

TEST REPORT

BN etzA-CAB-02/21-102

Test report no.: 1-1692/20-01-02-C

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075

Internet: https://www.ctcadvanced.com
e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.

Applicant

Banner Engineering Corp.

9714 10th Avenue North

Minneapolis, MN 55441 / UNITED STATES

Phone:

Contact: Dennis Swanson

e-mail: dswanson@bannerengineering.com

Manufacturer

Banner Engineering Corp.

9714 10th Avenue North

Minneapolis, MN 55441 / UNITED STATES

Test standard/s

FCC - Title 47 CFR Part 15 FCC - Title 47 of the Code of Federal Regulations; Chapter I;

Part 15 - Radio frequency devices

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Industrial Radar Presence Detector

Model name: T30R-1515-KUQP

FCC-ID UE3-T30R

Frequency: 116 GHz – 123 GHz

Technology tested: FMCW Radar
Antenna: Embedded Patch

Power supply: 100 V to 240 V AC by external power supply unit

10 V to 30 V DC (24 V DC rated voltage)

Temperature range: -40°C to +65°C

Radio Communications

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

lest report authorized:	l'est performed:	
Thomas Vogler	Meheza Walla	
Lab Manager	Lab Manager	

Radio Communications

Table of contents

1	Table	of contents	2
2	Gene	ral information	3
	2.1 2.2 2.3	Notes and disclaimerApplication details	3
3	Test s	standard/s, references and accreditations	4
4	Test e	environment	4
5	Repo	rting statements of conformity – decision rule	5
6	Test i	tem	6
	6.1 6.2	General descriptionAdditional information	
7	Seque	ence of testing	7
	7.1 7.2 7.3 7.4 7.5	Sequence of testing radiated spurious 9 kHz to 30 MHz Sequence of testing radiated spurious 30 MHz to 1 GHz Sequence of testing radiated spurious 1 GHz to 18 GHz Sequence of testing radiated spurious above 18 GHz Sequence of testing radiated spurious above 50 GHz with external mixers	8 9 10
8	Descr	iption of the test setup	12
	8.1 8.2 8.3 8.4 8.5 8.6	Shielded semi anechoic chamber	14 15 15 16
9	Meas	urement uncertainty	19
10	Far	field consideration for measurements above 18 GHz	20
11	Mea	asurement results	21
	11.1	Summary	2 1
12	Mea	asurement results	22
	12.1 12.2 12.3 12.4	Occupied bandwidth (6 dB Bandwidth)	24 27
13	Cor	nducted spurious emissions < 30 MHz	53
14	Glo	ssary	56
15	Doo	cument history	57
16	۸۵۵	raditation Cartificate _ D.DI -12076-01-05	57

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-1692/20-01-02-B and dated 2021-05-20

2.2 Application details

Date of receipt of order: 2021-11-18
Date of receipt of test item: 2021-03-01
Start of test:* 2021-03-09
End of test:* 2021-05-20

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 3 of 57

^{*}Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

3 Test standard/s, references and accreditations

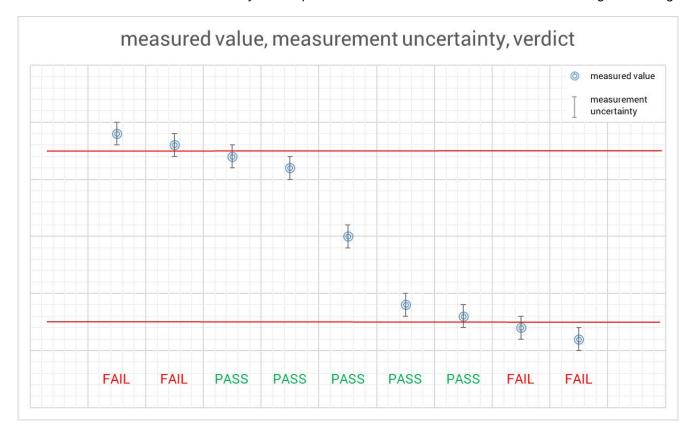
Test standard	Date	Description
FCC - Title 47 CFR Part 15		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices

Guidance	Version	Description			
ANSI C63.4-2017 -/-		American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz			
ANSI C63.10-2013	-/-	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices			

Accreditation	Description	
D-PL-12076-01-05	Telecommunication FCC requirements https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf	DAKKS Deutsche Akkreditierungsstelle D-PL-12076-01-05

4 Test environment

Temperature	:	T_{nom} T_{max} T_{min}	+22 °C during room temperature tests +65 °C during high temperature tests -40 °C during low temperature tests
Relative humidity content			49 %
Barometric pressure			1010 hPa
Power supply	:	V	100 to 240 V AC by external power supply unit 12 to 30 V DC 20.4 V _{min} to 27.6 V _{max} DC from power supply 24.0 V _{nom} DC rated voltage


© CTC advanced GmbH Page 4 of 57

5 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong.

© CTC advanced GmbH Page 5 of 57

6 Test item

6.1 General description

Kind of test item	:	Industrial Radar Presence Detector
Model name:	:	T30R-1515-KUQP
S/N serial number	:	Normal Mode: EB13-25 Stopped Mode: EB12-5
Hardware status	:	Revision C
Software status	:	Firmware Version 2.1
Frequency band	:	116 GHz – 123 GHz
Type of modulation	:	FMCW
Number of channels	:	1 (Normal Mode)
Antenna	:	Embedded Patch
Power supply	:	100 V to 240 V AC by external power supply unit 10 V to 30 V DC (24 V DC rated voltage)
Temperature range	:	-40°C to +65°C

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-1692/20-01-01_AnnexA

1-1692/20-01-01_AnnexB

1-1692/20-01-01_AnnexD

Special test software was used to change from normal operation mode to test mode (low / middle / high) as required by CFR 47 Part 15.31(m).

Low Channel = 119.0 GHz Middle Channel = 121.0 GHz High Channel = 122.9 GHz

Spurious emissions were performed with low, middle and high channels.

© CTC advanced GmbH Page 6 of 57

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 7 of 57

^{*)}Note: The sequence will be repeated three times with different EUT orientations.

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 8 of 57

7.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 9 of 57

7.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 10 of 57

7.5 Sequence of testing radiated spurious above 50 GHz with external mixers

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate for far field (e.g. 0.25 m).
- The EUT is set into operation.

Premeasurement

- The test antenna with external mixer is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.
- Caution is taken to reduce the possible overloading of the external mixer.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- As external mixers may generate false images care is taken to ensure that any emission measured by the spectrum analyzer does indeed originate in the EUT. Signal identification feature of spectrum analyzer is used to eliminate false mixer images (i.e., it is not the fundamental emission or a harmonic falling precisely at the measured frequency).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

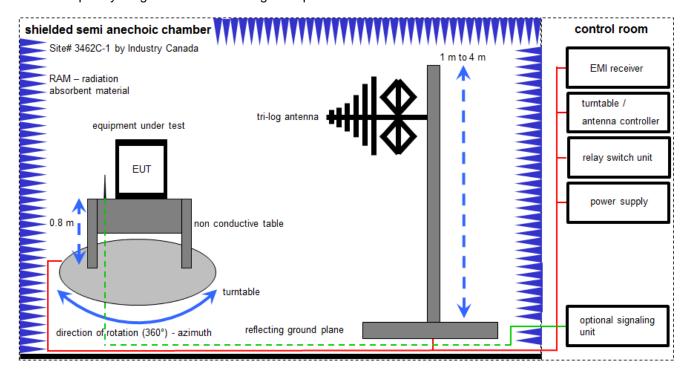
© CTC advanced GmbH Page 11 of 57

8 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

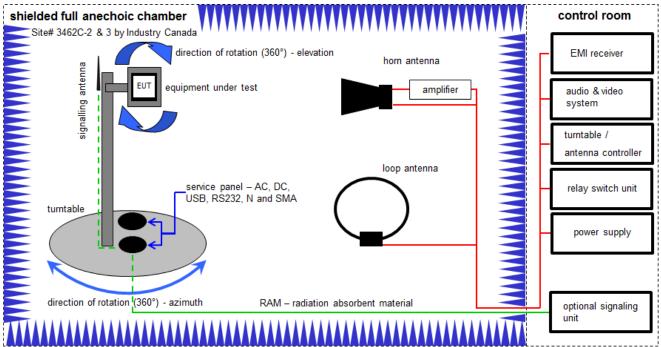

k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 12 of 57

8.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04466	300000580	ne	-/-	-/-
3	n. a.	Meßkabine 1	HF-Absorberhalle	MWB AG 300023		300000551	ne	-/-	-/-
4	n. a.	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	09.12.2020	08.12.2021
5	n. a.	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
6	n. a.	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
7	n. a.	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
8	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	318	300003696	vIKI!	04.09.2019	03.09.2021
9	n. a.	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
10	n. a.	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	10.12.2020	09.06.2022

© CTC advanced GmbH Page 13 of 57

8.2 Radiated measurements fully anechoic chamber

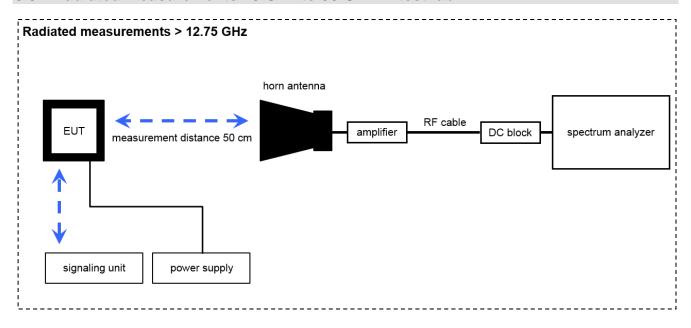
Measurement distance: horn antenna 3 meter; loop antenna 3 meter / 1 meter

FS = UR + CA + AF

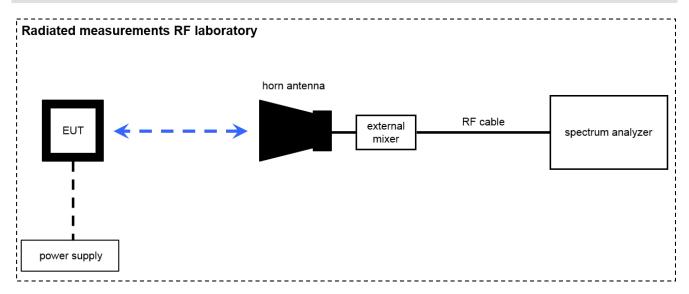
(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \ \mu V/m)$

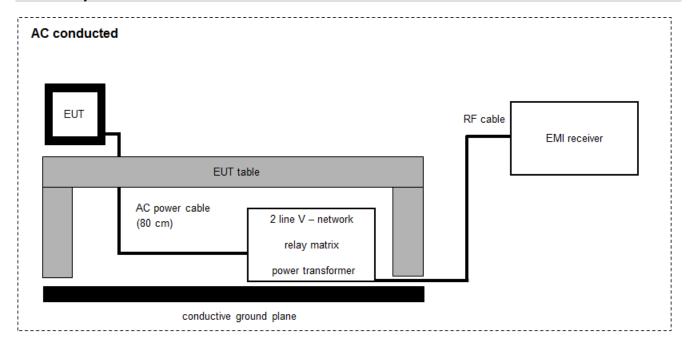

Equipment table:

No.	Lab /	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	vIKI!	09.12.2020	08.12.2023
2	n. a.	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vIKI!	13.06.2019	12.06.2021
3	n. a.	Anechoic chamber	FAC 3/5m	MWB/TDK	87400/02	300000996	ev	-/-	-/-
4	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	371	300003854	vIKI!	14.01.2020	13.01.2022
5	n. a.	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9709-5289	300000213	vIKI!	14.07.2020	13.07.2022
6	n. a.	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
7	n. a.	Variable isolating transformer	MPL IEC625 Bus Variable isolating transformer	Erfi	91350	300001155	ne	-/-	-/-
8	n. a.	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	11.12.2020	10.12.2021
9	n. a.	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
10	n. a.	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
11	n. a.	Broadband Amplifier 5-13 GHz	CBLU5135235	CERNEX	22010	300004491	ev	-/-	-/-
12	n. a.	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
13	n. a.	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO		300004682	ne	-/-	-/-
14	n. a.	PC	ExOne	F+W		300004703	ne	-/-	-/-
15	n. a.	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011572	300005241	ev	-/-	-/-


© CTC advanced GmbH Page 14 of 57

8.3 Radiated measurements 18 GHz to 50 GHz in test lab

8.4 Radiated measurements > 50 GHz in test lab



Note: conversion loss of mixer is already included in analyzer value.

© CTC advanced GmbH Page 15 of 57

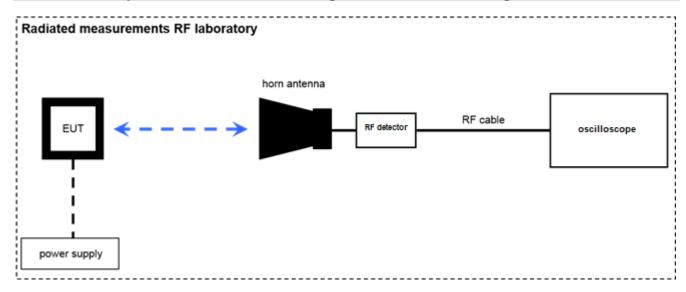
8.5 AC power-line conducted emissions

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

Example calculation:

FS $[dB\mu V/m] = 37.62 [dB\mu V/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dB\mu V/m] (244.06 <math>\mu V/m$)


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	-/-	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	R&S	892475/017	300002209	vIKI!	11.12.2019	10.12.2021
2	-/-	RF-Filter-section	85420E	HP	3427A00162	300002214	NK!	-/-	-/-
3	-/-	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	09.12.2020	08.12.2021
4	-/-	Hochpass 150 kHz	EZ-25	R&S	100010	300003798	ev	-/-	-/-

© CTC advanced GmbH Page 16 of 57

8.6 Radiated power measurements using RF detector according to ANSI C63.10-2013

Note: EUT is replaced by reference source for substitution measurement

© CTC advanced GmbH Page 17 of 57

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n.a.	Horn Antenna 18,0- 40,0 GHz	LHAF180	Microw.Devel	39180-103-021	300001747	vIKI!	18.02.2019	17.02.2022
2	n. a.	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda		300000486	vIKI!	21.01.2020	20.01.2022
3	n. a.	Std. Gain Horn Antenna 26.5-40.0 GHz	V637	Narda	82-16	300000510	vIKI!	23.01.2020	22.01.2022
4	n.a.	Std. Gain Horn Antenna 33.0-50.1 GHz	2324-20	Flann	57	400000683	ne	-/-	-/-
5	n. a.	Std. Gain Horn Antenna 49.9-75.8 GHz	2524-20	Flann	*	300001983	ne	-/-	-/-
6	n. a.	Std. Gain Horn Antenna 60-90 GHz	COR 60_90	Thomson CSF		300000814	ev	-/-	-/-
7	n. a.	Std. Gain Horn Antenna 73.8-112 GHz	2724-20	Flann	*	300001988	ne	-/-	-/-
8	n.a.	Std. Gain Horn Antenna 92.3-140 GHz	2824-20	Flann		300001993	ne	-/-	-/-
9	n. a.	Std. Gain Horn Antenna 114-173 GHz	2924-20	Flann	*	300001999	ne	-/-	-/-
10	n. a.	Std. Gain Horn Antenna 145-220 GHz	3024-20	Flann	*	300002000	ne	-/-	-/-
11	n. a.	Std. Gain Horn Antenna 217-330 GHz	32240-20	Flann	233278	300004960	ne	-/-	-/-
12	n. a.	Standard Gain Horn 325-500 GHz	570240-20 1785-2a	Flann	273569	300006097	ev	25.05.2020	24.05.2022
13	n. a.	Broadband LNA 18-50 GHz	CBL18503070PN	CERNEX	25240	300004948	ev	09.03.2020	08.03.2022
14	n. a.	Harmonic Mixer 3- Port, 50-75 GHz	FS-Z75	Rohde & Schwarz	101578	300005788	k	17.06.2020	16.06.2021
15	n. a.	Harmonic Mixer 3- Port, 60-90 GHz	FS-Z90	R&S	101555	300004691	k	08.07.2020	07.07.2021
16	n. a.	Harmonic Mixer 3- Port, 75-110 GHz	FS-Z110	R&S	101411	300004959	k	19.06.2020	18.06.2021
17	n.a.	Harmonic Mixer 3- port, 90-140 GHz	FS-Z140	Rohde & Schwarz	101119	300005581	k	09.07.2020	08.07.2021
18	n. a.	Harmonic Mixer 3- Port, 110-170 GHz	FS-Z170	Radiometer Physics GmbH	100014	300004156	k	28.05.2020	27.05.2021
19	n. a.	Harmonic Mixer 3- Port, 140-220 GHz	SAM-220	Radiometer Physics GmbH	200001	300004157	k	14.07.2020	13.07.2021
20	n. a.	Harmonic Mixer 3- Port, 220-325 GHz	SAM-325	Radiometer Physics GmbH	100002	300004158	k	23.07.2020	22.07.2021
21	n.a.	Harmonic Mixer 325- 500GHz	FS-Z500	Radiometer Physics GmbH	101016	300006096	k	25.05.2020	24.05.2021
22	n. a.	Spectrum Analyzer 2 Hz - 85 GHz	FSW85	R&S	101333	300005568	k	17.06.2020	16.06.2021
23	n. a.	Spectrum Analyzer 2 Hz - 85 GHz	FSW85	R&S	101333	300005568	k	17.06.2020	16.06.2021
24	n.a.	Std. Gain Horn Antenna 90-140 GHz	COR 90_140	Thomson CSF		300000799	ev	-/-	-/-
25	n.a.	F-Band Positive Amplitude Detector	SFD-903144-08SF- P1	Sage Millimeter Inc.	07354-1	300006119	ev	-/-	-/-
26	n.a.	SG Extension Module 110 - 170 GHz	E8257DV06	VDI	US53250018	300005540	ev	-/-	-/-
27	n.a.	Std. Gain Horn Antenna 114-173 GHz	2924-20	Flann	*	300001999	ne	-/-	-/-
28	n.a.	Synthesized Sweeper 10 MHz - 40 GHz	83640A	HP	3119A00458	300002266	vIKI!	13.12.2019	12.12.2021
29	n.a.	2.5 GHz Digital Phosphor Oscilloscope	DPO7254	Tektronix	B022702	300003573	vIKI!	07.12.2020	06.12.2022

© CTC advanced GmbH Page 18 of 57

9 Measurement uncertainty

Test case	Uncertainty
Equivalent isotropically radiated power (e.i.r.p.)	Conducted value ± 1 dB Radiated value ± 3 dB
Permitted range of operating frequencies	± 100 kHz
Conducted unwanted emissions in the spurious domain (up to 18 GHz)	± 1 dB
Radiated unwanted emissions in the spurious domain (up to 18 GHz)	± 3 dB
Conducted unwanted emissions in the spurious domain (18 to 40 GHz)	± 4 dB
Radiated unwanted emissions in the spurious domain (18 to 40 GHz)	± 4 dB
Conducted unwanted emissions in the spurious domain (40 to 50 GHz)	± 4.5 dB
Radiated unwanted emissions in the spurious domain (40 to 50 GHz)	± 4.5 dB
Conducted unwanted emissions in the spurious domain (above 50 GHz)	± 5 dB
Radiated unwanted emissions in the spurious domain (above 50 GHz)	± 5 dB
DC and low frequency voltages	± 3 %
Temperature	± 1 °C
Humidity	± 3 %

© CTC advanced GmbH Page 19 of 57

10 Far field consideration for measurements above 18 GHz

Far field distance calculation:

 $D_{ff} = 2 \times D^2/\lambda$

with

D_{ff} Far field distance D Antenna dimension

λ wavelength

Spurious emission measurements:

Antenna frequency range in GHz	Highest measured frequency in GHz	D in cm	λ in cm	D _{ff} in cm
18-26	26	3.4	1.15	20.04
26-40	40	2.2	0.75	12.91
40-50	50	2.77	0.60	25.58
50-75	75	1.85	0.40	17.11
75-110	110	1.24	0.27	11.28
90-140	140	1.02	0.22	9.72
110-170	170	0.85	0.18	8.19
140-220	220	0.68	0.14	6.78
220-325	325	0.43	0.09	4.01
325-500	500	0.26	0.06	2.22

In band measurement (OBW):

Antenna frequency range in GHz	Highest measured frequency in GHz	Antenna dimension in cm	Wavelength in cm	Far Field distance in cm
90 - 140	123.5	1	0.24	8.24

© CTC advanced GmbH Page 20 of 57

11 Measurement results

11.1 Summary

×	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC identifier	Description	verdict	date	Remark
RF-Testing	FCC 47 CFR Part 15	see below	2021-06-24	-/-

Test specification clause	Test case	Temperature conditions	Power supply	Pass	Fail	NA	NP	Results (max.)
§15.258 (d)	Occupied bandwidth	Nominal	Nominal	\boxtimes				complies
§15.258(b) (1) / (3)	Maximum E.I.R.P.	Nominal	Nominal	\boxtimes				complies
§15.258(c)	Spurious Emissions	Nominal	Nominal	\boxtimes				complies
§15.258(d)	Frequency stability	Extreme Nominal	Extreme Nominal	\boxtimes				complies
§15.207(a)	AC power-line conducted emissions	Nominal	Nominal	\boxtimes				complies

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

© CTC advanced GmbH Page 21 of 57

12 Measurement results

12.1 Occupied bandwidth (6 dB Bandwidth)

Description:

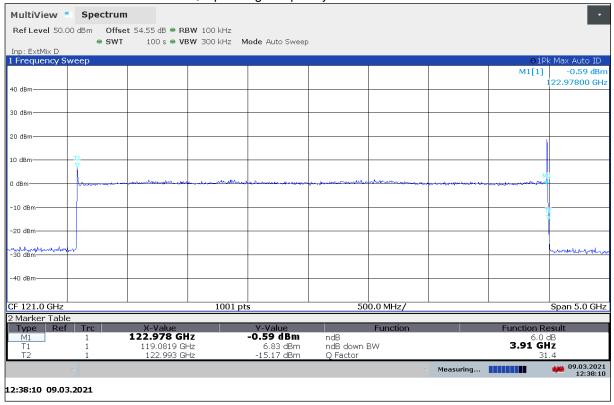
Measurement of the bandwidth of the wanted signal.

Measurement:

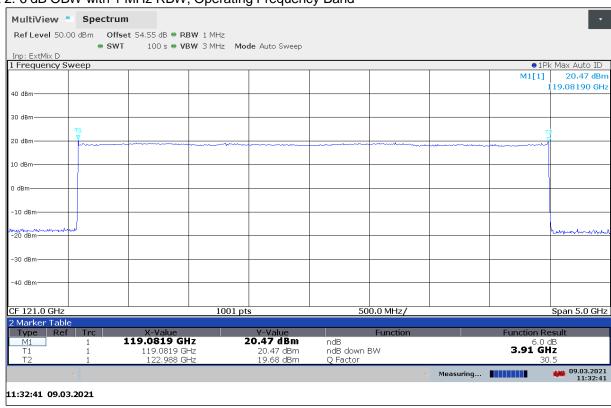
Measurement parameter		
Detector:	Pos-Peak	
Sweep time:	10 s	
Resolution bandwidth:	100 kHz	
Video bandwidth:	300 kHz	
Trace-Mode:	Max Hold	

Limits:

FCC
CFR Part 15.258
The occupied bandwidth from intentional radiators operated within the specified frequency band shall comply with the following:
Frequency range
116 GHz – 123 GHz


Measurement results:

Test condition	F∟ in GHz	F _H in GHz	6dB Bandwidth in GHz
T _{nom} / V _{nom} (100 kHz RBW)	119.081 900	122.993 000	3.91
T _{nom} / V _{nom} (1MHz RBW)	119.081 900	122.988 000	3.91
Measurement uncertainty	± span/1000		


© CTC advanced GmbH Page 22 of 57

Plot 2: 6 dB OBW with 1 MHz RBW, Operating Frequency Band

© CTC advanced GmbH Page 23 of 57

12.2 Maximum E.I.R.P.

Description:

Measurement of the maximum radiated e.i.r.p. of the wanted signal.

Measurement:

Measurement parameter			
Detector:	Pos-Peak (RF-Detector)		
Video bandwidth:	10 MHz		
Trace-Mode:	Max Hold		

Limits: FCC Part 15.258 (b)

Emission levels within the 116-123 GHz, 174.8-182 GHz, 185-190 GHz and 244-246 GHz bands shall not exceed the following equivalent isotropically radiated power (EIRP) limits as measured during the transmit interval:

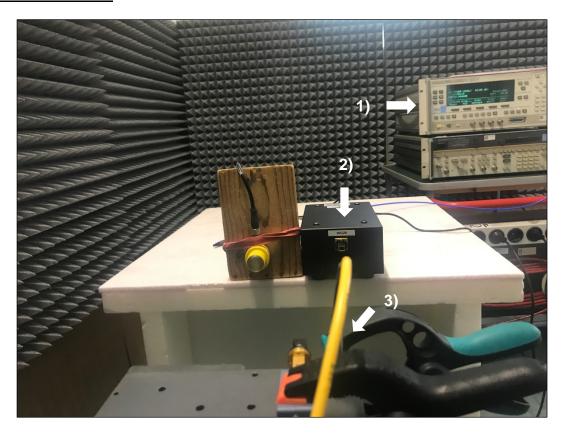
The average power of any emission shall not exceed 40 dBm and the peak power of any emission shall not exceed 43 dBm.

The peak power shall be measured with a detection bandwidth that encompasses the entire occupied bandwidth within the intended band of operation, e.g., 116-123 GHz, 174.8-182 GHz, 185-190 GHz or 244-246 GHz. The average emission levels shall be measured over the actual time period during which transmission occurs.

Measurement results:

Test condition	Max E.I.R.P. 10 MHz VBW	Average E.I.R.P. 10 MHz VBW	
T _{nom} / V _{nom}	20.45 dBm	20.36 dBm	
Measurement uncertainty	± 3 dB		

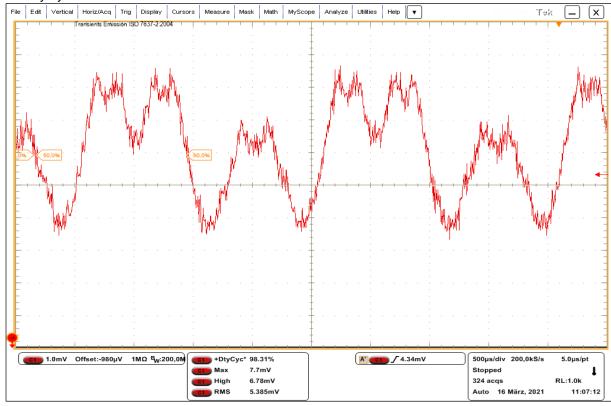
Test condition	Duty cycle
T _{nom} / V _{nom}	98 %


© CTC advanced GmbH Page 24 of 57

<u>Description of the E.I.R.P. measurement by substitution method:</u>

- 1) EUT emission measured with RF-detector:
 - Measurement distance: d = 0.12 m
 - Maximum readout value on oscilloscope: V = 7.7 mV
- 2) Substitution of EUT by a cw reference source with a frequency of f = 121 GHz and a fixed output power of $P_{ref} = 28.4$ dBm
 - Readout value on oscilloscope adjusted by far field attenuation
- 3) Calculation of the Max E.I.R.P. of the EUT:
 - Free space loss: $FSL(d) = 20 \times log(4 \times \pi \times d \times f/c)$, c: speed of light
 - Max E.I.R.P. = P_{ref} FSL(0.30 m) + FSL(0.12 m) = 20.45 dBm
- 4) Calculation of the Average E.I.R.P. of the EUT:
 - Measured duty cycle of the EUT: 98.3 %
 - Average E.I.R.P. = Max E.I.R.P. + 10 x log(0.983) = 20.38 dBm

Setup of the substitution:



- 1) Synthesized Sweeper 10 MHz 40 GHz
- 2) SG Extension Module 110 170 GHz & Std. Gain Horn Antenna 114-173 GHz
- 3) F-Band Positive Amplitude Detector & Std. Gain Horn Antenna 90-140 GHz

© CTC advanced GmbH Page 25 of 57

Plot 3: Duty cycle

© CTC advanced GmbH Page 26 of 57

12.3 Spurious emissions radiated

Description:

Measurement of the radiated spurious emissions.

Measurement:

Measurement parameter			
Detector:	Quasi Peak / Pos-Peak / RMS		
Sweep time:	Auto		
Resolution bandwidth:	F < 1 GHz: 100 kHz F > 1 GHz: 1 MHz		
Video bandwidth:	Auto		
Frequency range:	30 MHz to 500 GHz		
Trace-Mode:	Max Hold		

<u>Limits:</u> FCC Part 15.258 / RSS-210

- (c) Spurious emissions shall be limited as follows:
- (1) The power density of any emissions outside the band of operation, e.g., 116-123 GHz, 174.8-182 GHz, 185-190 GHz or 244-246 GHz, shall consist solely of spurious emissions.
- (2) Radiated emissions below 40 GHz shall not exceed the general limits in §15.209.

FCC					
	CFR Part 15.209(a)				
	Radiated emission limits				
Frequency (MHz)	Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters)				
0.009 - 0.490	2400/F(kHz)	300			
0.490 - 1.705	24000/F(kHz)	30			
1.705 – 30.0	30	30			
30 – 88	100	3			
88 – 216	150	3			
216 – 960	200	3			
Above 960	500	3			

- (3) Between 40 GHz and the highest frequency specified in § 15.33, the level of these emissions shall not exceed 90 pW/cm2 at a distance of 3 meters.
- (4) The levels of the spurious emissions shall not exceed the level of the fundamental emission.

© CTC advanced GmbH Page 27 of 57

<u>Limits:</u> ANSI C63.10-2013 9.6

Power density at the distance specified by the limit: PD [W/m²] Equivalent isotropically radiated power: EIRP [dBm] Distance at which the power density limit is specified: d [m]

 $EIRP[dBm] = 10 \times log(4 \times \pi \times d^2 \times PD[W/m^2])$

According to this formula, an emission limit of $PD = 90 \text{ pW/cm}^2$ at a distance of 3 meters corresponds to EIRP = -10 dBm.

Measurement results:

Low Channel:

Frequency [GHz]	Detector	Bandwidth [MHz]	Level [dBµV/m]	Limit [dBµV/m]
0.41	Quasi-Peak	0.120	27.5	30
0.46	Quasi-Peak	0.120	26.4	30
0.77	Quasi-Peak	0.120	25.4	30
9.53	PK	1.0	56.5	74
9.53	AVG	1.0	52.7	54
24.2	PK	1.0	42.2	74
24.2	AVG	1.0	38.3	54

Frequency	Detector	Bandwidth	Level	Limit
[GHz]		[MHz]	[dBm]	[dBm]
59.5	RMS	1	-13.4	-10

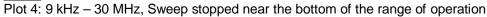
Middle Channel:

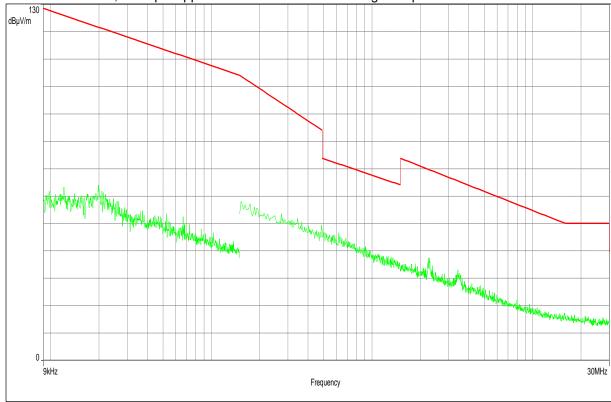
Frequency [GHz]	Detector	Bandwidth [MHz]	Level [dBµV/m]	Limit [dBµV/m]
0.41	Quasi-Peak	0.120	26.9	30
0.45	Quasi-Peak	0.120	26.2	30
0.77	Quasi-Peak	0.120	25.3	30
9.60	PK	1.0	56.8	74
9.60	AVG	1.0	53.4	54
24.6	PK	1.0	43.3	74
24.6	AVG	1.0	39.6	54

Frequency	Detector	Bandwidth	Level	Limit
[GHz]		[MHz]	[dBm]	[dBm]
60.5	RMS	1	-14.7	-10

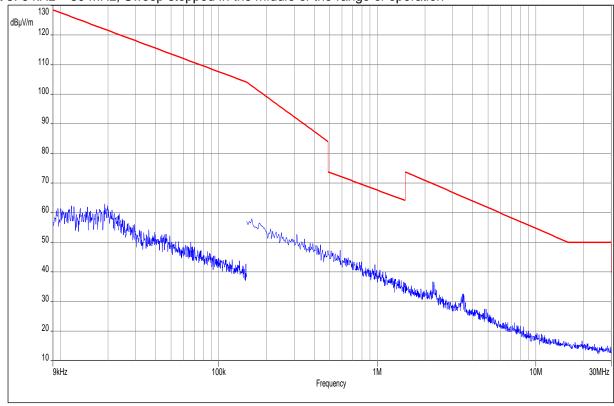
© CTC advanced GmbH Page 28 of 57

High Channel:

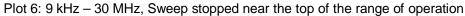

Frequency [GHz]	Detector	Bandwidth [MHz]	Level [dBµV/m]	Limit [dBµV/m]
0.41	Quasi-Peak	0.120	27.9	30
0.45	Quasi-Peak	0.120	26.3	30
0.77	Quasi-Peak	0.120	25.9	30
9.61	PK	1.0	56.7	74
9.61	AVG	1.0	53.4	54
24.9	PK	1.0	43.8	74
24.9	AVG	1.0	40.3	54

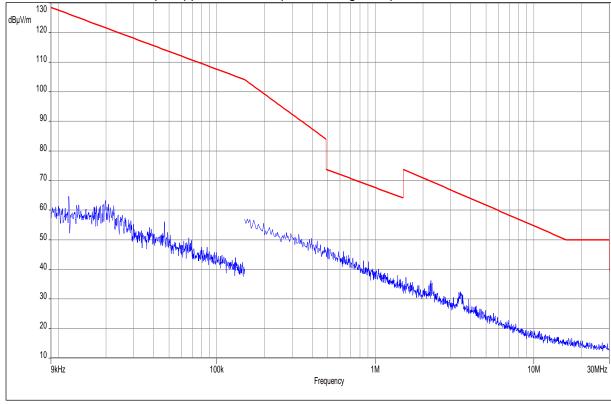

Frequency	Detector	Bandwidth	Level	Limit
[GHz]		[MHz]	[dBm]	[dBm]
61.5	RMS	1	-13.9	-10

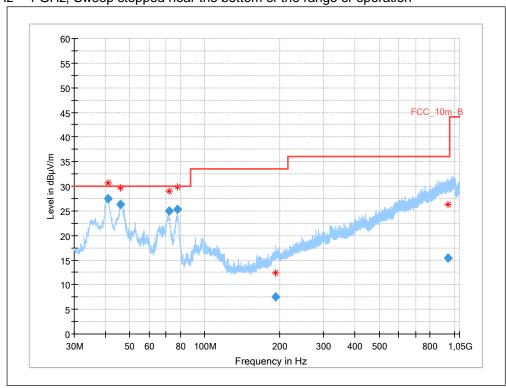
© CTC advanced GmbH Page 29 of 57

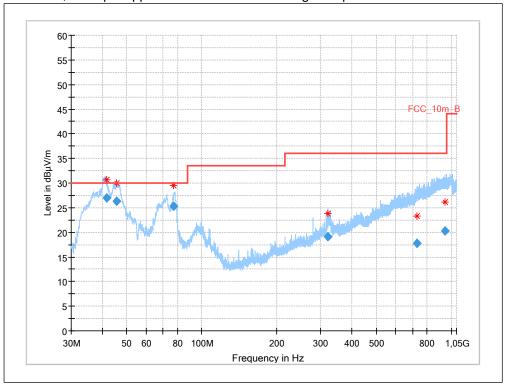


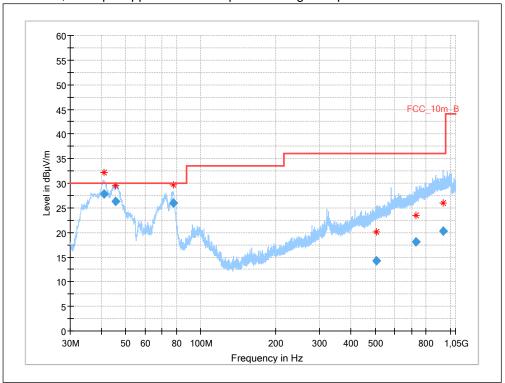
Plots:



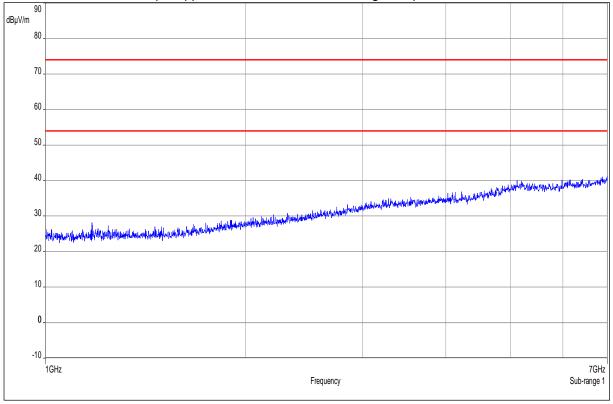

Plot 5: 9 kHz – 30 MHz, Sweep stopped in the middle of the range of operation

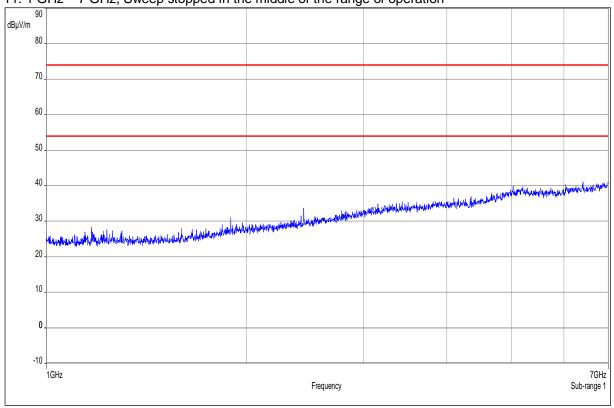

© CTC advanced GmbH Page 30 of 57


Plot 7: 30 MHz – 1 GHz, Sweep stopped near the bottom of the range of operation

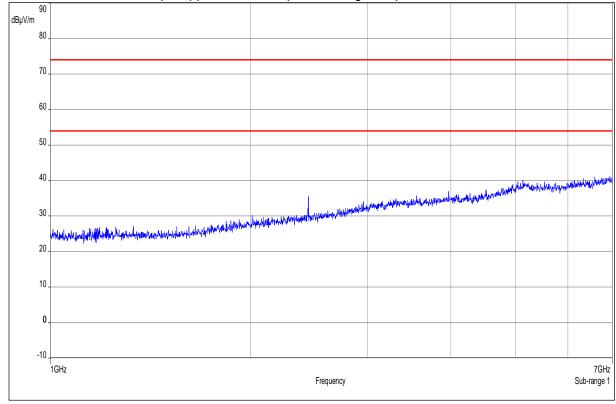

© CTC advanced GmbH Page 31 of 57

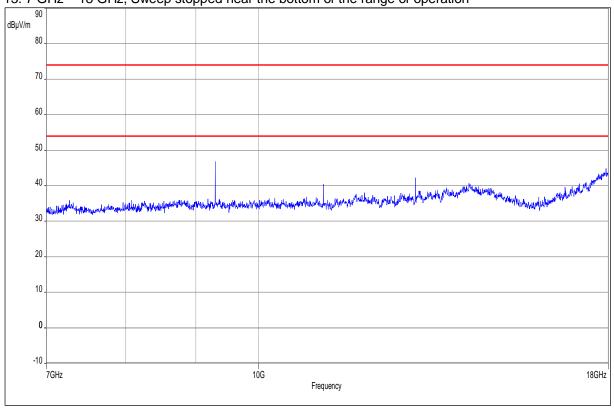
Plot 8: 30 MHz – 1 GHz, Sweep stopped in the middle of the range of operation


Plot 9: 30 MHz – 1 GHz, Sweep stopped near the top of the range of operation

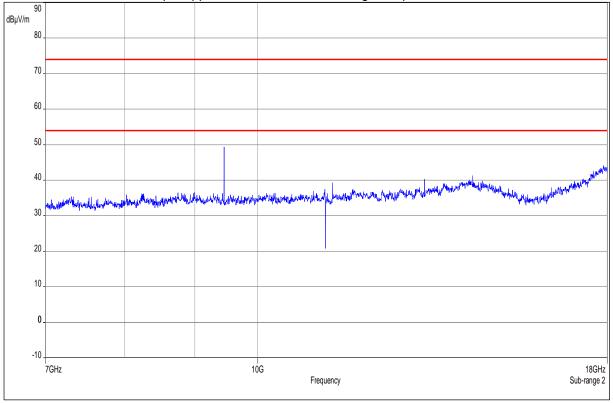

© CTC advanced GmbH Page 32 of 57

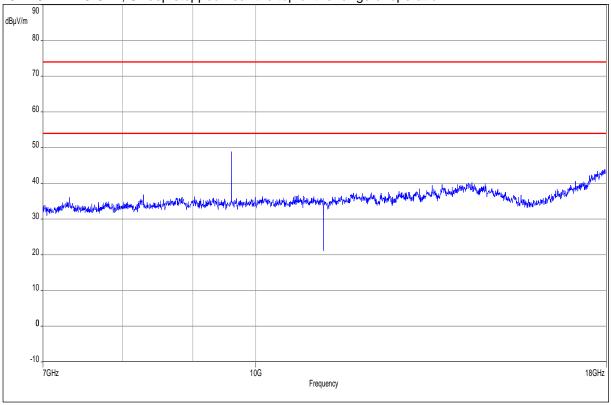
Plot 10: 1 GHz – 7 GHz, Sweep stopped near the bottom of the range of operation


Plot 11: 1 GHz - 7 GHz, Sweep stopped in the middle of the range of operation

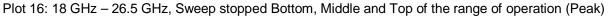

© CTC advanced GmbH Page 33 of 57

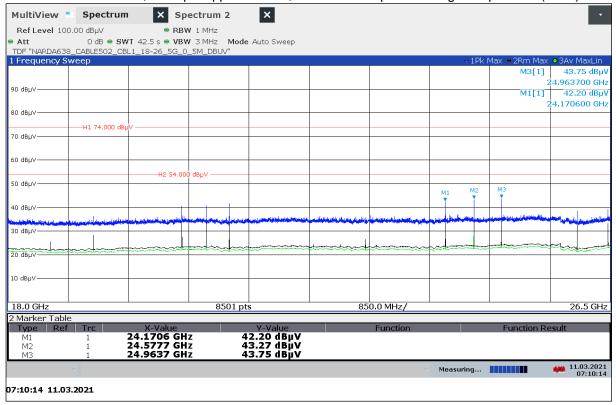
Plot 12: 1 GHz – 7 GHz, Sweep stopped near the top of the range of operation

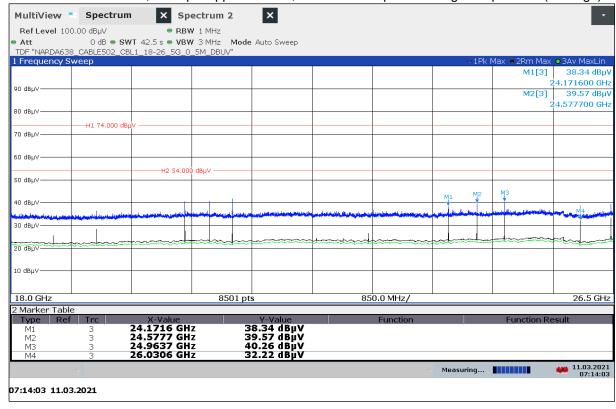

Plot 13: 7 GHz – 18 GHz, Sweep stopped near the bottom of the range of operation

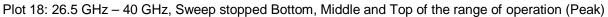

© CTC advanced GmbH Page 34 of 57

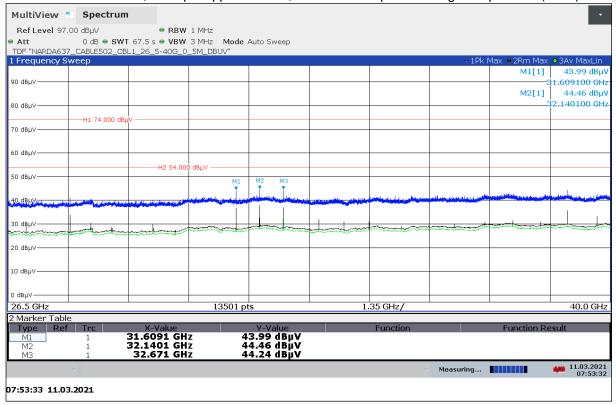
Plot 14: 7 GHz – 18 GHz, Sweep stopped in the middle of the range of operation

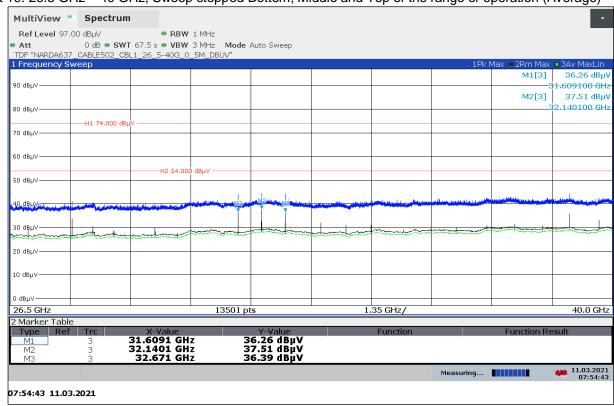


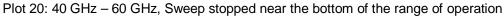

Plot 15: 7 GHz – 18 GHz, Sweep stopped near the top of the range of operation

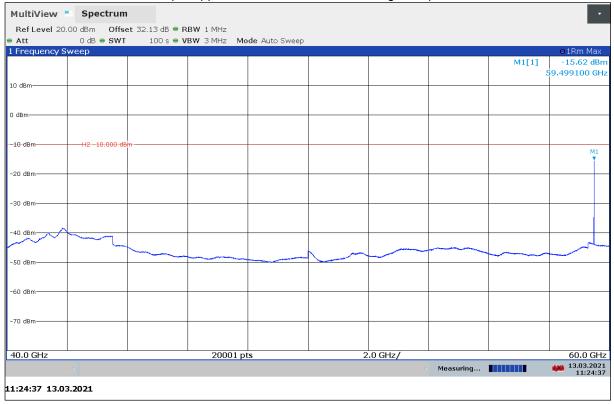

© CTC advanced GmbH Page 35 of 57

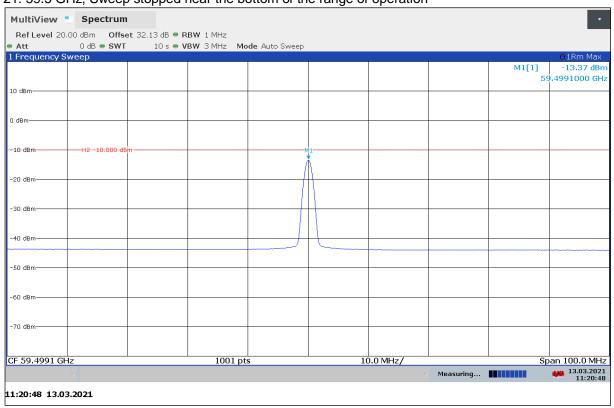


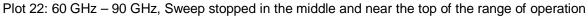

Plot 17: 18 GHz - 26.5 GHz, Sweep stopped Bottom, Middle and Top of the range of operation (Average)

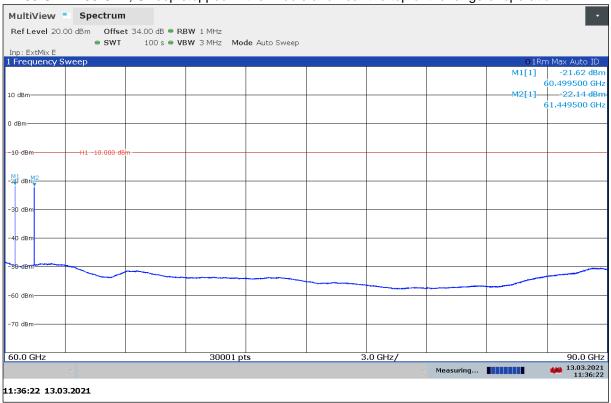

© CTC advanced GmbH Page 36 of 57

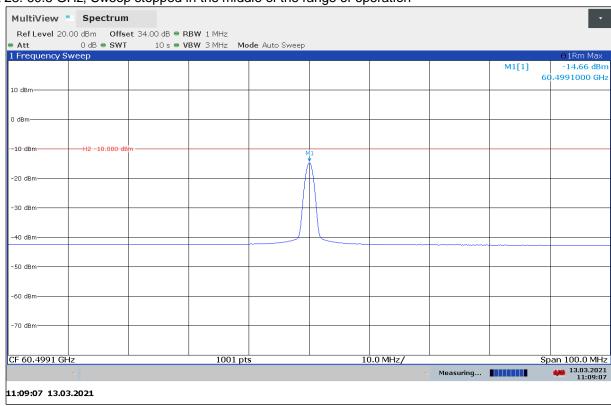


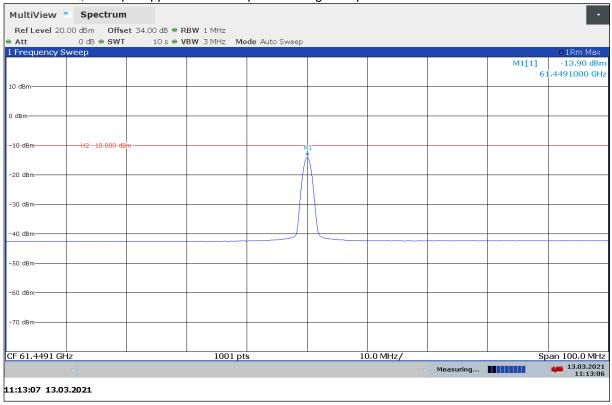

Plot 19: 26.5 GHz - 40 GHz, Sweep stopped Bottom, Middle and Top of the range of operation (Average)

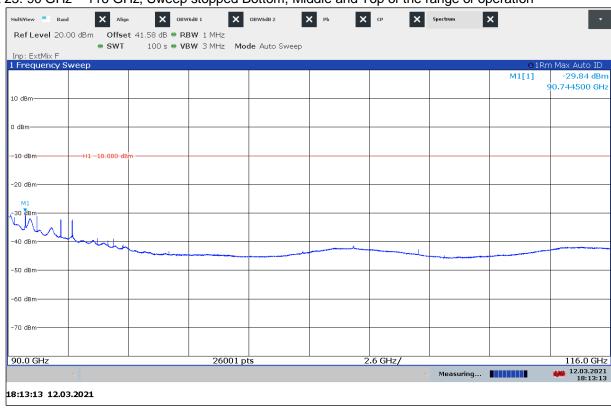

© CTC advanced GmbH Page 37 of 57

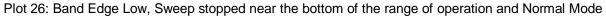


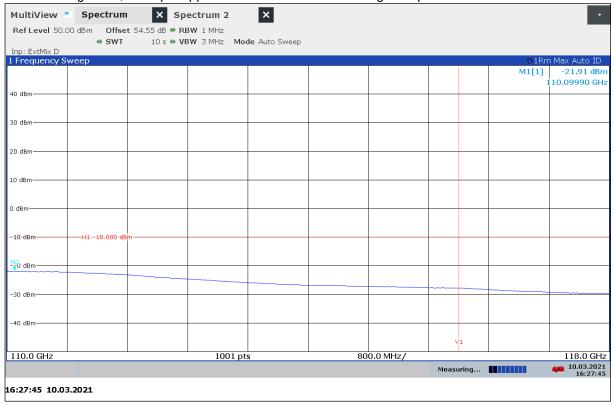

Plot 21: 59.5 GHz, Sweep stopped near the bottom of the range of operation

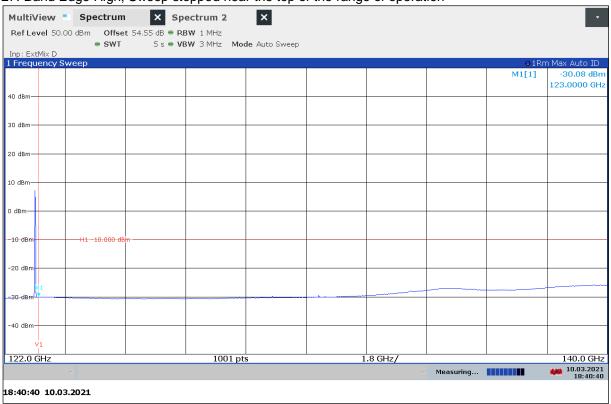

© CTC advanced GmbH Page 38 of 57

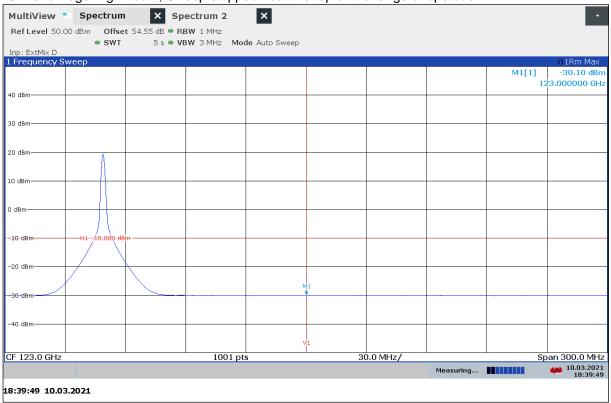

Plot 23: 60.5 GHz, Sweep stopped in the middle of the range of operation

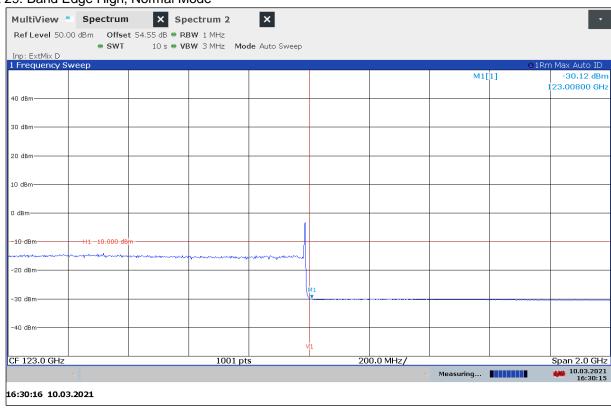

© CTC advanced GmbH Page 39 of 57

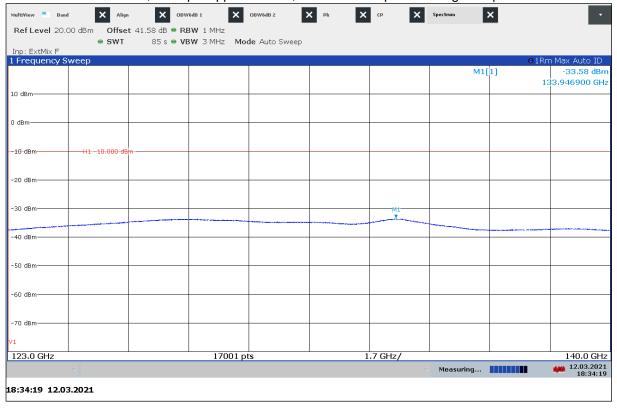


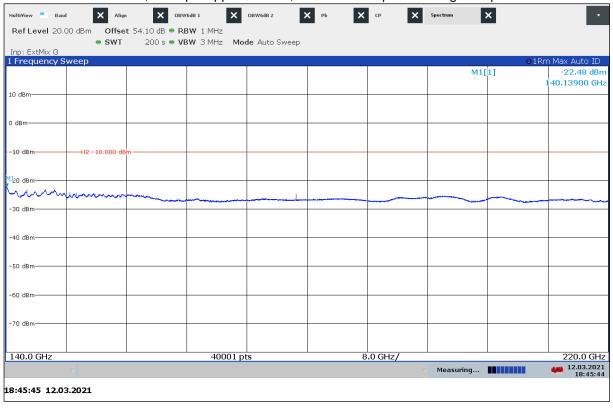

Plot 25: 90 GHz - 116 GHz, Sweep stopped Bottom, Middle and Top of the range of operation


© CTC advanced GmbH Page 40 of 57

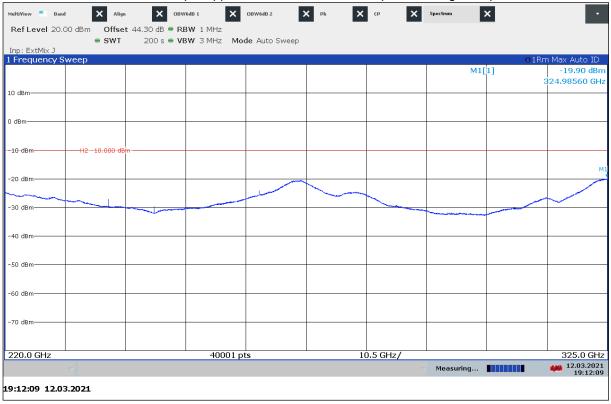

Plot 27: Band Edge High, Sweep stopped near the top of the range of operation

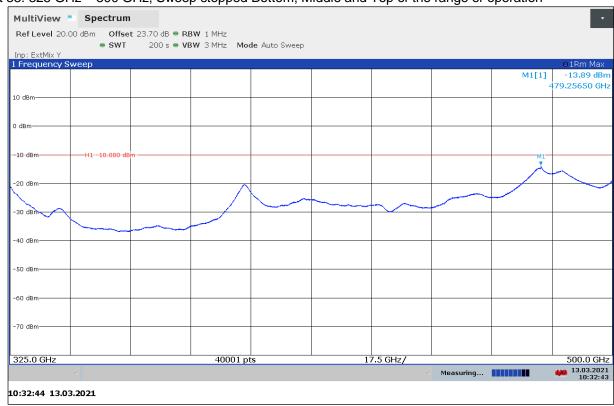

© CTC advanced GmbH Page 41 of 57


Plot 29: Band Edge High, Normal Mode


© CTC advanced GmbH Page 42 of 57

Plot 30: 123 GHz – 140 GHz, Sweep stopped Bottom, Middle and Top of the range of operation


Plot 31: 140 GHz – 220 GHz, Sweep stopped Bottom, Middle and Top of the range of operation


© CTC advanced GmbH Page 43 of 57

Plot 32: 220 GHz – 325 GHz, Sweep stopped Bottom, Middle and Top of the range of operation

Plot 33: 325 GHz - 500 GHz, Sweep stopped Bottom, Middle and Top of the range of operation

© CTC advanced GmbH Page 44 of 57

Test report no.: 1-1692/20-01-02-C

12.4 Frequency Stability

Description:

§15.215(c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. In the case of intentional radiators operating under the provisions of subpart E, the emission bandwidth may span across multiple contiguous frequency bands identified in that subpart. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

§15.258 (d) Fundamental emissions must be contained within the frequency bands specified in this section during all conditions of operation. Equipment is presumed to operate over the temperature range –20 to + 50 degrees Celsius with an input voltage variation of 85% to 115% of rated input voltage, unless justification is presented to demonstrate otherwise.

Measurement:

Measurement parameter		
Detector:	Pos-Peak	
Sweep time:	10 s	
Resolution bandwidth:	1 MHz	
Video bandwidth:	3 MHz	
Span:	5 GHz	
Trace-Mode:	Max Hold	

Limits:

FCC		
CFR Part 15.258 (d)		
The occupied bandwidth from intentional radiators operated within the specified frequency band shall comply with the following:		
Frequency range		
116 GHz – 123 GHz		

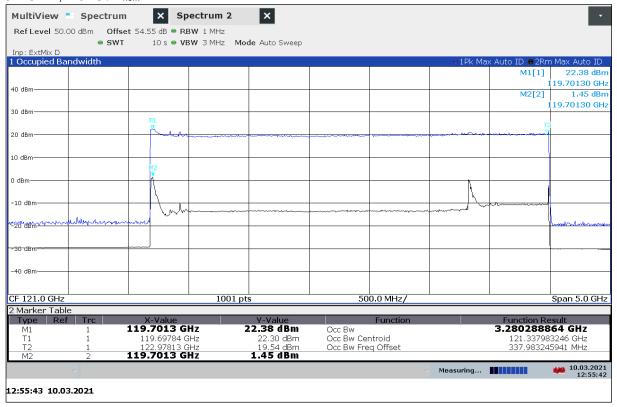
© CTC advanced GmbH Page 45 of 57

Test report no.: 1-1692/20-01-02-C

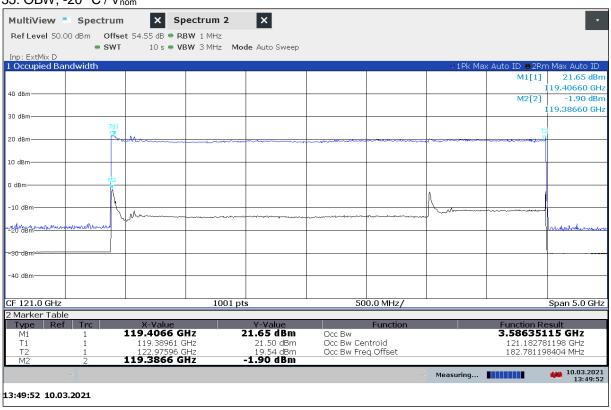
Measurement results:

Temperature variation

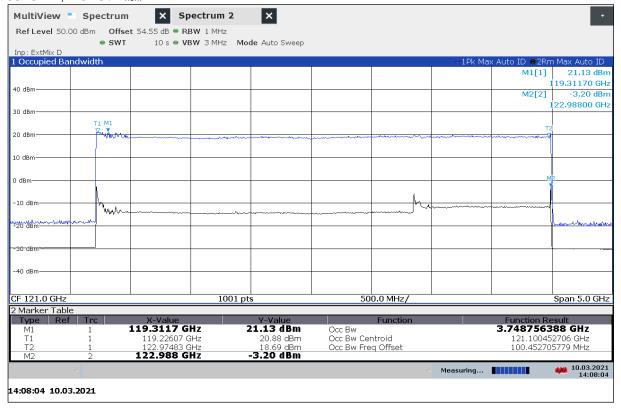
Temperature in °C	f∟ in GHz	f _H in GHz	Bandwidth [GHz]
-40 °C / V _{nom}	119.697 840	122.978 130	3.28
-20 °C / V _{nom}	119.389 610	122.975 960	3.59
-10 °C / V _{nom}	119.226 070	122.974 830	3.75
0 °C / V _{nom}	119.107 460	122.974 430	3.87
10 °C / V _{nom}	119.099 260	122.975 110	3.88
20 °C / V _{nom}	119.097 530	122.976 100	3.88
20 °C / V _{min}	119.097 270	122.975 900	3.88
20 °C / V _{max}	119.097 270	122.975 530	3.88
30 °C / V _{nom}	119.096 770	122.975 480	3.88
40 °C / V _{nom}	119.097 170	122.975 600	3.88
50 °C / V _{nom}	119.097 420	122.974 780	3.88
65 °C / V _{nom}	119.098 420	122.975 960	3.88

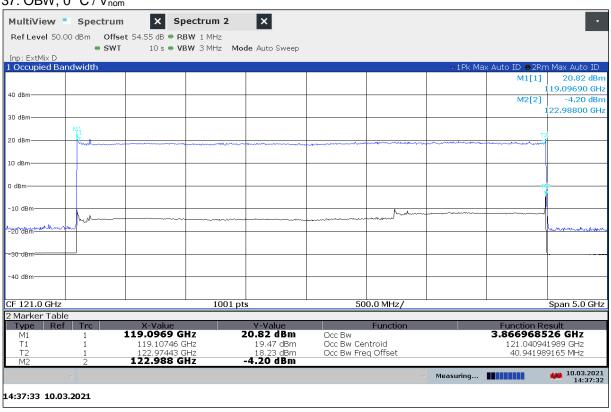

Voltage variation

Voltage variation of rated input voltage	f∟ in GHz	f _H in GHz
< 85 % of U > 115 % of U	Voltage variation does n	not affect the radiated signal

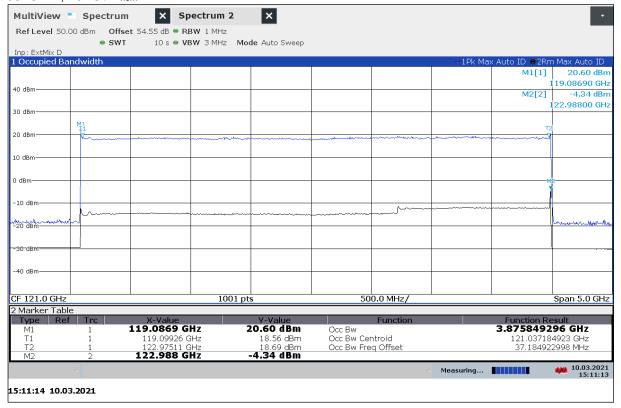

© CTC advanced GmbH Page 46 of 57

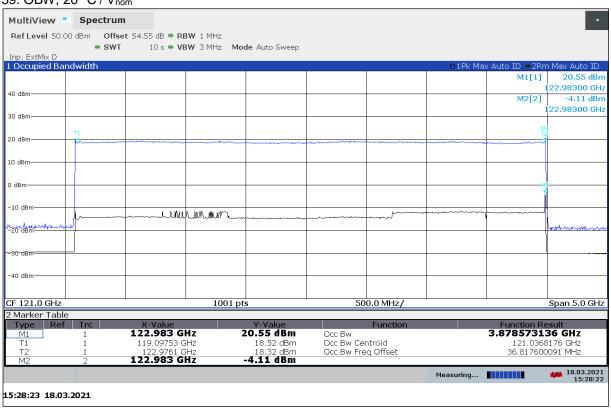
Plot 34: OBW, -40 °C / V_{nom}


Plot 35: OBW, -20 °C / V_{nom}

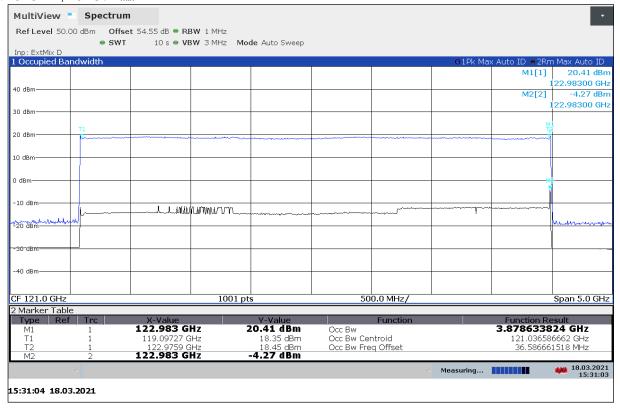

© CTC advanced GmbH Page 47 of 57

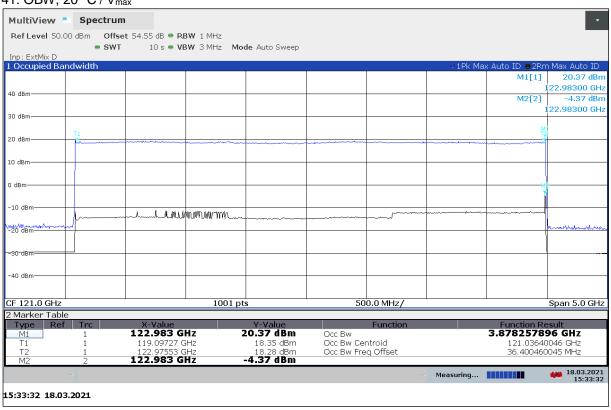
Plot 36: OBW, -10 °C / V_{nom}


Plot 37: OBW, 0 °C / V_{nom}

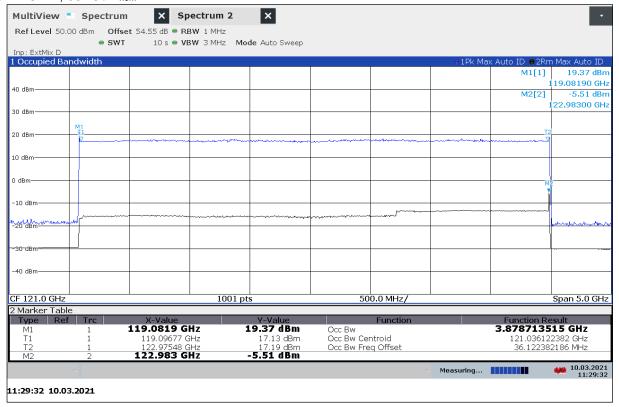

© CTC advanced GmbH Page 48 of 57

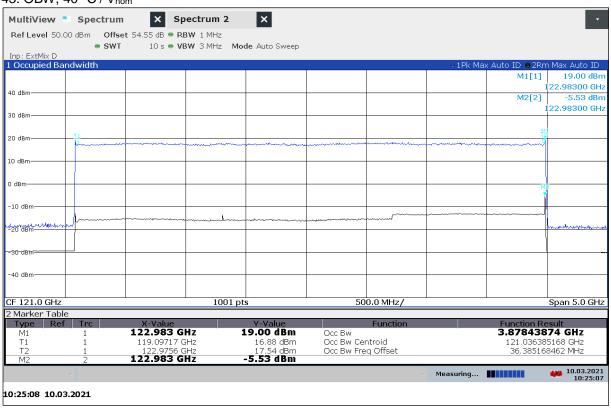
Plot 38: OBW, 10 $^{\circ}$ C / V_{nom}


Plot 39: OBW, 20 °C / V_{nom}

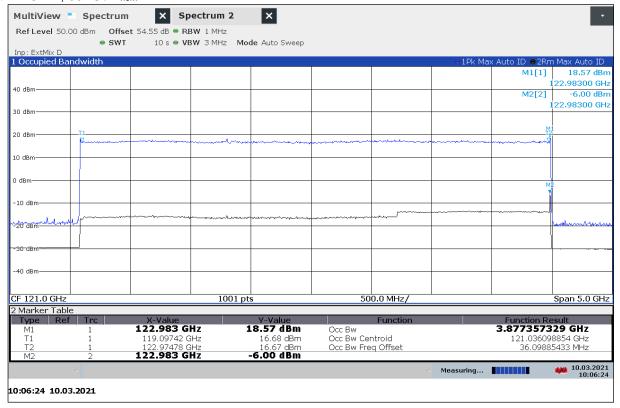

© CTC advanced GmbH Page 49 of 57

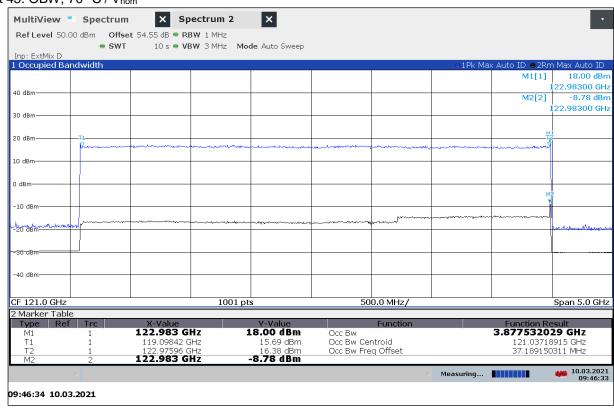
Plot 40: OBW, 20 °C / V_{min}


Plot 41: OBW, 20 °C / V_{max}


© CTC advanced GmbH Page 50 of 57

Plot 42: OBW, 30 °C / V_{nom}


Plot 43: OBW, 40 °C / V_{nom}


© CTC advanced GmbH Page 51 of 57

Plot 44: OBW, 50 °C / V_{nom}

Plot 45: OBW, 70 °C / V_{nom}

© CTC advanced GmbH Page 52 of 57

Test report no.: 1-1692/20-01-02-C

13 Conducted spurious emissions < 30 MHz

Description:

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. Both power lines, phase and neutral line, are measured. Found peaks are re-measured with average and quasi peak detection to show compliance to the limits.

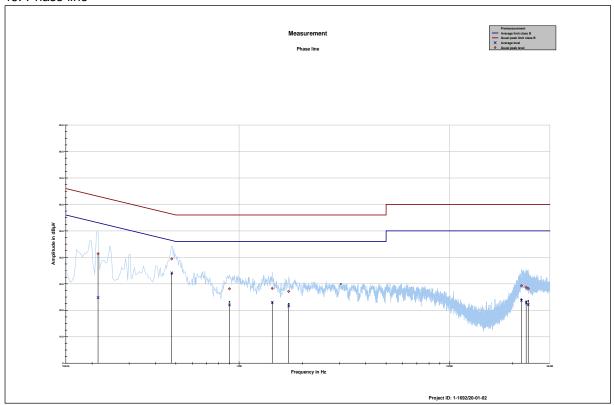
Measurement:

Measurement parameter				
Detector:	Peak - Quasi Peak / Average			
Sweep time:	Auto			
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz			
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz			
Span:	9 kHz to 30 MHz			
Trace-Mode:	Max Hold			

Limits:

FCC					
	CFR Part 15.207(a)				
Conducted Spurious Emissions < 30 MHz					
Frequency (MHz) Quasi-Peak (dBµV/m) Average (dBµV/m)					
0.15 – 0.5	79 to 69* (Class A) 66 to 56* (Class B)	79 to 69* (Class A) 56 to 46* (Class B)			
0.5 – 5 73 (Class A) 63 (Class A) 46 (Class B)					
5 – 30.0	73 (Class A) 60 (Class B)	63 (Class A) 50 (Class B)			

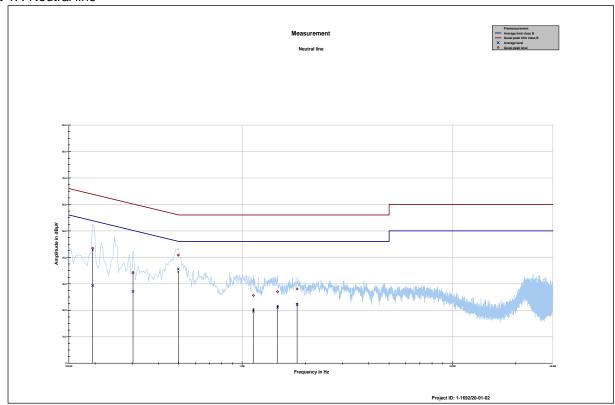
^{*}Decreases with the logarithm of the frequency


Measurement results:

See plots below.

© CTC advanced GmbH Page 53 of 57

Plot 46: Phase line



Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
0.213431	41.37	21.70	63.071	24.78	29.41	54.188
0.478350	39.43	16.94	56.368	34.12	12.50	46.619
0.899981	28.10	27.90	56.000	22.01	23.99	46.000
1.437281	28.27	27.73	56.000	22.87	23.13	46.000
1.720856	27.15	28.85	56.000	21.62	24.38	46.000
21.985275	29.27	30.73	60.000	23.75	26.25	50.000
23.160619	28.69	31.31	60.000	22.73	27.27	50.000
23.690456	28.18	31.82	60.000	22.16	27.84	50.000

© CTC advanced GmbH Page 54 of 57

Plot 47: Neutral line

Frequency	Quasi peak	Margin quasi	Limit QP	Average level	Margin Average	Limit AV
	level	peak				
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
0.194775	43.47	20.36	63.830	29.41	25.31	54.721
0.302981	34.08	26.08	60.161	27.13	24.50	51.629
0.497006	40.84	15.21	56.050	35.55	10.53	46.086
1.131319	25.61	30.39	56.000	19.68	26.32	46.000
1.474594	27.02	28.98	56.000	21.13	24.87	46.000
1.825331	28.04	27.96	56.000	22.10	23.90	46.000

© CTC advanced GmbH Page 55 of 57

Test report no.: 1-1692/20-01-02-C

14 Glossary

EUT	Equipment under test			
DUT	Device under test			
UUT	Unit under test			
GUE	GNSS User Equipment			
ETSI	European Telecommunications Standards Institute			
EN	European Standard			
FCC	Federal Communications Commission			
FCC ID	Company Identifier at FCC			
IC	Industry Canada			
PMN	Product marketing name			
HMN	Host marketing name			
HVIN	Hardware version identification number			
FVIN	Firmware version identification number			
EMC	Electromagnetic Compatibility			
HW	Hardware			
SW	Software			
Inv. No.	Inventory number			
S/N or SN	Serial number			
С	Compliant			
NC	Not compliant			
NA	Not applicable			
NP	Not performed			
PP	Positive peak			
QP	Quasi peak			
AVG	Average			
ОС	Operating channel			
OCW	Operating channel bandwidth			
OBW	Occupied bandwidth			
ООВ	Out of band			
DFS	Dynamic frequency selection			
CAC	Channel availability check			
OP	Occupancy period			
NOP	Non occupancy period			
DC	Duty cycle			
PER	Packet error rate			
CW	Clean wave			
MC	Modulated carrier			
WLAN	Wireless local area network			
RLAN	Radio local area network			
DSSS	Dynamic sequence spread spectrum			
OFDM	Orthogonal frequency division multiplexing			
FHSS	Frequency hopping spread spectrum			
GNSS	Global Navigation Satellite System			
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz			

© CTC advanced GmbH Page 56 of 57

15 Document history

Version	Applied changes	Date of release
-/-	Initial release	2021-04-23
-A	Editorial changes	2021-04-29
-B	Re-measurement in the 9.5 – 9.6 GHz Range	2021-05-20
-C	Model Name changed to T30R-1515-KUQP	2021-06-24

16 Accreditation Certificate – D-PL-12076-01-05

first page	last page
Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025-2018 to carry out tests in the following fields: Telecommunication (FCC Requirements)	Deutsche Akkreditierungsstelle GmbH Office Berlin Spittelmarkt 10 Europa-Allee 52 Bundesallee 100 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-R-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 05 pages. Registration number of the certificate: D-PL-12076-01-05 Frankfurt am Main, 09.06.2020 by ordy Oigl-Ing. [First of Egner Head of Division The certificate ingether with its once reflects the solute of the date of state. The current stories of the scope of accreditation can be fround in the disablence of accreditation can be found in the disablence of accreditation can be found. Because of the accreditation of the disablence of accreditation can be found in the disablence of accreditation can be found. Because of the accreditation of the disablence of accreditation accreditation can be found in the disablence of accreditation accredita	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akterditeriungstite (mith (DAAKs)). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAAKs. The accreditation was granted pursuant to the Act on the Accreditation Body (AAKStelleG) of 31 July 2009 (Federal Law Gazette 1p. 2623) and the Regulation (EC) No 765/2008 of the European Parliament and of the Companies of th

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf

© CTC advanced GmbH Page 57 of 57