

Banner Engineering Corp

Q240R Sensor FCC 15.207:2015 FCC 15.245:2015 24.00 - 24.25 GHz Transceiver

Report # BANN0028

NVLAP Lab Code: 200881-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America. This Report may only be duplicated in its entirety

CERTIFICATE OF TEST

Last Date of Test: August 25, 2015 Banner Engineering Corp Model: Q240R Sensor

Radio Equipment Testing

Standards

Specification	Method
FCC 15.207:2015	ANSI C63.10:2013
FCC 15.245:2015	ANSI C63.10:2013

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	Yes	Pass	
6.5, 6.6	Field Strength of Harmonics and Spurious Radiated Emissions	Yes	Pass	
6.6	Field Strength of Fundamental	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Imitle 1

Tim O'Shea, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information.

REVISION HISTORY

Revision Number	Description	Date	Page Number
00	None		

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Northwest EMC to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

IC - Recognized by Industry Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with IC.

European Union

European Commission – Validated by the European Commission as a Conformity Assessment Body (CAB) under the EMC directive and as a Notified Body under the R&TTE Directive.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit: <u>http://www.nwemc.com/accreditations/</u> http://gsi.nist.gov/global/docs/cabs/designations.html

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error gualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) for each test is on each data sheet. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

FACILITIES

California Labs OC01-13 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-08, MN10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	Minnesota New York Oregon Labs MN01-08, MN10 Labs NY01-04 Labs EV01-12 9349 W Broadway Ave. 4939 Jordan Rd. 22975 NW Evergreen P Brooklyn Park, MN 55445 Elbridge, NY 13060 Hillsboro, OR 97124 (612)-638-5136 (315) 554-8214 (503) 844-4066		Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 9801 (425)984-6600
		NV	LAP		
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0
		Industry	Canada		
2834B-1, 2834B-3	2834E-1	N/A	2834D-1, 2834D-2	2834G-1	2834F-1
		BS	мі		
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R
VCCI					
A-0029	A-0109	N/A	A-0108	A-0201	A-0110
Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA					
US0158	US0175	N/A	US0017	US0191	US0157

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Banner Engineering Corp
Address:	9714 Tenth Ave North
City, State, Zip:	Minneapolis, MN 55441
Test Requested By:	Homayoon Homara
Model:	Q240R Sensor
First Date of Test:	August 24, 2015
Last Date of Test:	August 25, 2015
Receipt Date of Samples:	August 24, 2015
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

Radar-Based Dual-Zone Narrow-Beam Sensors for Detection of Moving and Stationary Targets. Primarily used in industrial applications such as rail yards, ports, gantry systems and the like.

Testing Objective:

Seeking to demonstrate compliance under FCC 15.245 for operation in the 24.00 - 24.25 GHz band.

CONFIGURATIONS

Configuration BANN0028-1

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
24 GHz Collision Sensor	Banner Engineering Corp	Q240R Sensor	None

Peripherals in test setup boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
Battery 12 VDC x 2	Duracell	12 Volt ProCell	None		
Power/Output Monitor (Support Unit)	Banner Engineering Corp	Power/Output Monitor (Support Unit)	None		

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
DC Power	Yes	10m	No	Power/Output Monitor(Test Unit)	24 GHz Collision Sensor	
Banana Jack Cable (DC Power)	Unshielded	3m	No	Battery 12 VDC x 2	Power/Output Monitor(Test Unit)	

Configuration BANN0028-3

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
24 GHz Collision Sensor	Banner Engineering Corp	Q240R Sensor	None

Peripherals in test setup boundary						
Description	Manufacturer	Model/Part Number	Serial Number			
Power/Output Monitor (Support Unit)	Banner Engineering Corp	Power/Output Monitor (Support Unit)	None			
AC Power Adapter	Banner Engineering Corp.	PSD-24-4	None			

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
	Voc	10m	No	Power/Output Monitor	24 GHz Collision	
DCFOWEI	165	TOTT	INU	(Test Unit)	Sensor	
DC Power Cable	No	3m	No	AC Bower Adaptor	Power/Output	
(AC Adapter)	NO	311		AC FOWER Adapter	Monitor	
AC Power Cable	No	1.8m	No	AC Power Adapter	AC Mains	

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	8/24/2015	Field Strength of Harmonics and Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
2	8/24/2015	Field Strength of Fundamental	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
3	8/25/2015	Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50 Ω measuring port is terminated by a 50 Ω EMI meter or a 50 Ω resistive load. All 50 Ω measuring ports of the LISN are terminated by 50 Ω .

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	Fairview Microwave	SA01B-20	AQP	NCR	NCR
Filter - High Pass	TTE	H97-100K-50-720B	HGN	NCR	NCR
Cable - Conducted Cable Assembly	Northwest EMC	None	MNC	NCR	NCR
LISN	Solar Electronics	9252-50-R-24-BNC	LIY	3/23/2015	3/23/2016
Receiver	Rohde & Schwarz	ESR7	ARI	5/21/2015	5/21/2016

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	2.4 dB	-2.4 dB

CONFIGURATIONS INVESTIGATED

BANN0028-3

MODES INVESTIGATED

Transmitting a swept FM-CW signal at 24.125 GHz

Q240R Sens	or			Work Order:	BANN0028
None				Date:	08/25/2015
Banner Engi	neering Co	rp		Temperature:	21.8°C
Homayoon H	lomara			Relative Humidity:	45.5%
None				Bar. Pressure:	989.2 mb
Dustin Spark	S			Job Site:	MN03
110VAC/60H	lz			Configuration:	BANN0028-3
CATIONS					
			Method:		
			ANSI C63.2	10:2013	
TERS					
	Line:	Neutral		Add. Ext. Attenuation (dB): 0
NG MODES					
pt FM-CW sign	al at 24.12	5 GHz			
ROM TEST	STAND	ARD			
	Q240R Sens None Banner Engi Homayoon H None Dustin Spark 110VAC/60H CATIONS CATIONS TERS	Q240R Sensor None Banner Engineering Co Homayoon Homara None Dustin Sparks 110VAC/60Hz CATIONS CATIONS ETERS Line: NG MODES pt FM-CW signal at 24.12 ROM TEST STAND	Q240R Sensor None Banner Engineering Corp Homayoon Homara None Dustin Sparks 110VAC/60Hz CATIONS ETERS Line: Neutral NG MODES pt FM-CW signal at 24.125 GHz ROM TEST STANDARD	Q240R Sensor None Banner Engineering Corp Homayoon Homara None Dustin Sparks 110VAC/60Hz CATIONS CATIONS CATIONS Line: Neutral NG MODES pt FM-CW signal at 24.125 GHz ROM TEST STANDARD	Q240R Sensor Work Order: None Date: Banner Engineering Corp Temperature: Homayoon Homara Relative Humidity: None Bar. Pressure: Dustin Sparks Job Site: 110VAC/60Hz Configuration: CATIONS Method: ANSI C63.10:2013 ETERS Line: Neutral Add. Ext. Attenuation (dB NG MODES pt FM-CW signal at 24.125 GHz ROM TEST STANDARD

None

RESULTS - Run #5

	Peak Da	ta - vs - C)uasi Peak	(Limit			Peak D	ata - vs - /	Average L	.imit	
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.396	15.4	20.2	35.6	57.9	-22.3	0.396	15.4	20.2	35.6	47.9	-12.3
0.165	17.0	20.4	37.4	65.2	-27.8	0.165	17.0	20.4	37.4	55.2	-17.8
29.328	9.5	22.5	32.0	60.0	-28.0	29.328	9.5	22.5	32.0	50.0	-18.0
4.597	7.1	20.5	27.6	56.0	-28.4	4.597	7.1	20.5	27.6	46.0	-18.4
3.612	6.8	20.4	27.2	56.0	-28.8	3.612	6.8	20.4	27.2	46.0	-18.8
3.206	6.3	20.3	26.6	56.0	-29.4	3.206	6.3	20.3	26.6	46.0	-19.4
3.086	6.3	20.3	26.6	56.0	-29.4	3.086	6.3	20.3	26.6	46.0	-19.4
4.287	5.8	20.5	26.3	56.0	-29.7	4.287	5.8	20.5	26.3	46.0	-19.7
0.654	6.0	20.2	26.2	56.0	-29.8	0.654	6.0	20.2	26.2	46.0	-19.8
26.299	8.0	22.2	30.2	60.0	-29.8	26.299	8.0	22.2	30.2	50.0	-19.8
4.914	5.6	20.5	26.1	56.0	-29.9	4.914	5.6	20.5	26.1	46.0	-19.9
29.347	7.6	22.5	30.1	60.0	-29.9	29.347	7.6	22.5	30.1	50.0	-19.9
1.001	5.8	20.2	26.0	56.0	-30.0	1.001	5.8	20.2	26.0	46.0	-20.0
0.628	5.8	20.2	26.0	56.0	-30.0	0.628	5.8	20.2	26.0	46.0	-20.0
26.967	7.7	22.2	29.9	60.0	-30.1	26.967	7.7	22.2	29.9	50.0	-20.1
3.381	5.6	20.3	25.9	56.0	-30.1	3.381	5.6	20.3	25.9	46.0	-20.1
29.049	7.5	22.4	29.9	60.0	-30.1	29.049	7.5	22.4	29.9	50.0	-20.1
27.374	7.6	22.3	29.9	60.0	-30.1	27.374	7.6	22.3	29.9	50.0	-20.1
3.717	5.5	20.4	25.9	56.0	-30.1	3.717	5.5	20.4	25.9	46.0	-20.1
3.291	5.4	20.3	25.7	56.0	-30.3	3.291	5.4	20.3	25.7	46.0	-20.3
23.908	7.8	21.9	29.7	60.0	-30.3	23.908	7.8	21.9	29.7	50.0	-20.3
0.187	13.5	20.4	33.9	64.2	-30.3	0.187	13.5	20.4	33.9	54.2	-20.3
29.952	7.2	22.5	29.7	60.0	-30.3	29.952	7.2	22.5	29.7	50.0	-20.3
29.828	7.2	22.5	29.7	60.0	-30.3	29.828	7.2	22.5	29.7	50.0	-20.3
29.515	7.2	22.5	29.7	60.0	-30.3	29.515	7.2	22.5	29.7	50.0	-20.3
3.508	5.3	20.4	25.7	56.0	-30.3	3.508	5.3	20.4	25.7	46.0	-20.3

CONCLUSION

Pass

Justin

Tested By

EUT:	Q240R Sens	or			Work Order:	BANN0028
Serial Number:	None				Date:	08/25/2015
Customer:	Banner Engi	neering Co	rp		Temperature:	21.8°C
Attendees:	Homayoon H	lomara			Relative Humidity:	45.5%
Customer Project:	None				Bar. Pressure:	989.2 mb
Tested By:	Dustin Spark	S			Job Site:	MN03
Power:	110VAC/60H	lz			Configuration:	BANN0028-3
TEST SPECIFIC	CATIONS					
Specification:				Method:		
FCC 15.207:2015				ANSI C63	.10:2013	
TEST PARAME	TERS					
Run #: 6		Line:	High Line		Add. Ext. Attenuation (dB): 0
COMMENTS						
None						
EUT OPERATIN	NG MODES					
Transmitting a swep	ot FM-CW sign	al at 24.12	5 GHz			
DEVIATIONS F	ROM TEST	STANDA	ARD			
Nama						

None

RESULTS - Run #6

	Peak Da	ata - vs - C	Quasi Peal	k Limit			Peak D	ata - vs - /	Average L	.imit	
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
2.754	8.3	20.3	28.6	56.0	-27.4	2.754	8.3	20.3	28.6	46.0	-17.4
1.094	7.3	20.2	27.5	56.0	-28.5	1.094	7.3	20.2	27.5	46.0	-18.5
3.881	6.5	20.4	26.9	56.0	-29.1	3.881	6.5	20.4	26.9	46.0	-19.1
0.161	15.9	20.4	36.3	65.4	-29.1	0.161	15.9	20.4	36.3	55.4	-19.1
1.918	6.6	20.3	26.9	56.0	-29.1	1.918	6.6	20.3	26.9	46.0	-19.1
1.460	6.6	20.2	26.8	56.0	-29.2	1.460	6.6	20.2	26.8	46.0	-19.2
4.217	6.3	20.5	26.8	56.0	-29.2	4.217	6.3	20.5	26.8	46.0	-19.2
29.955	8.2	22.5	30.7	60.0	-29.3	29.955	8.2	22.5	30.7	50.0	-19.3
4.765	6.2	20.5	26.7	56.0	-29.3	4.765	6.2	20.5	26.7	46.0	-19.3
4.422	6.2	20.5	26.7	56.0	-29.3	4.422	6.2	20.5	26.7	46.0	-19.3
3.552	6.3	20.4	26.7	56.0	-29.3	3.552	6.3	20.4	26.7	46.0	-19.3
0.639	6.4	20.2	26.6	56.0	-29.4	0.639	6.4	20.2	26.6	46.0	-19.4
4.713	6.1	20.5	26.6	56.0	-29.4	4.713	6.1	20.5	26.6	46.0	-19.4
3.012	6.2	20.3	26.5	56.0	-29.5	3.012	6.2	20.3	26.5	46.0	-19.5
1.478	6.2	20.2	26.4	56.0	-29.6	1.478	6.2	20.2	26.4	46.0	-19.6
28.843	8.0	22.4	30.4	60.0	-29.6	28.843	8.0	22.4	30.4	50.0	-19.6
29.981	7.9	22.5	30.4	60.0	-29.6	29.981	7.9	22.5	30.4	50.0	-19.6
28.396	8.0	22.4	30.4	60.0	-29.6	28.396	8.0	22.4	30.4	50.0	-19.6
4.545	5.9	20.5	26.4	56.0	-29.6	4.545	5.9	20.5	26.4	46.0	-19.6
29.403	7.9	22.5	30.4	60.0	-29.6	29.403	7.9	22.5	30.4	50.0	-19.6
3.508	6.0	20.4	26.4	56.0	-29.6	3.508	6.0	20.4	26.4	46.0	-19.6
0.975	6.1	20.2	26.3	56.0	-29.7	0.975	6.1	20.2	26.3	46.0	-19.7
0.993	6.1	20.2	26.3	56.0	-29.7	0.993	6.1	20.2	26.3	46.0	-19.7
1.825	6.0	20.3	26.3	56.0	-29.7	1.825	6.0	20.3	26.3	46.0	-19.7
4.254	5.8	20.5	26.3	56.0	-29.7	4.254	5.8	20.5	26.3	46.0	-19.7
4.176	5.8	20.5	26.3	56.0	-29.7	4.176	5.8	20.5	26.3	46.0	-19.7

CONCLUSION

Pass

Justin

Tested By

FIELD STRENGTH OF HARMONICS AND SPURIOUS RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

POWER SETTINGS INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

BANN0028 - 1

FREQUENCY RANGE INVESTIGATED

Stop Frequency 100 GHz

Start Frequency 30 MHz SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mo)
Amplifier - Pre-Amplifier	Miteq	JSW45-26004000-40-5P	AVN	10/3/2014	12
Cable	Northwest EMC	TTBJ141-KMKM-72	MNQ	10/3/2014	12
Antenna - Standard Gain	ETS Lindgren	3160-10	AIC	NCR	0
Cable	ESM Cable Corp.	Standard Gain Horn Cables	MNJ	5/5/2015	12
Antenna - Standard Gain	ETS Lindgren	3160-08	AIQ	NCR	0
Antenna - Standard Gain	ETS Lindgren	3160-07	AXP	NCR	0
Amplifier - Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVW	3/2/2015	12
Amplifier - Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVV	3/2/2015	12
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVX	3/2/2015	12
		Double Ridge Guide Horn			
Cable	ESM Cable Corp.	Cables	MNI	5/5/2015	12
Antenna - Double Ridge	ETS Lindgren	3115	AJA	6/3/2014	24
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	PAD	3/2/2015	12
Cable	ESM Cable Corp.	Bilog Cables	MNH	3/30/2015	12
Antenna - Biconilog	Teseq	CBL 6141B	AYD	12/17/2013	24
Antenna - Standard Gain	ETS Lindgren	3160-09	AHG	NCR	0
		18-26GHz Standard Gain			
Cable	Northwest EMC	Horn Cable	MNP	10/3/2014	12
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	1/27/2015	12
Cable - OML Mixer Set	Semplex, Inc	S119BFSS100390443	SUN	8/20/2013	36
Antenna, Horn with Mixer 90-140	OML, Inc	F60126-1	AIL	8/20/2013	36
Antenna, Horn with Mixer 60-90	OML, Inc	E60126-1	AIK	8/20/2013	36
Antenna, Horn with Mixer 40-60	OML, Inc	U51014-1	AIJ	8/20/2013	36

MEASUREMENT BANDWIDTHS

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was transmitting on single channel. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal plane. A preamp was used for this test in order to provide sufficient measurement sensitivity.

The limits were extrapolated from 3 meter test distance and field strength values called out in FCC 15.245 for the 2nd and 3rd harmonics and FCC 15.209 for the 4th harmonic. Where measurements were made above 40 GHz, the mixer factor was applied internally on the spectrum analyzer. The antenna factor was added to the reference level offset.

FIELD STRENGTH OF HARMONICS AND SPURIOUS RADIATED EMISSIONS

EUT:	Q240R Sensor				Work Order:	BANN0028	
Serial Number:	None				Date:	08/24/15	
Customer:	Banner Engineering Corp				Temperature:	23°C	
Attendees:	Homayoon Homara				Humidity	42%	
Project:	None				Barometric Pres.:	1015.5	
Tested by:	Trevor Buls, Jared Ison		Power:	110VAC/60Hz	Job Site:	MN05	
TEST SPECIFICAT	IONS			Test Method			
FCC 15.245:2015				ANSI C63.10:2013			
COMMENTS							
Sweep time increase	sed on the spectrum analyzer to ca	pture the high rep rate mod	lulation pattern.				
DEVIATIONS FROM	A TEST STANDARD						
None			~	2.1			
		-					
Configuration #	1	C	- 7)			
Configuration #	1	Signatura	>	2			
Configuration #	1	Signature –		Maasuvamaa	t Value	Limit	
Configuration #	1	Signature –		Measuremer Distance (cn	nt Value ol (dBuV/m)	Limit (dBuV/m)	Result
Configuration #	1 50 GHz	Signature –		Measuremer Distance (cn	nt Value n) (dBuV/m)	Limit (dBuV/m)	Result
Configuration #	1 50 GHz Peak Detector	Signature –		Measuremer Distance (cn 20	nt Value n) (dBuV/m) 93.064	Limit (dBuV/m)	Result
Configuration # 2nd Harmonic: 48.2	1 50 GHz Peak Detector RMS Average Detector	Signature –		Measuremer Distance (cn 20 20	nt Value) (dBuV/m) 93.064 82.062	Limit (dBuV/m) 131.5 111.5	Result Pass Pass
Configuration # 2nd Harmonic: 48.25	1 50 GHz Peak Detector RMS Average Detector 5 GHz	Signature –		Measuremer Distance (cn 20 20	nt Value (dBuV/m) 93.064 82.062	Limit (dBuV/m) 131.5 111.5	Result Pass Pass
Configuration # 2nd Harmonic: 48.2 3rd Harmonic: 72.37	1 50 GHz Peak Detector RMS Average Detector 5 GHz Peak Detector	Signature –		Measuremer Distance (cn 20 20 20 20	nt Value n) (dBuV/m) 93.064 82.062 109.749	Limit (dBuV/m) 131.5 111.5 131.5	Result Pass Pass Pass
Configuration # 2nd Harmonic: 48.29 3rd Harmonic: 72.37	1 Peak Detector RMS Average Detector '5 GHz Peak Detector RMS Average Detector	Signature –		Measuremer Distance (cn 20 20 20 20 20	t Value (dBuV/m) 93.064 82.062 109.749 97.959	Limit (dBuV/m) 131.5 111.5 131.5 111.5	Result Pass Pass Pass Pass
Configuration # 2nd Harmonic: 48.2 3rd Harmonic: 72.37 4th Harmonic: 96.5 (1 50 GHz Peak Detector RMS Average Detector 5 GHz Peak Detector RMS Average Detector GHz	Signature –		Measuremer Distance (cn 20 20 20 20 20	tt Value (dBuV/m) 93.064 82.062 109.749 97.959	Limit (dBuV/m) 131.5 111.5 131.5 131.5 111.5	Result Pass Pass Pass Pass
Configuration # 2nd Harmonic: 48.29 3rd Harmonic: 72.37 4th Harmonic: 96.5 (1 50 GHz Peak Detector 75 GHz Peak Detector RMS Average Detector GHz Peak Detector BHZ Peak Detector	Signature –		Measuremen Distance (cn 20 20 20 20 20 20 20 20 20 20 20	nt Value (dBuV/m) 93.064 82.062 109.749 97.959 108.365	Limit (dBuV/m) 131.5 111.5 131.5 131.5 111.5 141	Result Pass Pass Pass Pass Pass
Configuration # 2nd Harmonic: 48.24 3rd Harmonic: 72.37 4th Harmonic: 96.5 d	1 50 GHz Peak Detector 75 GHz Peak Detector RMS Average Detector GHz Peak Detector RMS Average Detector RMS Average Detector	Signature –		Measuremen Distance (cn 20 20 20 20 20 20 20 20 20 20 20 20 20	t Value (dBuV/m) 93.064 82.062 109.749 97.959 108.365 96.488	Limit (dBuV/m) 131.5 111.5 131.5 111.5 111.5 141 121	Result Pass Pass Pass Pass Pass

FIELD STRENGTH OF HARMONICS AND SPURIOUS **RADIATED EMISSIONS**

		2nd Harmo	nic, Peak De	etector: 4	8.250 GHz		
		Measurement	t		Value	Limit	
		Distance (cm)		(dBuV/m)	(dBuV/m)	Result
		20			93.064	131.5	Pass
							_
Agilent Spectrum Analyzer	- Northwest EMC, Inc	- 1 - 1 - 0	CENCE INT				02:10:15 DM Aug 24: 2015
	CONTEC		DEINDERINT		Avg Type:	Log-Pwr	TRACE 123456
		PNO: Fast 🖵 IFGain:Low	Trig: Free F	Run	Avg Hold>	·100/100	DET P NNNN
Ref Offse 10 dB/div Ref 146	et 39.89 dB 5 .88 dBµV					Mki	1 48.344 2 GHz 93.064 dBµV
Log							
137							
137							131.50 dBµV
127							
117							
107							
							.1
96.9							
86.9	Managen Laboren	handeranorimen	ylandoluartethevil.	and the states of the second s	aland year of the state of the	ſŗŧĸĮtranoś Kijegelosofijiąs nastęjuorane	reff were holder and house and here and
76.9							
66.9							
56.9							
Center 48.2500 GH	iz						Span 200.0 MHz
#Res BW 1.0 MHz		#VB	W 3.0 MHz			Sweep 1	.000 ms (1001 pts)
MSG					STATUS		
		and Harmonic	DMS Averag		Nr: 48 250 CH-	7	
		Measurement	tivio Averay		Value	Limit	
		Distance (cm)		(dBuV/m)	(dBuV/m)	Result
		20			82 062	111.5	Pass

	2nd Harmonic, RMS Average Detector: 48.250 GHz							
Measurement			Value	Limit				
			Distance (cm)		(dBuV/m)	(dBuV/m)	Result	
			20		82.062	111.5	Pass	

Agiler	nt Spectru	m Analyz	er - Northwe	st EMC, Inc							
L <mark>XI</mark> R	L	XT MIXER		CORREC	PNO: Fast 🕞	SENSE:INT	<u>A</u> A Run	LIGN OFF Avg Type: Avg Hold:>	RMS 100/100	02:23:08 TF	8 PM Aug 24, 2015 RACE 1 2 3 4 5 6 TYPE M WAMAAA DET A N N N N N
10 di Log	B/div	Ref Off Ref 14	set 39.89 o 16.88 dB	iΒ μV					.	Mkr1 48.3 82.0	49 8 GHz)62 dBµV
137											
											111.50 dBµV
											1
56.9											
Cen #Re	ter 48. s BW 1	2500 C	SHz z	^	#VB	W 3.0 MHz	*		#Sw	Span eep 1.000 s	200.0 MHz s (1001 pts)
MSG								STATUS			

FIELD STRENGTH OF HARMONICS AND SPURIOUS RADIATED EMISSIONS

		Measuremen	t	Value	Limit	
		Distance (cm	1)	(dBuV/m)	(dBuV/m)	Result
		20		109.749	131.5	Pass
Agilent Spectrum Analyzer	- Northwest EMC, Inc		CENCENNE			00-04-10 DM 0
KL EXTMUSER	+I CORREC		SENSEIINT	ALIGN OFF	Log-Pwr	TRACE 1 2 3 4 5 (
		PNO: Fast 🖵 IFGain:Low	Trig: Free Run	Avg Hold>	100/100	DET P N N N N
10 dB/div Ref Offse	t 43.41 dΒ J. 40 dΒμV				Mki	1 72.141 0 GHz 109.749 dBµ∖
140						
.40						
130						131.50 dBµ\
120						
110						
wanthe partition	hereward where and	angen all all and and a stand and a	March 1. day .			
100			a see want of the form	man other hard and a second seco	here marked and the second	-hundressenalline have north the
90.4						
80.4						
70.4						
60.4						
Center 72.3750 GH #Res BW 1.0 MHz	z	#VB	W 3.0 MHz		Sweep 1	Span 500.0 MHz I.000 ms (1001 pts
		and a second second a second se		and an		

3rd Harmonic, RMS Average Detector: 72.375 GHz								
Measurement Value								
		Distance (cm)		(dBuV/m)	(dBuV/m)	Result		
		20		97.959	111.5	Pass		

Agiler	nt Spectr	um Anal	yzer - North	west EMC, I	nc							
L XI R	L	EXT MIXE	ER	+I COR	REC PNO: IFGai	: Fast 😱 n:Low	SENSE:INT	Run	ALIGN OFF Avg Type: Avg Hold: 4	RMS 4/100	02:37:41 Ti	DPM Aug 24, 2015 RACE 2 3 4 5 6 TYPE M WWWWW DET A N N N N N
10 di	B/div	Ref C Ref	offset 43.4 1 50.40 c	1 dB IBµV						l	Mkr1 72.1 97.9	26 5 GHz 959 dBµV
3												
130												
120												
110												111.50 dBµV
100	1											
90.4												
80.4												
70.4												
60.4												
Can	ter 72	3750	CH7								Snan	500 0 MHz
#Re	s BW	1.0 M	Hz			#VB	W 3.0 MHz	*		#Sw	eep 1.000	s (1000 pts)
MSG									STATUS			

FIELD STRENGTH OF HARMONICS AND SPURIOUS **RADIATED EMISSIONS**

		4th Harmo	nic Peak Detecto	r: 96 5 GHz		
		Measurement		Value	Limit	
		Distance (cm)		(dBuV/m)	(dBuV/m)	Result
		2		108.365	117.5	Pass
Agilent Spectrum Analy	yzer - Northwest EMC, Inc					
LXI RL EXT MIXE	ER +I CORRE	C SE	INSE:INT	ALIGN OFF	Les Dun	02:57:08 PM Aug 24, 2015
		PNO: Fast 🖵 IFGain:Low	Trig: Free Run Atten: 6 dB	Avg Hold:7	76/100	TYPE MUMUUMU DET P N N N N N
Ref O	offset 45.91 dB 123 90 dBuV				Mkr1	96.264 0 GHz 108.365 dBµV
Log					I	· · · · · · · · · · · · · · · · · · ·
119						117.50 dBµV
444						
114						
109						
Mat & algorithe anon	Monumenter	the contract and distance in the	يريق أرابه وروابه			
104		. To be the second in a decidentially an	Londa La Altra Lalla Physical (when the state of	halphanthlantallantall	treastreen hills wanted
98.9						
93.9						
88.9						
93.0						
33.9						
78.9						
						B
#Res BW 1.0 M	GRZ	#VBM	(30 MHz		#Sween	Span 500.0 MHz 1 000 s (1000 pts)
MSG		*** D9		STATUS	"onecp	noor o (noor pto)
MOU .				STATUS		
		4th Harmonic, F	RMS Average Det	ector: 96.5 GHz		
		Measurement		Value	Limit	
		Distance (cm)	1	(dBuV/m)	(dBuV/m)	Result
		2		96.488	97.5	Pass

	4th Harmonic, R	MS Average Dete	ector: 96.5 GHz		
	Measurement		Value	Limit	
	Distance (cm)		(dBuV/m)	(dBuV/m)	Result
	2		96.488	97.5	Pass

Agiler	it Spectrum A	nalyzer - Nort	hwest EMC, Inc					
l)XI R	L EXT I	MIXER	+I CORRE	PNO: Fast IFGain:Low	SENSE:INT Trig: Free Run Atten: 6 dB	ALIGN OFF Avg Type: F Avg Hold: 89	02 RMS 9/100	:55:02 PM Aug 24, 2015 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET A N N N N N
5 dB	Re Idiv R e	of Offset 45.9 ef 123.90	91 dB d BµV				Mkr1 9 S	6.257 5 GHz 96.488 dBµV
119								
114								
109								
104								
98.9	↓ ¹							97.50 dBµ∿
93.9								- A Den - Andre Backmannen in Anna Anna
83.9								
78.9								
Cen #Re	ter 96.50 s BW 1.0	00 GHz MHz		#VB	W 3.0 MHz*		S #Sweep 1.0	pan 500.0 MHz 00 s (1000 pts)
MSG						STATUS		

ENC

FIELD STRENGTH OF THE FUNDAMENTAL

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting a swept FM-CW signal at 24.125 GHz

POWER SETTINGS INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

BANN0028 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 18 GHz

Stop Frequency 26.5 GHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
		18-26GHz Standard Gain			
Cable	Northwest EMC	Horn Cable	MNP	10/3/2014	12 mo
Antenna - Standard Gain	ETS Lindgren	3160-09	AHG	NCR	0 mo
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	1/27/2015	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was transmitting on single channel. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT and EUT antenna in 3 orthogonal planes.

FIELD STRENGTH OF THE FUNDAMENTAL

Work Order: BANN0028 Date: 08/24/15 Project: None Temperature: 22.3 °C Job Site: MN05 Humidity: 45.2% RH Serial Number: Barometric Pres.: 1015.3 mbar Tested by: Trevor Buls, Jared Ison None EUT: Q240R Sensor Configuration: Customer: Banner Engineering Corp Attendees: EUT Power: 110VAC/60Hz Transmitting a swept FM-CW signal at 24.125 GHz **Operating Mode:** None Deviations: Sweep time increased on the spectrum analyzer to capture the high rep rate modulation pattern. Comments: Test Specifications **Test Method** FCC 15.245:2015 ANSI C63.10:2013 Run # 3 Test Distance (m) 3 Antenna Height(s) 1 to 2(m) Results Pass 160 140 120 100 dBuV/m 80 ٠ 60 40 20 0 10000 100000 MHz • QP PK 🔶 AV

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
24113.650	61.8	46.4	1.5	350.0	3.0	0.0	Horz	AV	0.0	108.2	128.0	-19.8	EUT On Side
24114.830	60.9	46.4	1.7	357.0	3.0	0.0	Vert	AV	0.0	107.3	128.0	-20.7	EUT Vert
24142.070	75.5	46.4	1.7	357.0	3.0	0.0	Vert	PK	0.0	121.9	148.0	-26.1	EUT Vert
24147.000	74.9	46.4	1.5	350.0	3.0	0.0	Horz	PK	0.0	121.3	148.0	-26.7	EUT On Side
24147.260	45.1	46.4	1.7	351.0	3.0	0.0	Vert	AV	0.0	91.5	128.0	-36.5	EUT On Side
24146.540	44.4	46.4	1.7	0.0	3.0	0.0	Horz	AV	0.0	90.8	128.0	-37.2	EUT Vert
24147.670	58.5	46.4	1.7	351.0	3.0	0.0	Vert	PK	0.0	104.9	148.0	-43.1	EUT On Side
24135.130	57.9	46.4	1.7	0.0	3.0	0.0	Horz	PK	0.0	104.3	148.0	-43.7	EUT Vert
24119.730	30.1	46.4	1.5	171.0	3.0	0.0	Vert	AV	0.0	76.5	128.0	-51.5	EUT Horz
24153.700	29.1	46.4	1.5	202.1	3.0	0.0	Horz	AV	0.0	75.5	128.0	-52.5	EUT Horz
24116.200	43.7	46.4	1.5	171.0	3.0	0.0	Vert	PK	0.0	90.1	148.0	-57.9	EUT Horz
24149.670	41.8	46.4	1.5	202.1	3.0	0.0	Horz	PK	0.0	88.2	148.0	-59.8	EUT Horz

APPENDIX

Q240 family EMC Test Plan

Author:	Homayoon Homara
Title:	Sr. Product regulatory compliance Engineer
	Engineering Quality and Test
E-mail:	hhomara@bannerengineering.com
Owner:	Compliance Department

Revision 1.0	Note: Part of Banner " "DOC". (Not Applicable	Note: Part of Banner Technical File supporting compliance to EMC directive for the "DOC". (Not Applicable since this covers only North America approval FCC & IC)							
	Name	litle/Department							
pprovers:	Wade Oberpriller	Chief engineer-M&I products							
viewers:	Ashly Wise	Principal Development Engineer SW & Signal Processing							
	Brad Ragozzino	Technical Marketing Engineer							
	Nate Casteel	Electrical Development Engineer							

Revision History

All revisions that start with zero (such as 0.5, 0.65, and the like) are preliminary drafts for internal review only.

Table 1 – Revision History

No.	Date	Author	Description
0.9	08/13/2015	Homayoon Homara	Initial draft

No.	Date	Author	Description
1.0	08/24/2015	Homayoon Homara	Incorporated feedback comments from Wade Oberpriller and NWEMC Lab.

1. Overview

1.1 Document Overview

This document provides the detailed verification test information for the Banner Q240 family products. This document details the tests that will be done and the methods that will be used.

Figure 1 shows the relative positioning of the verification plans in the overall product requirements process flow.

Figure 1 - Product Specification Document Flow

1.2 Product Overview

This document defines the scope, approach, and resource dependencies of EMC verification for the Q240 family.

These devices are radar-Based Dual Zone Narrow Band Sensors for detection of moving and stationary targets. The following is a short list of some of the applications in the field ensuring moving equipment collision avoidance:

- Onboard mobile equipment such as forklifts, mining vehicles, entry/exit application for gate control. Vehicle detection (Park meter automation and Drive through lane)
- Indoor overhead gantry
- Outdoor crane to crane
- Ship detection, ship container detection, Rail car detection

The sensors are to be supplied by a Class 2 source for NA or Class III source for Europe.

Sensor emits a well-defined beam of high-frequency radio waves from an internal antenna. Some of this emitted energy is reflected back to the receiving antenna. Signal processing electronics determine the distance from the sensor to the object based on the time delay of the return signal. The sensor can be configured to two independent sensing zones.

The two sensing zones are factory pre-set to default distances; they can be reconfigured for different distances using the DIP switches on the side of the sensor. The sensitivity is precalibrated at the factory, assuming that the sensing field will be clear of obstacles. The sensitivity can be adjusted using the DIP switches on the side of the sensor.

1.2.1 Product Nomenclature

The end product options are as listed in the nomenclature below:

NOMENCLATURE (Complete Assembly):

<u>Q240RA</u>	<u>-US</u>	<u>AF2</u>	<u>Q</u>
l	II	III	IV
Ι.	Basic Type Designatior Q240RA - Radar Sen	ו sor	

II.	Diameter US - US, Canada, Brazil, Mexico model "North & South America"
III.	Field & Zone AF2 – Adjustable Field 2 Zone XXXX – Any other SW feature not impacting emission or product safety
IV.	Supply Connection

Q	 – Euro Integral Quick Disconnect Connector
~	Earo mograf dator Biocomioor Comioco

Figure 2 – DC Test set-up Block Diagrams

1.2.3 Power Requirements

The external DC supply 12-30Vdc

Table 2 – Power Delivery Components

Component function	Location	Manufacturer	Part Number	Watt
DC Power supply Not provided with the unit "Customer to supply the power source".	External Class 2 for NA & Class III for Europe.	N/A	N/A	N/A

1.2.4 Output Specifications

Models	Sensing Range	Connection	Output
All family models	Two independent sensing zone;1 to 40+ meters (131ft)	5-pin M12/Euro- style quick disconnect	DIP-Switch- Selectable NPN or PNP; N.O. or N.C.

Table 3 – Sensing Range, Connection, Output selections

1.3 Certifications Test Requirements

Test repeatability is a high priority for EMC considerations. Therefore, it is imperative that the unit under test be supplied with all necessary hardware to ensure an accurate and successful evaluation. To that end, these elements must be addressed:

- Hard Ware "HW" stability: Banner practice is to introduce HW in two phases: an initial "Rev 0" prototype, followed with a "Rev 1" version that will be released for manufacture.
 - For Rev 0 material, any manufacturing and component quality issues must largely be addressed prior to delivering the evaluation unit(s) to the EMC/Compliance group. Of course, it is understood that prototype material (by its nature) may have defects not fully shaken-out, but overall the HW must be stable to the point that multiple successive "bring up/ turning the power on/off" produce similar (successful) results. Ideally, the product will have cycled through at least one pass of Early Integration Test (EIT), but in any case, it should be stable when turned on. EMC tests at this phase are intended to identify design errors in time to be addressed prior to tape-out of the Rev 1 version. The focus of such tests will be Radiated Emissions (RE), Conducted Emissions (CE), ESD and Surge if applicable.
 - Rev 1 material is expected to be much more stable, and will be subjected to the full suite of EMC qualifications tests (explained below). The product must be substantially as it would be if delivered into a customer's hands. No known instability is acceptable, and any problems uncovered during EMC qualification must be addressed immediately. Agency certification is the target outcome of EMC tests of Rev 1 material.

EMC tests are designed to evaluate the product for compliance to certain government regulations in each of two major categories: Emissions, and Immunity.

- Emissions tests consist of the following categories:
 - Radiated Emissions (RE)
 - Low frequency (30MHz to 1GHz) data shall be measured at 10m

Conducted Emissions (CE)

For Emissions, the worst case scenario must be considered and series of test may be conducted to determine that.

Immunity can be separated into these subcategories: Not applicable for NA

- Radiated Immunity-N/A

- Electro-Static Discharge (ESD)-N/A
- Conducted Immunity-N/A
- Surge-N/A
- Electrical Fast Transients (EFT)-N/A
- Magnetic Field Immunity-N/A

In Immunity tests, the test suite attempts to mimic a typical application, while monitoring for any malfunctions. Constant visual check for any abnormality will determine EUT level of degradation. Device being tested for susceptibility shall be categorized as having met one of these three levels of acceptance:

- A. The system will continue to operate normally, with no degradation of performance.
- B. Some degradation of performance is allowed provided there is no catastrophic failure noted or operator intervention to restore apparatus function. Light flickering is considered to be acceptable. The system will self-recover after test stimulus is removed.
- C. Temporary loss of function. Operator intervention required to restore full functionality.

Note: Hardware failures are not acceptable for any of these levels.

At a minimum, test lab must have appropriate accreditation such as those established by the following authorizing agencies:

FCC, NVLAP, Industry Canada, CE, VCCI, KCC, etc.

Note: For Q240 tests, the test lab shall be approved by FCC, CI, CE, and VCCI.

Applicable tests must conform to the appropriate standards and test reports must include reference to the particular agency and specification for which conformance is claimed.

1.4 Engineering Justification

This configuration will be used for emissions test, both Radiated (RE) and Conducted (CE). The configuration has been sized such that it is representative of a typical installation at a customer site.

EUT under the test has all the features to represent the worst case scenario. The product will be tested with sensing mode actives "ON" that represent the worst case EMI profile.

Any option of cable could be used for all the test and represent the entire set since the construction of the cables are all the same. The EUT will be tested with shielded but the shielded is unterminated on both ends "MQDEC2-5XX may be followed by RA". RA is the right angle connector and XX is length of the cable (06, 15, 30 or 50 ft.).

2. Electromagnetic Compatibility

Tests Performed:

- Unintentional Radiated Emission
- Unintentional Conducted Emission
- Unintentional Radiated Emission high frequency
- Field Strength of Harmonics and Spurious Radiated Emission "Intentional Radator"
- Intentional Radiated Field Strength of Fundamental Emission
- Intentional Radiated Powerline Conducted Emission
- 99% Emission Bandwith of the transmitter
- Conducted telecom ports-N/A
- Radiated Immunity-N/A
- Conducted Immunity-N/A
- Electrical Fast Transient-N/A
- Electro Static Discharge-N/A
- Magnetic Field Immunity-N/A
- Surge immunity-N/A

Characteristic	State	Standard (EN61000-6-3, EN 61000-6-4) and test criteria
Radiated emissions	Operating- system is on constant transmitting and receive mode.	FCC Part 15.109:2015, FCC Part 15.109(g):2015 ICES-003 2012 30MHz-1GHz @ 10m distance
High frequency radiated emissions		1GHz to 100GHz @3m distance Target is all emissions 4dB or more below the limit.
Conducted emissions "AC Power line" for both unintentional and intentional portion of the	Operating- system is on constant transmitting and receive mode.	FCC Part 15.207:2015, ICES-003 2012 150khZ to 30MHz
(AC only) Note: DC conducted emission is performed only for verification purpose using AC power brick.		FCC Part 15.107:2015 ICES-003 2012 150khZ to 30MHz Target is all emissions 4dB or more below the limit.
Field Strength of Harmonics and Spurious Radiated Emission	Operating- system is on constant transmitting and receive mode.	FCC Part 15:245:201530 MHz up to the 5th harmonic of fundamental or 100 GHz, whichever is lower. Radio transmitting on either

Table2. Emissions specifications

"Intentional Radiator"		low, mid or high channel at approximately 100% duty
		cycle, modulated.
Field Strength of Fundamental	Operating- system is on constant transmitting mode and receiving end is in listening mode. Target is removed.	FCC Part 15:245:2015 Radiated 3 meter testing on the transmitter fundamental frequency
99% Emission Bandwidth	Operating- system is on transmitting mode and receiving end is in listening mode. Target is removed.	RSS210;2010 "Canada" Direct connect to a connector on the device to measure bandwidth of the transmitter Radio transmitting on either low, mid or high channel at approximately 100% duty cycle, modulated.
Harmonic emission (for AC only)	N/A	N/A
Flicker emission (for AC only, if applicable)	N/A	N/A

Characteristic	State	Standard (EN61000-6-2 2005, EN 61000-6-1:2007) and test criteria
ESD	N/A	N/A
Radiated immunity	N/A	N/A
Fast transient/burst	N/A	N/A
Surge voltages (AC only)	N/A	N/A
Conducted immunity	N/A	N/A
Voltage dip/interruption (applies to a range of 200- 240V AC) (AC only)	N/A	N/A
Power frequency magnetic field immunity	N/A	N/A

Table3. Immunity specifications ¹

Product test configuration will include all specified options and accessories, and be operating in a mode that maximizes emissions or sensitivity for immunity.

Immunity test are not performed in accordance with the standards noted in this table "Not applicable for this product family since it is only covering North America".

3. Cables

- Cables are all shielded.
- Min 2 meter cables are used for the main power and have the following options:
 - 5 Pin Euro integral QD with straight or right angle connector6 ft. to 50 ft. long.

Wiring Connection

NOTE: Banner recommends that the shield wire (QD cordsets only) be connected to earth ground or dc common. Shielded cordsets are recommended for all QD models.

A References

- A.1 Related Documents
- A.1.1 Banner product specification document
- A.1.2 Marketing document

A.2 Terminology

CE	Conducted Emissions
RE	Radiated Emissions
RFI	Radio Frequency Interference
EFT	Electrical Fast Transient
ESD	Electro-Static Discharge

B Configuration Table References

B.1 Configuration

Table 3- Conf	iguration	
Product	Model number	Serial Number & date code
family		
R-Gage	Q240RA-US-AF2Q	Production
Q240		2015-05-06T08;59;00

B.2 Surport Equipment

Table 4

Item	Component & MFG	Q'ty	P/N or model No.	Remark
1*	Banner, Plug-In Power Supply	1	PDS-24-4	Input: 100-270VAC Output: 24Vdc
2.	Power & configuration box	1	N/A	Input:24Vdc Output: 24Vdc

* Note: It is only used for conducted emission verification testing.