

Nemko Test Report:

6823RUS1

RM1809

Applicant:

Sensonix 15755 32nd Avenue North Plymouth, MN 55447 USA

Equipment Under Test: (E.U.T.)

In Accordance With:

FCC Part 15, Subpart C, 15.247 Frequency Hopping Transmitters

Tested By:

Nemko USA Inc. 802 N. Kealy Lewisville, Texas 75057-3136

TESTED BY:

David Light, Senior Wireless Engineer

APPROVED BY:

Mike Cantwell, Verifier

DATE: 18 September 2007

17 August 2007

DATE:

Total Number of Pages: 1

Table of Contents

SECTION 1.	SUMMARY OF TEST RESULTS	3		
SECTION 2.	EQUIPMENT UNDER TEST (E.U.T.)	5		
SECTION 3.	POWERLINE CONDUCTED EMISSIONS	7		
SECTION 4.	CHANNEL SEPARATION	10		
SECTION 5.	TIME OF OCCUPANCY	13		
SECTION 6.	PEAK POWER OUTPUT	17		
SECTION 7.	SPURIOUS EMISSIONS (ANTENNA CONDUCTED)	22		
SECTION 8.	SPURIOUS EMISSIONS (RADIATED)	26		
SECTION 9.	TEST EQUIPMENT LIST	32		
ANNEX A - TEST DETAILS 33				
ANNEX B - TEST DIAGRAMS 42				

Section 1. Summary of Test Results

Manufacturer: Sensonix

Model No.: RM1809

Serial No.: None

General: All measurements are traceable to national standards.

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15, Subpart C, Paragraph 15.247 for Frequency Hopping Spread Spectrum devices. Radiated tests were conducted is accordance with ANSI C63.4-2003. Radiated emissions are made on an open area test site. A description of the test facility is on file with the FCC.

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE. NONE

Nemko USA Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko USA Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

Nemko USA, Inc.	FCC PART 15, SUBPART C
FF	REQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER
EQUIPMENT: RM1809	PROJECT NO.:6823RUS1

Summary Of Test Data

NAME OF TEST	PARA. NO.	RESULT
Powerline Conducted Emissions	15.207(a)	Complies
Channel Separation	15.247(a)(1)	Complies
Time of Occupancy	15.247(a)(1)	Complies
20 dB Occupied Bandwidth	15.247(a)(1)	Complies
Peak Power Output	15.247(b)	Complies
Spurious Emissions (Antenna Conducted)	15.247(d)	Complies
Spurious Emissions (Radiated)	15.247(d)	Complies

Footnotes:

Equipment Under Test (E.U.T.) Section 2.

General Equipment Information

Frequency Band:	⊠ 902 – 928 MHz □ 2400 – 2483.5 MHz □ 5725 – 5850 MHz
Operating Frequency Range:	902.4 to 927.6 MHz
Number of Channels:	26 to 64
Channel Spacing:	400 kHz
Power Output:	0.25 to 1 Watt (24-30 dBm)
User Power Adjustment:	None. Factory set
User Frequency Adjustment:	None. Factory set

Nemko USA, Inc.FCC PART 15, SUBPART CFREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTEREQUIPMENT:RM1809PROJECT NO.:6823RUS1

Description of EUT

The RM1809 is a 900 MHz frequency hopping transmitter used for data collection. It employs TDMA modulation and is equipped with a reverse polarity SMA antenna connector. Power and is set at the factory from 24 to 30 dBm as predetermined by the antenna used. Pulse width is set determined by the number of frequencies used in hop table to meet the 0.4 second ON time per 10 mS per 15.247(a)(1)(i). Antennas:

- 1) 2 dBi dipole
- 2) 7.2 dBi helical loaded omni with ground plane
- 3) 8dBi dipole omni
- 4) 10 dBi Yagi
- 5) 1 dBi ¼ wave monopole

System Diagram

Section 3. Powerline Conducted Emissions

NAME OF TEST: Powerline Conducted Emissions	PARA. NO.: 15.207(a)
TESTED BY: Scott Oats	DATE: 20 August 2007

Test Results: Complies.

- Test Data:Refer to attached plots
- Equipment Used: 1183-1053-1484
- Measurement Uncertainty: +/- 1.7 dB
- Temperature:22 °C
- **Relative Humidity:** 40 %

EN55022 B Conducted Emissions

Operator: Sc	s cott Oates	Model Number: Company: Sensonix			
09:26:46 AM	l, Monday, <i>i</i>	August 20, 2	007		
Frequency	Peaks	FCC A	FCC A	Avg	QP
MHz		Avg Limit	QP Limit	Margin	Margin
.172388	47.121	55.360	65.360	-8.239	-18.239
.202238	45.090	54.508	64.507	-9.418	-19.418
.657450	46.836	46.000	56.000	0.836	-9.164
2.9	35.956	50.000	60.000	-14.044	-24.044

657 kHz = ambient

4 D

Nemko USA, Inc.FCC PART 15, SUBPART CFREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTEREQUIPMENT:RM1809PROJECT NO.:6823RUS1

EN55022 B Conducted Emissions

Line 2 Peaks Operator: Scott Oates

Model Number: Company: Sensonix

09:26:46 AM, Monday, August 20, 2007

Frequency	Peaks	FCC A	FCC A	Avg	QP
MHz		Avg Limit	QP Limit	Margin	Margin
.172388	46.221	55.360	65.360	-9.139	-19.139
.202238	45.590	54.508	64.507	-8.918	-18.918
.232088	41.956	53.655	63.655	-11.699	-21.699
.265669	41.004	52.695	62.695	-11.691	-21.691
.657450	47.336	46.000	56.000	1.336	-8.664
2.611	34.889	50.000	60.000	-15.111	-25.111

657 kHz = ambient

RBW = VBW = 10 kHz

Section 4. Channel Separation

NAME OF TEST: Channel Separation	PARA. NO.: 15.247(a)(1)
TESTED BY: David Light	DATE: 16 August 2007

Test Results:	Complies.			
Measurement Data:	See 20 dB BW plot			
	Mea Cha	sured 20 dB bandwidth: nnel Separation:	320 kHz Max 400 kHz	
Equipment Used:	1464	-1082-802		
Measurement Uncert	tainty	: <u>1X10⁻⁷</u> ppm		
Temperature:	22	°C		
Relative Humidity:	40	%		

Test Data – Channel Separation

20 dB Bandwidth – Low Channel

Test Data – 20 dB Bandwidth

Mid Channel

High Channel

Section 5. Time of Occupancy

NAME OF TEST: Time of Occupancy	PARA. NO.: 15.247(a)(1)
TESTED BY: David Light	DATE: 16 August 2007

Complies.

Test Results:

Measurement Data:

Maximum Dwell Time On Any Channel: 382.2 mS in 10 seconds

Equipment Used: 1464-1082-802

Measurement Uncertainty: <u>1X10⁻⁷</u>ppm

Temperature: 22 °C

Relative Humidity: 40 %

Test Data – Time of Occupancy

Duty cycle @ highest pulse width Duty cycle correction = 20 log (63/100) = -4 dB (Worst case used for radiated measurements)

Duty cycle @ lowest pulse width Duty cycle correction = 20 log (31.2/100) = -10 dB

Test Data – Time of Occupancy

10 second sweep at 63 mS pulse width and 64 channels

126 mS in 10 seconds Limit = 400 mS in 10 seconds

10 second sweep at 7.8 mS pulse width and 26 channels 49 hops in 10 seconds 382.2 mS

Test Data – Time of Occupancy

Number of hopping channels

64 Channels

26 Channels

Section 6. Peak Power Output

NAME OF TEST: Peak Power Output

PARA. NO.: 15.247 (b)

TESTED BY: David Light

DATE: 16 August 2007

Test Results: Complies.

Measurement Data: See attached plots.

Detachable antenna? If yes, state the type of non-standard connector used: Reverse gender SMA or MMCX (Professionally installed.)

Frequency	Peak Power	Peak Power			
(MHz)	(dBm)	(W)			
Hig	ghest Power Set	ting			
902.4	29.63	0.918			
915.2	29.63	0.918			
927.6	29.80	0.955			
Lowest Power Setting					
902.4	23.77	0.238			
915.2	23.77	0.238			
927.6	23.93	0.247			

Antennas:

- 1. 2 dBi dipole
- 2. 7.2 dBi helical loaded omni with ground plane
- 3. 8dBi dipole omni
- 4. 10 dBi Yagi
- 5. 1 dBi ¼ wave monopole

Power will need to be attenuated either internally or externally to comply with EIRP limit of 36 dBm (4 Watts) when using antennas with gain higher than 6 dBi. The device is professionally installed.

Nemko USA, Inc.	FCC PART 15, SUBPART C					
FREQUENCY HOPPING SPF <u>EQUIPMENT: RM1809</u>	PROJECT NO.:6823RUS1					
This device was tested at +/- 15% input power output power.	per 15.31(e), with no variation in					
For battery powered equipment, the device wa 15.31(e).	For battery powered equipment, the device was tested with a fresh battery per 15.31(e).					
The device was tested on three channels per 15.31(I).						
This test was performed radiated.						
Equipment Used: 1464-1082-1472						
Measurement Uncertainty: 1.7 dB						
Temperature: 22 °C						

Relative Humidity: 41 %

Test Data – Peak Power

Low channel / High power

Test Data – Peak Power

Mid channel – High Power

High channel – High Power

Test Data – Peak Power

Low Channel – Low power

Mid Channel – Low Power

Test Data – Peak Power

High Channel – Low Power

Section 7. Spurious Emissions (Antenna Conducted)

NAME OF TEST: Spurious Emissions (Antenna Conducted)	PARA. NO.: 15.247(d)
TESTED BY: David Light	DATE: 16 August 2007

Test Results: Complies.

Measurement Data: See attached plots.

Equipment Used: 146-1082-1472

Measurement Uncertainty: 1X10⁻⁷ppm

Temperature: 22 °C

Relative Humidity: 41 %

Test Data – Spurious Emissions at Antenna Terminals

Lower Band Edge

Upper Band Edge

EQUIPMENT: RM1809

Test Data – Spurious Emissions at Antenna Terminals

Spurs – Low Channel

Spurs – Mid Channel

EQUIPMENT: RM1809

Test Data – Spurious Emissions at Antenna Terminals

Spurs – High Channel

Section 8. Spurious Emissions (Radiated)

NAME OF TEST: Spurious Emissions (Radiated)	PARA. NO.: 15.247(d)
TESTED BY: David Light	DATE: 17 August 2007

Test Results:Complies. The worst case emission was 52.9 dBµV/m
at 2707.2 MHz. This is 1.1 dB below the specification
limit of 54.0 dBµV/m.

Measurement Data: See attached table.

Duty Cycle Calculation:

Duty Cycle correction factor(dB) = $20 \log (rf_{ON} \text{ in ms}/100 \text{ ms})$

Notes:

	For handheld devices,	the EUT	was tested	on three	orthogonal axis'
--	-----------------------	---------	------------	----------	------------------

- The device was tested from 30 MHz to the tenth harmonic of the highest fundamental frequency per 15.33
- The device was tested on three channels per 15.31(I).
- All emissions within 20 dB of the specification limit are reported per 15.31(o).
- Equipment Used: 759-760-1464-1484-1485-791-1016-1033
- Measurement Uncertainty: +/-3.6 dB

Temperature: 21 °C

Relative Humidity:40%

Analyzer Settings:

RBW = VBW = 100 kHz (below 1000 MHz) RBW = VBW = 1 MHz (above 1000 MHz)

Test Data - Radiated Emissions

2 dBi dipole

•		Duty C	Cable	Cable						
Freq	Rdng	Horn	Pre-A	Cabie		Dist	Corr	Spec	Margin	Polar
MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
2745.6	55.9		+0.7	+2.0		+0.0	49.0	54.0	-5.0	Vert
		+28.5	-31.8					Mid Chan	nel	
8236.8	43.3		+1.3	+4.3		+0.0	52.9	54.0	-1.1	Vert
		+37.3	-33.3					Mid Chan	nel	
8236.8	42.3		+1.3	+4.3		+0.0	52.9	54.0	-21	Horiz
		+37.3	-33.3					Mid Chan	nel	
2782.8	54.9		+0.7	+2.0		+0.0	48.0	54.0	-6	Vert
		+28.5	-31.8					High cha	nnel	
8348.4	45.2		+1.3	+4.3		+0.0	54.3	74.0	-19.7	Horiz
		+37.3	-33.3					High cha	nnel	
8348.4	45.2	-4.0	+1.3	+4.3		+0.0	50.3	54.0	-3.7	Horiz
Average		37.3	-33.3					High cha	nnel	

Please refer to page 14 for duty cycle correction.

All readings are peak unless otherwise indicated. If the peak reading met the average limit, then an average reading was not made.

Peak rdg $(dB\mu V/m)$ = Meter reading $(dB\mu V)$ +AF (dB)+Cables (dB)-Gain (dB)

Average rdg $(dB\mu V/m) = MR (dB\mu V)+AF (dB)+Cables (dB)-Gain (dB)-Duty cycle(dB)$

RBW = VBW = 100 kHz (below 1000 MHz) RBW = VBW = 1 MHz (above 1000 MHz) EQUIPMENT: RM1809

Test Data - Radiated Emissions

7.2 dBi helical loaded omni with ground plane

			0.11	<u> </u>						1
_	D .	Duty C	Cable	Cable			•	•		<u> </u>
Freq	Rdng	Horn	Pre-A			Dist	Corr	Spec	Margin	Polar
MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
2707.2	52.7		+0.8	+2.8		+0.0	52.9	54.0	-1.1	Vert
		+29.3	-32.7					Low Char	nnel	
7219.2	43.8	-4.0	+1.4	+4.2		+0.0	53.5	74.0	-20.5	Horiz
		+36.9	-32.8					Low Char	nnel	
7219.2	43.8		+1.4	+4.2		+0.0	49.5	54.0	-4.5	Horiz
Average		+36.9	-32.8					Low Char	nnel	
8121.6	43.3		+1.4	+4.3		+0.0	53.0	74.0	-21.0	Horiz
		+37.5	-33.5					Low Char	nnel	
8121.6	43.3	-4.0	+1.4	+4.3		+0.0	49.0	54.0	-5.0	Horiz
Average		+37.5	-33.5					Low Char	nnel	
3660.8	51.5		+0.8	+2.8		+0.0	53.3	54.0	-20.7	Vert
		+30.5	-+32.3					Mid Chan	nel	
3660.8	51.5	-4.0	+0.8	+2.8		+0.0	53.3	54.0	-4.7	Vert
Average		+30.5	-32.3					Mid Chan	nel	
3660.8	47.5		+1.3	+4.0		+0.0	49.3	54.0	-4.7	Horiz
		+35.2	+31.1					Mid Chan	nel	
2782.8	51.3		+0.8	+2.9		+0.0	51.7	54.0	-2.3	Vert
		+29.4	+32.7					High Cha	nnel	
3710.4	53.3		+0.8	+2.8		+0.0	55.3	74.0	-18.7	Vert
		+30.6	+32.2	-				High Cha	nnel	
3710.4	53.3	-4.0	+0.8	+2.8		+0.0	51.3	54.0	-2.7	Vert
Average		+30.6	+32.2					High Cha	nnel	
8348.4	45.0		+1.2	+4.4		+0.0	54.2	74.0	-19.2	Vert
		+37.1	+33.5				•	High Cha	nnel	
8348.4	45.0	-4.0	+1.2	+4.4		+0.0	50.2	54.0	-3.8	Vert
Average		+37.1	+33.5				00.2	High Cha	nnel	
3710.4	49.5		+0.8	+2.8		+0.0	51.5	54.0	-2.5	Horiz
	1010	+30.6	+32.2	. 2.0			0110	High Cha	nnel	
8348.4	46.2		+1 2	+4 4		+0.0	55.3	74 0	-18 7	Horiz
00-0.4	-10.2	+37 1	+33.6	· · · ·		10.0	00.0	High Cha	nnel	10112
8348.4	46.2	-4 0	+1 2	+4 A		+0.0	51 3	54 0	-27	Horiz
Average	70.2	+37.1	+33.6	· · · ·		10.0	51.5	High Cha	nnel	10112
Average		TU1.1	+55.0					i nyn ona		

EQUIPMENT: RM1809

Test Data - Radiated Emissions

8 dBi Omni

		Duty C	Cable	Cable						
Freq	Rdng	Horn	Pre-A			Dist	Corr	Spec	Margin	Polar
MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
2707.2	52.0		+0.8	+2.9		+0.0	52.0	54.0	-2.0	Vert
		+29	-32.7					Low Char	nnel	
3609.6	51.5		+0.8	+2.8		+0.0	53.0	74.0	-21.0	Vert
		+30.3	-32.4					Low Char	nnel	
3609.6	51.5	-4.0	+0.8	+2.8		+0.0	53.0	54.0	-5.0	Vert
Average		+30.3	-32.4					Low Char	nnel	
2707.2	51.0		+0.8	+2.9		+0.0	51.0	54.0	-3.0	Vert
		+29	-32.7					Low Char	nnel	
3609.6	49.7		+0.8	+2.8		+0.0	51.2	54.0	-2.8	Horiz
		+30.3	-32.4					Low Char	nnel	
2745.6	48.0		+0.8	+2.9		+0.0	48.0	54.0	-6.0	Vert
		+29	-32.7					Mid Chan	nel	
8236.8	45.8		+1.3	+4.3		+0.0	55.4	57.0	-18.6	Vert
		+37.3	+33.3					Mid Chan	nel	
8236.8	45.8	-4.0	+1.3	+4.3		+0.0	51.4	54.0	-2.6	Vert
Average		+37.3	+33.3					Mid Chan	nel	
3660.8	49.8		+0.8	+2.8		+0.0	51.6	54.0	-2.4	Horiz
		+30.5	+32.3					Mid Chan	nel	
8236.8	45.2		+1.3	+4.3		+0.0	54.8	74.0	-19.2	Horiz
		+37.3	+33.3					Mid Chan	nel	
8236.8	45.2	-4.0	+1.3	+4.3		+0.0	50.8	54.0	-3.2	Horiz
Average		+37.3	+33.3					Mid Chan	nel	
8348.4	43.7		+1.3	+4.3		+0.0	53.4	74.0	-20.6	Vert
		+37.3	+33.2					High Cha	nnel	
8348.4	43.7	-4.0	+1.3	+4.3		+0.0	49.4	54.0	-4.6	Vert
Average		+37.3	+33.2					High Cha	nnel	
3710.4	50.0		+0.8	+2.8		+0.0	52.0	54.0	-2.0	Horiz
		+30.6	+32.2					High Cha	nnel	
8348.4	46.5		+1.2	+4.4		+0.0	55.7	74.0	-18.3	Horiz
		+37.1	+33.5					High Cha	nnel	
8348.4	46.5		+1.2	+4.4		+0.0	51.7	54.0	-2.3	Horiz
Average		+37.1	+33.5					High Cha	nnel	

Test Data - Radiated Emissions

10 dBi Yagi

		Duty C	Cable	Cable						
Freq	Rdng	Horn	Pre-A			Dist	Corr	Spec	Margin	Polar
MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
2707.2	51.0		+0.8	+2.9		+0.0	51.0	54.0	-3.0	Vert
		+29	-32.7					Low Char	nnel	
3609.6	48.5		+0.8	+2.8		+0.0	50.0	54.0	-4.0	Vert
		+30.3	-32.4					Low Char	nnel	
4512.0	-46.4		+1.0	+3.1		+0.0	51.0	54.0	-3.0	Vert
		+32.0	-31.5					Low Char	nnel	
2707.2	48.0		+0.8	+2.9		+0.0	48.0	54.0	-6.0	Horiz
		+29	-32.7					Low Char	nnel	
3609.6	47.5		+0.8	+2.8		+0.0	49.0	54.0	-5.0	Horiz
		+30.3	-32.4					Low Char	nnel	
2745.6	47.0		+0.8	+2.9		+0.0	47.0	54.0	-7.0	Vert
		+29	-32.7					Mid Chan	nel	
3660.8	46.5		+0.8	+2.8		+0.0	48.0	54.0	-6.0	Vert
		+30.3	-32.4					Mid Chan	nel	
3660.8	46.5		+0.8	+2.8		+0.0	48.0	54.0	-6.0	Horiz
		+30.3	-32.4					Mid Chan	nel	
8236.8	44.3		+1.3	+4.3		+0.0	53.9	74.0	-20.1	Horiz
		+37.3	+33.3							
8236.8	44.3	-4.0	+1.3	+4.3		+0.0	49.9	54.0	-4.1	Horiz
Average		+37.3	+33.3							

Test Data - Radiated Emissions

1 dBi mo	nopole									
		Duty C	Cable	Cable						
Freq	Rdng	Horn	Pre-A			Dist	Corr	Spec	Margin	Polar
MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
2707.2	53.0		+0.8	+2.8		+0.0	53.2	74.0	-20.8	Vert
		+29.3	-32.7					Low Char	nnel	
2707.2	53.0	-4.0	+0.8	+2.8		+0.0	49.2	54.0	-4.8	Vert
Average		+29.3	-32.7					Low Char	nnel	
3609.6	48.5		+0.8	+2.8		+0.0	50.0	54.0	-4.0	Vert
		+30.3	-32.4					Low Char	nnel	
2707.2	50.0		+0.8	+2.9		+0.0	50.0	54.0	-4.0	Horiz
		+29	-32.7					Low Char	nnel	
3609.6	47.5		+0.8	+2.8		+0.0	49.0	54.0	-5.0	Horiz
		+30.3	-32.4					Low Char	nnel	
2745.6	47.0		+0.8	+2.9		+0.0	47.0	54.0	-7.0	Vert
		+29	-32.7					Mid Chan	nel	
3660.8	46.5		+0.8	+2.8		+0.0	48.0	54.0	-6.0	Vert
		+30.3	-32.4					Mid Chan	nel	
2745.6	47.0		+0.8	+2.9		+0.0	47.0	54.0	-7.0	Horiz
		+29	-32.7					Mid Chan	nel	
2782.8	54.9		+0.7	+2.0		+0.0	48.0	54.0	-6.0	Vert
		+28.5	-31.8					High cha	nnel	
7420.8	44.3		+1.3	+4.1		+0.0	53.6	74.0	-20.4	Vert
		+36.7	-32.8					High cha	nnel	
7420.8	44.3	-4.0	+1.3	+4.1		+0.0	49.6	54.0	-4.4	Vert
Average		+36.7	-32.8							
8348.4	43.7		+1.3	+4.3		+0.0	53.4	74.0	-20.6	Vert
		+37.4	-33.3					High cha	nnel	
8348.4	43.7	-4.0	+1.3	+4.3		+0.0	53.4	54.0	-4.6	Vert
Average		+37.4	-33.3					High cha	nnel	
3710.4	48.0		+0.8	+2.8		+0.0	50.0	54.0	-2.5	Horiz
		+30.6	-32.2					High Cha	nnel	

All measurements are PEAK unless otherwise stated.

Section 9. Test Equipment List

Nemko ID	Description	Manufacturer Madal Number	Serial Number	Calibration	Calibration
		Model Number		Date	Due
1183	Receiver HF/VHF	Scwarzbeck	0	04/12/00	N/A
		VUME1520A			
1053	VECTOR SIGNAL GENERATOR 300 KHz	ROHDE & SCHWARZ	DE22081	09/29/05	09/30/08
		SMIQ 03			
759	ANTENNA, LOG PERIODIC	A.H. SYSTEMS	556	03/30/07	03/29/08
		SAS-200/510			
760	Antenna biconical	Electro Metrics	477	01/19/07	01/19/08
		MFC-25			
1033	Horn antenna	EMCO	8812-3035	07/28/06	07/28/08
		3115			
802	Near Field Probe Set	EMCO	103	N/A	N/A
		7405			
1464	Spectrum analyzer	Hewlett Packard	3551A04428	01/24/07	01/24/09
		8563E			
1484	Cable	Storm	N/A	05/02/07	05/01/08
		PR90-010-072			
1485	Cable	Storm	N/A	05/02/07	05/01/08
		PR90-010-216			
791	PREAMP, 25dB	Nemko USA, Inc.	398	05/01/07	04/30/08
		LNA25			
1016	Pre-Amp	HEWLETT PACKARD	2749A00159	05/01/07	04/30/08
		8449A			
1472	20db Attenuator DC 18 Ghz	Omni Spectra	NONE	CBU	N/A
		20600-20db			
1082	CABLE 2m	Astrolab	N/A	CBU	N/A
		32027-2-29094-72TC			

ANNEX A - TEST DETAILS

Nemko USA, Inc. FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER EQUIPMENT: RM1809 PROJECT NO.:6823RUS1

NAME OF TEST: Powerline Conducted Emissions PARA. NO.: 15.207(a)

Minimum Standard: §15.207 Conducted limits.

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 mH/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency of Conducted	Limit (dBmV)				
Emission (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			
* Discussion and the description.	at the star star star				

* Decreases with the logarithm of the frequency.

(b) The limit shown in paragraph (a) of this section shall not apply to carrier current systems operating as intentional radiators on frequencies below 30 MHz. In lieu thereof, these carrier current systems shall be subject to the following standards:

(1) For carrier current systems containing their fundamental emission within the frequency band 535-1705 kHz and intended to be received using a standard AM broadcast receiver: no limit on conducted emissions.

(2) For all other carrier current systems: 1000 mV within the frequency band 535-1705 kHz, as measured using a 50 mH/50 ohms LISN.

(3) Carrier current systems operating below 30 MHz are also subject to the radiated emission limits as provided in §15.205 and §§15.209, 15.221, 15.223, 15.225 or 15.227, as appropriate.

(c) Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provision for, the use of battery chargers which permit operating while charging, AC adaptors or battery eliminators or that connect to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.

FCC PART 15, SUBPART C FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER EQUIPMENT: RM1809 PROJECT NO.:6823RUS1

NAME OF TEST: Channel Separation PARA. NO.: 15.247(a)(1)

Minimum Standard: Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

FCC PART 15, SUBPART C FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: RM1809

NAME OF TEST: Time of Occupancy

PARA. NO.: 15.247(a)(1)

Minimum Standard:

Frequency Band	20 dB	No. of	Average Time of Occupancy
(MHz)	Bandwidth	Hopping	
		Channels	
902 - 928	<250 kHz	50	=<0.4 sec. in 20 sec.
902 – 928	=>250 kHz	25	=<0.4 sec. in 10 sec.
			=<0.4 sec. in 0.4 seconds
2400 – 2483.5		75	multiplied by the number of
			hopping channels employed.
5725 - 5850		75	=<0.4 sec. in 30 sec.

Method Of Measurement:

The spectrum analyzer is set as follows:

RBW: 1 MHz VBW: = RBW Span: 0 Hz LOG dB/div.: 10 dB Sweep: Sufficient to see one hop time sequence. Trigger: Video

The occupancy time of one hop is measured as above. The average time of occupancy is calculated over the appropriate period of time from above table

Avg. time of occupancy = (period from table/duration of one hop)/no. of channels multiplied by the duration of one hop.

For instance:

If a 2.4 GHz system has a measured hop duration time of 1 msec. and uses 75 channels, then the average time of occupancy would be:

(30 sec./.001 sec.)/75 chan. = 400 x 1 msec. = 400 msec. or 0.4 sec. in 30 sec.

FCC PART 15, SUBPART C FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER PROJECT NO.:6823RUS1

EQUIPMENT: RM1809

Minimum Standard:

Frequency Band (MHz)	Maximum 20 dB Bandwidth
902 - 928	500 kHz
2400 – 2483.5	Not defined
5725 – 5850	1 MHz

Method Of Measurement:

The spectrum analyzer is set as follows:

RBW: At least 1% of span/div. VBW: >RBW Span: Sufficient to display 20 dB bandwidth LOG dB/div.: 10 dB Sweep: Auto

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

FCC PART 15, SUBPART C FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER PROJECT NO.:6823RUS1

EQUIPMENT: RM1809

NAME OF TEST:	Peak Power Output	
---------------	-------------------	--

PARA. NO.: 15.247(b)

Minimum Standard:

Frequency	No. of	Maximum Peak
Band	Hopping	Power Output at
(MHz)	Channels	Antenna Port
902 - 928	at least 50	1 watt
902 – 928	25 - 49	0.25 watts
2400 –	75	1 watt
2483.5		
5725 – 5850	75	1 watt

If transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point to point operation may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceed 6 dBi.

Systems operating in the 5725 – 5850 MHz band that are used exclusively for fixed, point-to-point operation may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter peak output power.

Direct Measurement Method For Detachable Antennas:

If the antenna is detachable, a peak power meter is used to measure the power output with the transmitter operating into a 50 ohm load. The dBi gain of the antenna(s) employed shall be reported.

Nemko USA, Inc.FCC PART 15, SUBPART CFREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTEREQUIPMENT:RM1809PROJECT NO.:6823RUS1

Calculation Of EIRP For Integral Antenna:

If the antenna is not detachable from the circuit then the Peak Power Output is derived from the peak radiated field strength of the fundamental emission by using the plane wave relation $GP/4\pi R^2 = E^2/120\pi$ and proceeding as follows:

$$P = \frac{E^2 R^2}{30G} = \frac{E^2 3^2}{30G}$$

where,

P = the equivalent isotropic radiated power in watts E = the maximum measured field strength in V/m

R = the measurement range (3 meters)

G = the numeric gain of the transmit antenna in relation to an isotropic radiator

The RBW of the spectrum analyzer shall be set to a value greater than the measured 20 dB occupied bandwidth of the E.U.T.

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

EQUIPMENT: RM1809

NAME OF TEST: Spurious Emissions at Antenna Terminals PARA. NO.: 15.247(d)

Minimum Standard: In any 100kHz bandwidth outside the frequency band in which the transmitter is operating, emissions shall be at least 20 dB below the fundamental emission or shall not exceed the following field strength limits. Emissions falling in the restricted bands of 15.205 shall not exceed the following field strength limits:

Frequency (MHz)	Field Strength (μV/m @ 3m)	Field Strength (dB @ 3m)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

THE SPECTRUM WAS SEARCHED TO THE 10th HARMONIC

Method Of Measurement:

30 MHz - 10th harmonic plot RBW: 100 kHz VBW: 300 kHz Sweep: Auto Display line: -20 dBc

Lower Band Edge

RBW: At least 1% of span/div. VBW: >RBW Span: As necessary to display any spurious at band edge. Sweep: Auto Center Frequency: 902 MHz, 2400 MHz, or 5725 MHz Marker: Peak of fundamental emission Marker Δ : Peak of highest spurious level below center frequency.

Upper Band Edge

RBW: At least 1% of span/div.
VBW: >RBW
Span: As necessary to display any spurious at band edge.
Sweep: Auto
Center Frequency: 928 MHz, 2483.5 MHz, or 5850 MHz
Marker: Peak of fundamental emission
Marker ∆: Peak of highest spurious level above center frequency.

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

FCC PART 15, SUBPART C FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: RM1809

NAME OF TEST: Radiated Spurious Emissions PARA. NO.: 15.247(d)

> Minimum Standard: In any 100kHz bandwidth outside the frequency band in which the transmitter is operating, emissions shall be at least 20 dB below the fundamental emission or shall not exceed the following field strength limits:

Emissions falling in the restricted bands of 15.205 shall not exceed the following field strength limits:

Frequency (MHz)	Field Strength (μV/m @ 3m)	Field Strength (dB @ 3m)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

THE SPECTRUM WAS SEARCHED TO THE 10th HARMONIC

MHz MHz MHz GHz 16.42-16.423 0.09-0.11 399.9-410 4.5-5.25 0.495-0.505 16.69475-16.69525 608-614 5.35-5.46 2.1735-2.1905 16.80425-16.80475 960-1240 7.25-7.75 25.5-25.67 1300-1427 8.025-8.5 4.125-4.128 4.17725-4.17775 37.5-38.25 1435-1626.5 9.0-9.2 4.20725-4.20775 73-74.6 1645.5-1646.5 9.3-9.5 6.125-6.218 74.8-75.2 1660-1710 10.6-12.7 6.26775-6.26825 108-121.94 1718.8-1722.2 13.25-13.4 2200-2300 6.31175-6.31225 123-138 14.47-14.5 149.9-150.05 2310-2390 8.291-8.294 15.35-16.2 8.362-8.366 156.52475-156.52525 2483.5-2500 17.7-21.4 8.37625-8.38675 156.7-156.9 2655-2900 22.01-23.12 8.41425-8.41475 3260-3267 162.0125-167.17 23.6-24.0 3332-3339 31.2-31.8 12.29-12.293 167.72-173.2 240-285 3345.8-3358 36.43-36.5 12.51975-12.52025 3600-4400 12.57675-12.57725 322-335.4 Above 38.6 13.36-13.41 1718

15.205 Restricted Bands

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

ANNEX B - TEST DIAGRAMS

Test Site For Radiated Emissions

Conducted Emissions

Peak Power at Antenna Terminals

