

Bundesnetzagentu

PARTIAL TEST REPORT

Test report no.: 1-2910/21-02-03-A

Testing laboratory

CTC advanced GmbH

BNetzA-CAB-02/21-102

Untertuerkheimer Strasse 6 - 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 + 49 681 5 98 - 9075 Fax: Internet: https://www.ctcadvanced.com e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.

Applicant

Banner Engineering Corp. 9714 10th Avenue North Minneapolis, MN 55441 / UNITED STATES Contact: Dennis Swanson e-mail: dswanson@bannerengineering.com

Manufacturer

Banner Engineering Corp. 9714 10th Avenue North Minneapolis, MN 55441 / UNITED STATES

Test standard/s

FCC - Title 47 CFR Part 15 FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices RSS - Gen Issue 5 incl. Spectrum Management and Telecommunications Radio Standards

Specification - General Requirements for Compliance of Radio Apparatus Amendment 1 & 2*

For further applied test standards please refer to section 3 of this test report.

Test Item							
Kind of test item:	Industrial Radar Presence Detector						
Model name:	T30R-4545						
FCC ID:	UE3-T30R						
IC:	7044A-T30R						
Frequency:	122 GHz to 123 GHz						
Technology tested:	FMCW						
Antenna:	Integrated patch antenna						
Power supply:	10 V to 30 V DC						
Temperature range:	-40°C to +65°C						

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Meheza Walla Lab Manager **Radio Communications & EMC**

Test performed:

p.o.

Frank Heussner **Testing Manager Radio Communications & EMC**

Table of contents 1

1	Table	of contents	2
2	Gener	al information	3
	2.1 2.2 2.3	Notes and disclaimer Application details Test laboratories sub-contracted	3
3	Test s	tandard/s, references and accreditations	4
4	Repor	ting statements of conformity – decision rule	5
5	Test e	nvironment	6
6	Test i	tem	6
	6.1 6.2	General description Additional information	
7	Descr	iption of the test setup	8
	7.1 7.2 7.3 7.4 7.2	Shielded semi anechoic chamber Shielded fully anechoic chamber Radiated measurements > 18 GHz Radiated measurements > 50/85 GHz AC conducted	11 13 13
8	Seque	nce of testing	17
	8.1 8.2 8.3 8.4 8.5	Sequence of testing radiated spurious 9 kHz to 30 MHz Sequence of testing radiated spurious 30 MHz to 1 GHz Sequence of testing radiated spurious 1 GHz to 18 GHz Sequence of testing radiated spurious above 18 GHz Sequence of testing radiated spurious above 50 GHz with external mixers	18 19 20
9	Meas	urement uncertainty	22
10	Far	field consideration for measurements above 18 GHz	23
11	Меа	asurement results	24
	11.1	Summary	24
12	Add	litional comments	24
13	Mea	asurement results	25
	13.1 13.2 13.3	Occupied bandwidth Maximum E.I.R.P Spurious emissions radiated	28 33
14		ssary	
15		ument history	
16		reditation Certificate – D-PL-12076-01-04	
17	Acc	reditation Certificate – D-PL-12076-01-05	60

Test report no.: 1-2910/21-02-03-A

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-2910/21-02-03 and dated 2022-05-17

2.2 Application details

Date of receipt of order:	2021-11-12
Date of receipt of test item:	2021-11-26 (normal operation mode), 2021-12-20 (stop mode)
Start of test:*	2021-11-29
End of test:*	2022-03-17
Person(s) present during the test:	-/-

Person(s) present during the test:

*Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

2.3 Test laboratories sub-contracted

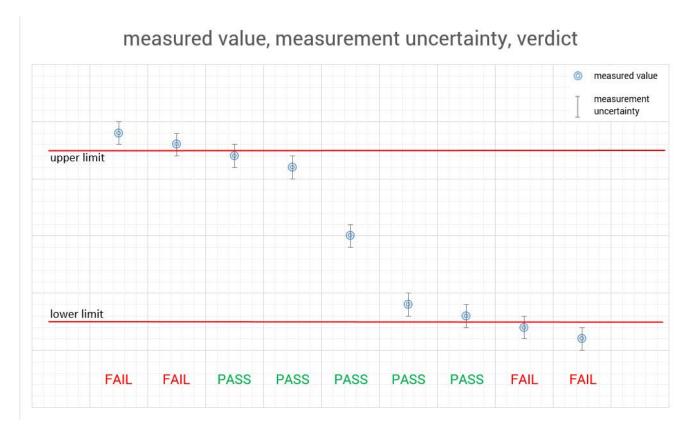
None

3 Test standard/s, references and accreditations

Test standard	Date	Description
FCC - Title 47 CFR Part 15		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - Gen Issue 5 incl. Amendment 1 & 2*	February 2021	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus
RSS - 210 Issue 10*	December 2019	Spectrum Management and Telecommunications Radio Standards Specification - Licence-Exempt Radio Apparatus: Category I Equipment

* For information only. Frequency band of operation is not subject to RSS-210 Issue 10.

Guidance	Version	Description
		American National Standard for Methods of Measurement of
ANSI C63.4-2014	-/-	Radio-Noise Emissions from Low-Voltage Electrical and
		Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American National Standard of Procedures for Compliance
ANSI C03.10-2013	-/-	Testing of Unlicensed Wireless Devices


Accreditation	Description	
D-PL-12076-01-04	Telecommunication and EMC Canada https://www.dakks.de/files/data/as/pdf/D-PL-12076- 01-04e.pdf	DALKS Deutsche Akreditierungsstelle D-PL-12076-01-04
D-PL-12076-01-05	Telecommunication FCC requirements https://www.dakks.de/files/data/as/pdf/D-PL-12076- 01-05e.pdf	Dakks Deutsche Akreditierungsstelle D-PL-12076-01-05

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong.

5 **Test environment**

Temperature		T _{nom} T _{max}	+22 °C during room temperature tests -/- °C during high temperature tests
		T_{min}	 -/- °C during low temperature tests
Relative humidity content	:		49 %
Barometric pressure	:		990 hPa to 1010 hPa
		V_{nom}	24 V DC
Power supply	:	V _{max}	-/- V DC
		V_{min}	-/- V DC

Test item 6

6.1 General description

Kind of test item :	Industrial Radar Presence Detector
Model name :	T30R-4545
HMN :	-/-
PMN :	T30R
HVIN :	T30R-4545
FVIN :	-/-
	Engineering samples:
S/N serial number :	• EUT 1: T30R-4545 Normal operation mode, sample received 2021-11-26
	• EUT 2: T30R-4545 Stop mode, sample received 2021-12-20 (2 nd version)
Hardware status :	Rev C
Software status :	3.3
Frequency band :	122 GHz to 123 GHz
Type of modulation :	FMCW
Number of channels :	1 (Normal operation mode)
Antenna :	Integrated patch antenna
Power supply :	10 V to 30 V DC
Temperature range :	-40°C to +65°C

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-2910/21-02-01_AnnexA 1-2910/21-02-01_AnnexD

In addition to the normal operation mode, a test mode is used in accordance with CFR 47 Part §15.31 I & (m), in which the frequency sweep is stopped at the following positions in the range of operation:

- Stop mode, low frequency: 122.2 GHz
- Stop mode, middle frequency: 122.6 GHz
- Stop mode, high frequency: 122.9 GHz

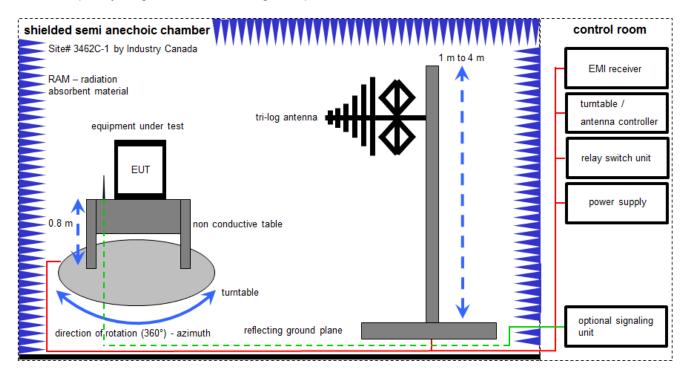
As declared by customer, the EUT consists of the radar sensor including washer and nut (see 1-2910/21-02-01_AnnexA).

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration


- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated

- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

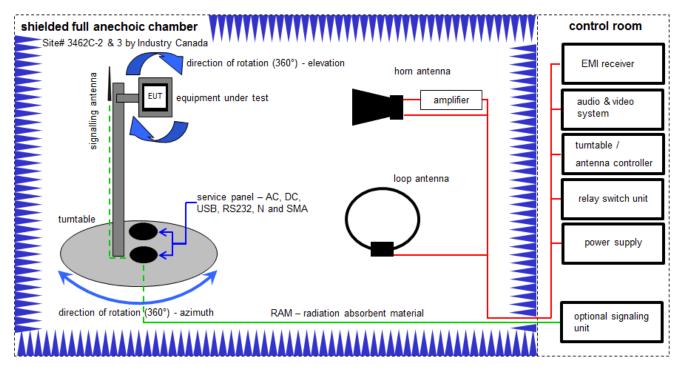
7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF (FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

<u>Example calculation</u>: FS [dBµV/m] = 12.35 [dBµV/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dBµV/m] (35.69 µV/m)


Test report no.: 1-2910/21-02-03-A

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04466	300000580	ne	-/-	-/-
3	n. a.	Semi anechoic chamber	300023	MWB AG	-/-	300000551	ne	-/-	-/-
4	n. a.	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
5	n. a.	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
6	n. a.	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
7	n. a.	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	08.12.2021	07.12.2022
8	n. a.	PC	TecLine	F+W	-/-	300004388	ne	-/-	-/-
9	n. a.	TRILOG Broadband Test-Antenna 30 MHz – 3 GHz	VULB9163	Schwarzbeck Mess – Elektronik	295	300003787	vIKI!	12.04.2021	30.04.2023

7.2 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter; loop antenna 3 meter / 1 meter

FS = UR + CA + AF (FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

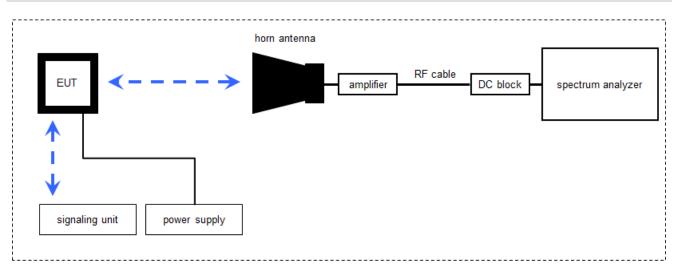
<u>Example calculation:</u> FS [dBµV/m] = 40.0 [dBµV/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dBµV/m] (71.61 µV/m)

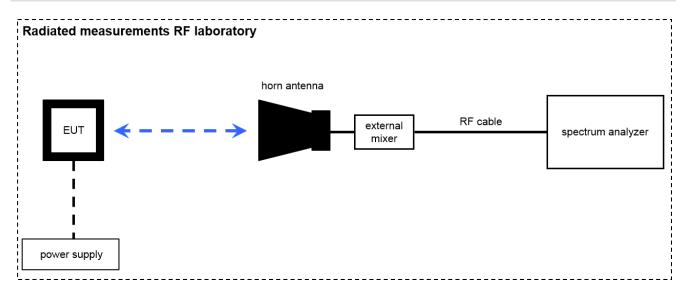
OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

<u>Example calculation:</u> OP [dBm] = -65.0 [dBm] + 50 [dB] - 20 [dBi] + 5 [dB] = -30 [dBm] (1 μW) CTC | advanced

member of RWTÜV group


Test report no.: 1-2910/21-02-03-A


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A,B,C	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	vIKI!	09.12.2020	08.12.2023
2	A,B,C	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	A,B,C	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
4	A,B,C	Variable isolating transformer	MPL IEC625 Bus Variable isolating transformer	Erfi	91350	300001155	ne	-/-	-/-
5	A,B,C	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	09.12.2021	08.12.2022
6	A,B,C	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
7	A,B,C	NEXIO EMV- Software	BAT EMC V3.21.0.27	EMCO		300004682	ne	-/-	-/-
8	A,B,C	PC	ExOne	F+W		300004703	ne	-/-	-/-
9	В	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
10	В	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
11	В	Broadband Amplifier 5-13 GHz	CBLU5135235	CERNEX	22010	300004491	ev	-/-	-/-
12	В	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011572	300005241	ev	-/-	-/-
13	в	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3697	300001605	vlKl!	12.03.2021	11.03.2023
14	А	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vlKl!	01.07.2021	30.06.2023

7.3 Radiated measurements > 18 GHz

7.4 Radiated measurements > 50/85 GHz

Measurement distance: horn antenna e.g. 75 cm

FS = UR + CA + AF (FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

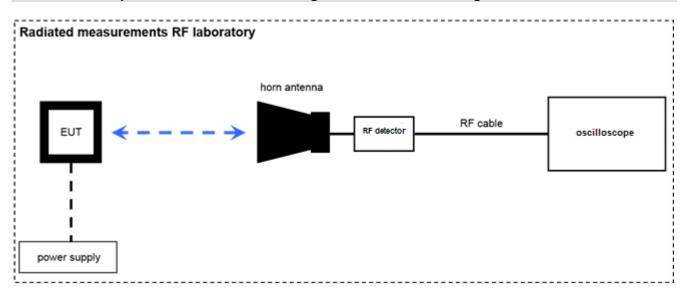
<u>Example calculation</u>: FS [dBµV/m] = 40.0 [dBµV/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dBµV/m] (6.79 µV/m)

OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

<u>Example calculation:</u> OP [dBm] = -59.0 [dBm] + 44.0 [dB] - 20.0 [dBi] + 5.0 [dB] = -30 [dBm] (1 μW)

Note: conversion loss of mixer is already included in nalyser value.

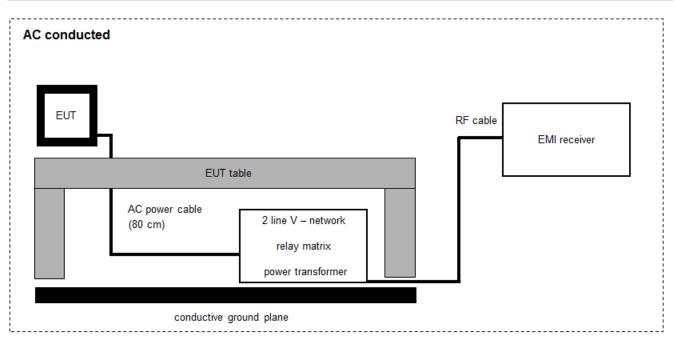


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Spectrum Analyzer	FSW50	Rohde & Schwarz	101332	300005935	k	20.01.2022	31.01.2023
2	n. a.	Spectrum Analyzer	FSW50	Rohde & Schwarz	101560	300006179	k	19.03.2021 07.03.2022	18.03.2022 31.03.2023
3	n. a.	Spectrum Analyzer 2 Hz – 85 GHz	FSW85	R&S	101333	300005568	k	30.06.2021	29.06.2022
4	n. a.	Broadband LNA 18-50 GHz	CBL18503070PN	CERNEX	25240	300004948	ev	29.10.2021	28.10.2023
5	n.a.	DC Power Supply, 60V, 10A	6038A	HP	2848A07027	300001174	vlKl!	08.12.2020	07.12.2023
6	n. a.	Temperature Test Chamber	T-40/50	CTS GmbH	064023	300003540	ev	08.05.2020	07.05.2022
7	n.a.	Horn Antenna 18,0- 40,0 GHz	LHAF180	Microw.Devel	39180-103-021	300001747	vlKl!	18.02.2019 17.01.2022	17.02.2022 31.01.2024
8	n. a.	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda		300000486	vlKl!	21.01.2020 17.01.2022	20.01.2022 31.01.2024
9	n. a.	Std. Gain Horn Antenna 26.5-40.0 GHz	V637	Narda	82-16	300000510	vlKl!	23.01.2020 17.01.2022	22.01.2022 31.01.2024
10	n.a.	Std. Gain Horn Antenna 33.0-50.1 GHz	2324-20	Flann	57	400000683	ne	-/-	-/-
11	n. a.	Std. Gain Horn Antenna 49.9-75.8 GHz	2524-20	Flann	*	300001983	ne	-/-	-/-
12	n. a.	Harmonic Mixer 3- Port, 50-75 GHz	FS-Z75	Rohde & Schwarz	101578	300005788	k	15.06.2021	14.06.2022
13	n. a.	Std. Gain Horn Antenna 60-90 GHz	COR 60_90	Thomson CSF		300000814	ev	-/-	-/-
14	n. a.	Harmonic Mixer 3- Port, 60-90 GHz	FS-Z90	R&S	101555	300004691	k	22.07.2021	21.07.2022
15	n. a.	Std. Gain Horn Antenna 73.8-112 GHz	2724-20	Flann	*	300001988	ne	-/-	-/-
16	n. a.	Harmonic Mixer 3- Port, 75-110 GHz	FS-Z110	R&S	101411	300004959	k	15.06.2021	14.06.2022
17	n.a.	Std. Gain Horn Antenna 92.3-140 GHz	2824-20	Flann		300001993	ne	-/-	-/-
18	n.a.	Harmonic Mixer 3- port, 90-140 GHz	FS-Z140	Rohde & Schwarz	101119	300005581	k	22.07.2021	21.07.2022
19	n.a.	Std. Gain Horn Antenna 114-173 GHz	2924-20	Flann	*	300001999	ne	-/-	-/-
20	n. a.	Harmonic Mixer 3- Port, 110-170 GHz	FS-Z170	Radiometer Physics GmbH	100014	300004156	k	11.06.2021	10.06.2022
21	n. a.	Std. Gain Horn Antenna 145-220 GHz	3024-20	Flann	*	300002000	ne	-/-	-/-
22	n. a.	Harmonic Mixer 3- Port, 140-220 GHz	SAM-220	Radiometer Physics GmbH	200001	300004157	k	22.07.2021	21.07.2022
23	n. a.	Std. Gain Horn Antenna 217-330 GHz	32240-20	Flann	233278	300004960	ne	-/-	-/-
24	n. a.	Harmonic Mixer 3- Port, 220-325 GHz	SAM-325	Radiometer Physics GmbH	100002	300004158	k	22.07.2021	21.07.2022
25	n. a.	Standard Gain Horn 325-500 GHz	570240-20 1785-2a	Flann	273569	300006097	ev	25.05.2020	24.05.2022
26	n.a.	Harmonic Mixer 325-500GHz	FS-Z500	Radiometer Physics GmbH	101016	300006096	k	14.06.2021	13.06.2022

7.1 Radiated power measurements using RF detector according to ANSI C63.10-2013

CTC I advanced



Note: EUT is replaced by reference source for substitution measurement

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Std. Gain Horn Antenna 90-140 GHz	COR 90_140	Thomson CSF		300000799	ev	-/-	-/-
2	n. a.	F-Band Positive Amplitude Detector	SFD-903144-08SF- P1	Sage Millimeter Inc.	07354-1	300006119	ev	-/-	-/-
	n. a.	Waveguide Amplifier	VDI-WR8.0AMP	VDI	1-13	300006234	ev	-/-	-/-
3	n. a.	SG Extension Module 110 – 170 GHz	E8257DV06	VDI	US53250018	300005540	ev	-/-	-/-
4	n. a.	Std. Gain Horn Antenna 114-173 GHz	2924-20	Flann	*	300001999	ne	-/-	-/-
5	n. a.	Synthesized Sweeper 10 MHz – 40 GHz	83640A	HP	3119A00458	300002266	vIKI!	13.12.2019 10.12.2021	12.12.2021 31.12.2023
6	n. a.	2.5 GHz Digital Phosphor Oscilloscope	DP07254	Tektronix	B022702	300003573	vlKl!	07.12.2020	06.12.2022

7.2 AC conducted

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

Example calculation:

FS [dBµV/m] = 37.62 [dBµV/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dBµV/m] (244.06 µV/m)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	R&S	892475/017	300002209	vIKI!	14.12.2021	13.12.2023
2	n. a.	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	vlKI!	29.12.2021	28.12.2023
3	n. a.	Hochpass 150 kHz	EZ-25	R&S	100010	300003798	ev	-/-	-/-
4	n. a.	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	09.12.2021	08.12.2022
5	n. a.	PC	TecLine	F+W	-/-	300003532	ne	-/-	-/-

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

8.5 Sequence of testing radiated spurious above 50 GHz with external mixers

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate for far field (e.g. 0.25 m).
- The EUT is set into operation.

Premeasurement

- The test antenna with external mixer is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.
- Caution is taken to reduce the possible overloading of the external mixer.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- As external mixers may generate false images care is taken to ensure that any emission measured by the spectrum analyzer does indeed originate in the EUT. Signal identification feature of spectrum analyzer is used to eliminate false mixer images (i.e., it is not the fundamental emission or a harmonic falling precisely at the measured frequency).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

Measurement uncertainty 9

Test case	Uncertainty
Equivalent isotropically radiated power (e.i.r.p.)	Conducted value ± 1 dB Radiated value ± 3 dB
Permitted range of operating frequencies	± 100 kHz
Conducted unwanted emissions in the spurious domain (up to 18 GHz)	± 1 dB
Radiated unwanted emissions in the spurious domain (up to 18 GHz)	± 3 dB
Conducted unwanted emissions in the spurious domain (18 to 40 GHz)	± 4 dB
Radiated unwanted emissions in the spurious domain (18 to 40 GHz)	± 4 dB
Conducted unwanted emissions in the spurious domain (40 to 50 GHz)	± 4.5 dB
Radiated unwanted emissions in the spurious domain (40 to 50 GHz)	± 4.5 dB
Conducted unwanted emissions in the spurious domain (above 50 GHz)	± 5 dB
Radiated unwanted emissions in the spurious domain (above 50 GHz)	± 5 dB
DC and low frequency voltages	± 3 %
Temperature	± 1 °C
Humidity	± 3 %

10 Far field consideration for measurements above 18 GHz

Far field distance calculation:

 $D_{ff} = 2 \times D^2/\lambda$

with

D_{ff} Far field distance

D Antenna dimension

 λ wavelength

Spurious emission measurements:

Antenna frequency range in GHz	Highest measured frequency in GHz	D in cm	λ in cm	D _{ff} in cm
18 - 26.5	26.5	3.4	1.13	20.44
26.5 - 40	40	2.2	0.75	12.91
40 - 50	50	2.77	0.60	25.58
50 - 75	75	1.85	0.40	17.11
75 – 110	110	1.24	0.27	11.28
90 - 140	140	1.02	0.22	9.72
110 – 170	170	0.85	0.18	8.19
140 - 220	220	0.68	0.14	6.78
220 - 325	325	0.43	0.09	4.01
325 - 500	500	0.26	0.06	2.25

In band measurement (OBW):

Antenna frequency range in GHz	Highest measured frequency in GHz	Antenna dimension in cm	Wavelength in cm	Far Field distance in cm
90 - 140	123.5	1.02	0.24	8.57

11.1 Summary

No deviations from the technical specifications were ascertained
There were deviations from the technical specifications ascertained
This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

CTC I advanced

TC identifier Description		verdict	date	Remark
RF-Testing	FCC 47 CFR Part 15	see below	2022-07-14	-/-

Test specification clause	Test case	Temperature conditions	Power supply	Pass	Fail	NA	NP	Remark
§15.258 (d)	Occupied bandwidth	Nominal	Nominal	\boxtimes				complies
§15.258 (b)	Maximum E.I.R.P.	Nominal	Nominal	\boxtimes				complies
§15.258 ©	Spurious Emissions	Nominal	Nominal	\boxtimes				complies
§15.258 (d)	Frequency stability	Extreme Nominal	Extreme Nominal					-/-
§15.207	AC power-line conducted emissions	Nominal	Nominal				\boxtimes	-/-

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

Model T30R-4545 (results presented here) differs from Model T30R-1515 (related test report 1-2910/21-02-02) only in the lens installed. Therefore only partial tests were performed.

The related test report 1-2910/21-02-02 contains information about the test cases "Frequency stability" and "AC power-line conducted emissions".

12 Additional comments

Reference d	locuments:	None

Special test descriptions: None

Configuration descriptions: None

13 Measurement results

13.1 Occupied bandwidth

Description:

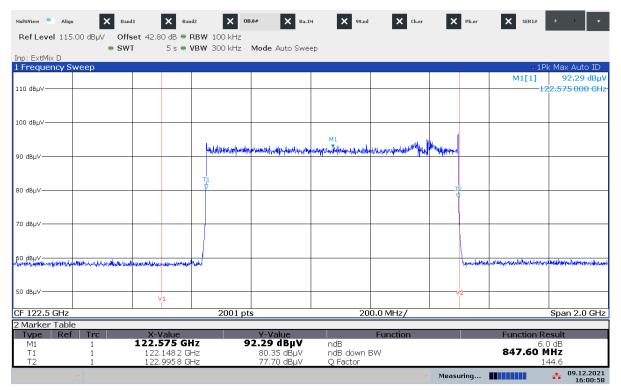
Measurement of the bandwidth of the wanted signal.

Measurement:

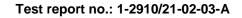
Measurement parameter					
Detector:	Pos-Peak				
Resolution bandwidth:	100 kHz				
Video bandwidth:	300 kHz				
Trace-Mode:	Max Hold				

<u>Limits:</u>

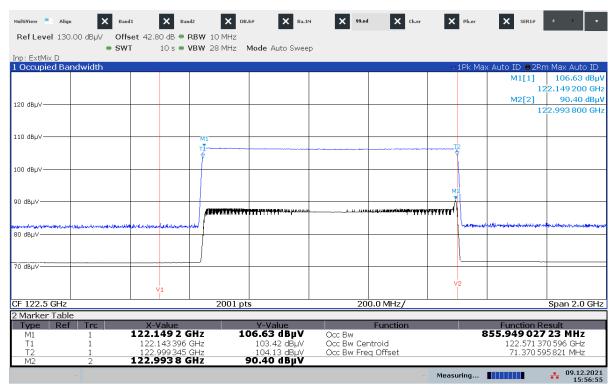
FCC				
CFR Part 15.258				
The occupied bandwidth from intentional radiators operated within the specified frequency band shall comply with the following:				
Frequency range				
116 GHz – 123 GHz				


§15.258 (d)

Fundamental emissions must be contained within the frequency bands specified in this section during all conditions of operation. Equipment is presumed to operate over the temperature range -20 to + 50 degrees Celsius with an input voltage variation of 85% to 115% of rated input voltage, unless justification is presented to demonstrate otherwise.


Measurement results:

EUT	Test condition	f∟ [GHz]	f⊦ [GHz]	Bandwidth [MHz]
T30R-4545, EUT 1	T _{nom} / V _{nom} (6 dB bandwidth, RBW = 100 kHz)	122.1482	122.9958	847.6
T30R-4545, EUT 1	T _{nom} / V _{nom} (99% bandwidth, RBW = 10 MHz)	122.1434	122.9993	855.9
Meas	surement uncertainty		± span/1000	


Plot 1: 6 dB bandwidth (RBW = 100 kHz), EUT1 (FMCW)

16:00:58 09.12.2021

Plot 2: 99% bandwidth, EUT 1 (FMCW)

15:56:55 09.12.2021

13.2 Maximum E.I.R.P.

Description:

Measurement of the maximum radiated e.i.r.p. of the wanted signal.

Measurement:

Measurement parameter					
Detector: Pos-Peak (RF-Detector)					
Video bandwidth:	10 MHz				
Trace-Mode:	Max Hold				

<u>Limits:</u>

FCC Part 15.258 (b)

Emission levels within the 116-123 GHz, 174.8-182 GHz, 185-190 GHz and 244-246 GHz bands shall not exceed the following equivalent isotropically radiated power (EIRP) limits as measured during the transmit interval:

(2022) The average power of any emission shall not exceed 40 dBm and the peak power of any emission shall not exceed 43 dBm; or

(2) For fixed point-to-point transmitters located outdoors, the average power of any emission shall not exceed 82 dBm and shall be reduced by 2 dB for every dB that the antenna gain is less than 51 dBi. The peak power of any emission shall not exceed 85 dBm and shall be reduced by 2 dB for every dB that the antenna gain is less than 51 dBi. The provisions in this paragraph (b)(2) for reducing transmit power based on antenna gain shall not require that the power levels be reduced below the limits specified in paragraph (b)(1) of this section.

(3) The peak power shall be measured with a detection bandwidth that encompasses the entire occupied bandwidth within the intended band of operation, e.g., 116-123 GHz, 174.8-182 GHz, 185-190 GHz or 244-246 GHz. The average emission levels shall be measured over the actual time period during which transmission occurs.

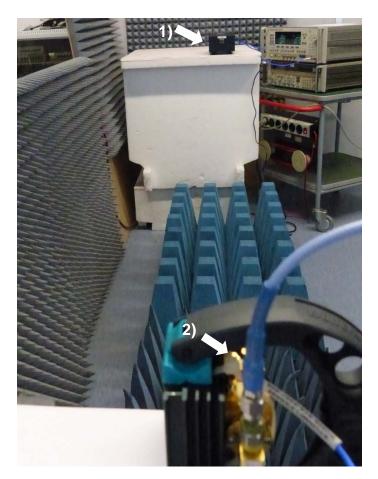
(4) Transmitters with an emission bandwidth of less than 100 MHz must limit their peak radiated power to the product of the maximum permissible radiated power (in milliwatts) times their emission bandwidth divided by 100 MHz. For the purposes of this paragraph (b)(4), emission bandwidth is defined as the instantaneous frequency range occupied by a steady state radiated signal with modulation, outside which the radiated power spectral density never exceeds 6 dB below the maximum radiated power spectral density in the band, as measured with a 100 kHz resolution bandwidth spectrum nalyser. The center frequency must be stationary during the measurement interval, even if not stationary during normal operation (e.g., for frequency hopping devices).

Test report no.: 1-2910/21-02-03-A

Measurement results:

EUT	Test condition	Test conditionMax E.I.R.P.10 MHz VBW	
T30R-4545, EUT 1	T _{nom} / V _{nom}	11 dBm	11 dBm

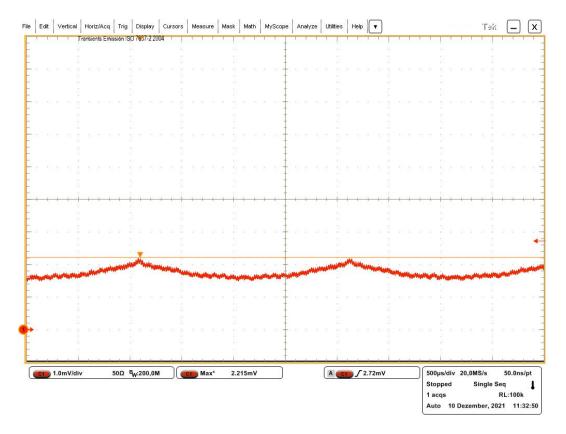
EUT Test condition		Duty cycle	
T30R-4545, EUT 1	T _{nom} / V _{nom}	100 %	



Description of the E.I.R.P. measurement by substitution method:

- 1) EUT emission measured with RF-detector:
 - Measurement distance: d_{EUT}
 - Maximum readout value on oscilloscope: Vmax
 - Duty cycle: DirkEUT
- 2) Substitution of EUT by a cw reference source with a frequency of fREF and a fixed output power of PREF
 - Readout value on oscilloscope adjusted to V_{max} by far field attenuation
- 3) Calculation of the Max E.I.R.P. of the EUT:
 - Free space loss: FSL(d) = 20 × log(4 × π × d × f / c), c: speed of light
 - Max E.I.R.P. = P_{REF} FSL(d_{REF}) + FSL (d_{EUT})
- 4) Average E.I.R.P. of the EUT:
 - Duty cycle = 100 % → Average E.I.R.P. = Max E.I.R.P.

Maggingent	Measurement parameter	EUT			
Measurement step		T30R-1515, EUT 1	-/-	-/-	-/-
	Measurement distance deut	0.33 m	-/-	-/-	-/-
1)	Maximum readout value V _{max}	2.2 mV	-/-	-/-	-/-
	Duty cycle DEUT	100 %	-/-	-/-	-/-
	Output power P _{REF}	28.4 dBm	-/-	-/-	-/-
2)	Frequency f _{REF}	122.57 GHz	-/-	-/-	-/-
	Measurement distance d _{REF}	2.55 m	-/-	-/-	-/-
3)	Max E.I.R.P.	11 dBm	-/-	-/-	-/-
4)	Average E.I.R.P.	11 dBm	-/-	-/-	-/-


Setup of the substitution:

- 1) SG Extension Module 110 170 GHz & Std. Gain Horn Antenna 114-173 GHz
- 2) F-Band Positive Amplitude Detector & Waveguide Amplifier & Std. Gain Horn Antenna 90-140 GHz

CTC I advanced

Plot 3: EUT emission

13.3 Spurious emissions radiated

Description:

Measurement of the radiated spurious emissions.

Measurement:

Measurement parameter					
Detector:	Quasi Peak / Pos-Peak / RMS				
Resolution bandwidth:	F < 1 GHz: 100 kHz				
Resolution bandwidth.	F > 1 GHz: 1 MHz				
Video bandwidth:	F < 1 GHz: 300 kHz				
	F > 1 GHz: 3 MHz				
Frequency range:	30 MHz to 500 GHz				
Trace-Mode:	Max Hold				

Limits:

FCC Part 15.258 ©

Spurious emissions shall be limited as follows:

- (2022) The power density of any emissions outside the band of operation, e.g., 116-123 GHz, 174.8-182 GHz, 185-190 GHz or 244-246 GHz, shall consist solely of spurious emissions.
- (2) Radiated emissions below 40 GHz shall not exceed the general limits in §15.209.

FCC / IC						
	CFR Part 15.209(a) / RSS-Gen 8.9					
	Radiated emission limits					
Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)				
0.009 - 0.490	2400/F(kHz)	300				
0.490 - 1.705	0.490 – 1.705 24000/F(kHz)					
1.705 - 30.0	1.705 – 30.0 30					
30 - 88	30 - 88 100					
88 – 216	150	3				
216 - 960	216 - 960 200					
Above 960	Above 960 500					

(3) Between 40 GHz and the highest frequency specified in § 15.33, the level of these emissions shall not exceed 90 pW/cm2 at a distance of 3 meters.

CTC I advanced

(4) The levels of the spurious emissions shall not exceed the level of the fundamental emission.

FCC Part 15.33 (a)

For an intentional radiator, the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in this paragraph:

(4) If the intentional radiator operates at or above 95 GHz: To the third harmonic of the highest fundamental frequency or to 750 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

Limit conversion (ANSI C63.10-2013 9.6):

 $EIRP[dBm] = 10 \times log(4 \times \pi \times d^2 \times PD[W/m^2])$

- Power density at the distance specified by the limit: PD [W/m²]
- Equivalent isotropically radiated power: EIRP [dBm]
- Distance at which the power density limit is specified: d [m]

According to this formula, an emission limit of PD = 90 pW/cm² at a distance of d = 3 m corresponds to an equivalent isotropically radiated power of EIRP = -10 dBm.

Measurement results:

Note:

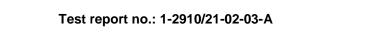
- (1) Measurements were performed in normal operation mode (frequency sweep) and in stop mode (frequency sweep stopped at three positions within the range of operation: near top, near middle, near bottom) in accordance with §15.31©, (m).
- (2) If the results in the cases of the stopped frequency sweep are comparable, only the results with a stop in the middle of the operating frequency range are shown in the plots below.
- (3) In some cases, the measurement results of all stop modes (low frequency, middle frequency, high frequency) are shown in a single plot. In these cases, the stop mode frequency was changed by the customer's software, for example, and the results were recorded successively using the "Max Hold" function of the spectrum analyser.

Normal operation mode:

Frequency [GHz]	Detector	Bandwidth [MHz]	Level	Limit	Margin [dB]
9.588	Average	1	43.2 dBuV	54 dBuV	10.8
9.588	Peak	1	55.5 dBuV	74 dBuV	18.5
61.497	Average	1	-35.7 dBm	-10 dBm	25.7

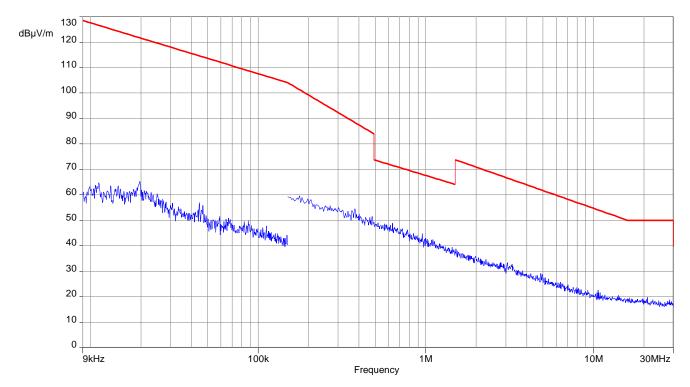
Stop mode, low frequency:

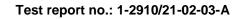
Frequency [GHz]	Detector	Bandwidth [MHz]	Level	Limit	Margin [dB]
9.547	Average	1	50.3 dBuV	54 dBuV	3.7
9.547	Peak	1	54.2 dBuV	74 dBuV	19.8
61.099	Average	1	-13.7 dBm	-10 dBm	3.7
244.396	Average	1	-17.9 dBm	-10 dBm	7.9


Stop mode, middle frequency:

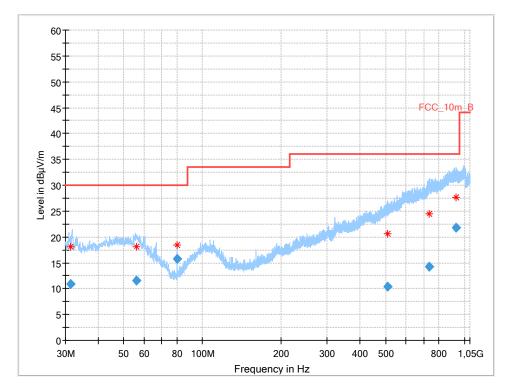
Frequency [GHz]	Detector	Bandwidth [MHz]	Level	Limit	Margin [dB]
9.578	Average	1	50.8 dBuV	54 dBuV	3.2
9.578	Peak	1	54.6 dBuV	74 dBuV	19.4
61.299	Average	1	-13.1 dBm	-10 dBm	3.1
245.196	Average	1	-18.5 dBm	-10 dBm	8.5

Stop mode, high frequency:

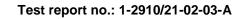

Frequency [GHz]	Detector	Bandwidth [MHz]	Level	Limit	Margin [dB]
9.601	Average	1	50.2 dBuV	54 dBuV	3.8
9.601	Peak	1	54.5 dBuV	74 dBuV	19.5
61.449	Average	1	-15.1 dBm	-10 dBm	5.1
245.796	Average	1	-19.8 dBm	-10 dBm	9.8


130 dBµV/m 120 110 100 90 80 70 Warranthy With a warranth 60 My Mary Mary 50 May "Lynn www. 40 With Hundreway 30 20 10 0 9kHz 10⁰k 10M 30MHz 1M Frequency

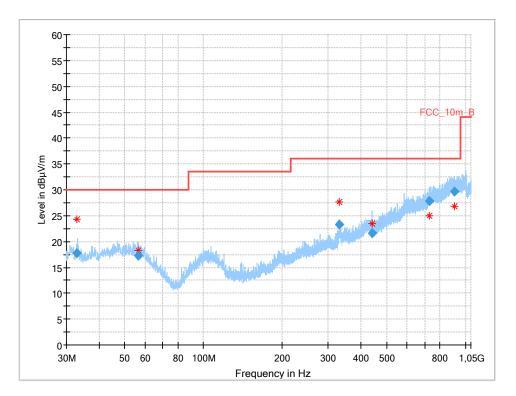
Plot 4: 9 kHz - 30 MHz, normal operation mode


Plot 5: 9 kHz - 30 MHz, stop mode, middle frequency

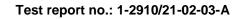
* see note (2)



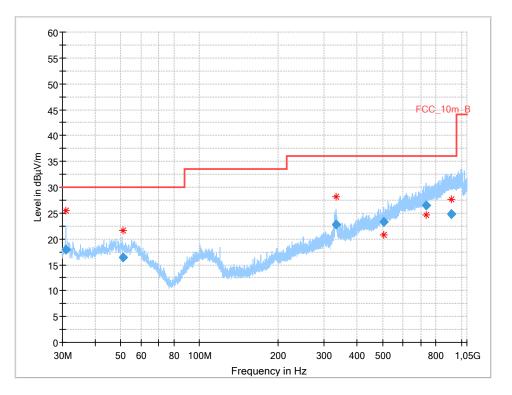
Plot 6: 30 MHz – 1GHz, normal operation mode



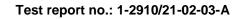
Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
31.314	10.84	30.0	19.2	1000	120.0	100.0	V	133	13
55.994	11.52	30.0	18.5	1000	120.0	139.0	V	157	16
80.004	15.73	30.0	14.3	1000	120.0	203.0	V	170	8
508.351	10.37	36.0	25.6	1000	120.0	301.0	Н	314	20
735.310	14.25	36.0	21.8	1000	120.0	353.0	Н	225	23
931.499	21.77	36.0	14.2	1000	120.0	400.0	V	53	26

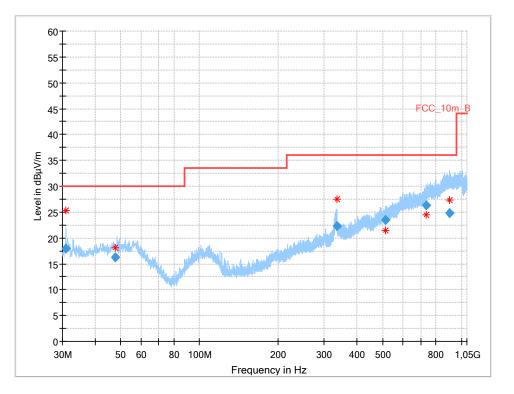


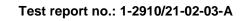
Plot 7: 30 MHz – 1GHz, stop mode, low frequency

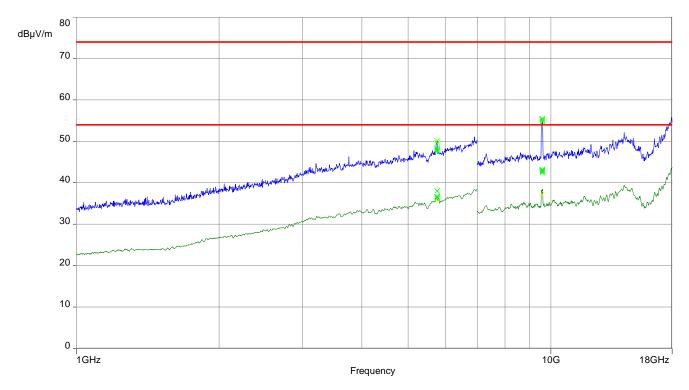


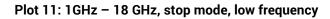
Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
32.934	17.80	30.0	12.2	1000	120.0	168.0	V	119	13
56.249	17.23	30.0	12.8	1000	120.0	114.0	v	37	16
331.225	23.27	36.0	12.7	1000	120.0	195.0	Н	287	16
441.337	21.64	36.0	14.4	1000	120.0	195.0	V	232	19
729.967	27.80	36.0	8.2	1000	120.0	195.0	Н	232	23
910.143	29.67	36.0	6.3	1000	120.0	110.0	Н	142	26

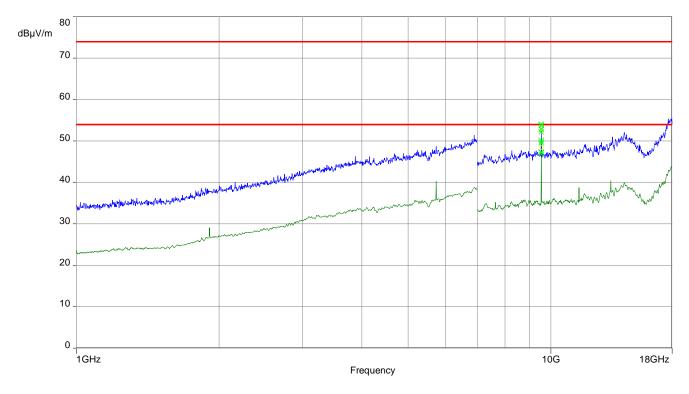


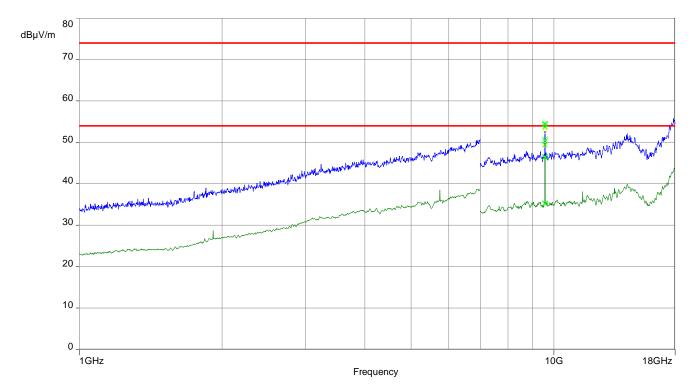



Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
30.894	17.88	30.0	12.1	1000	120.0	161.0	V	52	13
50.948	16.38	30.0	13.6	1000	120.0	115.0	V	279	15
331.748	22.83	36.0	13.2	1000	120.0	195.0	Н	275	16
506.214	23.29	36.0	12.7	1000	120.0	101.0	Н	232	20
734.482	26.48	36.0	9.5	1000	120.0	195.0	V	232	23
912.320	24.77	36.0	11.2	1000	120.0	195.0	Н	-36	26

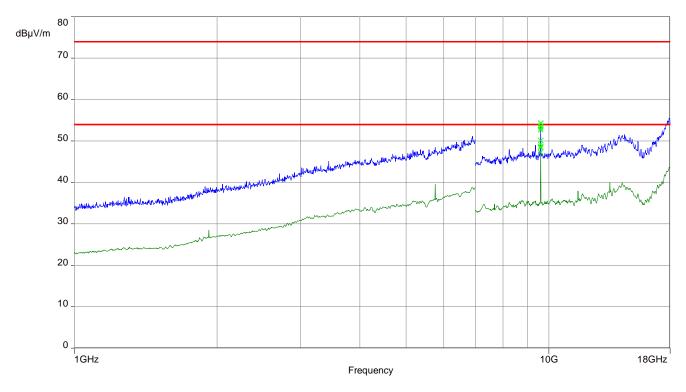


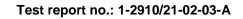



Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
30.900	17.98	30.0	12.0	1000	120.0	106.0	V	-35	13
47.891	16.32	30.0	13.7	1000	120.0	114.0	V	201	15
334.634	22.26	36.0	13.7	1000	120.0	183.0	Н	269	16
513.245	23.43	36.0	12.6	1000	120.0	195.0	V	142	20
732.192	26.39	36.0	9.6	1000	120.0	104.0	V	52	23
904.324	24.73	36.0	11.3	1000	120.0	148.0	Н	52	26

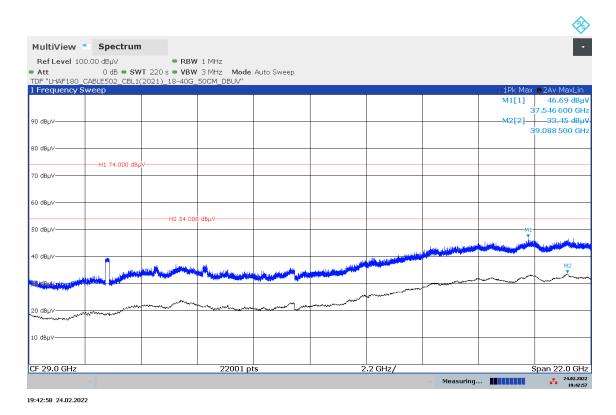


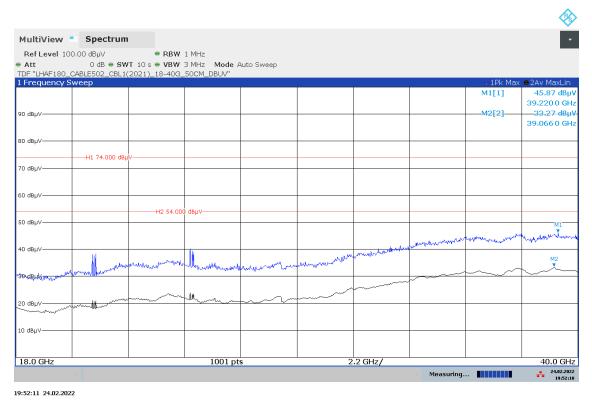
Plot 10: 1GHz - 18 GHz, normal operation mode

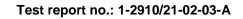



Test report no.: 1-2910/21-02-03-A

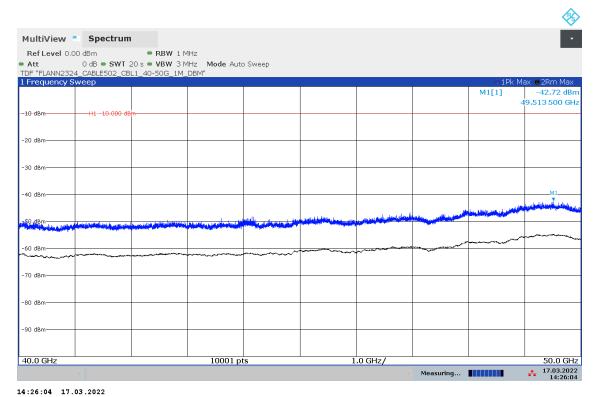
Plot 12: 1GHz - 18 GHz, stop mode, middle frequency

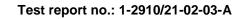

Plot 13: 1GHz – 18 GHz, stop mode, high frequency



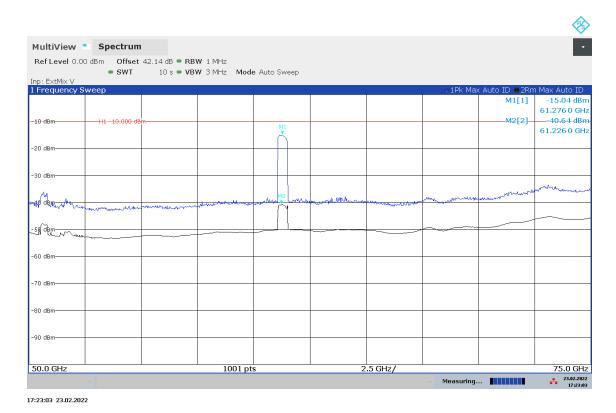

Plot 14: 18 GHz - 40 GHz, normal operation mode

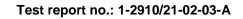
Plot 15: 18 GHz – 40 GHz, stop mode, low, middle and high frequency



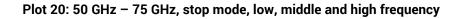

Plot 16: 40 GHz - 50 GHz, normal operation mode

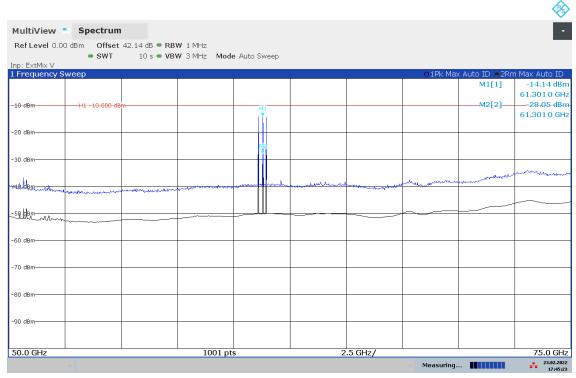
Plot 17: 40 GHz - 50 GHz, stop mode, low, middle and high frequency


ultiView	Spectrum								
Ref Level 0.00) dBm	• RBW 1 M	1Hz						_
Att	0 dB • SWT 10 s			Sweep					
	_CABLE502_CBL1_	40-50G_1M_	DBM"						
Frequency Sv	veep						1		Max ●2Rm Max
								M1[1]	-45.59 dBr 41.873 00 GH
								MOTOL	-57.32 dBi
LO-dBm								M2[2]	41.843 00 GH
									41,843.00 GF
20 dBm									
30 dBm									
+0 dBm									
O UBIN	M1								
	with the	ы. н.							
50 dBm		durman ware	have have been and the	the manufacture of the hast as	and the second s	mannewow	Mar March water	Jaco Marchandres	wow many
	M2								
	\sim \sim								
iΩ⊾dBm 	\sim			A				~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
					_				
70 dBm									
30 dBm									
90 dBm									
0.0 GHz			1001 pt	6		1.0 GHz/			50.0 GH
							 Measuring. 		25.02.202

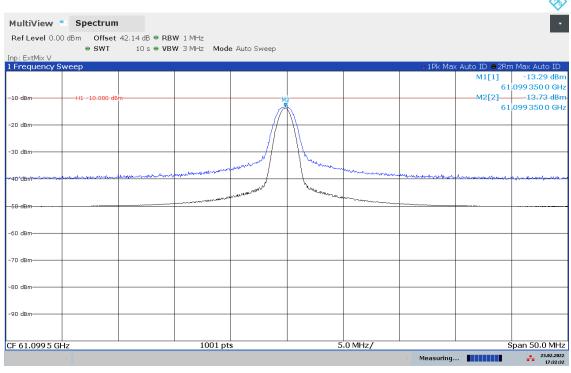


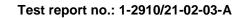
Plot 18: 50 GHz - 75 GHz, normal operation mode

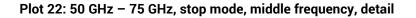


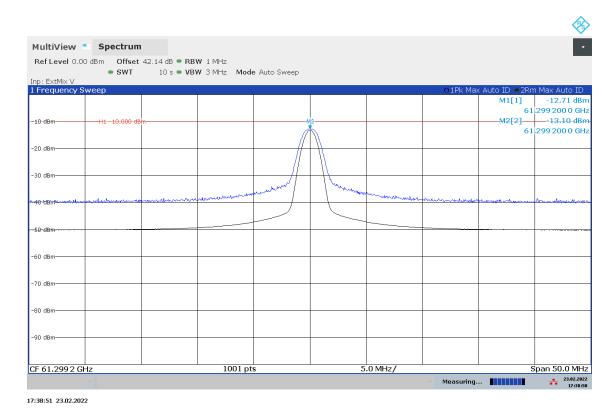

Plot 19: 50 GHz - 75 GHz, normal operation mode, detail

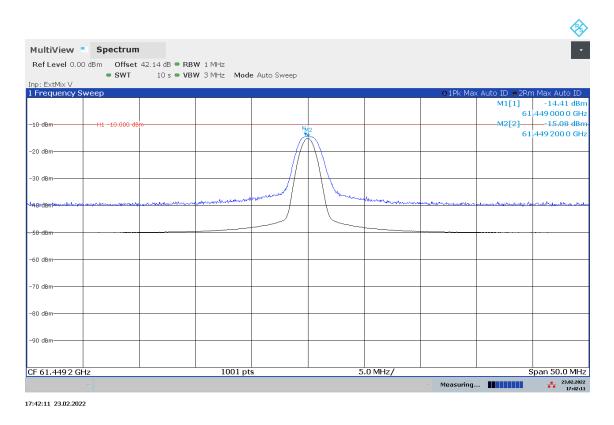
MultiView	Spectrum										_
Ref Level 0.00	dBm Offset										_
np: ExtMix V	⊜ S₩T	10 s 🖷 VE	SW 3 MHz	Mode Auto	o Sweep						
Frequency Sv	weep								●1Pk Max	: Auto ID 😑 2Rr	n Max Auto II
										M1[1]	-14.43 dE
											51.223 100 G
10 dBm	H1 -10.000 dBn)			M1						-35.71 df 51.496 800 G
			d					┢			31,490 800 0
20 dBm								-			
30 dBm											
								M	2		
10 dBm	monum	man							hunder		muner
iu dBm											
i0-d8m									·		
50 dBm											
70 dBm											
30 dBm								1			
90 dBm								\vdash			
F 61.28 GHz			100	01 pts		10	0.0 MHz/				Span 1.0 G
01.20 012			100	, i pis		10					Span 1.0 G

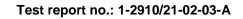


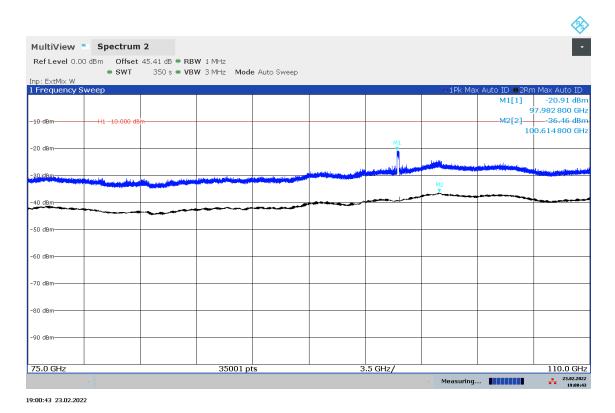

17:45:23 23.02.2022

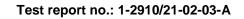

* see note (3)


Plot 21: 50 GHz - 75 GHz, stop mode, low frequency, detail

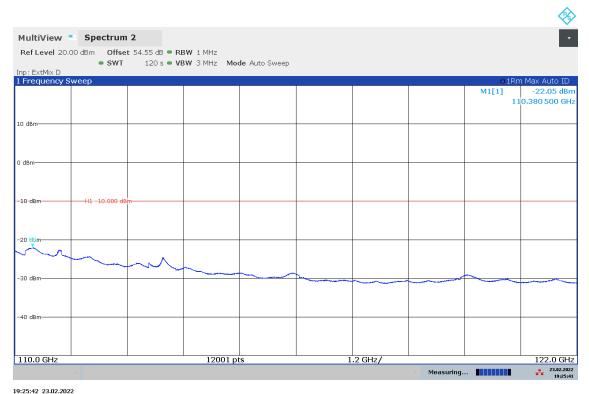

17:32:33 23.02.2022



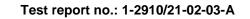

Plot 23: 50 GHz - 75 GHz, stop mode, high frequency, detail

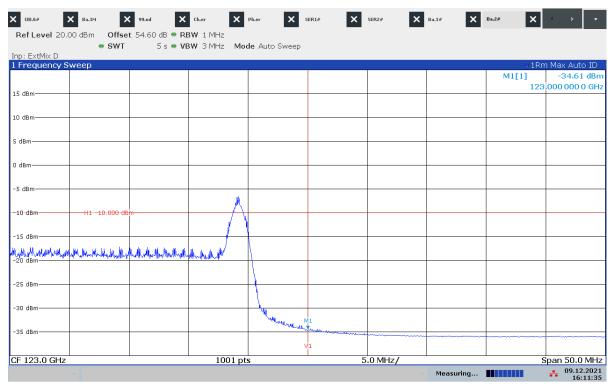

Plot 24: 75 GHz - 110 GHz, normal operation mode

Plot 25: 75 GHz – 110 GHz, stop mode, low, middle and high frequency

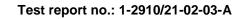

Ref Level 0.00	dBm Offset								
ip: ExtMix W	● SWT	10 s 🖷 VB	₩ 3 MHz Mod	e Auto Sweep					
Frequency S	weep					1	o1Pk Max	: Auto ID 😑 2Rr	
								M1[1]	-25.64 dE
								M2[2]	100.542 0 G
10 dBm	H1 -10.000 dB	m						WZ[Z]	100.3320 G
									100.552.0.0
20 dBm							M1		-
							mithermon	mar manner	
30 dBm			mahanan		d all a state of the	daw and a many a mark	the a set and months		"Mun who have been been been been been been been be
and the second s	when when a series	mannow	a construction and	and a start and a start and a start a s			M2		
40 dBm							un manage		h
+0 aBm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			man					
50 dBm									
50 dBm									+
70 dBm									
io upin									
30 dBm									
90 dBm									
F 92.5 GHz			1001 pt	S	3	3.5 GHz/			Span 35.0 Gł

Plot 26: 110 GHz - 122 GHz (incl. lower band edge), normal operation mode

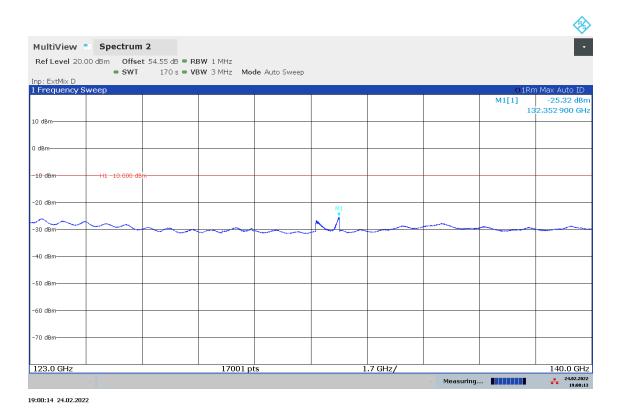



Plot 27: 110 GHz - 122 GHz (incl. lower band edge), stop mode, low, middle and high frequency

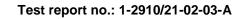
	Spectrum							
Ref Level 20.0	00 dBm Offset SWT	BW 1 MHz BW 3 MHz Mi	ode Auto Swee	n				
ip: ExtMix D Frequency S							0.15	Rm Max Auto IE
Frequency S	weep						M1[1]	-22.54 dB 110.270 0 G
0-dBm	H1 10.000 dBm							
I dBm								
10 dBm								
20 ^M èlBm								
30 dBm		 						
40 dBm								
50 dBm								
60 dBm								
70 dBm								
110.0 GHz		1001 p	Its		1.2 GHz/			122.0 GF
	~	 1001 p			12 01127	Measurin	ıg	25.02.20



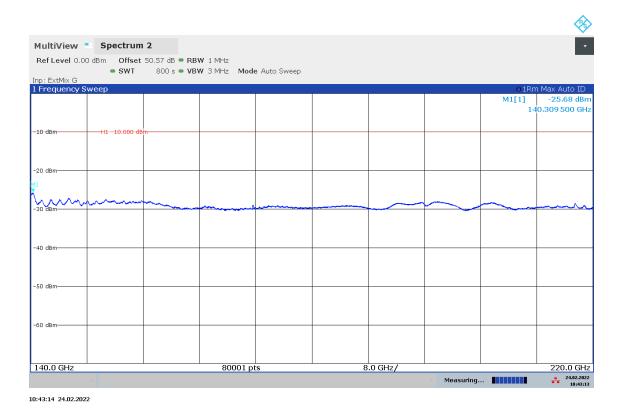
Plot 28: Upper band edge, normal operation mode, detail

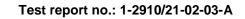


16:11:35 09.12.2021

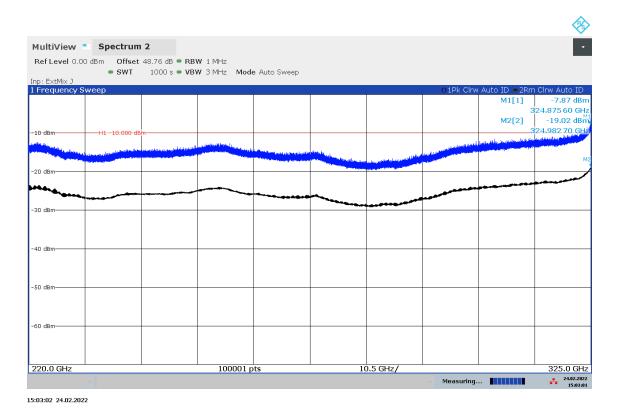

Plot 29: 123 GHz - 140 GHz, normal operation mode

Plot 30: 123 GHz - 140 GHz, stop mode, low, middle and high frequency

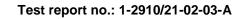

MultiView	Spectrum	: 54.55 dB 🖷 RI	3W 1 MHz						
			3W 3 MHz Mo	le Auto Sweep					
np: ExtMix D Frequency S	weep							0 1 Rr	n Max Auto ID
							M1[1		-29.26 dBr
									135.236 0 GH
dBm	H1 10.000 dBm								
lBm									
) dBm									
, da									
) dBm									
							M1		
0 dBm								- Anno	<u>+</u>
) dBm									
) dBm									
0 dBm									
0 dBm									-
23.0 GHz			1001 pt		1	.7 GHz/			140.0 GH
2010 002	~		1001 pt	3	1		Measuring		25.02.202

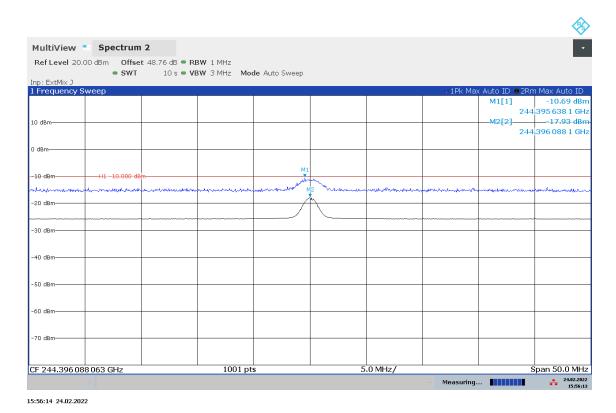

Plot 31: 140 GHz - 220 GHz, normal operation mode

Plot 32: 140 GHz – 220 GHz, stop mode, low, middle and high frequency


MultiView Spectrum 2				•
Ref Level 0.00 dBm Offset 50.57	dB ● RBW 1 MHz D s ● VBW 3 MHz Mode Auto Sweep			
np: ExtMix G				
Frequency Sweep				1Rm Max Auto ID
			M1[1]	-26.00 dBr 140.200 0 GF
10 dBm H1 -10.000 dBm				
20 dBm				
1				
30 dBm				_
40 dBm				
-50 dBm				
60 dBm				
140.0 GHz	1001 pts	8.0 GHz/		220.0 GH

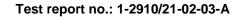
* see note (3)


Plot 33: 220 GHz - 325 GHz, normal operation mode


Plot 34: 220 GHz - 325 GHz, stop mode, low, middle and high frequency

Ref Level 20.	.00 dBm Offset	t 48.76 dB 🖷 RI	BW 1 MHz						_
	● SWT	10 s 👄 VI	3W 3 MHz Mod	le Auto Sweep					
inp: ExtMix J L Frequency S	Sween							0.1 Pm	n Max Auto ID
errequency a	,weep							M1[1]	-19.13 dBm
									324.950 GH
10 dBm									
) dBm									
10 dBm	H1 -10.000 dBr	-							
10 000	11 - 10.000 ub								
									M
20 dBm									
				~~~~					
30 dBm									
40 dBm									
50 dBm									
co									
-60 dBm									
									1
-70 dBm									
									1
220.0 GHz			1001 pts	5	10	0.5 GHz/			325.0 GHz
	-					,	Measuring		24.02.2022



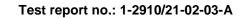



# Plot 35: 220 GHz - 325 GHz, stop mode, low frequency, detail



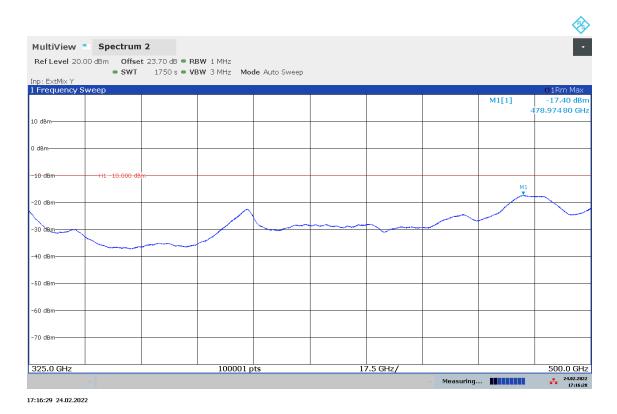
#### Plot 36: 220 GHz - 325 GHz, stop mode, middle frequency, detail

MultiView Spectrum 2 Ref Level 20.00 dBm Offset					
	10 s • VBW 3 MHz Mo	de Auto Sweep			
ip: ExtMix J Frequency Sweep				⊙1Pk Max Auto ID ∈	2Pm May Auto II
				M1[1]	
					245 196 050 0 6
dBm				M2[2]-	-18,53 dl
					245 196 150 0 G
dBm					
		M1			
10-dBm H1 -10.000 dBm-		- m			
had a second	movento more patrices	himalanta 1/2 min	manderenterenterenter	man and the second	name managera
0 dBm					
0 dBm					
o ubin					
0 dBm					
i0 dBm					
i0 dBm					
O dBm					
= 245.196 GHz	1001 pt	 'S	5.0 MHz/		Span 50.0 M
	1001 pt			- Measuring	

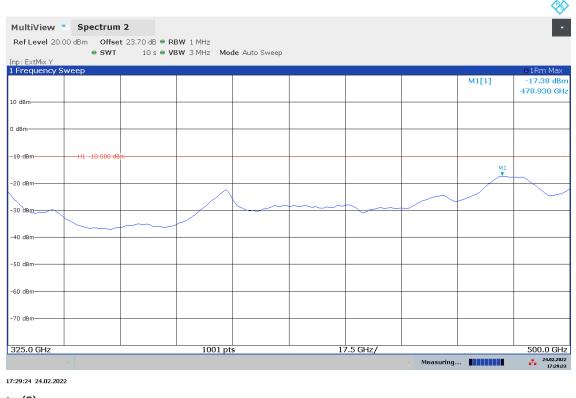


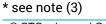



# Plot 37: 220 GHz - 300 GHz, stop mode, high frequency, detail


									<b>\$</b>
MultiView	Spectrum	2							•
RefLevel 10.0	00 dBm Offse	t 48.76 dB 🖷 RI	BW 1 MHz						
	● SWT	10 s 👄 VI	3W 3 MHz Mod	le Auto Sweep					
Inp: ExtMix J 1 Frequency S	weep						o1Pk Ma≽	: Auto ID 😑 2Rr	n Max Auto ID
								M1[1]	-11.38 dBm
									796 000 0 GHz
0 dBm									-19,79 dBm
								245	796 050 0 GHz
-10 dBm	H1 -10.000 dB	m			1				
man	mound	manum	howard	Annow man and	man how when and	human	munan	and the manufacture of the second sec	manyment
-20 dBm					2				
-30 dBm									
-30 UBM									
-40 dBm									
-50 dBm									
-60 dBm									
70 d0									
-70 dBm									
-80 dBm									
CF 245.796 GH	17		1001 pts	5	5	.0 MHz/			Span 50.0 MHz
S. 2101790 01			1001 pt.	•			Measuring	<b></b>	24.02.2022
							neusuring.		<b>* 1</b> 5:42:44

15:42:45 24.02.2022




# Plot 38: 325 GHz - 500 GHz, normal operation mode



#### Plot 39: 325 GHz - 500 GHz, stop mode, low, middle and high frequency





© CTC advanced GmbH



# 14 Glossary

EUT	Equipment under test			
DUT	Device under test			
UUT	Unit under test			
GUE	GNSS User Equipment			
ETSI	European Telecommunications Standards Institute			
EN	European Standard Federal Communications Commission			
FCC				
FCC ID	Company Identifier at FCC			
IC	Industry Canada			
PMN	Product marketing name			
HMN	Host marketing name			
HVIN	Hardware version identification number			
FVIN	Firmware version identification number			
EMC	Electromagnetic Compatibility			
HW	Hardware			
SW	Software			
Inv. No.	Inventory number			
S/N or SN	Serial number			
C	Compliant			
NC	Not compliant			
NA	Not applicable			
NP	Not performed			
PP	Positive peak			
QP	Quasi peak			
AVG	Average			
00	Operating channel			
OCW	Operating channel bandwidth			
OBW	Occupied bandwidth			
OOB	Out of band			
DFS	Dynamic frequency selection			
CAC	Channel availability check			
OP	Occupancy period			
NOP	Non occupancy period			
DC	Duty cycle			
PER	Packet error rate			
CW	Clean wave			
MC	Modulated carrier			
WLAN	Wireless local area network			
RLAN	Radio local area network			
DSSS	Dynamic sequence spread spectrum			
OFDM	Orthogonal frequency division multiplexing			
FHSS	Frequency hopping spread spectrum			
GNSS	Global Navigation Satellite System			
C/N₀	Carrier to noise-density ratio, expressed in dB-Hz			

# **15 Document history**

Version	Applied changes	Date of release
-/-	Initial release	2022-05-17
-A	PMN & HVIN changed	2022-07-14

# 16 Accreditation Certificate – D-PL-12076-01-04

first page	last page			
<section-header><section-header><image/><image/><image/><image/><section-header><section-header><section-header><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></section-header></section-header></section-header></section-header></section-header>	<section-header><section-header><section-header><section-header><section-header><text><text><text><text><text><text></text></text></text></text></text></text></section-header></section-header></section-header></section-header></section-header>			
The configure together with its annex reflects the status at the time of the date of issue. The current status of the scope of accorditation can be found in the database of accordited bodies of Destache Akkreditierungsstelle Gmbh. https://www.data.ac/eri/content/accordited-bodies-daks				

#### Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-04e.pdf

or

https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-04_Canada_TCEMC.pdf

# 17 Accreditation Certificate – D-PL-12076-01-05

first page	last page			
<image/> <image/> <image/> <section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text><text></text></text></text></text></text></section-header></section-header></section-header></section-header></section-header></section-header>	Office Berlin Spittelmant 10 20117 Berlin       Office Frankfort am Main Europa-Allee 52 00327 Frankfurt am Main       Office Braunschweig Bundesallee 100 30116 Braunschweig         Spittelmant 10 20117 Berlin       Office Frankfort am Main       Office Braunschweig Bundesallee 100 30116 Braunschweig			
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 05 pages. Registration number of the certificate: D-PL-12076-01-05 Frankfurt am Main, 09.06.2020 The certificate tagether with its away reflects the stotus of the time of the date of stage. The current stotus of the scope of	The accreditation was granted pursuant to the Act on the Accreditation Body (AkStellee) of 31 July 2009 (Federal Law Gatter 1 p. 2623) and the Regulation (EQ) to 755/2008 Of the Guropean Painlance relating to the marketing of products (Official Journal of the European Union L236 of 9July 2008, 200, 300, 300, 300, 300, 300, 300, 300			
accorditation can be found in the database of accordinal badles of Deutsche Akkreditierungsstelle GmbH. https://www.dakis.de/en/content/accredited-badles-dakis Immitia wolnut.				

Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-05e.pdf or https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-05_TCB_USA.pdf