SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	Cisco Systems, Inc.			
Applicant Address	170 West Tasman Drive San Jose, CA 95134 USA			
FCC ID	UDX-60043010			
Manufacturer's company	Accton Technology Corporation			
Manufacturer Address	1, Creation Road 3, Hsinchu Science Park Hsinchu 20077, Taiwan R.O.C.			

Product Name	802.11a/b/g/n/ac Wireless Access Point			
Brand Name	CISCO			
Model Name	MR84-HW			
Test Rule	47 CFR FCC Part 15 Subpart C § 15.247			
Test Freq. Range	2402 ~ 2480MHz			
Received Date	Jan. 27, 2016			
Final Test Date	May 28, 2016			
Submission Type	Original Equipment			

Statement

Test result included is only for the Bluetooth LE of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.10-2013, 47 CFR FCC Part 15 Subpart C and KDB558074 D01 v03r05.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1. VER	RIFICATION OF COMPLIANCE	
2. SUN	MMARY OF THE TEST RESULT	2
3. GEI	NERAL INFORMATION	3
3.1.		
3.2.	Accessories	3
3.3.	Table for Filed Antenna	4
3.4.	Table for Carrier Frequencies	6
3.5.	Table for Test Modes	6
3.6.	Table for Testing Locations	8
3.7.	Table for Supporting Units	9
3.8.	Table for Parameters of Test Software Setting	9
3.9.	EUT Operation during Test	10
3.10	D. Duty Cycle	10
3.11	1. Test Configurations	11
4. TEST	T RESULT	14
4.1.	AC Power Line Conducted Emissions Measurement	14
4.2.	Maximum Conducted Output Power Measurement	18
4.3.	Power Spectral Density Measurement	20
4.4.	6dB Spectrum Bandwidth Measurement	24
4.5.	Radiated Emissions Measurement	28
4.6.	Emissions Measurement	41
4.7.	Antenna Requirements	51
5. LIST	OF MEASURING EQUIPMENTS	52
6. ME/	ASUREMENT UNCERTAINTY	54
APPEN	NDIX A. TEST PHOTOS	A1 ~ A4
APPEN	JDIX B. RADIATED EMISSION CO-LOCATION REPORT	R1 ~ R3

History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR641615AC	Rev. 01	Initial issue of report	Jul. 13, 2016

Project No: CB10506164

: 1 of 54

: Jul. 13, 2016

Page No. Issued Date

1. VERIFICATION OF COMPLIANCE

Product Name: 802.11a/b/g/n/ac Wireless Access Point

Brand Name : CISCO

Model No. : MR84-HW

Applicant: Cisco Systems, Inc.

Test Rule Part(s): 47 CFR FCC Part 15 Subpart C § 15.247

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Jan. 27, 2016 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Sam Chen

SPORTON INTERNATIONAL INC.

2. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart C				
Part	Rule Section	Description of Test			
4.1	15.207	AC Power Line Conducted Emissions	Complies		
4.2	15.247(b)(3)	Maximum Conducted Output Power	Complies		
4.3	15.247(e)	Power Spectral Density	Complies		
4.4	15.247(a)(2)	6dB Spectrum Bandwidth	Complies		
4.5	15.247(d)	Radiated Emissions	Complies		
4.6	15.247(d)	Band Edge Emissions	Complies		
4.7	15.203	Antenna Requirements	Complies		

Page No.

: 2 of 54

Issued Date : Jul. 13, 2016

3. GENERAL INFORMATION

3.1. Product Details

Items	Description
Power Type	From PoE
Modulation	DSSS
Data Rate (Mbps)	GFSK: 1
Frequency Range	2402 ~ 2480MHz
Channel Number	40 (37 hopping + 3 advertising channel)
Channel Band Width (99%)	1.07 MHz
Maximum Conducted Output Power	3.39 dBm
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

3.2. Accessories

	Others
Wall-mounted rack*1	
Antenna cable*12 for Set 4 use only	

(1. Long antenna cable*4, shielded 3m; 2. Middle antenna cable*4, shielded 1.5m; 3. Short antenna cable*4, shielded 0.6m)

 Report Format Version: Rev. 01
 Page No.
 : 3 of 54

 FCC ID: UDX-60043010
 Issued Date
 : Jul. 13, 2016

3.3. Table for Filed Antenna

Radio	Set	Brand	P/N	Antenna	Connector		Gain	
Radio	50	biaria	F/N	Туре	Connector	2.4GHz	5GHz	Buletooth
	1	Grand-Tek	ANT-20	Omni	N-Plug			-
Radio 1/	2	Grand-Tek	ANT-25	Panel	N-Plug			-
Radio 2	3	Grand-Tek	MA-ANT-27	Panel	N-Plug	Note 1		-
	4	CISCO	AIR-ANT2513P4M-N	Patch	N-female bulkhead			-
Radio 3	5	Grand-Tek	610-43060	Metal	I-pex	6.30	5.40	-
Radio 4	6	Grand-Tek	610-43050	Metal	I-pex	-	-	7.30

Note1:

Radio	dio Set Chain		Gain	Gain (dBi)		External	True Gain (dBi)	
			2.4GHz	5GHz	Cable loss	Cable loss	2.4GHz	5GHz
		1	4	7	1.4		2.6	5.6
	1	2	4	7	1.6	NI/A	2.4	5.4
	'	3	4	7	1.6	N/A	2.4	5.4
		4	4	7	1.4		2.6	5.6
2		1	8.1	6.5	1.4	Note2	6.7	5.1
	•	2	8.1	6.5	1.6		6.5	4.9
	2	3	8.1	6.5	1.6		6.5	4.9
Radio 1/		4	8.1	6.5	1.4		6.7	5.1
Radio 2		1	9.8	11.3	1.4		8.4	9.9
	2	2	9.8	11.3	1.6	Note2	8.2	9.7
	3	3	9.8	11.3	1.6	Noiez	8.2	9.7
		4	9.8	11.3	1.4		8.4	9.9
		1	13	13	1.4		10	10
	,	2	13	13	1.6	1.6	9.8	9.8
	4	3	13	13	1.6	Note3	9.8	9.8
		4	13	13	1.4		10	10

Note2: Antenna gain is including cable loss

Note3: This antenna can be used with long/middle/short antenna cable, due to the cable loss of long antenna cable is maximum, therefore the testing will use long antenna cable.

Note4:

The EUT has six sets of antenna. Each set has four antennas for set $1\sim4$.

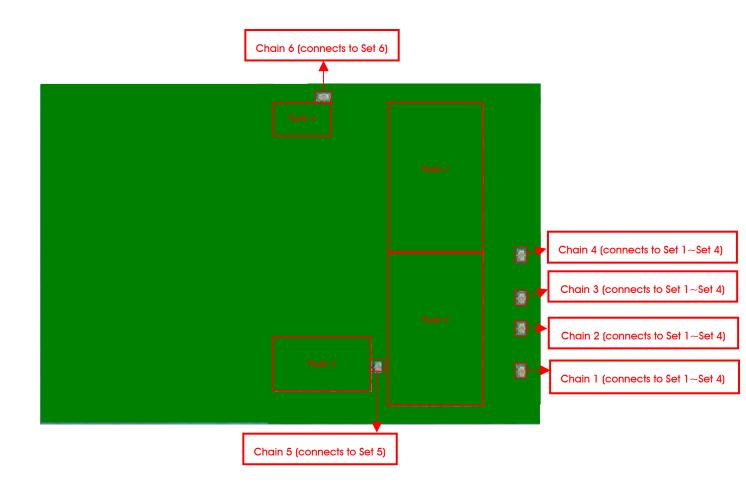
The EUT has four radios, Radio 1 supports WLAN 2.4GHz, Radio 2 supports WLAN 5GHz, Radio 3 supports WLAN 2.4GHz + 5GHz (scanning radio) and Radio 4 supports Bluetooth function.

 Report Format Version: Rev. 01
 Page No.
 : 4 of 54

 FCC ID: UDX-60043010
 Issued Date
 : Jul. 13, 2016

<For Radio 1 / 2.4GHz and Radio 2 / 5GHz Functions>

Chain 1, Chain 2, Chain 3 and Chain 4 can be used as transmitting/receiving antenna.


Chain 1, Chain 2, Chain 3 and Chain 4 could transmit/receive simultaneously.

<For Radio 3 / 2.4GHz + 5GHz Functions>

Only Chain 5 could transmit/receive.

<For Radio 4 / Bluetooth Functions>

Only Chain 6 could transmit/receive.

Report Format Version: Rev. 01 FCC ID: UDX-60043010

Page No. : 5 of 54 Issued Date : Jul. 13, 2016

3.4. Table for Carrier Frequencies

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	0	2402 MHz	20	2442 MHz
	1	2404 MHz	:	:
2400 2492 5MU-	2	2406 MHz	37	2476 MHz
2400~2483.5MHz	:	:	38	2478 MHz
	18	2438 MHz	39	2480 MHz
	19	2440 MHz	-	-

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

For Radio 4:

Test Items	Mode	Data Rate	Channel	Chain
AC Power Line Conducted Emissions	Normal Link	-	-	-
Maximum Conducted Output Power	GFSK	1 Mbps	0/20/39	6
Power Spectral Density				
6dB Spectrum Bandwidth	GFSK	1 Mbps	0/20/39	6
Radiated Emissions 9kHz~1GHz	Normal Link	-	-	-
Radiated Emissions 1GHz~10 th	GFSK	1 Mbps	0/20/39	6
Harmonic				
Band Edge Emissions	GFSK	1 Mbps	0/20/39	6

Note 1: The PoE is for measurement only, would not be marketed.

The PoE information as below:

Power	Brand	Model
PoE	Motorola	PD-7001G

 Report Format Version: Rev. 01
 Page No.
 : 6 of 54

 FCC ID: UDX-60043010
 Issued Date
 : Jul. 13, 2016

REPORT No.: FR641615AC

The following test modes were performed for all tests:

Conducted Emission test

The radio 3 was performed at WLAN 2.4GHz and 5GHz and the worst case was found at 2.4GHz. The radio 1 and radio 2 was performed at antenna set 1-4, and the worst case was found at antenna set 1. So the measurement will follow above same test configuration.

Mode	Set 1	Set 2	Set 3	Set 4	Set 5	Set 6	PoE
1	Radio1/2.4G Radio2/5G	-	-	-	● Radio3/2.4G	● Radio4/BT	•

	Radiated Emission test <below 1ghz=""></below>										
Mode	Z axis	Y axis	Set 1	Set 2	Set 3	Set 4	Set 5	Set 6	PoE		
1	•	-	Radio1/2.4G	-	-	-	Radio3/2.4G	● Radio4/BT	•		
2	-	•	Radio1/2.4G	-	-	-	Radio3/2.4G	● Radio4/BT	•		
3 Note1	•	-	Radio1/2.4G Radio2/5G	-	-	-	Radio3/5G	Radio4/BT	•		
4 Note2	•	-	-	Radio1/2.4G Radio2/5G	-	-	Radio3/5G	Radio4/BT	•		
5 Note2	•	-	-	-	Radio1/2.4G Radio2/5G	-	Radio3/5G	Radio4/BT	•		
6 Note2	•	-	-	-	-	Radio1/2.4G Radio2/5G	Radio3/5G	● Radio4/BT	•		

Note1: Mode 1 has been evaluated to be the worst case between Mode $1\sim2$, thus measurement for Mode 3 will follow this same test mode.

Note2: Mode 3 has been evaluated to be the worst case among Mode $1\sim3$, thus measurement for Mode $4\sim6$ will follow this same test mode.

Mode 6 generated the worst test result, so it was recorded in this report.

	Radiated Emission test <above 1ghz=""></above>									
	The EUT was performed at X axis, Y axis and Z axis position for Radiated emission above 1GHz test, and the worst case was found at X axis. So the measurement will follow this same test configuration.									
Mode	Mode X axis Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 PoE									
1	•	-	-	-	1	-	•	•		

 Report Format Version: Rev. 01
 Page No. : 7 of 54

 FCC ID: UDX-60043010
 Issued Date : Jul. 13, 2016

Co-location MPE and Radiated Emission Co-location Test

The radio 1 and radio 2 can equip with antenna set 1-4, and the maximum gain was found at antenna set 4. So the measurement will follow above same test configuration.

4. 50 II	4. So the measurement will follow above same test configuration.								
Mode	Z axis	Y axis	Set 1	Set 2	Set 3	Set 4	Set 5	Set 6	PoE
1	•	ı	1	-	-	Radio1/2.4G Radio2/5G	Radio3/2.4G	● Radio4/BT	•
2	-	•	-	-	-	Radio1/2.4G Radio2/5G	Radio3/2.4G	● Radio4/BT	•
3 Note1	•	-	•	-	-	Radio1/2.4G Radio2/5G	Radio3/5G	Radio4/BT	•

Note1: Mode 1 has been evaluated to be the worst case between Mode $1\sim2$, thus measurement for Mode 3 will follow this same test mode.

Mode 1 generated the worst test result, so it was recorded in this report.

Therefore Co-location Maximum Permissible Exposure (Please refer to FA641615) and Radiated Emission Co-location (please refer to Appendix B) tests are added for simultaneously transmit.

3.6. Table for Testing Locations

	Test Site Location								
Address:	Address: No.8, Lane 724, Bo-ai St., Jhubei City, Hsinchu County 302, Taiwan, R.O.C.								
TEL:	886-3-656-9065								
FAX:	FAX: 886-3-656-9085								
Test Site	Test Site No. Site Category Location FCC Designation No. IC File No.								

Test Site No.	Site Category	Location	FCC Designation No.	IC File No.
03CH01-CB	SAC	Hsin Chu	TW0006	IC 4086D
CO01-CB	Conduction	Hsin Chu	TW0006	IC 4086D
TH01-CB	OVEN Room	Hsin Chu	-	-

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC).

 Report Format Version: Rev. 01
 Page No. : 8 of 54

 FCC ID: UDX-60043010
 Issued Date : Jul. 13, 2016

3.7. Table for Supporting Units

For Test Site No: 03CH01-CB

For Below 1GHz:

Support Unit	Brand	Model	FCC ID
NB*4	DELL	E4300	DoC
NB	Apple	Mac Book	DoC
Cell Phone	SAMSUNG	SM-J200Y	DoC
PoE	Motorola	PD-7001G	DoC
Device	CISCO	MR84-HW	UDX-60043010

For Above 1GHz:

Support Unit	Brand	Model	FCC ID
NB	DELL	E4300	DoC
PoE	Motorola	PD-7001G	DoC

For Test Site No: CO01-CB

Support Unit	Brand	Model	FCC ID
NB*6	DELL	E6430	DoC
PoE	Motorola	PD-7001G	DoC
Bluetooth Dongle	WPI	CC2540	DoC
Device	CISCO	MR84-HW	UDX-60043010

For Test Site No: TH01-CB

Support Unit	Brand	Model	FCC ID
NB	DELL	E4300	DoC
PoE	Motorola	PD-7001G	DoC

3.8. Table for Parameters of Test Software Setting

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Power Parameters:

Test Software Version	DoS				
Frequency	2402 MHz	2442 MHz	2480 MHz		
Power Parameters	3	3	3		

 Report Format Version: Rev. 01
 Page No.
 : 9 of 54

 FCC ID: UDX-60043010
 Issued Date
 : Jul. 13, 2016

3.9. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

3.10. Duty Cycle

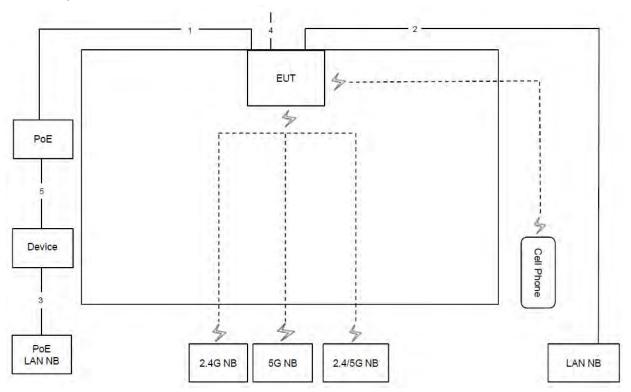
Mode	On Time	On+Off Time	Duty Cycle	Duty Factor	1/T Minimum VBW
	(ms)	(ms)	(%)	(dB)	(kHz)
GFSK	1.000	1.000	100.00%	0.00	0.01

 Report Format Version: Rev. 01
 Page No.
 : 10 of 54


 FCC ID: UDX-60043010
 Issued Date
 : Jul. 13, 2016

3.11. Test Configurations

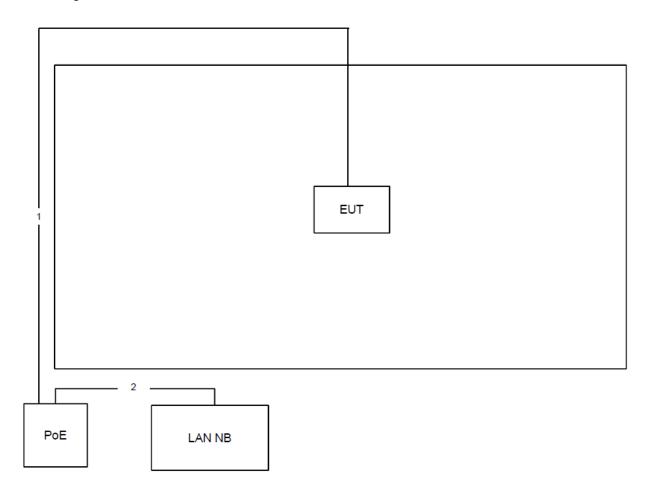
3.11.1. AC Power Line Conduction Emissions Test Configuration



Item	Connection	Shielded	Length
1	RJ-45 cable	No	10m
2	RJ-45 cable	No	10m
3	RJ-45 cable	No	1.5m
4	RJ-45 cable	No	1.5m
5	Ground cable	No	1.5m

3.11.2. Radiation Emissions Test Configuration

Test Configuration: 30MHz~1GHz



Item	Connection	Shielded	Length
1	RJ-45 cable	No	10m
2	RJ-45 cable	No	10m
3	RJ-45 cable	No	1.5m
4	Ground cable	No	1.5m
5	RJ-45 cable	No	1.5m

Test Configuration: above 1GHz

Item	Connection	Shielded	Length	
1	RJ-45 cable	No	10m	
2	RJ-45 cable	No	1.5m	

4. TEST RESULT

4.1. AC Power Line Conducted Emissions Measurement

4.1.1. Limit

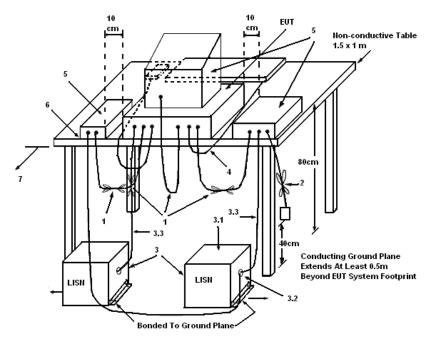
For this product which is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)		
0.15~0.5	66~56	56~46		
0.5~5	56	46		
5~30	60	50		

4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz


4.1.3. Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT or host of EUT has to be placed 0.4 meter far
 from the conducting wall of the shielding room and at least 80 centimeters from any other
 grounded conducting surface.
- 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 4. The frequency range from 150 kHz to 30 MHz was searched.
- 5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. The measurement has to be done between each power line and ground at the power terminal.

 Report Format Version: Rev. 01
 Page No. : 14 of 54

 FCC ID: UDX-60043010
 Issued Date : Jul. 13, 2016

4.1.4. Test Setup Layout

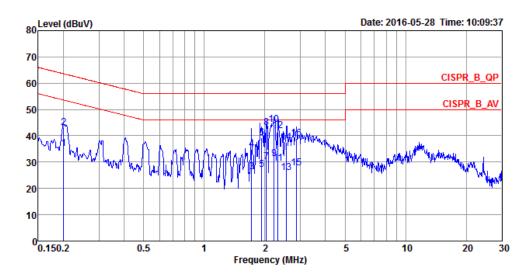
LEGEND:

- (1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- (2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- (3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω . LISN can be placed on top of, or immediately beneath, reference ground plane.
- (3.1) All other equipment powered from additional LISN(s).
- (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
- (3.3) LISN at least 80 cm from nearest part of EUT chassis.
- (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- (5) Non-EUT components of EUT system being tested.
- (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.
- (7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

4.1.5. Test Deviation

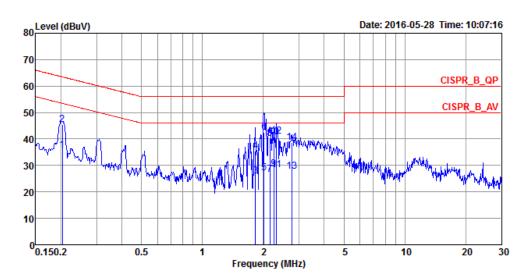
There is no deviation with the original standard.

4.1.6. EUT Operation during Test


The EUT was placed on the test table and programmed in normal function.

4.1.7. Results of AC Power Line Conducted Emissions Measurement

Temperature	23°C	Humidity	60%
Test Engineer	Deven Huang	Phase	Line
Configuration	Normal Link		


			0ver	Limit	Read	LISN	Cable		
	Freq	Level	Limit	Line	Level	Factor	Loss	Pol/Phase	Remark
-	MHz	dBuV	dB	dBuV	dBuV	dB	dB		
1	0.2007	35.06	-18.52	53.58	25.12	9.92	0.02	LINE	Average
2	0.2007	43.09	-20.49	63.58	33.15	9.92	0.02	LINE	QP
3	1.7162	26.28	-19.72	46.00	16.27	9.95	0.06	LINE	Average
4	1.7162	34.93	-21.07	56.00	24.92	9.95	0.06	LINE	QP
5	1.9284	27.26	-18.74	46.00	17.24	9.96	0.06	LINE	Average
6	1.9284	39.33	-16.67	56.00	29.31	9.96	0.06	LINE	QP
7	2.0333	29.97	-16.03	46.00	19.95	9.96	0.06	LINE	Average
8	2.0333	43.07	-12.93	56.00	33.05	9.96	0.06	LINE	QP
9	2.2249	31.16	-14.84	46.00	21.14	9.96	0.06	LINE	Average
10	2.2249	44.13	-11.87	56.00	34.11	9.96	0.06	LINE	QP
11	2.3213	29.50	-16.50	46.00	19.48	9.96	0.06	LINE	Average
12	2.3213	41.91	-14.09	56.00	31.89	9.96	0.06	LINE	QP
13	2.5671	26.01	-19.99	46.00	15.99	9.97	0.05	LINE	Average
14	2.5671	37.47	-18.53	56.00	27.45	9.97	0.05	LINE	QP
15	2.8692	27.88	-18.12	46.00	17.86	9.97	0.05	LINE	Average
16	2.8692	38.87	-17.13	56.00	28.85	9.97	0.05	LINE	QP

Page No. : 16 of 54 Issued Date : Jul. 13, 2016

Temperature	23°C	Humidity	60%
Test Engineer	Deven Huang	Phase	Neutral
Configuration	Normal Link		

			0ver	Limit	Read	LISN	Cable			
	Freq	Level	Limit	Line	Level	Factor	Loss	Pol/Phase	Remark	
	MHz	dBuV	dB	dBuV	dBuV	dB	dB			
1	0.2029	35.62	-17.87	53.49	25.68	9.92	0.02	NEUTRAL	Average	
2	0.2029	45.47	-18.02	63.49	35.53	9.92	0.02	NEUTRAL	QP	
3	1.8288	26.01	-19.99	46.00	15.99	9.96	0.06	NEUTRAL	Average	
4	1.8288	35.42	-20.58	56.00	25.40	9.96	0.06	NEUTRAL	QP	
5	2.0119	27.30	-18.70	46.00	17.28	9.96	0.06	NEUTRAL	Average	
6	2.0119	42.48	-13.52	56.00	32.46	9.96	0.06	NEUTRAL	QP	
7	2.1553	26.57	-19.43	46.00	16.55	9.96	0.06	NEUTRAL	Average	
8	2.1553	40.20	-15.80	56.00	30.18	9.96	0.06	NEUTRAL	QP	
9	2.2486	28.72	-17.28	46.00	18.70	9.96	0.06	NEUTRAL	Average	
10	2.2486	40.70	-15.30	56.00	30.68	9.96	0.06	NEUTRAL	QP	
11	2.3213	28.45	-17.55	46.00	18.43	9.96	0.06	NEUTRAL	Average	
12	2.3213	40.98	-15.02	56.00	30.96	9.96	0.06	NEUTRAL	QP	
13	2.7648	27.73	-18.27	46.00	17.71	9.97	0.05	NEUTRAL	Average	
14	2.7648	38.58	-17.42	56.00	28.56	9.97	0.05	NEUTRAL	OP _	

Note:

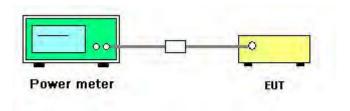
Level = Read Level + LISN Factor + Cable Loss.

4.2. Maximum Conducted Output Power Measurement

4.2.1. Limit

The limit for output power is 30dBm.

4.2.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the power meter.

Power Meter Parameter	Setting
Bandwidth	50MHz bandwidth is greater than the EUT emission bandwidth
Detector	Average

4.2.3. Test Procedures

- 1. Test procedures refer KDB558074 D01 v03r05 section 9.2.3.2.
- 2. This procedure provides an alternative for determining the RMS output power using a broadband RF average power meter with a thermocouple detector.

4.2.4. Test Setup Layout

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: Rev. 01
 Page No. : 18 of 54

 FCC ID: UDX-60043010
 Issued Date : Jul. 13, 2016

4.2.7. Test Result of Maximum Conducted Output Power

Temperature	25°C	Humidity	62%
Test Engineer	Peter Wu	Configurations	GFSK
Test Date	May 16, 2016		

Channel	Frequency	Conducted Power (dBm)	Max. Limit (dBm)	Result
0	2402 MHz	3.39	28.70	Complies
20	2442 MHz	3.22	28.70	Complies
39	2480 MHz	2.95	28.70	Complies

Note: Gain = 7.30dBi > 6dBi, so limit = 30-(7.30-6)=28.70dBm

Report Format Version: Rev. 01 FCC ID: UDX-60043010

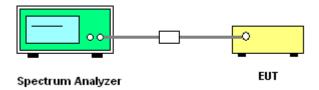
Page No. : 19 of 54 Issued Date : Jul. 13, 2016

4.3. Power Spectral Density Measurement

4.3.1. Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

4.3.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	5-30 % greater than the DTS channel bandwidth.
RBW	3 kHz ≤ RBW ≤ 100kHz
VBW	≥ 3 x RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto couple

4.3.3. Test Procedures

- Test was performed in accordance with KDB558074 D01 v03r05 for Performing Compliance Measurements on Digital Transmission Systems (DTS) - section 10.2 Method PKPSD (peak PSD).
- Use this procedure when the maximum conducted output power in the fundamental emission is
 used to demonstrate compliance. The EUT must be configured to transmit continuously at full power
 over the measurement duration.
- 3. Ensure that the number of measurement points in the sweep ≥ 2 x span/RBW (use of a greater number of measurement points than this minimum requirement is recommended).
- 4. Use the peak marker function to determine the maximum level in any 3 kHz band segment within the fundamental EBW.
- 5. The resulting PSD level must be \leq 8 dBm.

4.3.4. Test Setup Layout

 Report Format Version: Rev. 01
 Page No. : 20 of 54

 FCC ID: UDX-60043010
 Issued Date : Jul. 13, 2016

4.3.5. Test Deviation

There is no deviation with the original standard.

4.3.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: Rev. 01
 Page No.
 : 21 of 54

 FCC ID: UDX-60043010
 Issued Date
 : Jul. 13, 2016

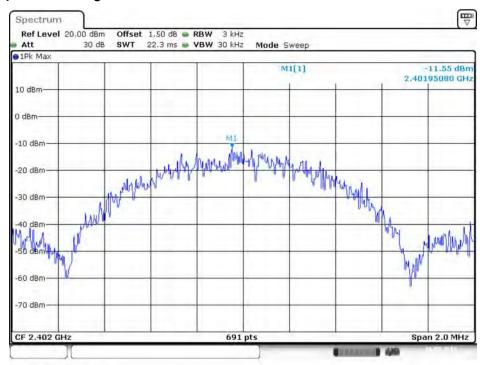
4.3.7. Test Result of Power Spectral Density

Temperature	25 ℃	Humidity	62%
Test Engineer	Peter Wu	Configurations	GFSK

Channel	Frequency	Power Density (dBm/3kHz) Chain 6	Power Density Limit (dBm/3kHz)	Result
0	2402 MHz	-11.55	6.70	Complies
20	2442 MHz	-11.75	6.70	Complies
39	2480 MHz	-11.69	6.70	Complies

Note: Gain = 7.30dBi > 6dBi, so limit = 8-(7.30-6)=6.70dBm

Note: All the test values were listed in the report.


For plots, only the channel with worse result was shown.

Page No. : 22 of 54 Issued Date : Jul. 13, 2016

Power Density Plot on Configuration Bluetooth / 2402 MHz

Date: 16.MAY.2016 12:34:18

4.4. 6dB Spectrum Bandwidth Measurement

4.4.1. Limit

For digital modulation systems, the minimum 6dB bandwidth shall be at least 500 kHz.

4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

6dB Spectrum Bandwidth			
Spectrum Parameters	Setting		
Attenuation	Auto		
Span Frequency	> 6dB Bandwidth		
RBW	100kHz		
VBW	≥ 3 x RBW		
Detector	Peak		
Trace	Max Hold		
Sweep Time Auto			
99% Occupied Bandwidth			
Spectrum Parameters	Setting		
Span	1.5 times to 5.0 times the OBW		
RBW	1 % to 5 % of the OBW		
VBW	≥ 3 x RBW		
Detector	Peak		
Trace	Max Hold		

4.4.3. Test Procedures

For Radiated 6dB Bandwidth Measurement:

- 1. The transmitter was radiated to the spectrum analyzer in peak hold mode.
- Test was performed in accordance with KDB558074 D01 v03r05 for Performing Compliance
 Measurements on Digital Transmission Systems (DTS) section 8.0 DTS bandwidth=> 8.1 Option 1.
- 3. Measured the spectrum width with power higher than 6dB below carrier.

4.4.4. Test Setup Layout

For Radiated 6dB Bandwidth Measurement:

This test setup layout is the same as that shown in section 4.5.4.

 Report Format Version: Rev. 01
 Page No.
 : 24 of 54

 FCC ID: UDX-60043010
 Issued Date
 : Jul. 13, 2016

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: Rev. 01
 Page No.
 : 25 of 54

 FCC ID: UDX-60043010
 Issued Date
 : Jul. 13, 2016

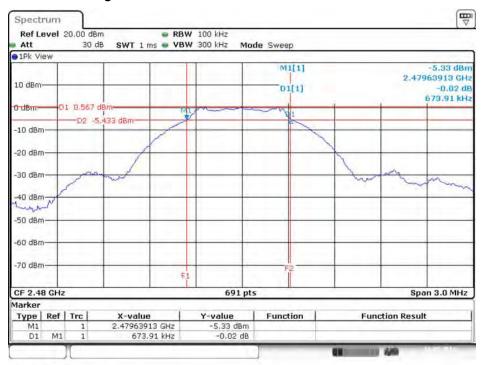
4.4.7. Test Result of 6dB Spectrum Bandwidth

Temperature	25℃	Humidity	62%
Test Engineer	Peter Wu	Configurations	GFSK

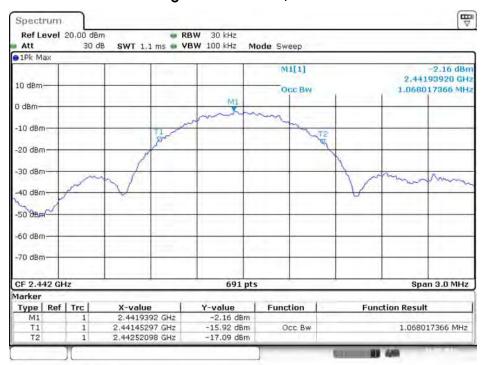
Channel	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
0	2402 MHz	0.69	1.07	500	Complies
20	2442 MHz	0.69	1.07	500	Complies
39	2480 MHz	0.67	1.06	500	Complies

Note: All the test values were listed in the report.

For plots, only the channel with worse result was shown.


Report Format Version: Rev. 01 FCC ID: UDX-60043010

Page No. : 26 of 54 Issued Date : Jul. 13, 2016



6 dB Bandwidth Plot on Configuration Bluetooth / 2480 MHz

Date: 16.MAY.2016 12:51:31

99% Occupied Bandwidth Plot on Configuration Bluetooth / 2442 MHz

Date: 16.MAY.2016 12:40:06

4.5. Radiated Emissions Measurement

4.5.1. Limit

30dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.5.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak,
	1MHz / 1/T for Average
RBW / VBW (Emission in non-restricted band)	100kHz / 300kHz for peak

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RBW 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RBW 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RBW 120kHz for QP

 Report Format Version: Rev. 01
 Page No.
 : 28 of 54

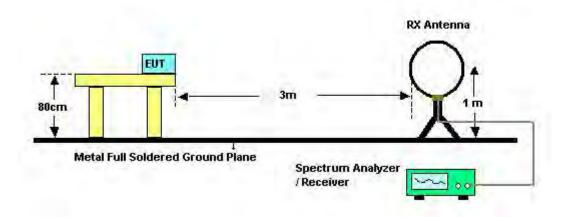
 FCC ID: UDX-60043010
 Issued Date
 : Jul. 13, 2016

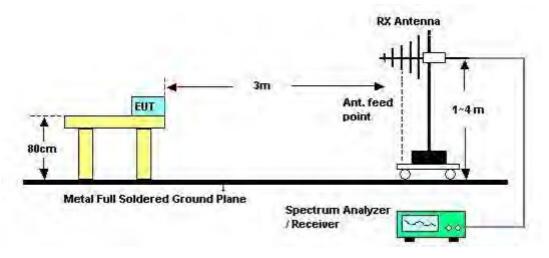
4.5.3. Test Procedures

1. Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 1m & 3m far away from the turntable.

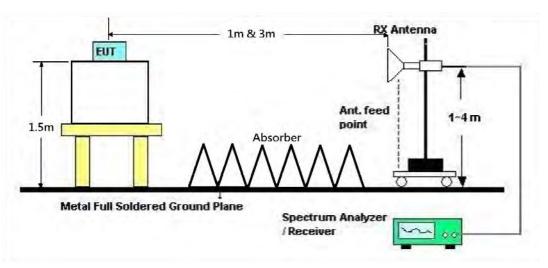
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 1/T VBW for average reading in spectrum analyzer.
- 7. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 8. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 9. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High – Low scan is not required in this case.

: 29 of 54


Report Format Version: Rev. 01 Page No. FCC ID: UDX-60043010 Issued Date: Jul. 13, 2016



4.5.4. Test Setup Layout


For Radiated Emissions: 9kHz ~30MHz

For Radiated Emissions: 30MHz~1GHz

For Radiated Emissions: Above 1GHz

Page No. : 30 of 54 Issued Date : Jul. 13, 2016

4.5.5. Test Deviation

There is no deviation with the original standard.

4.5.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: Rev. 01
 Page No.
 : 31 of 54

 FCC ID: UDX-60043010
 Issued Date
 : Jul. 13, 2016

4.5.7. Results of Radiated Emissions (9kHz~30MHz)

Temperature	22°C	Humidity	56%
Test Engineer	Nyle Chang & Peter Wu & Gary Chu & DK Chang & Eddie Weng & Stim Song & Brain Sun	Configurations	Normal Link
Test Date	May 20, 2016		

Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

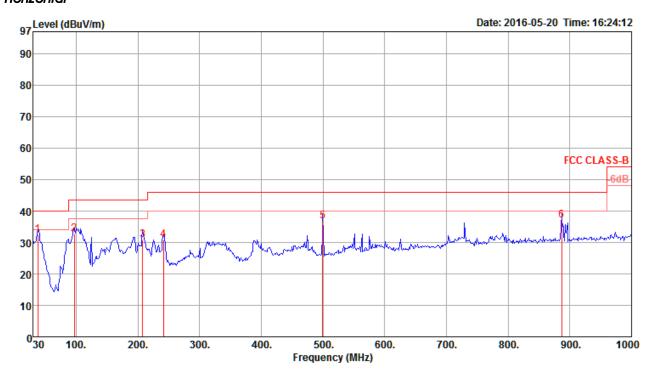
Note:

The amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

 $\label{eq:limit_limit} \mbox{Limit line} = \mbox{specific limits (dBuV)} + \mbox{distance extrapolation factor}.$

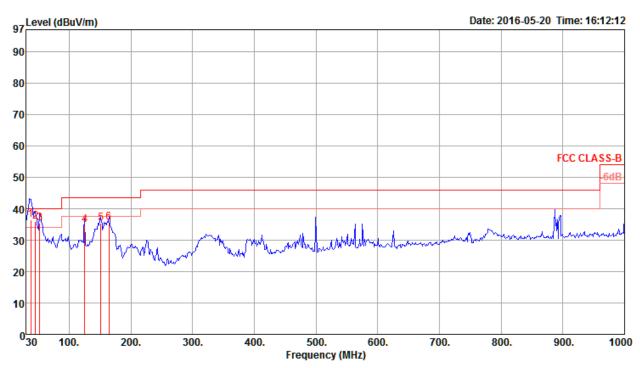
Report Format Version: Rev. 01 FCC ID: UDX-60043010


Page No. : 32 of 54 Issued Date : Jul. 13, 2016

4.5.8. Results of Radiated Emissions (30MHz~1GHz)

Temperature	22°C	Humidity	56%
Test Engineer	Nyle Chang & Peter Wu & Gary Chu & DK Chang & Eddie Weng & Stim Song & Brain Sun	Configurations	Normal Link
Test Mode	Mode 6		

Horizontal


	Freq	Level	Limi t Line	Over Limit				Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	dB	dBuV	dB	dB/m	——dB	deg	Cm		
1 2 3 4 5 6	37.76 96.93 207.51 241.46 499.48 886.51	30.69 30.79 36.85	43.50 43.50	-15.21 -9.15		0.67 1.16 1.29 2.04	20.76 16.30 16.28 18.03 23.90 27.42	29.37 28.89 29.08 29.46	200 123 302 308 129 208	125 136 199 137 163 196	QP QP QP QP	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

 Report Format Version: Rev. 01
 Page No.
 : 33 of 54

 FCC ID: UDX-60043010
 Issued Date
 : Jul. 13, 2016

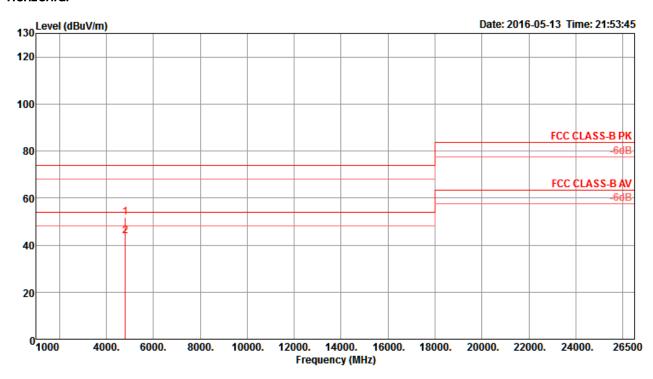
Vertical

	Freq	Level	Limit Line					Preamp Factor		A/Pos	Remark	Pol/Phase
-	MHz	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	dBu∀	dB	dB/m	dB	deg	Cm		
1 2 3 4 5 6	45.52 52.31 125.06 151.25	34.93 35.30	40.00 40.00 40.00 43.50 43.50 43.50	-4.54 -8.57 -8.20	48.56 50.64 45.09 46.71	0.33 0.40 0.82 0.92	13.95 18.25	29.55 29.53 29.23 29.09	220 226 145 122 266 241	157 189 201 196 174 146	QP QP QP QP	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

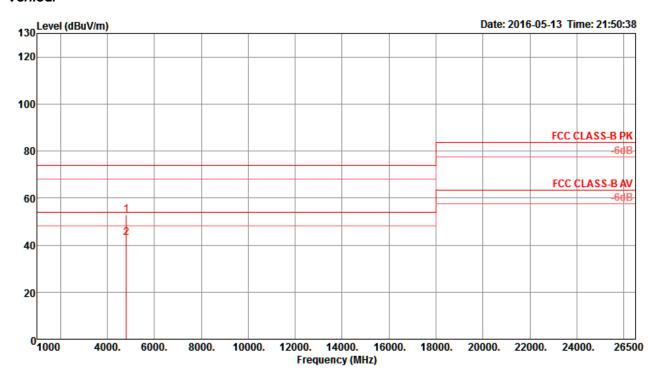
Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).


Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.5.9. Results for Radiated Emissions (1GHz~10th Harmonic)

Temperature	22°C	Humidity	56%
Test Engineer	Nyle Chang & Peter Wu & Gary Chu & DK Chang & Eddie Weng & Stim Song & Brain Sun	Configurations	Channel 0
Test Mode	Mode 1		

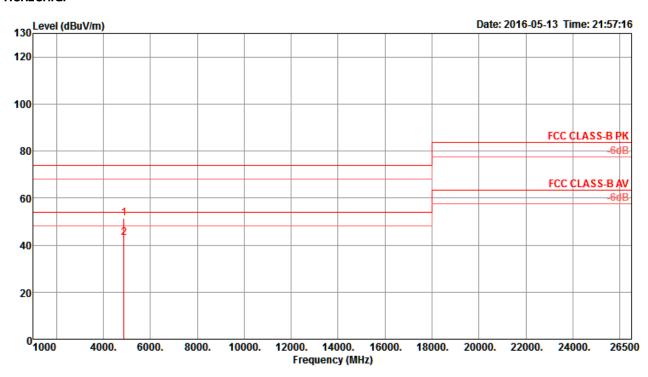
Horizontal


	Freq	Level	Limit Line	Over Limit					T/Pos	A/Pos	Remark	Pol/Phase
	MHz	$\overline{\mathtt{dBuV/m}}$	$\overline{\mathtt{dBuV/m}}$	——dB	dBu∀	<u>dB</u>	dB/m	d B	deg	Cm		
$\frac{1}{2}$	4805.76 4806.00								259 259		Peak Average	HORIZONTAL HORIZONTAL

 Report Format Version: Rev. 01
 Page No.
 : 35 of 54

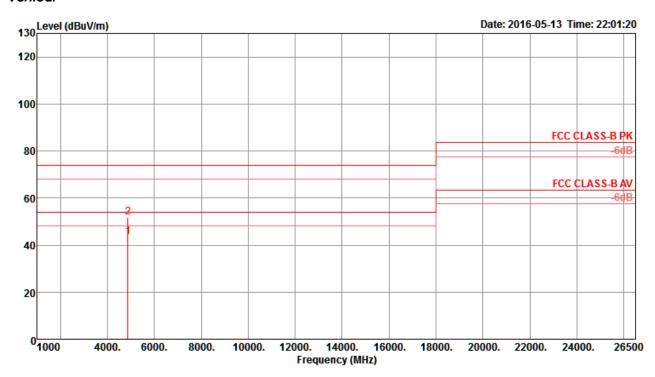
 FCC ID: UDX-60043010
 Issued Date
 : Jul. 13, 2016

Vertical



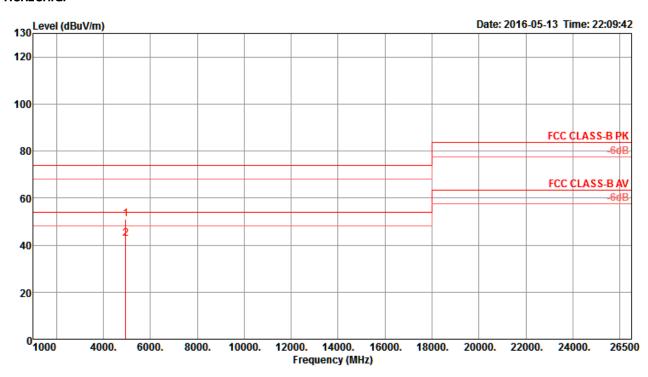
	Freq	Level		Over Limit						A/Pos	Remark	Pol/Phase
	MHz	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	d B	dBu∇	dB	dB/m	dB	deg	Cm		
1 2	4803.54 4803.98										Peak Average	VERTICAL VERTICAL

Temperature	22°C	Humidity	56%
Test Engineer	Nyle Chang & Peter Wu & Gary Chu & DK Chang & Eddie Weng & Stim Song & Brain Sun	Configurations	Channel 20
Test Mode	Mode 1		

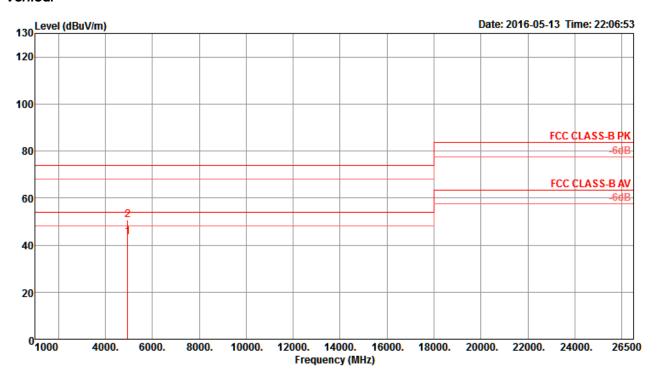

Horizontal

	Freq	Level	Limit Line					Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	$\overline{\mathtt{dBuV/m}}$	$\overline{\mathtt{dBuV/m}}$	dB	dBu∀	₫B	dB/m	d B	deg	Cm		
$\frac{1}{2}$	4881.90 4881.96								258 258		Peak Average	HORIZONTAL HORIZONTAL

Vertical



	Freq	Level		Over Limit					T/Pos	A/Pos	Remark	Pol/Phase
	MHz	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	——dB	dBu∀	dB	dB/m	——dB	deg	Cm		_
1 2	4881.94 4882.08								316 316		Average Peak	VERTICAL VERTICAL


Temperature	22°C	Humidity	56%
Test Engineer	Nyle Chang & Peter Wu & Gary Chu & DK Chang & Eddie Weng & Stim Song & Brain Sun	Configurations	Channel 39
Test Mode	Mode 1		

Horizontal

	Freq	Level	Limi t Line					Preamp Factor		A/Pos	Remark	Pol/Phase
	MHz	$\overline{\mathtt{dBuV/m}}$	$\overline{\mathtt{dBuV/m}}$	——dB	dBu∀	<u>dB</u>	dB/m	——dB	deg	Cm		
$\frac{1}{2}$	4957.94 4957.96								257 257		Peak Average	HORIZONTAL HORIZONTAL

Vertical

	Freq	Level		Over Limit					T/Pos	A/Pos	Remark	Pol/Phase
	MHz	$\overline{\mathtt{dBuV/m}}$	$\overline{\mathtt{dBuV/m}}$	——dB	dBu∀	₫B	dB/m	——dB	deg	Cm		
1 2	4957.96 4958.12								288 288		Average Peak	VERTICAL VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

 Report Format Version: Rev. 01
 Page No.
 : 40 of 54

 FCC ID: UDX-60043010
 Issued Date
 : Jul. 13, 2016

4.6. Emissions Measurement

4.6.1. Limit

30dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Field Strength	Measurement Distance				
(micorvolts/meter)	(meters)				
2400/F(kHz)	300				
24000/F(kHz)	30				
30	30				
100	3				
150	3				
200	3				
500	3				
	Field Strength (micorvolts/meter) 2400/F(kHz) 24000/F(kHz) 30 100 150 200				

4.6.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak,
	1MHz / 1/T for Average
RBW / VBW (30dBc in any 100 kHz bandwidth emission)	100 kHz / 300 kHz for Peak

4.6.3. Test Procedures

For Radiated band edges Measurement:

1. The test procedure is the same as section 4.5.3.

For Radiated Out of Band Emission Measurement:

 Test was performed in accordance with KDB558074 D01 v03r05 for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 section 11.0 Unwanted Emissions into Non-Restricted Frequency Bands Measurement Procedure.

 Report Format Version: Rev. 01
 Page No. : 41 of 54

 FCC ID: UDX-60043010
 Issued Date : Jul. 13, 2016

4.6.4. Test Setup Layout

For Radiated band edges Measurement:

This test setup layout is the same as that shown in section 4.5.4.

For Radiated Out of Band Emission Measurement:

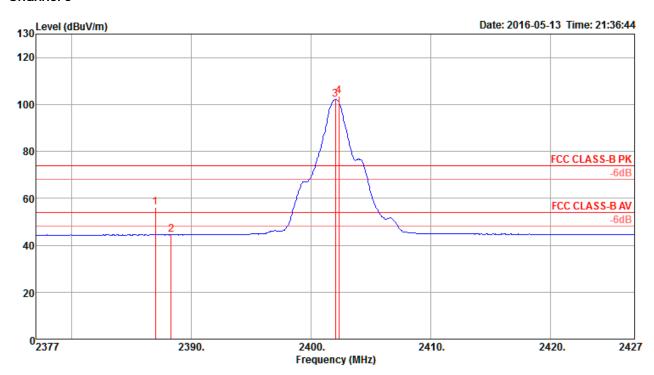
This test setup layout is the same as that shown in section 4.5.4.

4.6.5. Test Deviation

There is no deviation with the original standard.

4.6.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.


 Report Format Version: Rev. 01
 Page No.
 : 42 of 54

 FCC ID: UDX-60043010
 Issued Date
 : Jul. 13, 2016

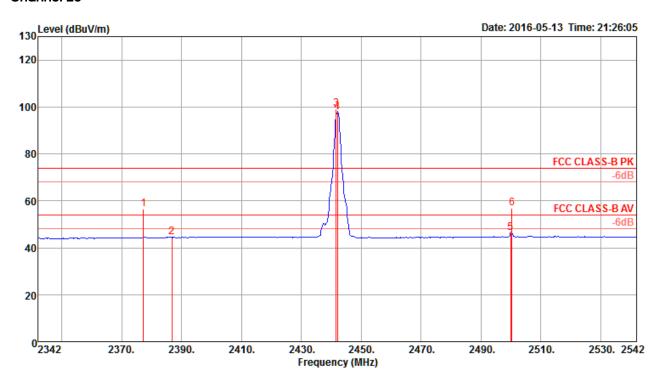
4.6.7. Test Result of Band Edge and Fundamental Emissions

Temperature	22°C	Humidity	56%
Test Engineer	Nyle Chang & Peter Wu & Gary Chu & DK Chang & Eddie Weng & Stim Song & Brain Sun	Configurations	Channel 0, 20, 39
Test Mode	Mode 1		

Channel 0

	Freq	Level	Limit Line	Over Limit				Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	$\overline{\mathtt{dBuV/m}}$	$\overline{\mathtt{dBuV/m}}$	dB	dBuV	dB	dB/m	——dB	deg	Cm		
1 2 3 4	2387.00 2388.30 2402.00 2402.30	44.50 102.09	54.00	-17.86 -9.50				0.00 0.00 0.00 0.00	282 282 282 282 282	297 297	Peak Average Average Peak	VERTICAL VERTICAL VERTICAL VERTICAL

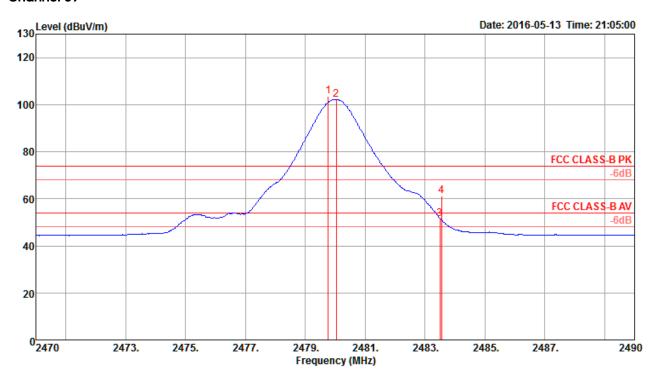
Item 3. 4 are the fundamental frequency at 2402 MHz.


Note: Both antenna polarizations have been tested and only the worst case was recorded in test report.

 Report Format Version: Rev. 01
 Page No.
 : 43 of 54

 FCC ID: UDX-60043010
 Issued Date
 : Jul. 13, 2016

Channel 20



	Freq	Level	Limit Line	Over Limit	Read Level			Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	——dB	dBu∀	₫B	dB/m	——dB	deg	Cm		_
1 2 3 4 5 6	2377.20 2386.80 2441.60 2442.00 2500.00 2500.40	56.37 44.44 99.30 97.89 46.43 56.78	54.00	-17.63 -9.56 -7.57 -17.22	24.44 12.52 67.36 65.95 14.47 24.82		28.03 28.02 27.96 27.96 27.90 27.90	0.00 0.00 0.00 0.00 0.00 0.00	241 241 241 241 241 241 241	160 160 160 160	Peak Average Peak Average Average Peak	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 3, 4 are the fundamental frequency at 2442 MHz.

Note: Both antenna polarizations have been tested and only the worst case was recorded in test report.

Channel 39

	Freq	Level	Limit Line					Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	$\overline{\mathtt{dBuV/m}}$	$\overline{\mathtt{dBuV/m}}$	dB	dBu∀	dB	dB/m	dB	deg	Cm		
1 2	2479.76 2480.04				71.46 70.21	4.03 4.03	27.92 27.92		283 283		Peak Average	VERTICAL VERTICAL
3	2483.50 2483.56	51.40	54.00	-2.60	19.44	4.04	27.92	0100	283 283		Average Peak	VERTICAL VERTICAL

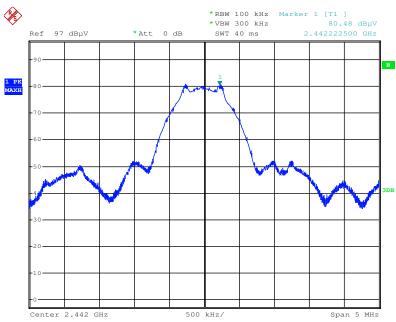
Item 1, 2 are the fundamental frequency at 2480 MHz.

Note: Both antenna polarizations have been tested and only the worst case was recorded in test report.

Note:

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

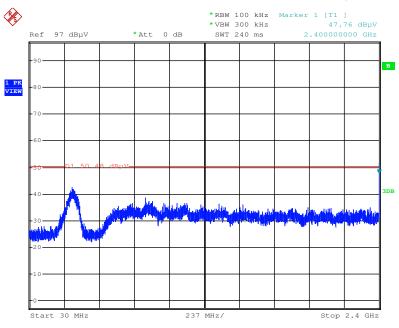
Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.


 Report Format Version: Rev. 01
 Page No.
 : 45 of 54

 FCC ID: UDX-60043010
 Issued Date
 : Jul. 13, 2016

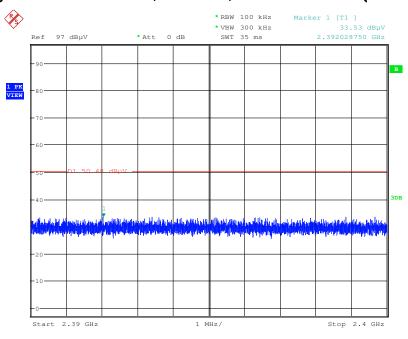
For Emission not in Restricted Band

Plot on Configuration / Reference Level - Vertical


Date: 13.MAY.2016 22:35:34

Note: Only the worse polarization (Vertical) is tested and recorded in test report.

Page No. : 46 of 54 Issued Date : Jul. 13, 2016



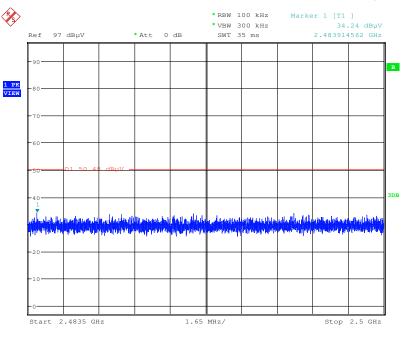
Plot on Configuration For Bluetooth 4.0 / Channel 0 / 30MHz~2400MHz (down 30dBc) - Vertical

Date: 13.MAY.2016 22:37:58

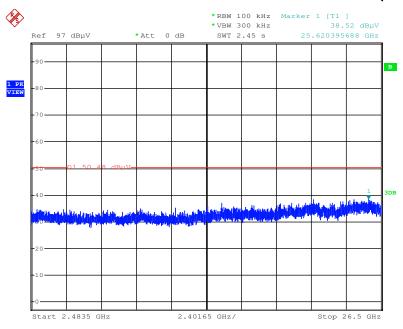
Plot on Configuration For Bluetooth 4.0 / Channel 0 / 2390MHz~2400MHz (down 30dBc) - Vertical

Date: 26.MAY.2016 12:16:42

Note: Only the worse polarization (Vertical) is tested and recorded in test report.


 Report Format Version: Rev. 01
 Page No. : 47 of 54

 FCC ID: UDX-60043010
 Issued Date : Jul. 13, 2016



Plot on Configuration For Bluetooth 4.0 / Channel 0 / 2483.5MHz~2500MHz (down 30dBc) - Vertical

Date: 26.MAY.2016 12:17:12

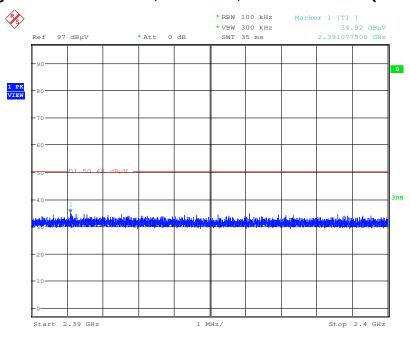
Plot on Configuration For Bluetooth 4.0 / Channel 0 / 2483.5MHz~26500MHz (down 30dBc) - Vertical

Date: 13.MAY.2016 22:43:40

Note: Only the worse polarization (Vertical) is tested and recorded in test report.

 Report Format Version: Rev. 01
 Page No. : 48 of 54

 FCC ID: UDX-60043010
 Issued Date : Jul. 13, 2016



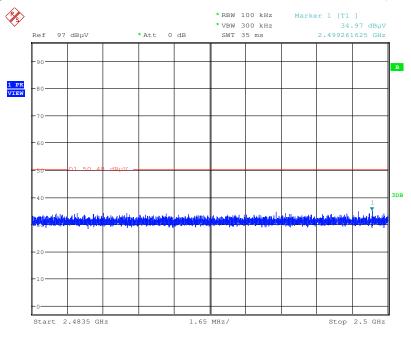
Plot on Configuration For Bluetooth 4.0 / Channel 39 / 30MHz~2400MHz (down 30dBc) - Vertical

Date: 13.MAY.2016 22:40:55

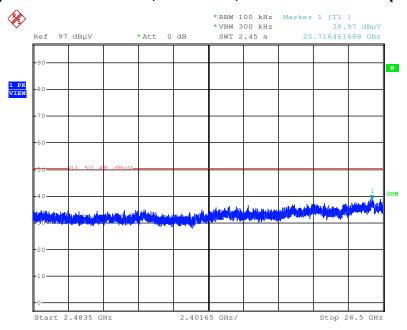
Plot on Configuration For Bluetooth 4.0 / Channel 39 / 2390MHz~2400MHz (down 30dBc) - Vertical

Date: 26.MAY.2016 12:18:36

Note: Only the worse polarization (Vertical) is tested and recorded in test report.


 Report Format Version: Rev. 01
 Page No. : 49 of 54

 FCC ID: UDX-60043010
 Issued Date : Jul. 13, 2016



Plot on Configuration For Bluetooth 4.0 / Channel 39 / 2483.5MHz~2500MHz (down 30dBc) - Vertical

Date: 26.MAY.2016 12:19:37

Plot on Configuration For Bluetooth 4.0 / Channel 39 / 2483.5MHz~26500MHz (down 30dBc) - Vertical

Date: 13.MAY.2016 22:41:59

Note: Only the worse polarization (Vertical) is tested and recorded in test report.

 Report Format Version: Rev. 01
 Page No. : 50 of 54

 FCC ID: UDX-60043010
 Issued Date : Jul. 13, 2016

4.7. Antenna Requirements

4.7.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.7.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.

Report Format Version: Rev. 01
FCC ID: UDX-60043010

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMI Receiver	Agilent	N9038A	My52260123	9kHz ~ 8.45GHz	Jan. 27, 2016	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50-16-2	04083	150kHz ~ 100MHz	Dec. 08, 2015	Conduction (CO01-CB)
LISN	Schwarzbeck	NSLK 8127	8127647	9kHz ~ 30MHz	Dec. 23, 2015	Conduction (CO01-CB)
COND Cable	Woken	Cable	01	150kHz ~ 30MHz	May 24, 2016	Conduction (CO01-CB)
Software	Audix	E3	6.120210n	-	N.C.R.	Conduction (CO01-CB)
BILOG ANTENNA	TESEQ	CBL6112D	37880	20MHz ~ 2GHz	Sep. 03, 2015	Radiation (03CH01-CB)
Horn Antenna	EMCO	3115	00075790	750MHz ~ 18GHz	Oct. 22, 2015	Radiation (03CH01-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Jul. 21, 2015	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8447D	2944A10991	0.1MHz ~ 1.3GHz	Mar. 15, 2016	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Jan. 18, 2016	Radiation (03CH01-CB)
Pre-Amplifier	WM	TF-130N-R1	923365	26GHz ~ 40GHz	Nov. 13, 2015	Radiation (03CH01-CB)
Spectrum Analyzer	R&S	FSP40	100056	9kHz ~ 40GHz	Oct. 27, 2015	Radiation (03CH01-CB)
EMI Test	R&S	ESCS	100355	9kHz ~ 2.75GHz	May 16, 2016	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-1	N/A	30 MHz ~ 1 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-16	N/A	1 GHz ~ 18 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-17	N/A	1 GHz ~ 18 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-40G-1	N/A	18GHz ~ 40 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-40G-2	N/A	18GHz ~ 40 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9kHz - 30 MHz	Mar. 16, 2016*	Radiation (03CH01-CB)
Test Software	Audix	E3	6.2009-10-7	N/A	N/A	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSV40	100979	9kHz~40GHz	Dec. 09, 2015	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-6	1 GHz – 26.5 GHz	Nov. 02, 2015	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-7	1 GHz – 26.5 GHz	Nov. 02, 2015	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-8	1 GHz – 26.5 GHz	Nov. 02, 2015	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-9	1 GHz – 26.5 GHz	Nov. 02, 2015	Conducted (TH01-CB)

Page No.

: 52 of 54

Issued Date : Jul. 13, 2016

RF Cable-high	Woken	RG402	High Cable-10	1 GHz – 26.5 GHz	Nov. 02, 2015	Conducted (TH01-CB)
Power Sensor	Agilent	U2021XA	MY53410001	50MHz~18GHz	Nov. 02, 2015	Conducted (TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

N.C.R. means Non-Calibration required.

 Report Format Version: Rev. 01
 Page No.
 : 53 of 54

 FCC ID: UDX-60043010
 Issued Date
 : Jul. 13, 2016

[&]quot;*" Calibration Interval of instruments listed above is two years.

Page No.

: 54 of 54

Issued Date : Jul. 13, 2016

6. MEASUREMENT UNCERTAINTY

Test Items	Uncertainty	Remark
Conducted Emission (150kHz \sim 30MHz)	3.2 dB	Confidence levels of 95%
Radiated Emission (30MHz \sim 1,000MHz)	3.6 dB	Confidence levels of 95%
Radiated Emission (1GHz ~ 18GHz)	3.7 dB	Confidence levels of 95%
Radiated Emission (18GHz \sim 40GHz)	3.5 dB	Confidence levels of 95%
Conducted Emission	1.7 dB	Confidence levels of 95%