

PARTIAL TEST REPORT

BNetzA-CAB-02/21-102

Test report no.: 1-2910/21-01-02

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075

Internet: https://www.ctcadvanced.com
e-mail: mail@ctcadvanced.com
Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.

Applicant

Banner Engineering Corp.

9714 10th Avenue North

* Minneapolis, MN 55441 / UNITED STATES

Phone: +1 76 35 19 70 02 Contact: Dennis Swanson

e-mail: <u>dswanson@bannerengineering.com</u>

Manufacturer

Banner Engineering Corp.

9714 10th Avenue North

* Minneapolis, MN 55441 / UNITED STATES

Test standard/s

FCC - Title 47 CFR Part 15 FCC - Title 47 of the Code of Federal Regulations; Chapter I;

Part 15 - Radio frequency devices

RSS - 210 Issue 10 Radio Standards Specification - Licence-Exempt Radio Apparatus: Category II

Equipment

RSS-GEN General Requirements for Compliance of Radio Apparatus

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Industrial Radar Presence Detector

Model name: T30R-4545-KUQ

FCC-ID UE3-T30R

Radio Communications

Frequency: 119 GHz – 123 GHz

Technology tested: FMCW Radar

Antenna: Embedded Patch

Power supply: 12 V to 30 V DC

Temperature range: -40°C to +65°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:		
Meheza Walla	Frank Heussner		
Lab Manager	Testing Manager		

Radio Communications

Table of contents

1	Table of contents2							
2	General information							
	2.1	Notes and disclaimer						
	2.2	Application details	3					
	2.3	Test laboratories sub-contracted	3					
3	Test s	standard/s, references and accreditations						
4	Test e	environment						
5	Repo	ting statements of conformity – decision rule	Ę					
6	-	tem						
	6.1	General description						
	6.2	Additional information						
7		ence of testing						
′	•	•						
	7.1	Sequence of testing radiated spurious 9 kHz to 30 MHz						
	7.2	Sequence of testing radiated spurious 30 MHz to 1 GHz						
	7.3 7.4	Sequence of testing radiated spurious 1 GHz to 18 GHz						
	7. 4 7.5	Sequence of testing radiated spurious above 10 GHz with external mixers						
8		iption of the test setup						
•	8.1	Shielded semi anechoic chamber						
	8.2	Radiated measurements fully anechoic chamber						
	8.3	Radiated measurements 18 GHz to 50 GHz in test lab						
	8.4	Radiated measurements > 50 GHz in test lab						
	8.5	Radiated power measurements using RF detector according to ANSI C63.10-2013						
9	Meas	urement uncertainty	18					
10	Far	field consideration for measurements above 18 GHz	19					
11	Mea	asurement results	20					
	11.1	Summary	20					
12	Mea	asurement results	21					
	12.1	Occupied bandwidth (6 dB Bandwidth)	21					
	12.2	Maximum E.I.R.P.						
	12.3	Spurious emissions radiated						
13	Glo	ssary	60					
14	Doo	cument history	61					
15	Acc	reditation Certificate – D-PL-12076-01-04	61					
16								

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order: 2021-07-15
Date of receipt of test item: 2021-08-17
Start of test:* 2021-10-04
End of test:* 2021-10-12

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 3 of 62

^{*}Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

3 Test standard/s, references and accreditations

Test standard	Date	Description
FCC - Title 47 CFR Part 15		FCC - Title 47 of the Code of Federal Regulations; Chapter I;
		Part 15 - Radio frequency devices
RSS - 210 Issue 10*	12-2019	Spectrum Management and Telecommunications Radio Standards Specification - Licence-Exempt Radio Apparatus: Category I Equipment
RSS - Gen Issue 5 incl. Amendment 1 & 2*	02-2021	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus

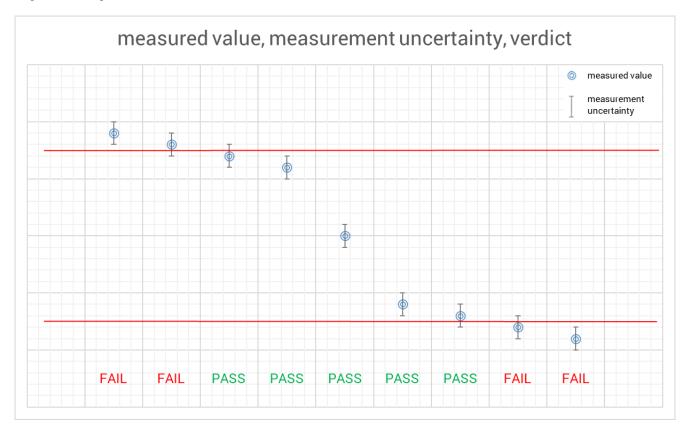
^{*} For information only. Frequency band of operation is not subject to RSS-210 Issue 10.

Guidance	Version	Description
ANSI C63.4-2017	-/-	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10-2013 -/-		American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

Accreditation	Description	
D-PL-12076-01-04	Telecommunication and EMC Canada https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-04e.pdf	DAKKS Deutsche Akkreditierungsstelle D-PL-12076-01-04
D-PL-12076-01-05	Telecommunication FCC requirements https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-05e.pdf	DAKKS Deutsche Akkreditierungsstelle D-PL-12076-01-05

4 Test environment

Temperature	:	T_{nom} T_{max} T_{min}	+21 °C during room temperature tests -/- °C during high temperature tests -/- °C during low temperature tests		
Relative humidity content	:		49 %		
Barometric pressure	:		1010 hPa		
Power supply	:	V _{nom} V _{max} V _{min}	24.0 V DC rated voltage -//-		


© CTC advanced GmbH Page 4 of 62

5 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong.

© CTC advanced GmbH Page 5 of 62

6 Test item

6.1 General description

Kind of test item	:	Industrial Radar Presence Detector
Model name:	:	T30R-4545-KUQ
S/N serial number :		Engineering samples
Hardware status : R		Revision C
Software status	:	Firmware Version 3.4
Frequency band	:	119 GHz – 123 GHz
Type of modulation	:	FMCW
Number of channels	:	1 (Normal Mode)
Antenna	:	Embedded Patch
Power supply	:	12 V to 30 V DC (24 V DC rated voltage) <2.4 W <100 mA @24 V DC
Temperature range	:	-40°C to +65°C

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-2910/21-01-01_AnnexA

1-2910/21-01-01_AnnexB 1-2910/21-01-01_AnnexD

Special test software was used to change from normal operation mode to test mode (low / middle / high) as required by CFR 47 Part 15.31(m).

Low Channel = 119.0 GHz Middle Channel = 121.0 GHz High Channel = 122.9 GHz

Spurious emissions were performed with low, middle and high channels.

© CTC advanced GmbH Page 6 of 62

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

© CTC advanced GmbH Page 7 of 62

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 8 of 62

7.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes
 the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table
 positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 9 of 62

7.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 10 of 62

7.5 Sequence of testing radiated spurious above 50 GHz with external mixers

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate for far field (e.g. 0.25 m).
- The EUT is set into operation.

Premeasurement

- The test antenna with external mixer is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.
- Caution is taken to reduce the possible overloading of the external mixer.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- As external mixers may generate false images care is taken to ensure that any emission measured by the spectrum analyzer does indeed originate in the EUT. Signal identification feature of spectrum analyzer is used to eliminate false mixer images (i.e., it is not the fundamental emission or a harmonic falling precisely at the measured frequency).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

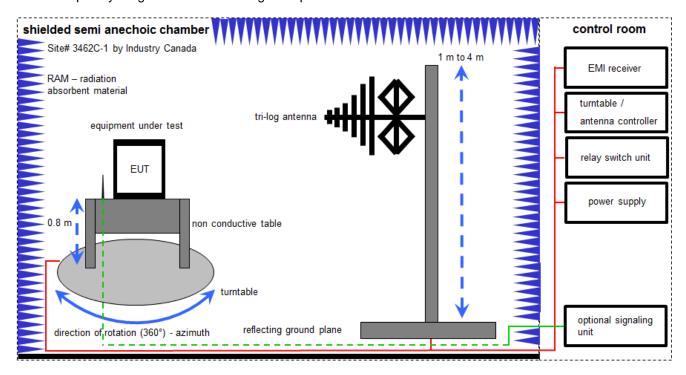
© CTC advanced GmbH Page 11 of 62

8 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

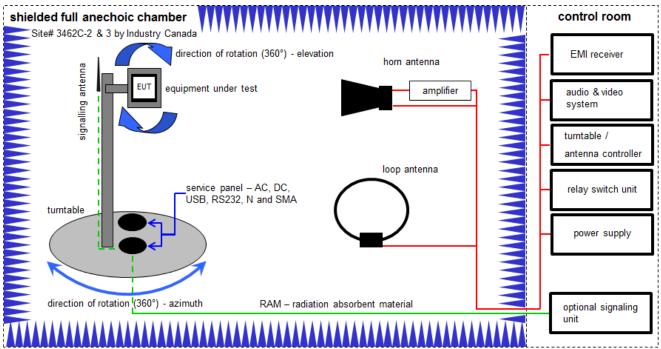

k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 12 of 62

8.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04466	300000580	ne	-/-	-/-
3	n. a.	Semi anechoic chamber	300023	MWB AG	-/-	300000551	ne	-/-	-/-
4	n. a.	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
5	n. a.	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
6	n. a.	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
7	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	01029	300005379	vIKI!	18.08.2021	17.08.2023
8	n. a.	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	10.12.2020	09.12.2021
9	n. a.	PC	TecLine	F+W	-/-	300004388	ne	-/-	-/-

© CTC advanced GmbH Page 13 of 62

8.2 Radiated measurements fully anechoic chamber

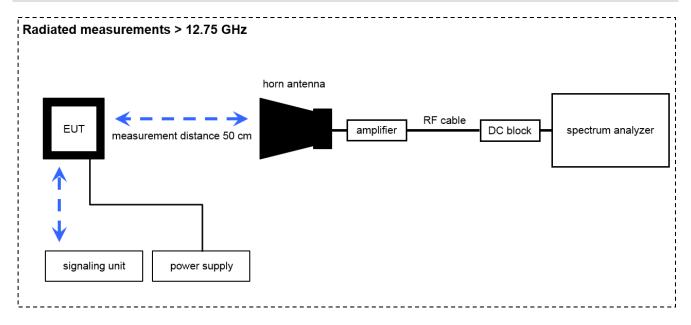
Measurement distance: horn antenna 3 meter; loop antenna 3 meter / 1 meter

FS = UR + CA + AF

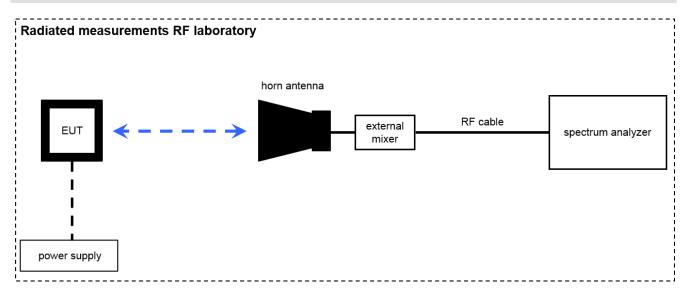
(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \ \mu V/m)$

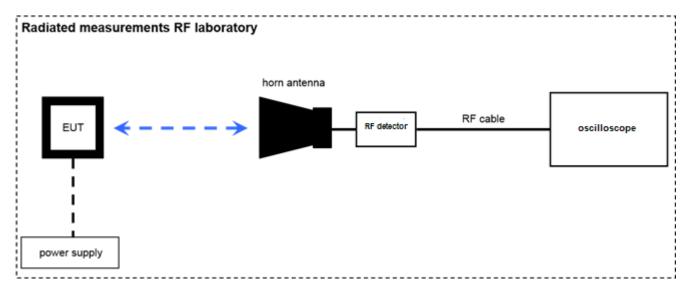

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	vIKI!	09.12.2020	08.12.2023
2	n. a.	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vIKI!	01.07.2021	30.06.2023
3	n.a.	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
4	n. a.	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3697	300001605	vIKI!	12.03.2021	11.03.2023
5	n. a.	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
6	n. a.	Variable isolating transformer	MPL IEC625 Bus Variable isolating transformer	Erfi	91350	300001155	ne	-/-	-/-
7	n. a.	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	11.12.2020	10.12.2021
8	n. a.	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
9	n. a.	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
10	n. a.	Broadband Amplifier 5-13 GHz	CBLU5135235	CERNEX	22010	300004491	ev	-/-	-/-
11	n. a.	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
12	n. a.	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO		300004682	ne	-/-	-/-
13	n. a.	PC	ExOne	F+W		300004703	ne	-/-	-/-
14	n. a.	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011572	300005241	ev	-/-	-/-


© CTC advanced GmbH Page 14 of 62

8.3 Radiated measurements 18 GHz to 50 GHz in test lab

8.4 Radiated measurements > 50 GHz in test lab



Note: conversion loss of mixer is already included in analyzer value.

© CTC advanced GmbH Page 15 of 62

8.5 Radiated power measurements using RF detector according to ANSI C63.10-2013

Note: EUT is replaced by reference source for substitution measurement

© CTC advanced GmbH Page 16 of 62

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n.a.	Horn Antenna 18,0- 40,0 GHz	LHAF180	Microw.Devel	39180-103-021	300001747	vIKI!	18.02.2019	17.02.2022
2	n. a.	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda		300000486	vIKI!	21.01.2020	20.01.2022
3	n. a.	Std. Gain Horn Antenna 26.5-40.0 GHz	V637	Narda	82-16	300000510	vIKI!	23.01.2020	22.01.2022
4	n.a.	Std. Gain Horn Antenna 33.0-50.1 GHz	2324-20	Flann	57	400000683	ne	-/-	-/-
5	n. a.	Std. Gain Horn Antenna 49.9-75.8 GHz	2524-20	Flann	*	300001983	ne	-/-	-/-
6	n. a.	Std. Gain Horn Antenna 60-90 GHz	COR 60_90	Thomson CSF		300000814	ev	-/-	-/-
7	n. a.	Std. Gain Horn Antenna 73.8-112 GHz	2724-20	Flann	*	300001988	ne	-/-	-/-
8	n.a.	Std. Gain Horn Antenna 92.3-140 GHz	2824-20	Flann		300001993	ne	-/-	-/-
9	n. a.	Std. Gain Horn Antenna 114-173 GHz	2924-20	Flann	*	300001999	ne	-/-	-/-
10	n. a.	Std. Gain Horn Antenna 145-220 GHz	3024-20	Flann	*	300002000	ne	-/-	-/-
11	n. a.	Std. Gain Horn Antenna 217-330 GHz	32240-20	Flann	233278	300004960	ne	-/-	-/-
12	n. a.	Standard Gain Horn 325-500 GHz	570240-20 1785-2a	Flann	273569	300006097	ev	25.05.2020	24.05.2022
13	n. a.	Broadband LNA 18-50 GHz	CBL18503070PN	CERNEX	25240	300004948	ev	09.03.2020	08.03.2022
14	n. a.	Harmonic Mixer 3- Port, 50-75 GHz	FS-Z75	Rohde & Schwarz	101578	300005788	k	15.06.2021	14.06.2022
15	n. a.	Harmonic Mixer 3- Port, 60-90 GHz	FS-Z90	R&S	101555	300004691	k	22.07.2021	21.07.2022
16	n. a.	Harmonic Mixer 3- Port, 75-110 GHz	FS-Z110	R&S	101411	300004959	k	15.06.2021	14.06.2022
17	n.a.	Harmonic Mixer 3- port, 90-140 GHz	FS-Z140	Rohde & Schwarz	101119	300005581	k	22.07.2021	21.07.2022
18	n. a.	Harmonic Mixer 3- Port, 110-170 GHz	FS-Z170	Radiometer Physics GmbH	100014	300004156	k	11.06.2021	10.06.2022
19	n. a.	Harmonic Mixer 3- Port, 140-220 GHz	SAM-220	Radiometer Physics GmbH	200001	300004157	k	22.07.2021	21.07.2022
20	n. a.	Harmonic Mixer 3- Port, 220-325 GHz	SAM-325	Radiometer Physics GmbH	100002	300004158	k	22.07.2021	21.07.2022
21	n.a.	Harmonic Mixer 325- 500GHz	FS-Z500	Radiometer Physics GmbH	101016	300006096	k	14.06.2021	13.06.2022
22	n. a.	Spectrum Analyzer 2 Hz - 85 GHz	FSW85	R&S	101333	300005568	k	30.06.2021	29.06.2022
24	n.a.	Std. Gain Horn Antenna 90-140 GHz	COR 90_140	Thomson CSF		300000799	ev	-/-	-/-
25	n.a.	F-Band Positive Amplitude Detector	SFD-903144-08SF- P1	Sage Millimeter Inc.	07354-1	300006119	ev	-/-	-/-
26	n.a.	SG Extension Module 110 - 170 GHz	E8257DV06	VDI	US53250018	300005540	ev	-/-	-/-
27	n.a.	Std. Gain Horn Antenna 114-173 GHz	2924-20	Flann	*	300001999	ne	-/-	-/-
28	n.a.	Synthesized Sweeper 10 MHz - 40 GHz	83640A	HP	3119A00458	300002266	vIKI!	13.12.2019	12.12.2021
29	n.a.	2.5 GHz Digital Phosphor Oscilloscope	DPO7254	Tektronix	B022702	300003573	vIKI!	07.12.2020	06.12.2022
30	n. a.	Waveguide Amplifier	VDI-WR8.0AMP	VDI	1-13	300006234	ev	-/-	-/-

© CTC advanced GmbH Page 17 of 62

9 Measurement uncertainty

Test case	Uncertainty			
Equivalent isotropically radiated power (e.i.r.p.)	Conducted value ± 1 dB Radiated value ± 3 dB			
Permitted range of operating frequencies	± 100 kHz			
Conducted unwanted emissions in the spurious domain (up to 18 GHz)	± 1 dB			
Radiated unwanted emissions in the spurious domain (up to 18 GHz)	± 3 dB			
Conducted unwanted emissions in the spurious domain (18 to 40 GHz)	± 4 dB			
Radiated unwanted emissions in the spurious domain (18 to 40 GHz)	± 4 dB			
Conducted unwanted emissions in the spurious domain (40 to 50 GHz)	± 4.5 dB			
Radiated unwanted emissions in the spurious domain (40 to 50 GHz)	± 4.5 dB			
Conducted unwanted emissions in the spurious domain (above 50 GHz)	± 5 dB			
Radiated unwanted emissions in the spurious domain (above 50 GHz)	± 5 dB			
DC and low frequency voltages	± 3 %			
Temperature	±1°C			
Humidity	±3 %			

© CTC advanced GmbH Page 18 of 62

10 Far field consideration for measurements above 18 GHz

Far field distance calculation:

 $D_{ff} = 2 \times D^2/\lambda$

with

D_{ff} Far field distance D Antenna dimension

λ wavelength

Spurious emission measurements:

Antenna frequency range in GHz	Highest measured frequency in GHz	D in cm	λ in cm	D _{ff} in cm
18-26	26	3.4	1.15	20.04
26-40	40	2.2	0.75	12.91
40-50	50	2.77	0.60	25.58
50-75	75	1.85	0.40	17.11
75-110	110	1.24	0.27	11.28
90-140	140	1.02	0.22	9.72
110-170	170	0.85	0.18	8.19
140-220	220	0.68	0.14	6.78
220-325	325	0.43	0.09	4.01
325-500	500	0.26	0.06	2.22

In band measurement (OBW):

Antenna frequency range in GHz	Highest measured frequency in GHz	Antenna dimension in cm	Wavelength in cm	Far Field distance in cm
90 - 140	123.5	1	0.24	8.24

© CTC advanced GmbH Page 19 of 62

11 Measurement results

11.1 Summary

No deviations from the technical specifications were ascertained	
There were deviations from the technical specifications ascertained	
This test report is only a partial test report. The content and verdict of the performed test cases are listed below.	

TC identifier	Description	verdict	date	Remark
RF-Testing	FCC 47 CFR Part 15 IC RSS-210 Issue 10* IC RSS-Gen Issue 5*	see below	2022-11-17	-/-

Test specification clause	Test case	Temperature conditions	Power supply	Pass	Fail	NA	NP	Results (max.)
§15.258 (d) RSS-Gen Issue 5* RSS-210 Issue 10*	Occupied bandwidth	Nominal	Nominal	\boxtimes				complies
§15.258(b) (1) / (3) RSS-Gen Issue 5* RSS-210 Issue 10*	Maximum E.I.R.P.	Nominal	Nominal	\boxtimes				complies
§15.258(c) RSS-Gen Issue 5* RSS-210 Issue 10*	Spurious Emissions	Nominal	Nominal	\boxtimes				complies
§15.258(d) RSS-Gen Issue 5* RSS-210 Issue 10*	Frequency stability	Extreme Nominal	Extreme Nominal				\boxtimes	
RSS-Gen Issue 5* RSS-210 Issue 10*	Duty cycle	Nominal	Nominal					See chapter 12.2
RSS-Gen Issue 5 8.8*	AC power-line conducted emissions	Nominal	Nominal				\boxtimes	_

^{*}For information only. Frequency band of operation is not subject to RSS-210 Issue 10.

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

© CTC advanced GmbH Page 20 of 62

12 Measurement results

12.1 Occupied bandwidth (6 dB Bandwidth)

Description:

Measurement of the bandwidth of the wanted signal.

Measurement:

Measurement parameter		
Detector:	Pos-Peak	
Sweep time:	15 s	
Resolution bandwidth:	100 kHz	
Video bandwidth:	300 kHz	
Trace-Mode:	Max Hold	

Limits:


FCC
CFR Part 15.258
The occupied bandwidth from intentional radiators operated within the specified frequency band shall comply with the following:
Frequency range
116 GHz – 123 GHz


Measurement results:

Test condition	F∟ in GHz	F _H in GHz	6dB Bandwidth in GHz
T _{nom} / V _{nom} (100 kHz RBW)	119.0824	122.9896	3.91
Measurement uncertainty	± span/1000		

© CTC advanced GmbH Page 21 of 62

11:45:38 08.10.2021

© CTC advanced GmbH Page 22 of 62

12.2 Maximum E.I.R.P.

Description:

Measurement of the maximum radiated e.i.r.p. of the wanted signal.

Measurement:

Measurement parameter				
Detector: Pos-Peak (RF-Detector)				
Video bandwidth:	10 MHz			
Trace-Mode:	Max Hold			

Limits: FCC Part 15.258 (b)

Emission levels within the 116-123 GHz, 174.8-182 GHz, 185-190 GHz and 244-246 GHz bands shall not exceed the following equivalent isotropically radiated power (EIRP) limits as measured during the transmit interval:

The average power of any emission shall not exceed 40 dBm and the peak power of any emission shall not exceed 43 dBm.

The peak power shall be measured with a detection bandwidth that encompasses the entire occupied bandwidth within the intended band of operation, e.g., 116-123 GHz, 174.8-182 GHz, 185-190 GHz or 244-246 GHz. The average emission levels shall be measured over the actual time period during which transmission occurs.

Measurement results:

Test condition	Max E.I.R.P. 10 MHz VBW	Average E.I.R.P. 10 MHz VBW
T _{nom} / V _{nom}	13.9 dBm	13.9 dBm

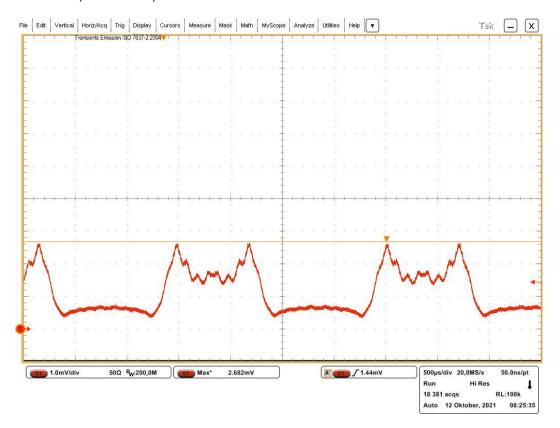
Test condition	Duty cycle
T _{nom} / V _{nom}	100 %

© CTC advanced GmbH Page 23 of 62

<u>Description of the E.I.R.P. measurement by substitution method:</u>

- 1) EUT emission measured with RF-detector:
 - Measurement distance: d = 0.33 m
 - Maximum readout value on oscilloscope: V = 2.7 mV
- 2) Substitution of EUT by a cw reference source with a frequency of f = 121 GHz and a fixed output power of $P_{ref} = 28.4$ dBm
 - Readout value on oscilloscope adjusted by far field attenuation
- 3) Calculation of the Max E.I.R.P. of the EUT:
 - Free space loss: $FSL(d) = 20 \times \log(4 \times \pi \times d \times f/c)$, c: speed of light
 - Max E.I.R.P. = P_{ref} FSL(1.75 m) + FSL (0.33 m) = 13.9 dBm
- 4) Calculation of the worst case average E.I.R.P. of the EUT:
 - Duty cycle of the EUT: 100 %
 - Average E.I.R.P. = Max E.I.R.P. + 10 x log(1.0) = 13.9 dBm

Setup of the substitution:



- 1) SG Extension Module 110 170 GHz & Std. Gain Horn Antenna 114-173 GHz
- 2) F-Band Positive Amplitude Detector & Waveguide Amplifier & Std. Gain Horn Antenna 90-140 GHz

© CTC advanced GmbH Page 24 of 62

Plot 2: EUT emission (RF-detector)

© CTC advanced GmbH Page 25 of 62

12.3 Spurious emissions radiated

Description:

Measurement of the radiated spurious emissions.

Measurement:

Measurement parameter			
Detector:	Quasi Peak / Pos-Peak / RMS		
Sweep time:	Auto		
Resolution bandwidth:	F < 1 GHz: 100 kHz F > 1 GHz: 1 MHz		
Video bandwidth:	Auto		
Frequency range:	30 MHz to 500 GHz		
Trace-Mode:	Max Hold		

<u>Limits:</u> FCC Part 15.258 / RSS-210

- (c) Spurious emissions shall be limited as follows:
- (1) The power density of any emissions outside the band of operation, e.g., 116-123 GHz, 174.8-182 GHz, 185-190 GHz or 244-246 GHz, shall consist solely of spurious emissions.
- (2) Radiated emissions below 40 GHz shall not exceed the general limits in §15.209.

FCC / IC									
CFR Part 15.209(a) / RSS-210 / RSS-Gen									
	Radiated emission limits								
Frequency (MHz)	Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meter								
0.009 - 0.490	2400/F(kHz)	300							
0.490 – 1.705	24000/F(kHz)	30							
1.705 – 30.0	30	30							
30 – 88	100	3							
88 – 216	150	3							
216 – 960	200	3							
Above 960	500	3							

- (3) Between 40 GHz and the highest frequency specified in § 15.33, the level of these emissions shall not exceed 90 pW/cm2 at a distance of 3 meters.
- (4) The levels of the spurious emissions shall not exceed the level of the fundamental emission.

© CTC advanced GmbH Page 26 of 62

<u>Limits:</u> ANSI C63.10-2013 9.6

Power density at the distance specified by the limit: PD [W/m²] Equivalent isotropically radiated power: EIRP [dBm] Distance at which the power density limit is specified: d [m]

 $EIRP[dBm] = 10 \times log(4 \times \pi \times d^2 \times PD[W/m^2])$

According to this formula, an emission limit of $PD = 90 \text{ pW/cm}^2$ at a distance of 3 meters corresponds to EIRP = -10 dBm.

Measurement results:

Normal operation mode:

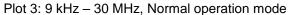
Frequency [GHz]	Detector	Bandwidth [MHz]	Level	Limit	Margin [dB]	
9.608	Peak	1	54.11 dBuV/m	74 dBuV/m	19.89	
9.608	Average	1	44.11 dBuV/m	54 dBuV/m	9.89	
61.492	Average	1	-32.98 dBm	-10 dBm	22.98	

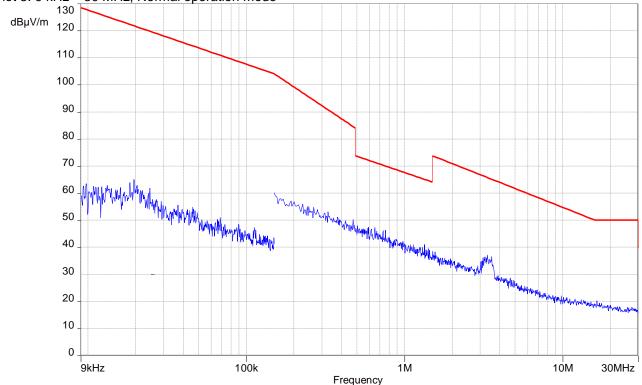
Stop mode, sweep stopped near the bottom of the range of operation:

Frequency [GHz]	Detector	Bandwidth [MHz]	Level	Limit	Margin [dB]
9.296	Peak	1	52.59 dBuV/m	74 dBuV/m	21.41
9.296	Average	1	47.44 dBuV/m	54 dBuV/m	6.56
59.499	Average	1	-10.34 dBm	-10 dBm	0.34
237.997	Average	1	-13.02 dBm	-10 dBm	3.02

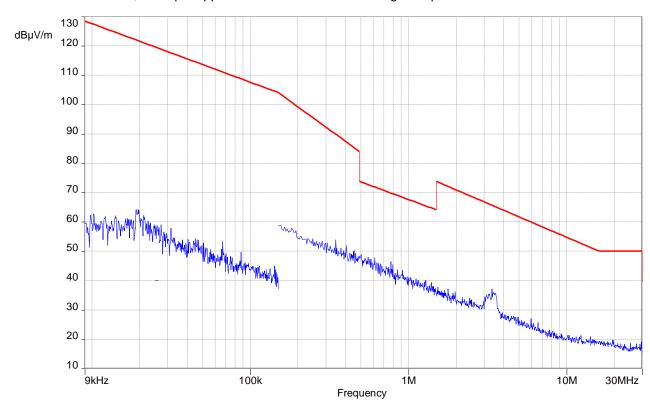
Stop mode, sweep stopped near the middle of the range of operation:

Frequency [GHz]	Detector	Bandwidth [MHz]	Level	Limit	Margin [dB]
9.453	Peak	1	53.12 dBuV/m	74 dBuV/m	20.88
9.453	Average	1	48.98 dBuV/m	54 dBuV/m	5.02
60.499	Average	1	-13.68 dBm	-10 dBm	3.68
241.996	Average	1	-14.24 dBm	-10 dBm	4.24

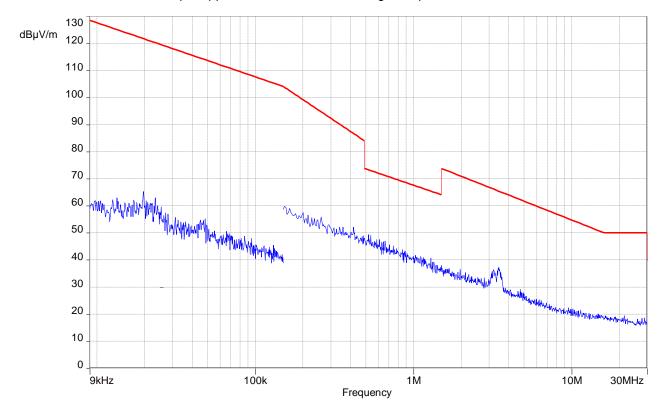

Stop mode, sweep stopped near the top of the range of operation:

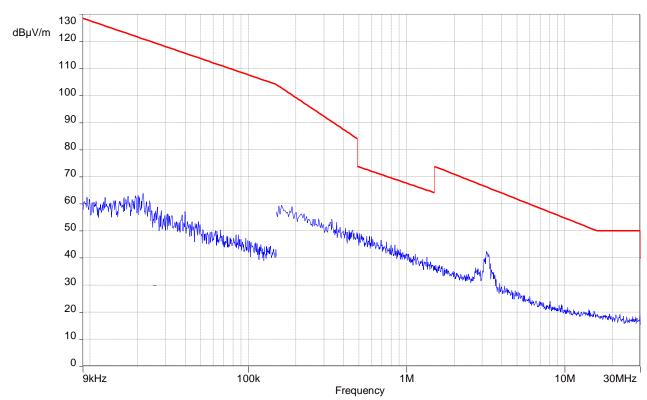

Frequency [GHz]	Detector	Bandwidth [MHz]	Level	Limit	Margin [dB]
9.601	Peak	1	49.31 dBuV/m	74 dBuV/m	24.69
61.449	Average	1	-14.41 dBm	-10 dBm	4.41
245.796	Average	1	-17.98 dBm	-10 dBm	7.98

© CTC advanced GmbH Page 27 of 62

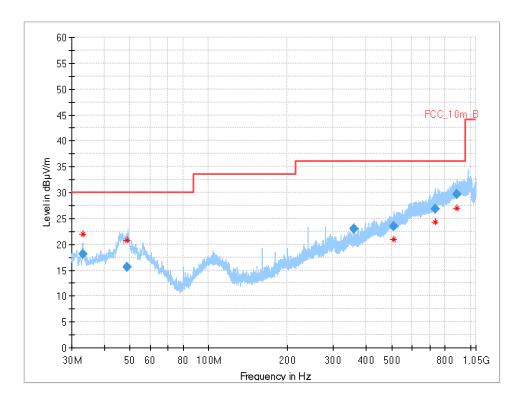


Plots:


Plot 4: 9 kHz – 30 MHz, Sweep stopped near the bottom of the range of operation

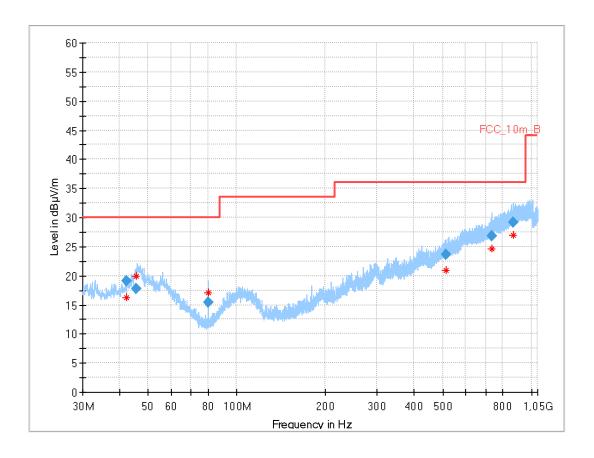

© CTC advanced GmbH Page 28 of 62

Plot 5: 9 kHz – 30 MHz, Sweep stopped in the middle of the range of operation


Plot 6: 9 kHz - 30 MHz, Sweep stopped near the top of the range of operation

© CTC advanced GmbH Page 29 of 62

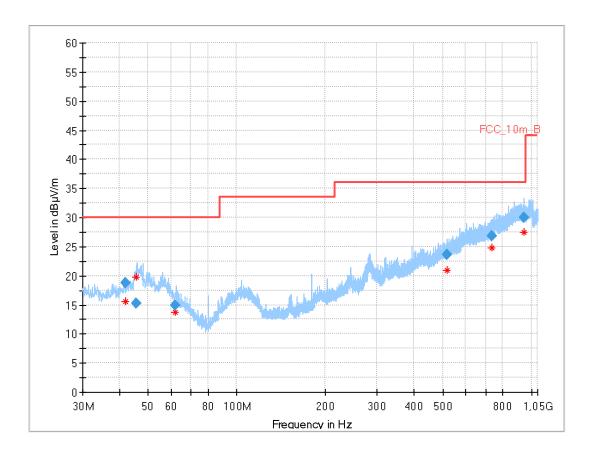
Plot 7: 30 MHz – 1GHz, Normal operation mode


Final Result

rınaı_Resun	[
Frequency	QuasiPeak	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)		(deg)	(dB/m)
, ,	()	(, , ,	()	、 - ,	` ,	(,		(3)	(,
33.048	18.13	30.0	11.9	1000	120.0	102.0	٧	157	13
48.931	15.51	30.0	14.5	1000	120.0	104.0	٧	247	15
359.981	22.89	36.0	13.1	1000	120.0	101.0	٧	-22	17
508.864	23.49	36.0	12.5	1000	120.0	101.0	٧	-22	20
734.470	26.76	36.0	9.2	1000	120.0	170.0	Н	67	23
885.406	29.63	36.0	6.4	1000	120.0	102.0	Н	-13	25

© CTC advanced GmbH Page 30 of 62

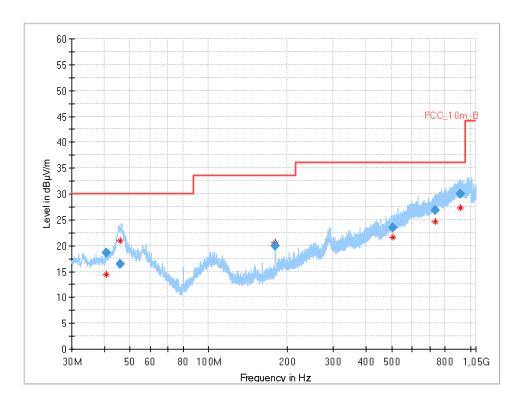
Plot 8: 30 MHz – 1 GHz, Sweep stopped near the bottom of the range of operation


Final Result

i iiiai_i\e3uii	•								
Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
42.389	19.11	30.0	10.9	1000	120.0	160.0	٧	89	15
45.690	17.81	30.0	12.2	1000	120.0	98.0	٧	265	15
80.006	15.39	30.0	14.6	1000	120.0	122.0	٧	292	8
513.355	23.66	36.0	12.3	1000	120.0	170.0	Н	157	20
735.168	26.81	36.0	9.2	1000	120.0	170.0	Н	168	23
864.920	29.18	36.0	6.8	1000	120.0	170.0	Н	10	25

© CTC advanced GmbH Page 31 of 62

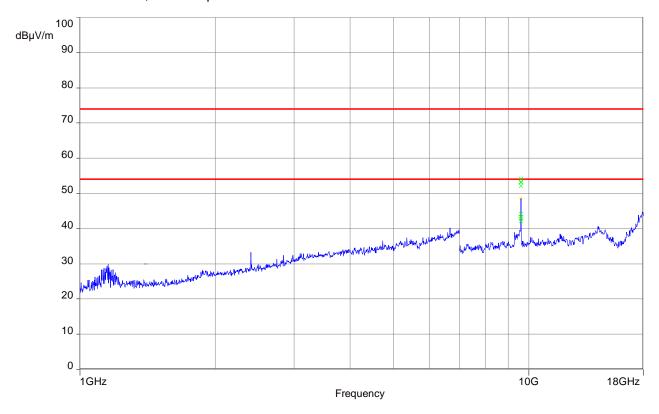
Plot 9: 30 MHz – 1 GHz, Sweep stopped in the middle of the range of operation


Final Result

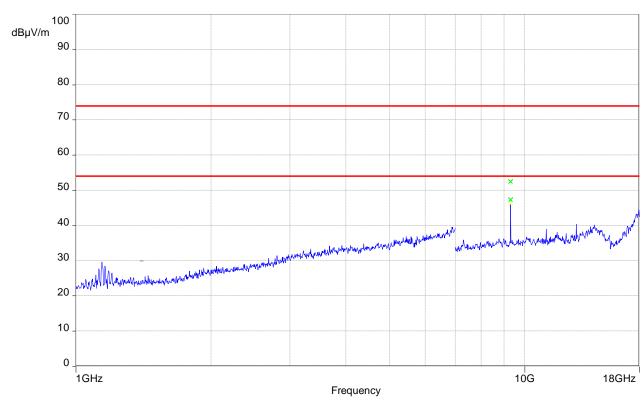
i iiiai_i\c3aii	•								
Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
41.954	18.77	30.0	11.2	1000	120.0	134.0	Н	247	15
45.614	15.21	30.0	14.8	1000	120.0	98.0	٧	157	15
61.997	14.96	30.0	15.0	1000	120.0	170.0	Н	157	13
516.124	23.69	36.0	12.3	1000	120.0	170.0	Н	-18	20
733.815	26.75	36.0	9.3	1000	120.0	170.0	٧	112	23
943.835	30.03	36.0	6.0	1000	120.0	170.0	٧	247	25

© CTC advanced GmbH Page 32 of 62

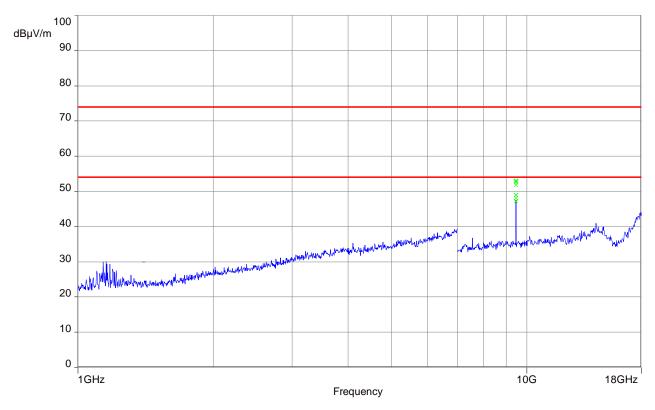
Plot 10: 30 MHz – 1 GHz, Sweep stopped near the top of the range of operation

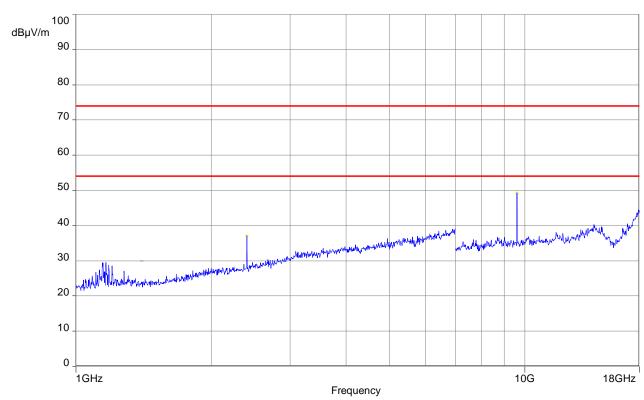

Final Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
40.665	18.54	30.0	11.5	1000	120.0	170.0	Н	22	14
45.982	16.41	30.0	13.6	1000	120.0	98.0	٧	188	15
179.993	19.90	33.5	13.6	1000	120.0	170.0	٧	-20	11
507.242	23.49	36.0	12.5	1000	120.0	145.0	Н	-22	20
735.868	26.77	36.0	9.2	1000	120.0	132.0	Н	-22	23
913.434	29.94	36.0	6.1	1000	120.0	170.0	Н	22	26


© CTC advanced GmbH Page 33 of 62

Plot 11: 1 GHz - 18 GHz, Normal operation mode

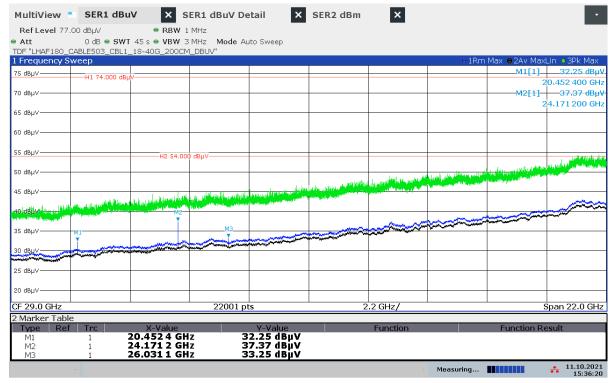

Plot 12: 1 GHz – 18 GHz, Sweep stopped near the bottom of the range of operation


© CTC advanced GmbH Page 34 of 62

Plot 13: 1 GHz – 18 GHz, Sweep stopped in the middle of the range of operation

Plot 14: 1 GHz – 18 GHz, Sweep stopped near the top of the range of operation

© CTC advanced GmbH Page 35 of 62



Plot 15: 18 GHz - 40 GHz, Normal operation mode

16:12:26 11.10.2021

Plot 16: 18 GHz – 40 GHz, Sweep stopped near the bottom of the range of operation

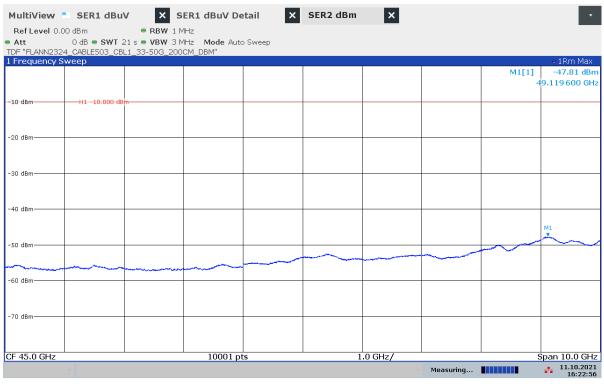
15:36:20 11.10.2021

© CTC advanced GmbH Page 36 of 62

Plot 17: 18 GHz – 40 GHz, Sweep stopped in the middle of the range of operation

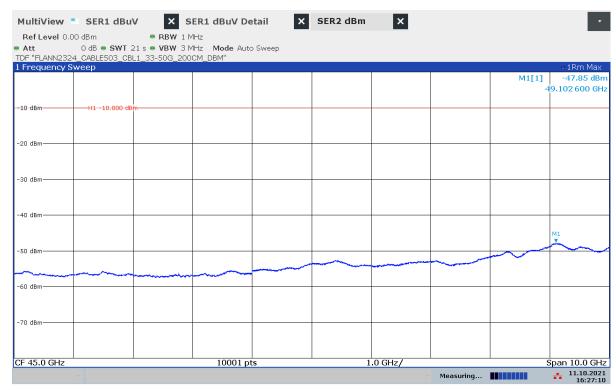
15:48:54 11.10.2021

Plot 18: 18 GHz – 40 GHz, Sweep stopped near the top of the range of operation



15:59:58 11.10.2021

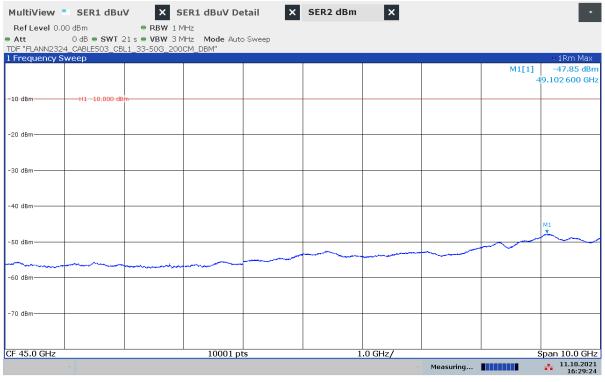
© CTC advanced GmbH Page 37 of 62



Plot 19: 40 GHz – 50 GHz, Normal operation mode

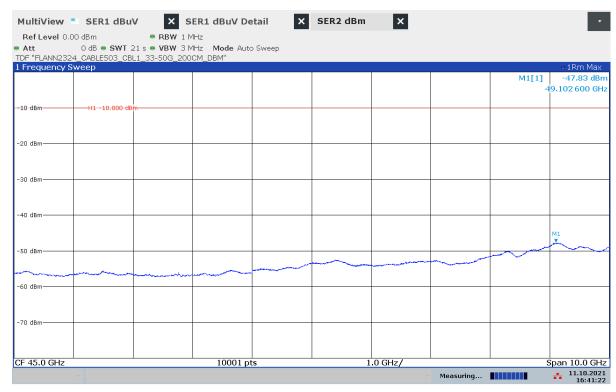
16:22:56 11.10.2021

Plot 20: 40 GHz – 50 GHz, Sweep stopped near the bottom of the range of operation



16:27:10 11.10.2021

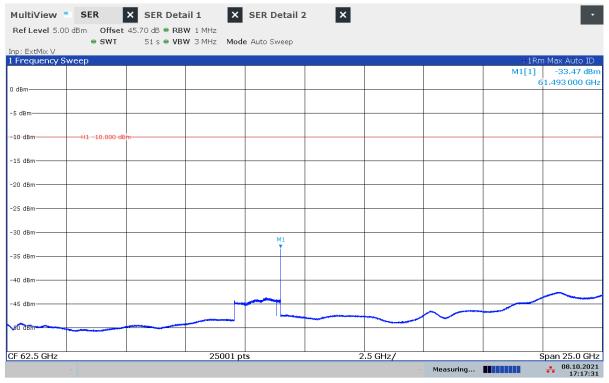
© CTC advanced GmbH Page 38 of 62



Plot 21: 40 GHz – 50 GHz, Sweep stopped in the middle of the range of operation

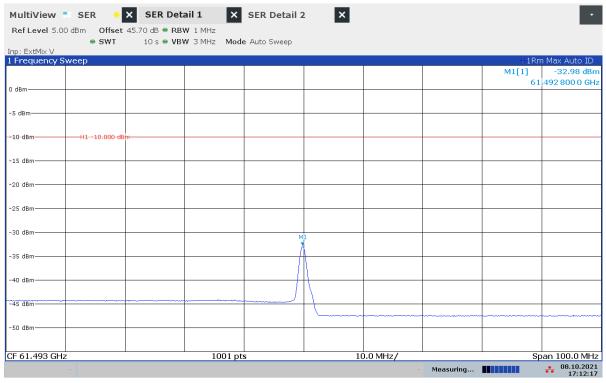
16:29:24 11.10.2021

Plot 22: 40 GHz – 50 GHz, Sweep stopped near the top of the range of operation



16:41:22 11.10.2021

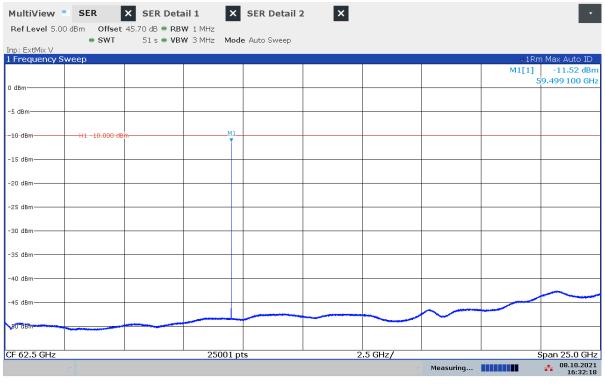
© CTC advanced GmbH Page 39 of 62



Plot 23: 50 GHz - 75 GHz, Normal operation mode

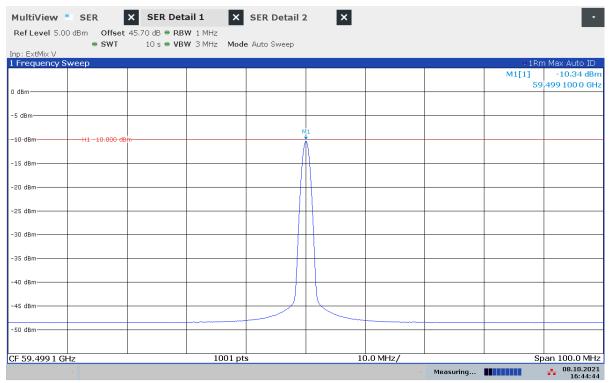
17:17:31 08.10.2021

Plot 24: 61.5 GHz, Normal operation mode



17:12:17 08.10.2021

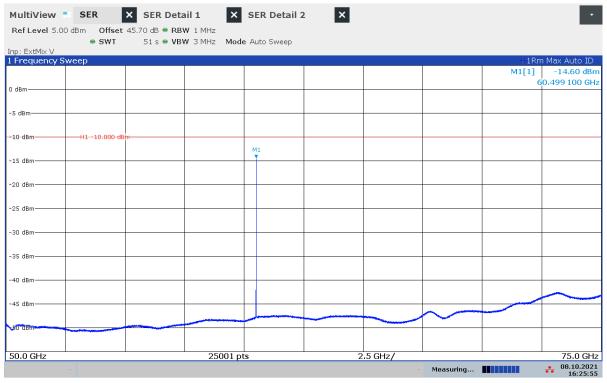
© CTC advanced GmbH Page 40 of 62



Plot 25: 50 GHz – 75 GHz, Sweep stopped near the bottom of the range of operation

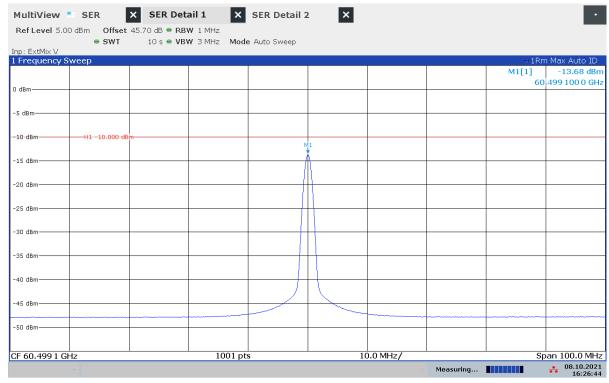
16:32:19 08.10.2021

Plot 26: 59.5 GHz, Sweep stopped near the bottom of the range of operation



16:44:44 08.10.2021

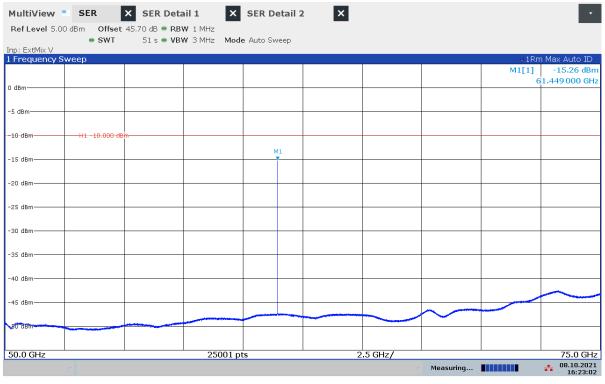
© CTC advanced GmbH Page 41 of 62



Plot 27: 50 GHz – 75 GHz, Sweep stopped in the middle of the range of operation

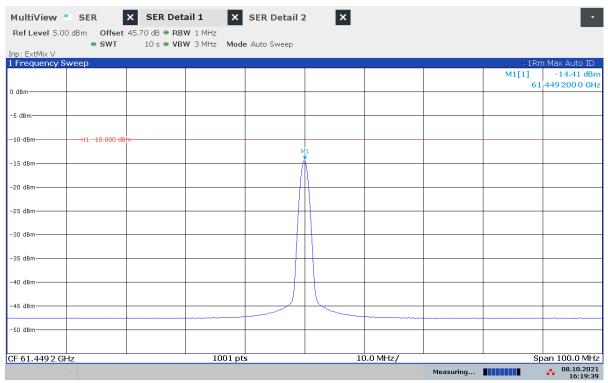
16:25:56 08.10.2021

Plot 28: 60.5 GHz, Sweep stopped in the middle of the range of operation



16:26:45 08.10.2021

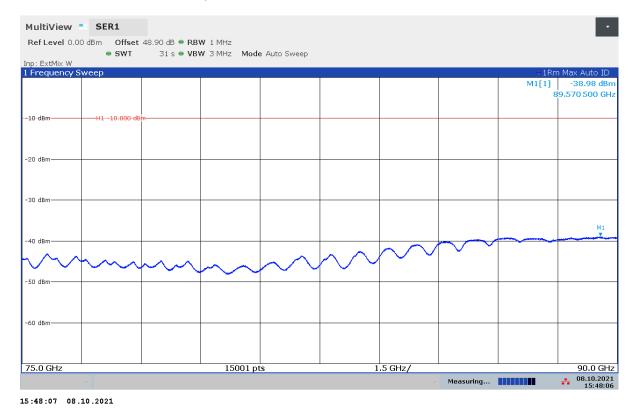
© CTC advanced GmbH Page 42 of 62



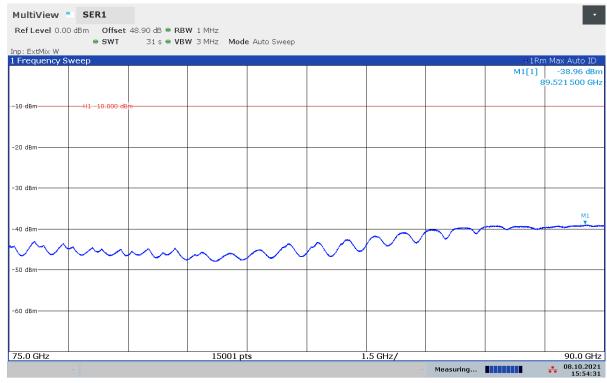
Plot 29: 50 GHz – 75 GHz, Sweep stopped near the top of the range of operation

16:23:03 08.10.2021

Plot 30: 61.5 GHz, Sweep stopped near the top of the range of operation

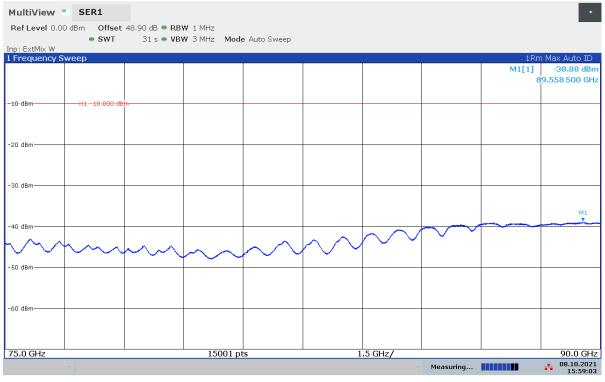


16:19:40 08.10.2021


© CTC advanced GmbH Page 43 of 62

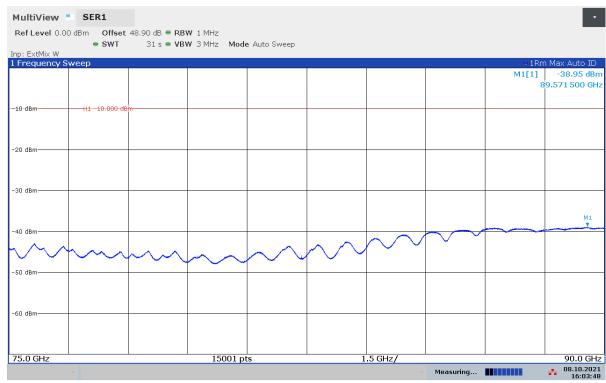
Plot 31: 75 GHz - 90 GHz, Normal operation mode

Plot 32: 75 GHz – 90 GHz, Sweep stopped near the bottom of the range of operation



15:54:32 08.10.2021

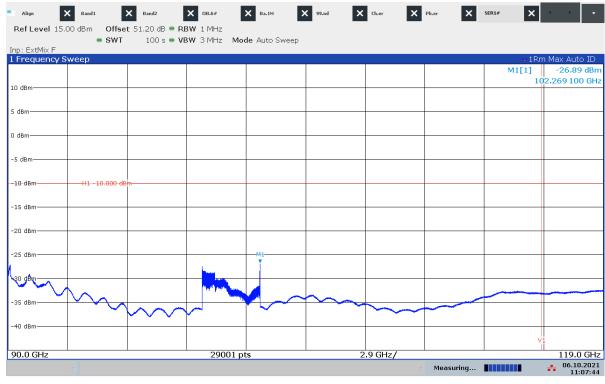
© CTC advanced GmbH Page 44 of 62



Plot 33: 75 GHz – 90 GHz, Sweep stopped in the middle of the range of operation

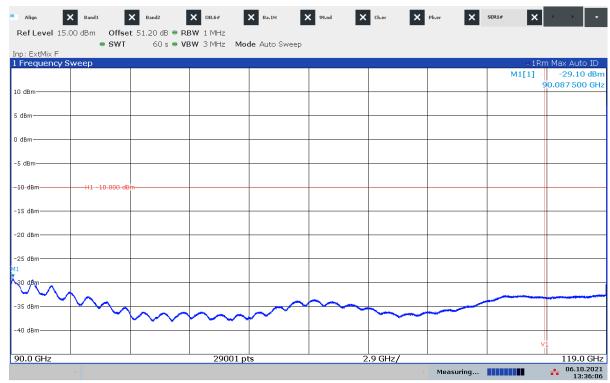
15:59:04 08.10.2021

Plot 34: 75 GHz – 90 GHz, Sweep stopped near the top of the range of operation



16:03:49 08.10.2021

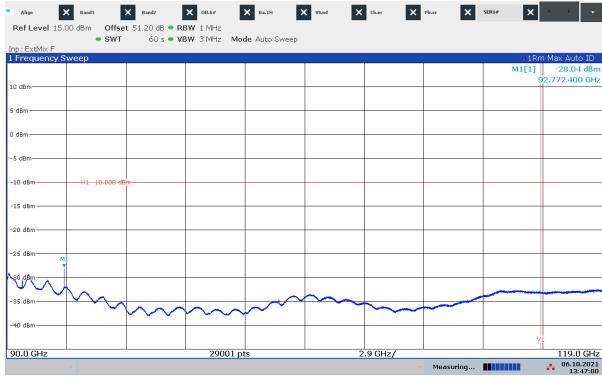
© CTC advanced GmbH Page 45 of 62



Plot 35: 90 GHz - 119 GHz, Normal operation mode

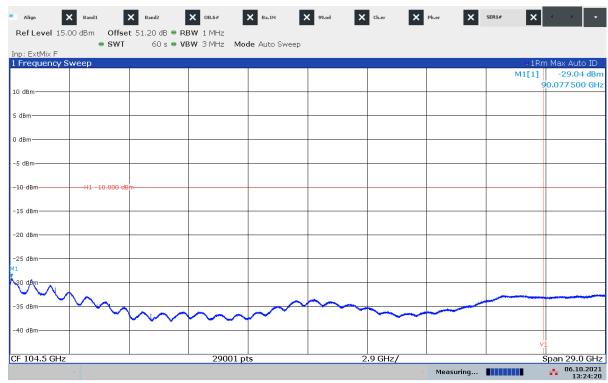
11:07:44 06.10.2021

Plot 36: 90 GHz – 119 GHz, Sweep stopped near the bottom of the range of operation



13:36:06 06.10.2021

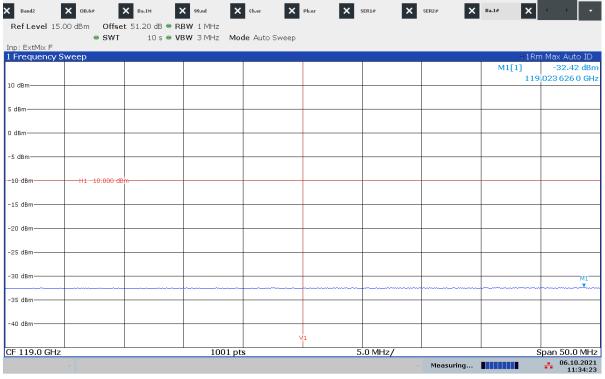
© CTC advanced GmbH Page 46 of 62



Plot 37: 90 GHz – 119 GHz, Sweep stopped in the middle of the range of operation

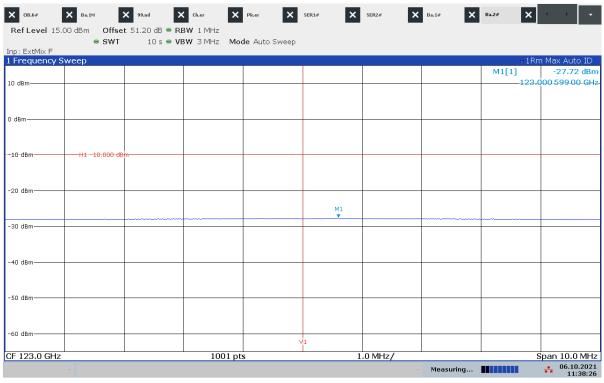
13:47:01 06.10.2021

Plot 38: 90 GHz – 119 GHz, Sweep stopped near the top of the range of operation



13:24:21 06.10.2021

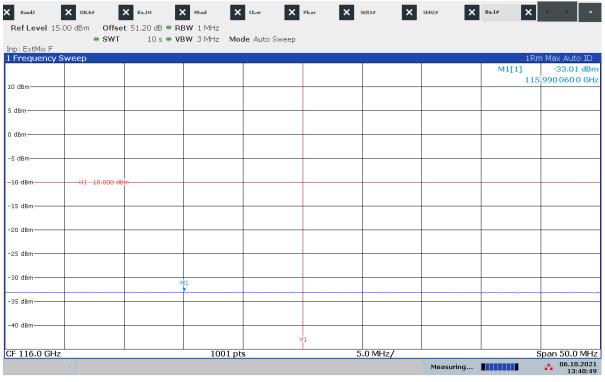
© CTC advanced GmbH Page 47 of 62



Plot 39: Band Edge Low, Normal Mode

11:34:23 06.10.2021

Plot 40: Band Edge High, Normal Mode



11:38:26 06.10.2021

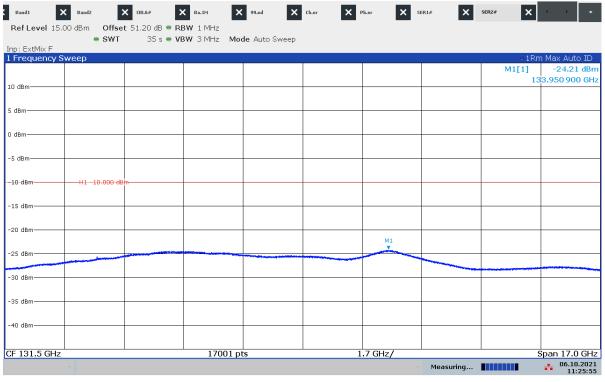
© CTC advanced GmbH Page 48 of 62



Plot 41: Band Edge Low, Sweep stopped near the bottom of the range of operation

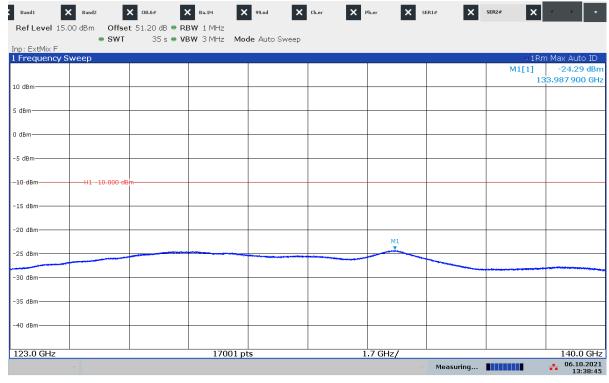
13:40:49 06.10.2021

Plot 42: Band Edge High, Sweep stopped near the top of the range of operation



13:31:57 06.10.2021

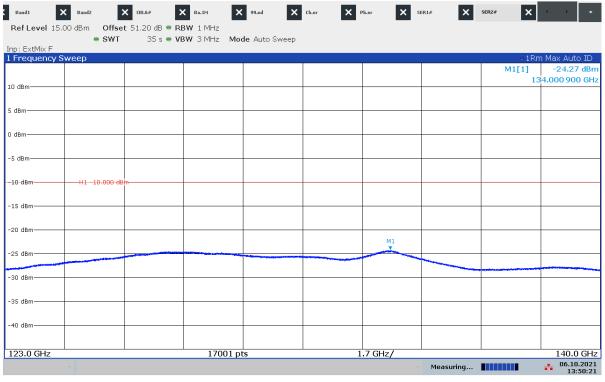
© CTC advanced GmbH Page 49 of 62



Plot 43: 123 GHz – 140 GHz, Normal operation mode

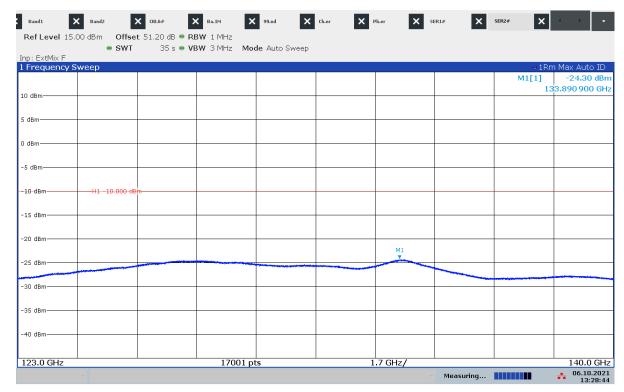
11:25:55 06.10.2021

Plot 44: 123 GHz – 140 GHz, Sweep stopped near the bottom of the range of operation



13:38:46 06.10.2021

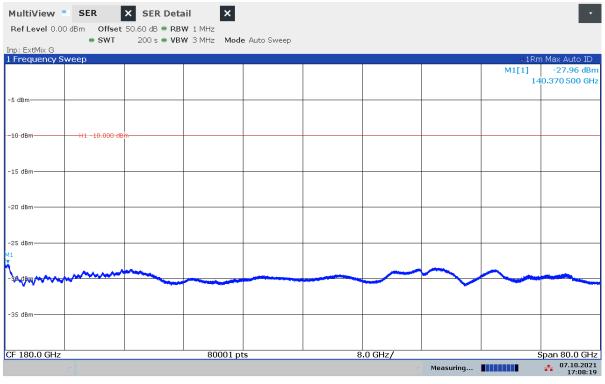
© CTC advanced GmbH Page 50 of 62



Plot 45: 123 GHz – 140 GHz, Sweep stopped in the middle of the range of operation

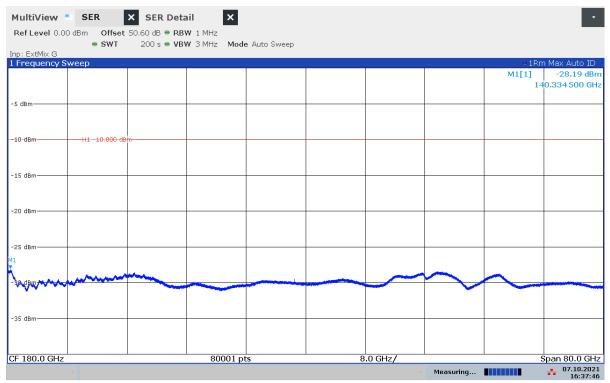
13:50:22 06.10.2021

Plot 46: 123 GHz - 140 GHz, Sweep stopped near the top of the range of operation



13:28:44 06.10.2021

© CTC advanced GmbH Page 51 of 62



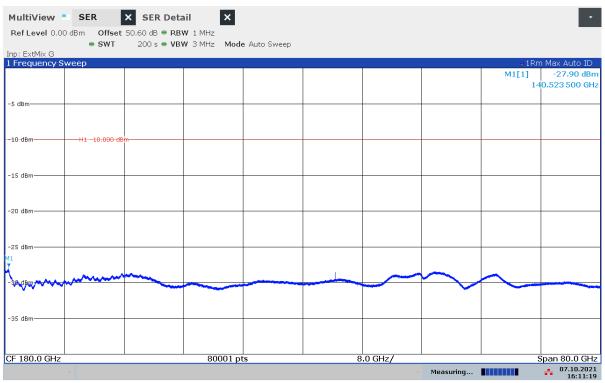
Plot 47: 140 GHz - 220 GHz, Normal operation mode

17:08:19 07.10.2021

Plot 48: 140 GHz – 220 GHz, Sweep stopped near the bottom of the range of operation

16:37:46 07.10.2021

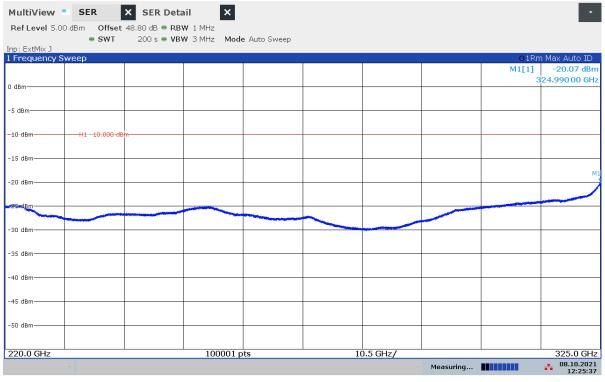
© CTC advanced GmbH Page 52 of 62



Plot 49: 140 GHz – 220 GHz, Sweep stopped in the middle of the range of operation

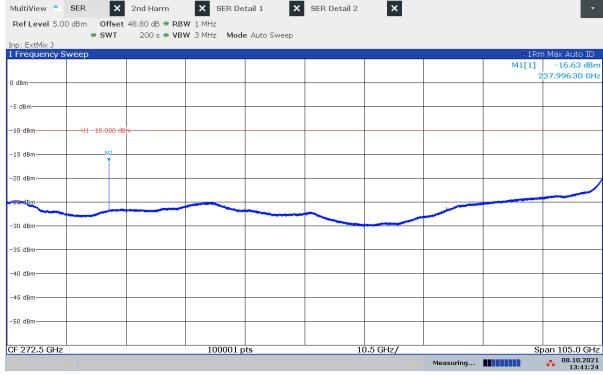
16:27:16 07.10.2021

Plot 50: 140 GHz - 220 GHz, Sweep stopped near the top of the range of operation



16:11:20 07.10.2021

© CTC advanced GmbH Page 53 of 62



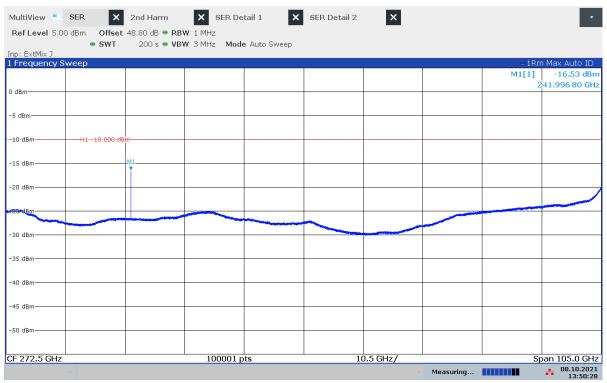
Plot 51: 220 GHz - 325 GHz, Normal operation mode

12:25:37 08.10.2021

Plot 52: 220 GHz - 325 GHz, Sweep stopped near the bottom of the range of operation

13:41:24 08.10.2021

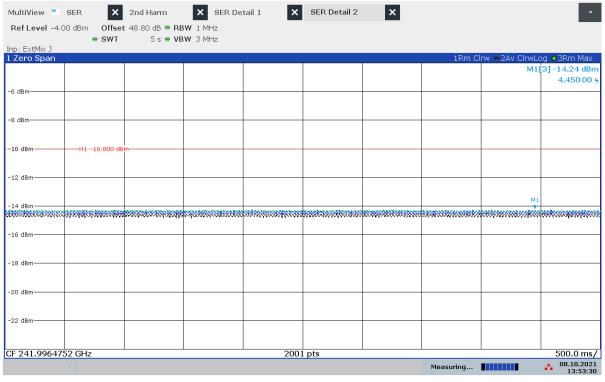
© CTC advanced GmbH Page 54 of 62



Plot 53: 238 GHz, Sweep stopped near the bottom of the range of operation

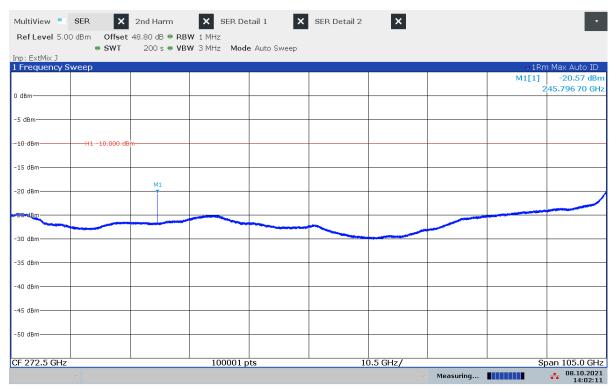
13:31:40 08.10.2021

Plot 54: 220 GHz – 325 GHz, Sweep stopped in the middle of the range of operation



13:50:28 08.10.2021

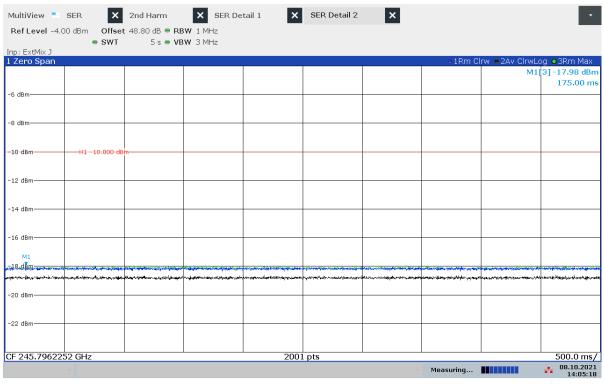
© CTC advanced GmbH Page 55 of 62



Plot 55: 242 GHz, Sweep stopped in the middle of the range of operation

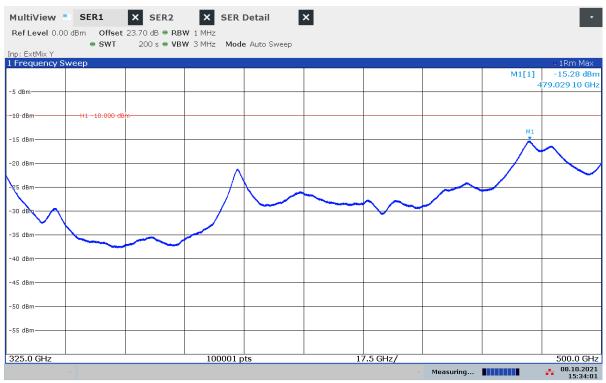
13:53:31 08.10.2021

Plot 56: 220 GHz – 325 GHz, Sweep stopped near the top of the range of operation



14:02:11 08.10.2021

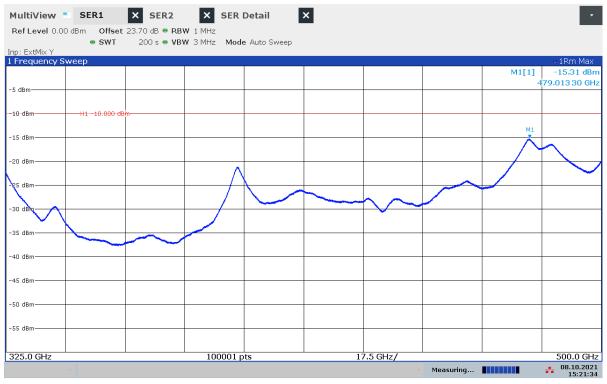
© CTC advanced GmbH Page 56 of 62



Plot 57: 245.8 GHz, Sweep stopped near the top of the range of operation

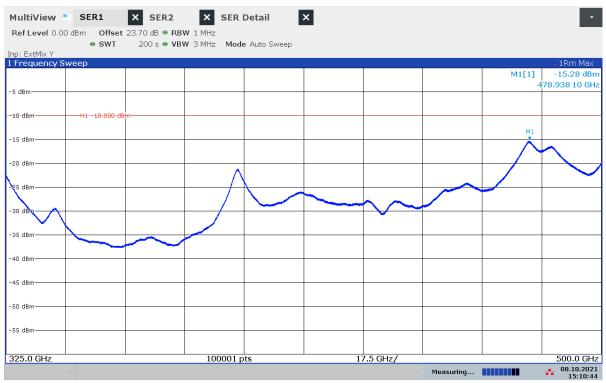
14:05:19 08.10.2021

Plot 58: 325 GHz – 500 GHz, Normal operation mode



15:34:02 08.10.2021

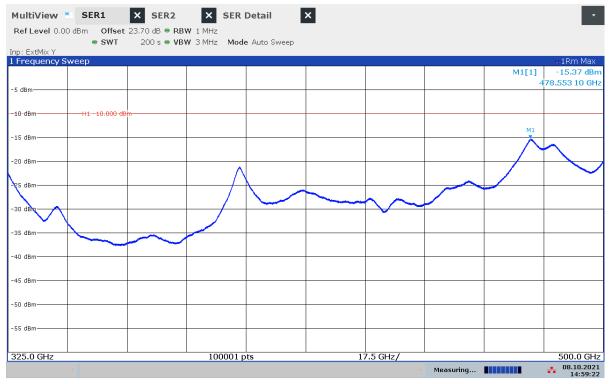
© CTC advanced GmbH Page 57 of 62



Plot 59: 325 GHz – 500 GHz, Sweep stopped near the bottom of the range of operation

15:21:35 08.10.2021

Plot 60: 325 GHz – 500 GHz, Sweep stopped in the middle of the range of operation



15:10:45 08.10.2021

© CTC advanced GmbH Page 58 of 62

Plot 61: 325 GHz – 500 GHz, Sweep stopped near the top of the range of operation

14:59:22 08.10.2021

© CTC advanced GmbH Page 59 of 62

Test report no.: 1-2910/21-01-02

13 Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
С	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
OC	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
ООВ	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz

© CTC advanced GmbH Page 60 of 62

Test report no.: 1-2910/21-01-02

14 Document history

Version	Applied changes	Date of release
-/-	Initial release	2022-11-17

15 Accreditation Certificate - D-PL-12076-01-04

first page	last page
Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025-2018 to carry out tests in the following fields: Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian	Deutsche Akkreditierungsstelle GmbH Office Berlin Office Frankfurt am Main Office Braunschweig Spittelmarkt 10 Europa-Allee 52 Bundesallee 100 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following armex with a total of 07 pages. Registration number of the certificate: D-PL-12076-01-04 Frankfurt am Main, 09.06.2020 by order [yellag. (*Plazelif Egner Head of Division*) The certificate together with its annex reflects the status of the time of the date of issue. The current status of the scope of accreditation can be found in the distribute of accredited bodies of Constitute Addirection against the Condition (additional account of the scope of accreditation can be found in the distribute of decreased bodies of Constitute Addirection against the Condition (additional account of the scope of accreditation can be found in the distribute decrease of Constitute Addirection against the Condition (additional account of the scope of of t	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkrediticrungsstelle GmbH (DAKS). Exempted is the unchanged form of separate disseminations of the cover sheet by the confirmity assessment body mentioned overlead. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAKS. The accreditation was granted pursuant to the Act on the Accreditation Body (AkiStelleG) of 31 July 2009 (federal Law Gazette Ip. 2-629) and the Regulation (IC) No 765/2008 of the European Parliament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Into 1.2 128 of 9 July 2008, 30). DAKS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA), International Accreditation Formul (RAF) and International Jubarotracy Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: Ex. *www.european-accreditation.org* ILAC: *www.lisc.org* IAF: *www.lisc.org*

Note: The current certificate annex is published on the websites (link see below).

 $\frac{https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-04.pdf}{https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-04e.pdf}$

or

https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-04_Canada_TCEMC.pdf

© CTC advanced GmbH Page 61 of 62

Test report no.: 1-2910/21-01-02

16 Accreditation Certificate - D-PL-12076-01-05

Deutsche Akkreditierungsstelle GmbH Intrinctia conditier in Settlon 8 bisection 1 Abbitelle in connection with Section 1 subsection 1 Abbitelle (20) Signatory to the Multilateral Agreements of EA, IAC and IAF for Multilateral Exception The Deutsche Abbreditierungsstelle GmbH attenss that the testing bioparony CTC advanced GmbH UntertuitAhelimer Strate 6-10, 66117 Saarbrücken Is competent under the terms of Box IAF SO/IAC 17025-2018 to carry out lesis in the following fields: Telecommunication (IFC Requirements) The goaldstoon of entracts of the accreditation certificate is assisted to the prior written aspoons by Ducinche Abbreditierungsstelle (EM) (EA) (Exception in the accreditation and passed of the production of the accreditation assignated produced by the Confirmation of the Accreditation and the accreditation and the accreditation and the confirmation in the Accreditation and the accreditation and the following weblicts: In the Accreditation correlated in another to the certificate DPL 12076-21 accompliants to the prior written aspoons by Ducinche Abbreeditierungsstelle GmbH. The accreditation correlated is above to the prior written aspocal by Ducinche Abbreeditierungsstelle GmbH served the score decided in a subject to the prior written aspocal by Ducinche Abbreeditierungsstelle GmbH served the score decided in a subject to the prior written aspocal by Ducinche Abbreeditierungsstelle GmbH served the score decided in a subject to the prior wr	first page	last page
The certificate together with somest reflects the status at the time of the date of issue. The current solate of the scope of occreditation has be found in the database of occreditated bodies of Doutsche Aldrediorungsstelle GmbH. https://www.dalds.ste/en/conten/accreditate-bodies-dalds- be seen miles!	Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of Din EN ISO/IEC 17025:2018 to carry out tests in the following fields: Telecommunication (FCC Requirements) The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 05 pages. Registration number of the certificate: D-PL-12076-01-05 Frankfurt am Maio, 09.06.2020 The certificate logether with its once reflects the status at the time of the date of issue. The current status of the scape of accreditation can be found in the distribute of accreditation on the distribution of the date of assue. The current status of the scape of accreditation can be found in the distribute of accreditation on the distribute of accreditation on the distribute of the date of assue. The current status of the scape of accreditation can be found in the distribute of accreditation on the date of accreditation on the distribute of accreditation on the date of accreditation on the d	Office Berlin Spittelmarkt 10 10117 Berlin G0327 Frankfurt am Main Spittelmarkt 10 10117 Berlin G0327 Frankfurt am Main G0327

Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-05.pdf https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-05e.pdf

or

https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-05_TCB_USA.pdf

© CTC advanced GmbH Page 62 of 62