.0	-8.8	Pass		
											Tx 915.2 M	/Hz
											+30 dBm	
2745.6	V	0.0	54.5	29.0	3.7	30.8	56.4	74.0	-17.6	Pass		
2745.6	V	-3.7	51.0	29.0	3.7	30.8	49.2	54.0	-4.8	Pass	Average	
3660.8	V	-3.7	49.2	29.9	3.5	31.7	47.2	54.0	-6.8	Pass		
4576.0	V	-3.7	47.2	32.0	4.1	30.7	48.9	54.0	-5.1	Pass		
2745.6	Н	-3.7	48.5	29.0	3.7	30.8	46.7	54.0	-7.3	Pass		
3660.8	Н	-3.7	48.2	29.9	3.5	31.7	46.2	54.0	-7.8	Pass		
4576.0	Н	-3.7	45.8	32.0	4.1	30.7	47.5	54.0	-6.5	Pass		
										Tx 92	7.6 MHz +3	0 dBm
2782.8	V	0.0	55.6	29.0	3.7	30.8	57.5	74.0	-16.5	Pass		
2782.8	V	-3.7	53.3	29.0	3.7	30.8	51.5	54.0	-2.5	Pass		
3710.4	V	-3.7	50.5	29.9	3.5	31.7	48.5	54.0	-5.5	Pass		
4638.0	V	-3.7	46.6	32.0	4.1	30.7	48.3	54.0	-5.7	Pass		
2782.8	Н	0.0	53.3	29.0	3.7	30.8	55.2	74.0	-18.8	Pass		
2782.8	Н	-3.7	46.5	29.0	3.7	30.8	44.7	54.0	-9.3	Pass		
3710.4	Н	-3.7	47.8	29.9	3.5	31.7	45.8	54.0	-8.2	Pass		
4638.0	Н	-3.7	46.2	32.0	4.1	30.7	47.9	54.0	-6.1	Pass		
									-			

***Note:** Attenuation was added at radio output to ensure the EIRP was limited to 36 dBm as required by FCC 15.247(b)(4) and RSS-210 A8.4(1)

Section 8. Powerline Conducted Emissions


NAME OF TEST: Powerline Conducted Emissions	PARA. NO.: FCC15.207(a)
	RSS-Gen 7.2.4
TESTED BY: David Light	DATE: 24 January 2012

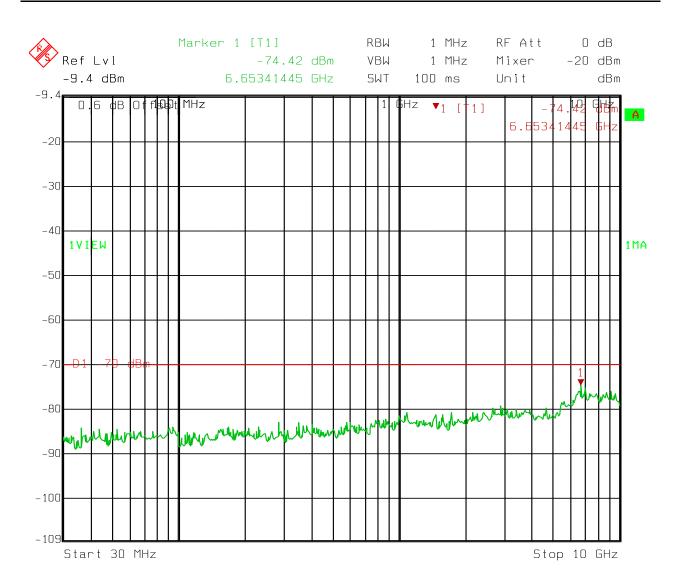
- Test Results:Complies. The worst case emission was 45 dBµV at 2.34MHz. This is 1.0 dB below the average specification limit of
46 dBµV. This was a peak measurement.
- Test Data:Refer to attached plots
- **Equipment Used:** 674, 1080, 1188, 1555, 1663
- Measurement Uncertainty: +/- 1.7 dB
- Temperature: 23 °C
- **Relative Humidity:** 45 %


Nemko USA, Inc.FCC PART 15, SUBPART C & RSS-210, Issue 8FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTEREQUIPMENT:DX80PROJECT NO.:10219671RUS1

Test Data – Powerline Conducted Emissions

Line 1

Line 2


Section 9. Receiver Spurious Emissions

NAME OF TEST: Receiver Spurious Emissions	PARA. NO.: FCC15.207(a)
	RSS-Gen 7.2.4
TESTED BY: David Light	DATE: 10 February 2012

- Test Results:Complies. No emissions were detected above the ambient
noise floor of the test instrument. The ambient noise floor is
-74.4 dBm (0.036 nW) or less.
- Test Data:Refer to attached plot
- Equipment Used: 1036-1082
- Measurement Uncertainty: +/- 1.7 dB
- Temperature: 23 °C
- **Relative Humidity:** 45 %

FCC PART 15, SUBPART C & RSS-210, Issue 8 FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER PROJECT NO.:10219671RUS1

Section 9. Test Equipment List

		1		I	I	
Asset Tag	Description	Manufacturer	Model	Serial #	Last Cal	Next Cal
674	Limiter	HP	11947A	3107A02200	01-Nov-2011	01-Nov-2012
993	Antenna	A.H. Systems	SAS-200/571	162	22-Sep-2011	22-Sep-2013
1016	Preamplifier	HP	8449A	2749A00159	20-Jul-2011	20-Jul-2012
1025	Preamplifier,	Nemko USA,	LNA25	399	23-Feb-2011	23-Feb-2012
1036	Spectrum	Rohde &	FSEK30	830844/006	23-Dec-2011	23-Dec-2013
	Analyzer	Schwartz				
1080	Cable, 3m	Nemko USA.	RG223		VBU	NA
1082	Cable, 2m	Astrolab	32027-2-		VBU	NA
			29094-72TC			
1188	LISN	EMCO	3825/2	1214	22-Nov-2011	22-Nov-2012
1464	Spectrum	Hewlett	8563E	3551A04428	16-May-2011	16-May-2013
	Analyzer	Packard				
1469	Attenuator	MCL Inc.	BW-S10W2		VBU	NA
			10db-2WDC			
1472	Attenuator	Omni Spectra	20600-20db		VBU	NA
1555	High Pass	Solar	7930-5.0	933125	19-May-2011	19-May-2012
	Filter	Electronics				
1663	Spectrum	Rohde &	FSP3	100073	02-Sep-2011	02-Sep-2013
	Analyzer	Schwartz				
1763	Antenna	Schaffner	CBL 6111D	22926	11-Feb-2011	11-Feb-2012
1783	Cable Assy	Nemko	Chamber		26-Sep-2011	26-Sep-2012

Nemko USA, Inc.FCC PART 15, SUBPART C & RSS-210, Issue 8FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTEREQUIPMENT:DX80PROJECT NO.:10219671RUS1

ANNEX A - TEST DETAILS

FCC PART 15, SUBPART C & RSS-210, Issue 8 FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: DX80

PROJECT NO.:10219671RUS1

NAME OF TEST: Powerline Conducted Emissions	PARA. NO.: FCC 15.207(a)
	RSS-Gen 7.2.4

Minimum Standard: Conducted limits.

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 mH/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency of Conducted	Limit (dBmV))
Emission (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency.

(b) The limit shown in paragraph (a) of this section shall not apply to carrier current systems operating as intentional radiators on frequencies below 30 MHz. In lieu thereof, these carrier current systems shall be subject to the following standards:

(1) For carrier current systems containing their fundamental emission within the frequency band 535-1705 kHz and intended to be received using a standard AM broadcast receiver: no limit on conducted emissions.

(2) For all other carrier current systems: 1000 mV within the frequency band 535-1705 kHz, as measured using a 50 mH/50 ohms LISN.

(3) Carrier current systems operating below 30 MHz are also subject to the radiated emission limits as provided in §15.205 and §§15.209, 15.221, 15.223, 15.225 or 15.227, as appropriate.

(c) Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provision for, the use of battery chargers which permit operating while charging, AC adaptors or battery eliminators or that connect to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.

EQUIPMENT: DX80

FCC PART 15, SUBPART C & RSS-210, Issue 8 FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER PROJECT NO.:10219671RUS1

NAME OF TEST: Channel Separation PARA. NO.: FCC 15.247(a)(1) RSS-210 A8.1(b)

Minimum Standard: Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

EQUIPMENT: DX80

FCC PART 15, SUBPART C & RSS-210, Issue 8 FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER PROJECT NO.:10219671RUS1

NAME OF TEST: Time of Occupancy	PARA. NO.: FCC 15.247(a)(1)
	RSS-210 A8.1(c)

Minimum Standard:

Frequency Band	20 dB	No. of	Average Time of Occupancy
(MHz)	Bandwidth	Hopping	
		Channels	
902 - 928	<250 kHz	50	=<0.4 sec. in 20 sec.
902 – 928	=>250 kHz	25	=<0.4 sec. in 10 sec.
			=<0.4 sec. in 0.4 seconds
2400 - 2483.5		75	multiplied by the number of
			hopping channels employed.
5725 – 5850		75	=<0.4 sec. in 30 sec.

Method Of Measurement:

The spectrum analyzer is set as follows:

RBW: 1 MHz VBW: = RBW Span: 0 Hz LOG dB/div.: 10 dB Sweep: Sufficient to see one hop time sequence. Trigger: Video

The occupancy time of one hop is measured as above. The average time of occupancy is calculated over the appropriate period of time from above table

Avg. time of occupancy = (period from table/duration of one hop)/no. of channels multiplied by the duration of one hop.

For instance:

If a 2.4 GHz system has a measured hop duration time of 1 msec. and uses 75 channels, then the average time of occupancy would be:

(30 sec./.001 sec.)/75 chan. = 400 x 1 msec. = 400 msec. or 0.4 sec. in 30 sec.

EQUIPMENT: DX80

FCC PART 15, SUBPART C & RSS-210, Issue 8 FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER PROJECT NO.:10219671RUS1

NAME OF TEST: Occupied BandwidthPARA. NO.: FCC 15.247(a)(1)RSS-210 A8.1(b)

Minimum Standard:

Frequency Band (MHz)	Maximum 20 dB Bandwidth
902 - 928	500 kHz
2400 - 2483.5	Not defined
5725 – 5850	1 MHz

Method Of Measurement:

The spectrum analyzer is set as follows:

RBW: At least 1% of span/div. VBW: >RBW Span: Sufficient to display 20 dB bandwidth LOG dB/div.: 10 dB Sweep: Auto

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

FCC PART 15, SUBPART C & RSS-210, Issue 8 FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER PROJECT NO.:10219671RUS1

EQUIPMENT: DX80

NAME OF TEST: Peak Power Output	PARA. NO.: FCC 15.247(b)
	RSS-210 A8.4(1)

Minimum Standard:

Frequency	No. of	Maximum Peak
Band	Hopping	Power Output at
(MHz)	Channels	Antenna Port
902 - 928	at least 50	1 watt
902 – 928	25 - 49	0.25 watts
2400 –	75	1 watt
2483.5		
5725 – 5850	75	1 watt

If transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point to point operation may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceed 6 dBi.

Systems operating in the 5725 – 5850 MHz band that are used exclusively for fixed, point-to-point operation may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter peak output power.

Direct Measurement Method For Detachable Antennas:

If the antenna is detachable, a peak power meter is used to measure the power output with the transmitter operating into a 50 ohm load. The dBi gain of the antenna(s) employed shall be reported.

Nemko USA, Inc.FCC PART 15, SUBPART C & RSS-210, Issue 8EQUIPMENT:DX80FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER
PROJECT NO.:10219671RUS1

Calculation Of EIRP For Integral Antenna:

If the antenna is not detachable from the circuit then the Peak Power Output is derived from the peak radiated field strength of the fundamental emission by using the plane wave relation $GP/4\pi R^2 = E^2/120\pi$ and proceeding as follows:

$$P = \frac{E^2 R^2}{30G} = \frac{E^2 3^2}{30G}$$

where,

P = the equivalent isotropic radiated power in watts

E = the maximum measured field strength in V/m

R = the measurement range (3 meters)

G = the numeric gain of the transmit antenna in relation to an isotropic radiator

The RBW of the spectrum analyzer shall be set to a value greater than the measured 20 dB occupied bandwidth of the E.U.T.

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

EQUIPMENT: DX80

FCC PART 15, SUBPART C & RSS-210, Issue 8 FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER PROJECT NO.:10219671RUS1

NAME OF TEST: Spurious Emissions (Conducted) PARA. NO.: FCC 15.247(d) RSS-210 A8.5

Minimum Standard: In any 100kHz bandwidth outside the frequency band in which the transmitter is operating, emissions shall be at least 20 dB below the fundamental emission or shall not exceed the following field strength limits. Emissions falling in the restricted bands of 15.205 shall not exceed the following field strength limits:

Frequency (MHz)	Field Strength (μV/m @ 3m)	Field Strength (dB @ 3m)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

THE SPECTRUM WAS SEARCHED TO THE 10th HARMONIC

Method Of Measurement:

30 MHz - 10th harmonic plot RBW: 100 kHz VBW: 300 kHz Sweep: Auto Display line: -20 dBc

Lower Band Edge

RBW: At least 1% of span/div. VBW: >RBW Span: As necessary to display any spurious at band edge. Sweep: Auto Center Frequency: 902 MHz, 2400 MHz, or 5725 MHz Marker: Peak of fundamental emission Marker Δ : Peak of highest spurious level below center frequency.

Upper Band Edge RBW: At least 1% of span/div. VBW: >RBW Span: As necessary to display any spurious at band edge. Sweep: Auto Center Frequency: 928 MHz, 2483.5 MHz, or 5850 MHz Marker: Peak of fundamental emission Marker ∆: Peak of highest spurious level above center frequency.

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

EQUIPMENT: DX80

FCC PART 15, SUBPART C & RSS-210, Issue 8 FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER PROJECT NO.:10219671RUS1

NAME OF TEST: Radiated Spurious Emissions PARA. NO.: FCC 15.247(d) RSS-Gen 7.2.2

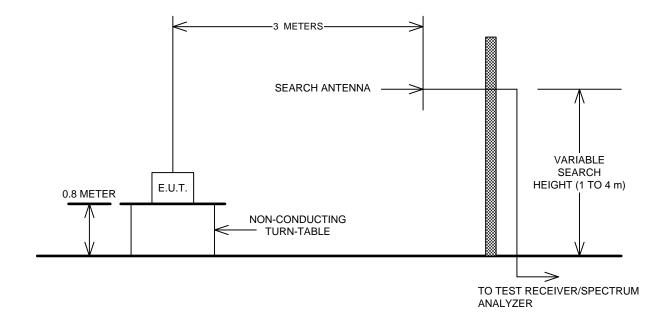
Minimum Standard:

Emissions falling in the restricted bands of 15.205 shall not exceed the following field strength limits:

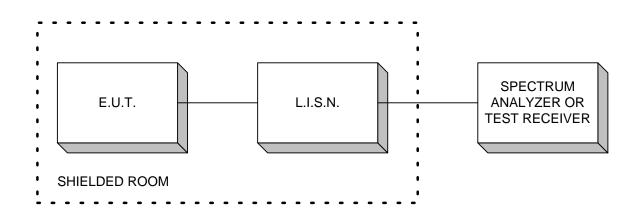
Frequency (MHz)	Field Strength (μV/m @ 3m)	Field Strength (dB @ 3m)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

THE SPECTRUM WAS SEARCHED TO THE 10th HARMONIC

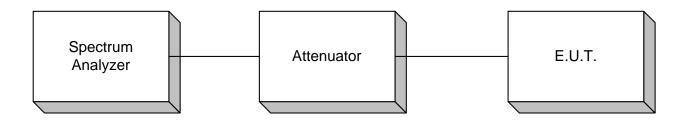
15.205 Restricted Bands			
MHz	MHz	MHz	GHz
0.09-0.11	16.42-16.423	399.9-410	4.5-5.25
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.125-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2655-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41	1718		


15.205 Restricted Bands

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom


Nemko USA, Inc.FCC PART 15, SUBPART C & RSS-210, Issue 8EQUIPMENT:DX80DX80PROJECT NO.:10219671RUS1

ANNEX B - TEST DIAGRAMS


Test Site For Radiated Emissions

Conducted Emissions

Peak Power at Antenna Terminals

