

Appendix B. Maximum Permissible Exposure

FCC ID: UDX-60039010 Page No. : B1 of B5

1. Maximum Permissible Exposure

1.1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby that distance of at least 0.25 m is normally maintained between the user and the device.

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ², H ² or S (minutes)	
0.3-3.0	614	1.63	(100)*	6	
3.0-30	1842 / f	4.89 / f	(900 / f)*	6	
30-300	61.4	0.163	1.0	6	
300-1500			F/300	6	
1500-100,000			5	6	

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

Note: f = frequency in MHz; *Plane-wave equivalent power density

1.2. MPE Calculation Method

E (V/m) =
$$\frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd (W/m²) = $\frac{E^2}{377}$

 \mathbf{E} = Electric field (V/m)

P = Average RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the EUT RF output power, the minimum mobile separation distance, d=0.25m, as well as the gain of the used antenna, the RF power density can be obtained.

FCC ID: UDX-60039010 Page No. : B2 of B5

Report No.: FR561822

1.3. Calculated Result and Limit

Exposure Environment: General Population / Uncontrolled Exposure

For 5GHz Band For Radio 2:

Antenna Type: PIFA Antenna

Conducted Power for IEEE 802.11ac VHT20MHz: 26.60 dBm

Distance	Distance (m) Test Freq. Directional Gain		Antenna Average Output Gain Power	Power Density (S)	Limit of Power Density (S)	Test Result		
(111)		(numeric)	(dBm)	(mW)	(mW/cm²)	(mW/cm²)		
0.25	5240	8.54	7.1470	26.6014	457.2328	0.416283	1	Complies

Note: Directiona lGain = $10 \cdot \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right]$

For Radio 3:

Antenna Type: PIFA Antenna

Conducted Power for IEEE 802.11a: 13.98dBm

Distance (m)	Test Freq.	Antenna Gain (dBi)	Antonna	_	Average Output Power	Power Density (S) (mW/cm²)	Limit of Power Density (\$) (mW/cm²)	Test Result
(11)	(IVIFIZ)	(IVII IZ) Gair (abi)		(dBm)	(mW)			
0.25	5500	5.59	3.6224	13.9800	25.0035	0.011538	1	Complies

For 2.4GHz Band

For Radio 1:

Antenna Type: PIFA Antenna

Conducted Power for IEEE 802.11ac VHT20MHz: 25.51dBm

Distance (m)	Test Freq. (MHz)	Directional Gain (dBi)			Gain	Power Density (\$) (mW/cm²)	Limit of Power Density (S)	Test Result
			(Hullielic)	(dBm)	(mW)	(IIIW/CIII)	(mW/cm²)	
0.25	2437	7.18	5.2254	25.5117	355.7709	0.236822	1	Complies

Note: Directiona lGain = $10 \cdot \log \left[\frac{\sum_{j=1}^{N_{AST}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right]$

FCC ID: UDX-60039010 Page No. : B3 of B5

Report No.: FR561822

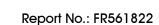
For Radio 3:

Antenna Type: PIFA Antenna

Conducted Power for IEEE 802.11ac VHT20MHz: 16.72dBm

Distance	-		Antenna Average Output Power		Power Density (S)	Limit of Power	Test Result	
(m)		(numeric)	(dBm)	(mW)	(mW/cm²)	Density (S) (mW/cm²)	roor Roodii	
0.25	2437	3.33	2.1528	16.7200	46.9894	0.012886	1	Complies

For Bluttooth function


For Radio 4:

Antenna Type: PIFA Antenna

Conducted Power for Bluetooth 4.0: 2.74 dBm

	Test Freq.	•		Antenna Average Gain Pov		Power Density (S)	Limit of Power	Test Result
(m)) (MHz) Gain (dBi)	Gain (dBi)	(numeric)	(dBm)	(mW)	(mW/cm²)	Density (S) (mW/cm²)	loor Roodii
0.25	2402	3.48	2.2284	2.7400	1.8793	0.000533	1	Complies

FCC ID: UDX-60039010 Page No. : B4 of B5

Conclusion:

Both of the Radio 1 (2.4GHz WLAN function) + Radio 2 (5GHz WLAN function) + Radio 3 (2.4GHz WLAN function) + Bluetooth can transmit simultaneously, the formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

Therefore, the worst-case situation is 0.236822 / 1 + 0.416283 / 1 + 0.012886 / 1 + 0.000533 / 1 = 0.666525, which is less than "1". This confirmed that the device complies.

Conclusion:

Both of the Radio 1 (2.4GHz WLAN function) + Radio 2 (5GHz WLAN function) + Radio 3 (5GHz WLAN function) + Bluetooth can transmit simultaneously, the formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

Therefore, the worst-case situation is 0.236822/1 + 0.416283/1 + 0.011538/1 + 0.000533/1 = 0.665177, which is less than "1". This confirmed that the device complies.

FCC ID: UDX-60039010 Page No. : B5 of B5