

Product Name	Router
Model No	Z1
FCC ID.	UDX-60024010

Applicant	Meraki Inc.
Address	660 Alabama St., San Francisco, CA, 94110

Date of Receipt	Aug. 30, 2012
Issue Date	Sep. 12, 2012
Report No.	129065R-RFUSP28V01
Report Version	V1.0

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Test Report Certification

Issue Date: Sep. 12, 2012 Report No.: 129065R-RFUSP28V01

Accredited by NIST (NVLAP)

NVLAP Lab Code: 200533-0

Product Name	Router	
Applicant	Meraki Inc.	
Address	660 Alabama St., San Francisco, CA, 94110	
Manufacturer	Meraki Inc.	
Model No.	Z1	
EUT Rated Voltage	AC 100-240V, 50-60Hz	
EUT Test Voltage	AC 120V/60Hz	
Trade Name	Meraki	
Applicable Standard	FCC CFR Title 47 Part 15 Subpart C: 2010	
	ANSI C63.4: 2003	
Test Result	Complied	

The test results relate only to the samples tested.

:

:

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Documented By :

Rita Fluan 2

(Senior Adm. Specialist / Rita Huang)

Tested By

Fincent chu

(Engineer / Vincent Chu)

Approved By

(Manager / Vincent Lin)

TABLE OF CONTENTS

De	scription	Page
1.	GENERAL INFORMATION	5
1.1.	EUT Description	5
1.2.	Operational Description	
1.3.	Tested System Details	
1.4.	Configuration of Tested System	
1.4.	EUT Exercise Software	
1.5. 1.6.	Test Facility	
2.	Conducted Emission	
2.1.	Test Equipment	11
2.1.	Test Setup	
2.2.	•	
	Limits	
2.4.	Test Procedure	
2.5.	Uncertainty	
2.6.	Test Result of Conducted Emission	
3.	Maximum Conducted Power	17
3.1.	Test Equipment	
3.2.	Test Setup	
3.3.	Limits	
3.4.	Test Procedure	
3.5.	Uncertainty	
3.6.	Test Result of Maximum Conducted Power	
4.	Radiated Emission	25
4.1.	Test Equipment	
4.2.	Test Setup	
4.3.	Limits	
4.4.	Test Procedure	
4.5.	Uncertainty	
4.6.	Test Result of Radiated Emission	
5.	RF antenna conducted test	
5.1.	Test Equipment	
5.2.	Test Setup	
5.3.	Limits	
5.4.	Test Procedure	
5.5.	Uncertainty	57
5.6.	Test Result of RF antenna conducted test	
6.	Band Edge	
6.1.	Test Equipment	
6.2.	Test Setup	
6.3.	Limits	
6.4.	Test Procedure	
6.5.	Uncertainty	
6.6.	Test Result of Band Edge	
0.0.	Tost Result of Dana Lage	140

7.	Occupied Bandwidth		
7.1.	Test Equipment		
7.2.	Test Setup		
7.3.	Limits		
7.4.	Test Procedure		
7.5.	Uncertainty		
7.6.	Test Result of Occupied Bandwidth		
8.	Power Density		
8.1.	Test Equipment		
8.2.	Test Setup		
8.3.	Limits		
8.4.	Test Procedure		
8.5.	Uncertainty		
8.6.	Test Result of Power Density		
9.	EMI Reduction Method During Compliance Testing		
Attachment 1:	EUT Test Photographs		

Attachment 2: EUT Detailed Photographs

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	Router		
Trade Name	Meraki		
Model No.	Z1		
FCC ID.	UDX-60024010		
Frequency Range	802.11b/g/n-20MHz:2412-2462MHz,802.11n-40MHz:2422-2452MHz		
	802.11a/n-20MHz:5745-5825MHz ,802.11n-40MHz:5755-5795MHz		
Number of Channels	802.11b/g/n-20MHz: 11, n-40MHz: 7		
	802.11a/n-20MHz: 5, n-40MHz: 2		
Data Speed	802.11b: 1-11Mbps, 802.11a/g: 6-54Mbps, 802.11n: up to 300Mbps		
Channel separation 802.11b/g/n-20MHz: 5 MHz, 802.11a/n-20MHz: 20MHz			
	802.11n-40MHz: 40MHz		
Type of Modulation	802.11b:DSSS		
DBPSK, DQPSK, CCK			
	802.11a/g/n: OFDM		
	BPSK, QPSK, 16QAM, 64QAM		
Antenna Type	PIFA		
Antenna Gain	Refer to the table "Antenna List"		
Channel Control	Auto		
Adapter MFR: Powertron Electronics Corp., M/N: PA1015-2HU			
	Input: 100-240V, 0.4A, 50-60Hz		
	Output: 12V, 1.5A 18W Max		
	Cable out: Non-Shielded, 1.5m		

Antenna List

No.	Manufacturer	Part No.	Peak Gain	Note
1.	MAGLAYERS	MSA-3810-2G4C1-A29	2.8dBi in 2.4GHz	Use in 2.4GHz band
		MSA-3810-2G4C1-A39		
2.	MAGLAYERS	MSA-1610-5G0C1-A2	2dBi in 5.725~5.850GHz	Use in 5GHz band
		MSA-1610-5G0C1-A3		

Note: The antenna of EUT is conform to FCC 15.203

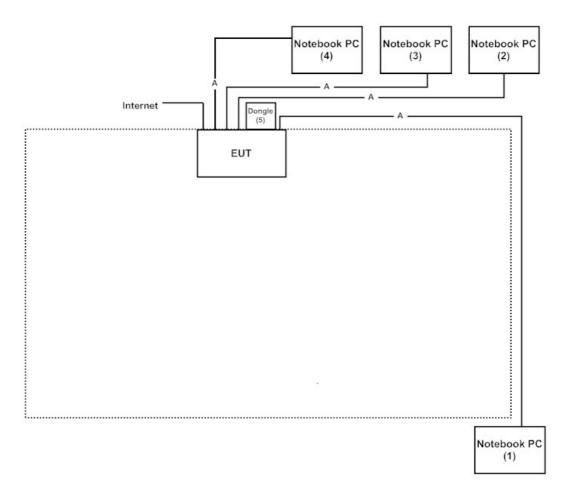
QuieTer

802.11b/g/n-20MHz Center Frequency of Each Channel:							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 01:	2412 MHz	Channel 02:	2417 MHz	Channel 03:	2422 MHz	Channel 04:	2427 MHz
Channel 05:	2432 MHz	Channel 06:	2437 MHz	Channel 07:	2442 MHz	Channel 08:	2447 MHz
Channel 09:	2452 MHz	Channel 10:	2457 MHz	Channel 11:	2462 MHz		
802.11a/n-20	MHz Center V	Working Frequ	ency of Each	Channel:			
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 149	5745 MHz	Channel 153:	5765 MHz	Channel 157:	5785 MHz	Channel 161:	5805 MHz
Channel 165	5825 MHz						
802 11n-40M	Hz (2 4G Bat	nd) Center Wor	king Frequen	cy of Each Cha	annel:		
Channel	Frequency	·	Frequency	Channel	Frequency	Channel	Frequency
Channel 1:	1 2	Channel 2 [.]	2427 MHz	Channel 3.		Channel 4 [.]	2437 MHz
Channel 5:		Channel 6:	2447 MHz	Channel 7:			_ 10 / 11111
802.11n-40M	Hz (5G Band) Center Worki	ing Frequency	of Each Chan	nel:		
Channel	Frequency	Channel	Frequency				

Channel 151: 5755 MHz Channel 159: 5795 MHz

- 1. This device is a Router with a built-in 2.4GHz and 5GHz WLAN transceiver.
- 2. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- Lowest and highest data rates are tested in each mode. Only worst case is shown in the report. (802.11b is 1Mbps \$802.11g is 6Mbps \$802.11n(20M-BW) is 14.4Mbps and \$ 802.11n(40M-BW) is 30Mbps).
- 4. These tests are conducted on a sample for the purpose of demonstrating compliance of 802.11a/b/g/n transmitter with Part 15 Subpart C Paragraph 15.247 of spread spectrum devices.

Test Mode:	Mode 1: Transmit (802.11b 1Mbps)	
	Mode 2: Transmit (802.11g 6Mbps)	
	Mode 3: Transmit - 802.11a 6Mbps	
	Mode 4: Transmit - 802.11n-20BW_14.4Mbps(2.4G Band)	
	Mode 5: Transmit - 802.11n-40BW_30Mbps(2.4G Band)	
	Mode 6: Transmit - 802.11n-20BW_14.4Mbps(5G Band)	
	Mode 7: Transmit - 802.11n-40BW_30Mbps(5G Band)	


1.3. Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

Pro	duct	Manufacturer	Model No.	Serial No.	Power Cord
(1)	Notebook PC	DELL	РРТ	N/A	Non-Shielded, 0.8m
(2)	Notebook PC	DELL	PP04X	N/A	Non-Shielded, 0.8m
(3)	Notebook PC	DELL	PP04X	N/A	Non-Shielded, 0.8m
(4)	Notebook PC	DELL	D630	N/A	Non-Shielded, 0.8m
(5)	Dongle	Transend	N/A	N/A	N/A

Signal Cable Type		Signal cable Description
Α	RJ-45 Cable	Non-Shielded, 3.0m *4PCS

1.4. Configuration of Tested System

1.5. EUT Exercise Software

- (1) Setup the EUT as shown in Section 1.4
- (2) Execute "Art.exe" program on the Notebook
- (3) Configure the test mode, the test channel, and the data rate.
- (4) Press "OK" to start the continuous transmission.
- (5) Verify that the EUT works properly.

1.6. Test Facility

Ambient conditions in the laboratory:

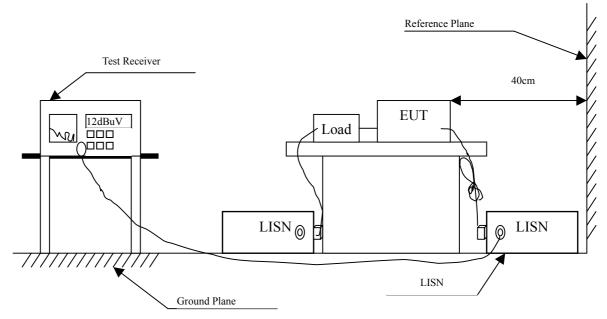
Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	20-35
Humidity (%RH)	25-75	50-65
Barometric pressure (mbar)	860-1060	950-1000

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site : <u>http://www.quietek.com/tw/ctg/cts/accreditations.htm</u> The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site : <u>http://www.quietek.com/</u>

Site Description:	File on
	Federal Communications Commission
	FCC Engineering Laboratory
	7435 Oakland Mills Road
	Columbia, MD 21046
	Registration Number: 92195
	Accreditation on NVLAP
	NVLAP Lab Code: 200533-0
Site Name:	Quietek Corporation
Site Address:	No. 5-22, Ruei-Shu Valley, Ruei-Ping Tsuen,
	Lin-Kou Shiang, Taipei,
	Taiwan, R.O.C.
	TEL: 886-2-8601-3788 / FAX : 886-2-8601-3789
	E-Mail : service@quietek.com

FCC Accreditation Number: TW1014

2. Conducted Emission


2.1. Test Equipment

	Equipment	Manufacturer	Model No. / Serial No.	Last Cal.	Remark
Х	Test Receiver	R & S	ESCS 30 / 825442/018	Sep., 2012	
Х	Artificial Mains Network	R & S	ENV4200 / 848411/10	Feb., 2012	Peripherals
Х	LISN	R & S	ESH3-Z5 / 825562/002	Feb., 2012	EUT
	DC LISN	Schwarzbeck	8226 / 176	Mar, 2012	EUT
Х	Pulse Limiter	R & S	ESH3-Z2 / 357.8810.52	Feb., 2012	
	No.1 Shielded Room				

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked by "X" are used to measure the final test results.

2.2. Test Setup

2.3. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBuV) Limit					
Frequency	Limits				
MHz	QP	AVG			
0.15 - 0.50	66-56	56-46			
0.50-5.0	56	46			
5.0 - 30	60	50			

2.4. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

2.5. Uncertainty

± 2.26 dB

2.6. Test Result of Conducted Emission

Product	:	Router
Test Item	:	Conducted Emission Test
Power Line	:	Line 1
Test Mode	:	Mode 5: Transmit - 802.11n-40BW_30Mbps(2.4G Band) (2437MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level Level			
MHz	dB	dBuV	dBuV	dB	dBuV
Line 1					
Quasi-Peak					
0.166	9.830	48.210	58.040	-7.503	65.543
0.197	9.830	42.520	52.350	-12.307	64.657
0.291	9.830	33.540	43.370	-18.601	61.971
0.502	9.830	30.560	40.390	-15.610	56.000
1.470	9.830	21.860	31.690	-24.310	56.000
12.154	10.041	27.200	37.241	-22.759	60.000
Average					
0.166	9.830	36.050	45.880	-9.663	55.543
0.197	9.830	27.090	36.920	-17.737	54.657
0.291	9.830	23.360	33.190	-18.781	51.971
0.502	9.830	23.630	33.460	-12.540	46.000
1.470	9.830	15.380	25.210	-20.790	46.000
12.154	10.041	22.040	32.081	-17.919	50.000

Note:

1. All Reading Levels are Quasi-Peak and average value.

2. "means the worst emission level.

3. Measurement Level = Reading Level + Correct Factor

Product Test Item Power Line Test Mode	 Router Conducted Emission Test Line 2 Mode 5: Transmit - 802.11n-40BW_30Mbps(2.4G Band) (2437MHz) 					
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV	dB	dBuV	
Line 2						
Quasi-Peak						
0.170	9.837	46.830	56.667	-8.762	65.429	
0.201	9.830	42.620	52.450	-12.093	64.543	
0.252	9.830	37.190	47.020	-16.066	63.086	
0.498	9.840	34.570	44.410	-11.647	56.057	
1.349	9.850	28.410	38.260	-17.740	56.000	
4.486	9.881	31.390	41.271	-14.729	56.000	
Average						
0.170	9.837	32.060	41.897	-13.532	55.429	
0.201	9.830	29.300	39.130	-15.413	54.543	
0.252	9.830	26.260	36.090	-16.996	53.086	
0.498	9.840	28.720	38.560	-7.497	46.057	
1.349	9.850	22.610	32.460	-13.540	46.000	
4.486	9.881	26.500	36.381	-9.619	46.000	

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product Test Item Power Line Test Mode	: Line 1	ted Emission Test	1n-40BW 30Mbps(5	G Band) (5755M	H7)
Test Wide	. WIOUC /.	- 11ansinit - 602.1	111-40D W_301010ps(3	G Dand) (3755W	112)
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV	dB	dBuV
Line 1					
Quasi-Peak					
0.150	9.830	45.690	55.520	-10.480	66.000
0.197	9.830	41.500	51.330	-13.327	64.657
0.291	9.830	33.160	42.990	-18.981	61.971
0.541	9.830	28.580	38.410	-17.590	56.000
4.615	9.863	23.570	33.433	-22.567	56.000
12.564	10.048	28.460	38.508	-21.492	60.000
Average					
0.150	9.830	28.060	37.890	-18.110	56.000
0.197	9.830	24.350	34.180	-20.477	54.657
0.291	9.830	18.650	28.480	-23.491	51.971
0.541	9.830	15.900	25.730	-20.270	46.000
4.615	9.863	16.570	26.433	-19.567	46.000
12.564	10.048	23.210	33.258	-16.742	50.000

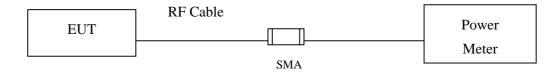
- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product Test Item Power Line Test Made	: Line 2	ted Emission Test	In ADDW 20Mbms(5	C Dow d) (5755) (1	(I_)
Test Mode	: Mode 7:	1 ransmit - 802.1	1n-40BW_30Mbps(5	G Band) (5755MI	HZ)
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV	dB	dBuV
Line 2					
Quasi-Peak					
0.189	9.830	45.430	55.260	-9.626	64.886
0.224	9.830	41.190	51.020	-12.866	63.886
0.314	9.840	32.260	42.100	-19.214	61.314
0.552	9.840	32.790	42.630	-13.370	56.000
2.013	9.860	30.020	39.880	-16.120	56.000
4.373	9.875	31.950	41.825	-14.175	56.000
Average					
0.189	9.830	31.100	40.930	-13.956	54.886
0.224	9.830	28.190	38.020	-15.866	53.886
0.314	9.840	21.180	31.020	-20.294	51.314
0.552	9.840	26.730	36.570	-9.430	46.000
2.013	9.860	23.570	33.430	-12.570	46.000
4.373	9.875	26.320	36.195	-9.805	46.000

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

3. Maximum Conducted Power

3.1. Test Equipment


	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Х	Power Meter	Anritsu	ML2495A/6K00003357	May, 2012
Х	Power Sensor	Anritsu	MA2411B/0738448	Jun, 2012
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2012
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2012
	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2012
NT /				

Note:

1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

3.2. Test Setup

3.3. Limits

The maximum average power shall be less 1 Watt. (Section 15.247 (b)(3))

3.4. Test Procedure

The EUT was tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

3.5. Uncertainty

± 1.27 dB

3.6. Test Result of Maximum Conducted Power

Product	:	Router
Test Item	:	Maximum Conducted Power
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

CHAIN A

Channel No.	Frequency	For d	Average ifferent Da	Required	Result		
Channel No (MHz)		1	2	5.5	11	Limit	Result
	Measurement Level (dBm)						
01	2412	19.22				<30dBm	Pass
06	2437	21.77	21.7	21.65	21.61	<30dBm	Pass
11	2462	17.96				<30dBm	Pass

Note: Average Power for different data rate = Reading value on Power Meter +cable loss

CHAIN B

Channel No.	Frequency	For d	Ũ	e Power ata Rate (N	/Ibps)	Required	Decult
Channel No	(MHz)	1	2	Limit	Result		
		Me	asurement				
01	2412	18.92				<30dBm	Pass
06	2437	21.52	21.49	21.41	21.35	<30dBm	Pass
11	2462	17.89				<30dBm	Pass

Note: Average Power for different data rate = Reading value on Power Meter +cable loss

CHAIN A+B

Channel	Frequency	Data Rata	Chain A Power	Chain B Power	Chain A+B Power	Limit	Result
	(MHz)	(Mbps)	(dBm)	(dBm)	(dBm)	(dBm)	
1	2412	1	19.22	18.92	22.08	<30dBm	Pass
6	2437	1	21.77	21.52	24.66	<30dBm	Pass
11	2462	1	17.96	17.89	20.94	<30dBm	Pass

Product	:	Router
Test Item	:	Maximum Conducted Power
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

	Frequency	Average Power For different Data Rate (Mbps)								Required	Result
Channel No	(MHz)	6	9	Limit							
				Measu							
01	2412	18.42				-				<30dBm	Pass
06	2437	20.01	19.96	19.81	19.76	19.64	19.56	19.43	19.31	<30dBm	Pass
11	2462	18.35								<30dBm	Pass

Note: Average Power for different data rate = Reading value on Power Meter +cable loss

CHAIN B

	Frequency		F	Required	Result						
Channel No	(MHz)	6	9	12	18	24	36	48	54	Limit	
				Measu							
01	2412	18.47								<30dBm	Pass
06	2437	20.15	19.96	19.86	19.71	19.63	19.57	19.43	19.38	<30dBm	Pass
11	2462	18.16								<30dBm	Pass

Note: Average Power for different data rate = Reading value on Power Meter +cable loss

CHAIN A+B

Channel	Frequency	Data Rata	Chain A Power	Chain B Power	Chain A+B Power	Limit	Result
	(MHz)	(Mbps)	(dBm)	(dBm)	(dBm)	(dBm)	
1	2412	6	18.42	18.47	21.46	<30dBm	Pass
6	2437	6	20.01	20.15	23.09	<30dBm	Pass
11	2462	6	18.35	18.16	21.27	<30dBm	Pass

Product	:	Router
Test Item	:	Maximum Conducted Power
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit - 802.11a 6Mbps

	Frequency		F	Required	Result						
Channel No	(MHz)	6	9	Limit							
				Measu							
149	5745	18.82								<30dBm	Pass
157	5785	22.23	22.15	22.08	21.95	21.86	21.75	21.66	21.51	<30dBm	Pass
165	5825	18.93								<30dBm	Pass

Note: Average Power for different data rate = Reading value on Power Meter +cable loss

CHAIN B

	Fraguanay		F	Required	Result						
Channel No	Frequency (MHz)	6	9	12	18	24	36	48	54	Limit	
				Measu							
149	5745	18.91	-						-	<30dBm	Pass
157	5785	21.12	21.03	20.95	20.84	20.76	20.64	20.51	20.42	<30dBm	Pass
165	5825	18.77								<30dBm	Pass

Note: Average Power for different data rate = Reading value on Power Meter +cable loss

CHAIN A+B

Channel	Frequency	Data Rata	Chain A Power	Chain B Power	Chain A+B Power	Limit	Result
	(MHz)	(Mbps)	(dBm)	(dBm)	(dBm)	(dBm)	
149	5745	6	18.82	18.91	21.88	<30dBm	Pass
157	5785	6	22.23	21.12	24.72	<30dBm	Pass
165	5825	6	18.93	18.77	21.86	<30dBm	Pass

Product	:	Router
Test Item	:	Maximum Conducted Power
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit - 802.11n-20BW_14.4Mbps(2.4G Band)

	Frequency		F	for diffe	U	e Power ata Rate		5)		Required	Result
Channel No	(MHz)	14.4	28.9	Limit							
				Measu							
01	2412	17.73								<30dBm	Pass
06	2437	20	19.97	19.88	19.76	19.66	19.57	19.43	19.37	<30dBm	Pass
11	2462	17.18								<30dBm	Pass

Note: Average Power for different data rate = Reading value on Power Meter +cable loss

CHAIN B

	Fraguanay		F		Required	Result					
Channel No	Frequency (MHz)	14.4	28.9	43.3	57.8	86.7	115.6	130	144.4	Limit	
	Measurement Level (dBm)										
01	2412	17.52	-		-	-	-			<30dBm	Pass
06	2437	20.14	20.08	19.93	19.84	19.77	19.66	19.57	19.47	<30dBm	Pass
11	2462	17.36								<30dBm	Pass

Note: Average Power for different data rate = Reading value on Power Meter +cable loss

CHAIN A+B

Channel	Frequency	Data Rata	Chain A Power	Chain B Power	Chain A+B Power	Limit	Result
	(MHz)	(Mbps)	(dBm)	(dBm)	(dBm)	(dBm)	
1	2412	HT8	17.73	17.52	20.64	<30dBm	Pass
6	2437	HT8	20.00	20.14	23.08	<30dBm	Pass
11	2462	HT8	17.18	17.36	20.28	<30dBm	Pass

:	Router
:	Maximum Conducted Power
:	No.3 OATS
:	Mode 5: Transmit - 802.11n-40BW_30Mbps(2.4G Band)
	: :

		F		U	e Power ata Rate	r e (Mbps	5)		Required	Result	
Channel No	Frequency (MHz)	30	60	90	120	180	240	270	300	Limit	
3	2422	14.76								<30dBm	Pass
6	2437	19.03	18.96	18.86	18.72	18.63	18.54	18.47	18.38	<30dBm	Pass
9	2452	14.12								<30dBm	Pass

Note: Average Power for different data rate = Reading value on Power Meter +cable loss

CHAIN B

	Frequency		F	or diffe	Average erent Da			5)		Required	Result
Channel No	(MHz)	30	60	90	120	180	240	270	300	Limit	
	Measurement Level (dBm)										
3	2422	14.76								<30dBm	Pass
6	2437	19.37	19.28	19.13	19.06	18.96	18.81	18.76	18.64	<30dBm	Pass
9	2452	13.7								<30dBm	Pass

Note: Average Power for different data rate = Reading value on Power Meter +cable loss

CHAIN A+B

Channel	Frequency	Data Rata	Chain A Power	Chain B Power	Chain A+B Power	Limit	Result
	(MHz)	(Mbps)	(dBm)	(dBm)	(dBm)	(dBm)	
3	2422	HT8	14.76	14.76	17.77	<30dBm	Pass
6	2437	HT8	19.03	19.37	22.21	<30dBm	Pass
9	2452	HT8	14.12	13.70	16.93	<30dBm	Pass

Product	:	Router
Test Item	:	Maximum Conducted Power
Test Site	:	No.3 OATS
Test Mode	:	Mode 6: Transmit - 802.11n-20BW_14.4Mbps(5G Band)

	Frequency		F		Required	Result					
Channel No	(MHz)	14.4	28.9	43.3	57.8	86.7	115.6	130	144.4	Limit	
				Measu							
149	5745	18.96								<30dBm	Pass
157	5785	21.94	21.86	21.74	21.69	21.58	21.42	21.36	21.22	<30dBm	Pass
165	5825	18.85								<30dBm	Pass

Note: Average Power for different data rate = Reading value on Power Meter +cable loss

CHAIN B

	Frequency		F		Average erent Da			5)		Required	Result
Channel No	(MHz)	14.4	28.9	43.3	57.8	86.7	115.6	130	144.4	Limit	
149	5745	18.86								<30dBm	Pass
157	5785	21.01	20.95	20.84	20.74	20.67	20.59	20.46	20.53	<30dBm	Pass
165	5825	18.94								<30dBm	Pass

Note: Average Power for different data rate = Reading value on Power Meter +cable loss

CHAIN A+B

Channel	Frequency	Data Rata	Chain A Power	Chain B Power	Chain A+B Power	Limit	Result
	(MHz)	(Mbps)	(dBm)	(dBm)	(dBm)	(dBm)	
149	5745	HT8	18.96	18.86	21.92	<30dBm	Pass
157	5785	HT8	21.94	21.01	24.51	<30dBm	Pass
165	5825	HT8	18.85	18.94	21.91	<30dBm	Pass

Product	:	Router
Test Item	:	Maximum Conducted Power
Test Site	:	No.3 OATS
Test Mode	:	Mode 7: Transmit - 802.11n-40BW_30Mbps(5G Band)

	Frequency		F	or diffe	U	e Power ata Rate		5)		Required	Result
Channel No	(MHz)	30	60	90	120	180	240	270	300	Limit	
151	5755	18.03			-					<30dBm	Pass
159	5795	18.88	18.72	18.63	18.57	18.43	18.37	18.26	18.15	<30dBm	Pass

Note: Average Power for different data rate = Reading value on Power Meter +cable loss

CHAIN B

	Fraguanay		Average Power For different Data Rate (Mbps)							Required	Result
Channel No Frequency (MHz)		30	60	90	120	180	240	270	300	Limit	
			Measurement Level (dBm)								
151	5755	18.01								<30dBm	Pass
159	5795	18.95	18.82	18.73	18.65	18.53	18.41	18.36	18.28	<30dBm	Pass

Note: Average Power for different data rate = Reading value on Power Meter +cable loss

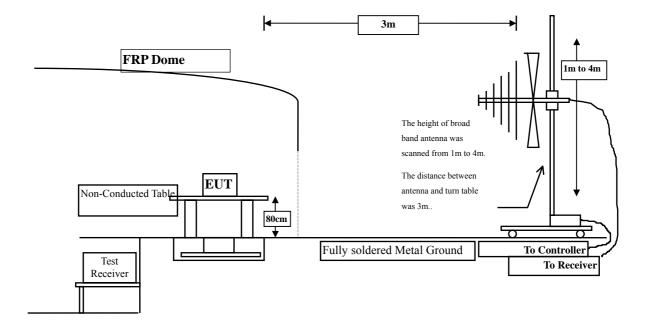
CHAIN A+B

Channel	Frequency (MHz)	Data Rata (Mbps)	Chain A Power (dBm)	Chain B Power (dBm)	Chain A+B Power (dBm)	Limit (dBm)	Result
151	5755	HT8	19.41	19.35	22.39	<30dBm	Pass
159	5795	HT8	21.41	20.51	23.99	<30dBm	Pass

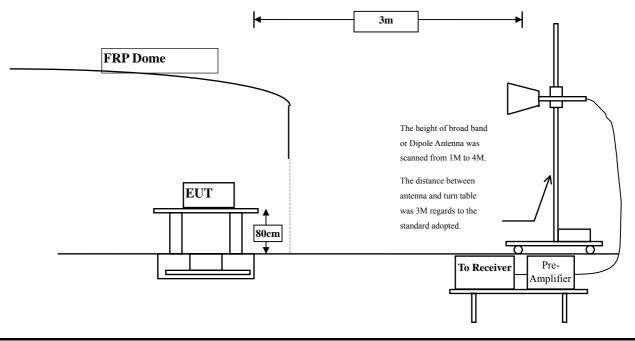
4. Radiated Emission

4.1. Test Equipment

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	X Bilog Antenna		Schaffner Chase	CBL6112B/2673	Sep., 2012
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2012
	Х	Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2012
	Х	Pre-Amplifier	QTK	QTK-AMP-03 / 0003	May, 2012
	Х	Pre-Amplifier	QTK	AP-180C / CHM_0906076	Sep., 2012
	Х	Pre-Amplifier	MITEQ	AMF-4D-180400-45-6P/ 925975	Mar, 2012
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2012
	Х	Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2012
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2012
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A


The following test equipment are used during the radiated emission test:

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.


2. The test instruments marked with "X" are used to measure the final test results.

4.2. Test Setup

Radiated Emission Below 1GHz

Radiated Emission Above 1GHz

4.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 30dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209(a) Limits								
Frequency MHz	uV/m @3m	dBuV/m@3m						
30-88	100	40						
88-216	150	43.5						
216-960	200	46						
Above 960	500	54						

Remarks: E field strength $(dBuV/m) = 20 \log E$ field strength (uV/m)

4.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003 and tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4:2003 on radiated measurement.

The resolution bandwidth below 1GHz setting on the field strength meter is 120 kHz and above 1GHz is 1MHz.

Radiated emission measurements below 1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement. The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The worst radiated emission is measured in the Open Area Test Site on the Final Measurement. The measurement frequency range form 30MHz - 10th Harmonic of fundamental was investigated.

4.5. Uncertainty

- ± 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz

4.6. Test Result of Radiated Emission

Product	:	Router
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4824.000	0.428	47.300	47.729	-26.271	74.000
7236.000	7.177	43.050	50.227	-23.773	74.000
9648.000	8.019	39.370	47.390	-26.610	74.000
Average					
Detector:					
Vertical					
Peak Detector:					
4824.000	0.836	50.240	51.077	-22.923	74.000
7236.000	7.676	41.550	49.226	-24.774	74.000
9648.000	8.556	41.530	50.087	-23.913	74.000
Average					
Detector:					

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Router							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 1: Transmit (802.11b 1Mbps) (2437 MHz)							
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
4874.000	0.076	48.580	48.657	-25.343	74.000			
7311.000	7.512	44.200	51.712	-22.288	74.000			
9748.000	7.630	41.680	49.310	-24.690	74.000			
Average								
Detector:								
Vertical								
Peak Detector:								
4874.000	0.532	52.230	52.762	-21.238	74.000			
7311.000	8.089	46.060	54.149	-19.851	74.000			
9748.000	8.266	44.670	52.937	-21.063	74.000			
Average								
Detector:								
7311.000	8.089	39.200	47.289	-6.711	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Router Harmonic Radiated Emission Data No.3 OATS Mode 1: Transmit (802.11b 1Mbps) (2462 MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
4924.000	0.191	45.190	45.381	-28.619	74.000		
7386.000	8.373	40.350	48.724	-25.276	74.000		
9848.000	7.964	40.360	48.324	-25.676	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
4924.000	0.805	48.710	49.515	-24.485	74.000		
7386.000	9.180	38.790	47.970	-26.030	74.000		
9848.000	8.801	41.220	50.021	-23.979	74.000		
Average							
Detector:							

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Router Harmonic Radiated Emission Data No.3 OATS Mode 2: Transmit (802.11g 6Mbps) (2412MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
4824.000	0.428	48.240	48.669	-25.331	74.000		
7236.000	7.177	49.540	56.717	-17.283	74.000		
9648.000	8.019	38.900	46.920	-27.080	74.000		
Average							
Detector:							
7236.000	7.177	29.110	36.287	-17.713	54.000		
Vertical							
Peak Detector:							
4824.000	0.836	45.370	46.207	-27.793	74.000		
7236.000	7.676	43.660	51.336	-22.664	74.000		
9648.000	8.556	38.830	47.387	-26.613	74.000		
Average							
Detector:							

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

: Router								
: Harmonic Radiated Emission Data								
: No.3 OATS								
: Mode 2	: Mode 2: Transmit (802.11g 6Mbps) (2437 MHz)							
Correct	Reading	Measurement	Margin	Limit				
Factor	Level	Level						
dB	dBuV	dBuV/m	dB	dBuV/m				
0.076	52.040	52.117	-21.883	74.000				
7.512	50.230	57.742	-16.258	74.000				
7.630	39.790	47.420	-26.580	74.000				
7.512	32.500	40.012	-13.988	54.000				
0.532	54.810	55.342	-18.658	74.000				
8 089	50 480	58.569	-15.431	74.000				
0.007	50.100							
8.266	40.090	48.357	-25.643	74.000				
		48.357	-25.643	74.000				
		48.357	-25.643	74.000				
		48.357 40.452	-25.643 -13.548	74.000 54.000				
	: Harmon : No.3 O/ : Mode 2 Correct Factor dB 0.076 7.512 7.630 7.512 0.532	 Harmonic Radiated Emission No.3 OATS Mode 2: Transmit (802.11) Correct Reading Factor Level dB dBuV 0.076 52.040 7.512 50.230 7.630 39.790 7.512 32.500 	 Harmonic Radiated Emission Data No.3 OATS Mode 2: Transmit (802.11g 6Mbps) (2437 MH Correct Reading Measurement Factor Level Level dB dBuV dBuV/m 0.076 52.040 52.117 7.512 50.230 57.742 7.630 39.790 47.420 7.512 32.500 40.012 0.532 54.810 55.342 	 Harmonic Radiated Emission Data No.3 OATS Mode 2: Transmit (802.11g 6Mbps) (2437 MHz) Correct Reading Measurement Margin Factor Level Level dB dBuV dBuV/m dB 0.076 52.040 52.117 -21.883 7.512 50.230 57.742 -16.258 7.630 39.790 47.420 -26.580 7.512 32.500 40.012 -13.988 0.532 54.810 55.342 -18.658 				

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Router							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 2: Transmit (802.11g 6Mbps) (2462 MHz)							
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
4924.000	0.191	46.240	46.431	-27.569	74.000			
7386.000	8.373	44.200	52.574	-21.426	74.000			
9848.000	7.964	40.160	48.124	-25.876	74.000			
Average								
Detector:								
Vertical								
Peak Detector:								
4924.000	0.805	52.410	53.215	-20.785	74.000			
7386.000	9.180	47.520	56.700	-17.300	74.000			
9848.000	8.801	40.510	49.311	-24.689	74.000			
Average								
Detector:								
7386.000	9.180	30.990	40.170	-13.830	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Router							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 3: Transmit - 802.11a 6Mbps (5745 MHz)							
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
11490.000	13.004	48.210	61.214	-12.786	74.000			
Average								
Detector:								
11490.000	13.004	34.050	47.054	-6.946	54.000			
Vertical								
Peak Detector:								
11490.000	14.520	47.960	62.480	-11.520	74.000			
Average								
Detector:								
11490.000	14.520	33.850	48.370	-5.630	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Router							
Test Item	Harmonic Radiated Emission DataNo.3 OATS							
Test Site								
Test Mode	: Mode 3: Transmit - 802.11a 6Mbps (5785 MHz)							
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
11570.000	13.207	48.340	61.547	-12.453	74.000			
Average								
Detector:								
11570.000	13.207	34.490	47.697	-6.303	54.000			
110 / 0.000	10.207	51.190	11.037	0.000	21.000			
Vertical								
Peak Detector:								
11570.000	14.573	47.230	61.802	-12.198	74.000			
Average								
Detector:								
11570.000	14.573	34.000	48.572	-5.428	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Router							
Test Item	 Harmonic Radiated Emission Data No.3 OATS 							
Test Site								
Test Mode	: Mode 3	: Mode 3: Transmit - 802.11a 6Mbps (5825 MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
11650.000	11.504	46.430	57.934	-16.066	74.000			
Average								
Detector:								
11650.000	11.504	32.650	44.154	-9.846	54.000			
Vertical								
Peak Detector:								
11650.000	12.959	52.040	64.999	-9.001	74.000			
Average								
Average Detector:								

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Router Harmonic Radiated Emission Data No.3 OATS Mode 4: Transmit - 802.11n-20BW_14.4Mbps(2.4G Band) (2412MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
4824.000	0.428	48.810	49.239	-24.761	74.000		
7236.000	7.177	45.560	52.737	-21.263	74.000		
9648.000	8.019	39.700	47.720	-26.280	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
4824.000	0.836	50.520	51.357	-22.643	74.000		
7236.000	7.676	46.550	54.226	-19.774	74.000		
9648.000	8.556	39.710	48.267	-25.733	74.000		
Average							
Detector:							
7236.000	7.676	31.630	39.306	-14.694	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Router								
Test Item	: Harmonic Radiated Emission Data								
Test Site	: No.3 OATS								
Test Mode	: Mode 4: Transmit - 802.11n-20BW_14.4Mbps(2.4G Band) (2437 MHz)								
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level						
MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Horizontal									
Peak Detector:									
4874.000	0.076	50.590	50.667	-23.333	74.000				
7311.000	7.512	50.120	57.632	-16.368	74.000				
9748.000	7.630	38.760	46.390	-27.610	74.000				
Average									
Detector:									
7311.000	7.512	33.110	40.622	-13.378	54.000				
Vertical									
Peak Detector:									
4874.000	0.532	52.580	53.112	-20.888	74.000				
7311.000	8.089	48.590	56.679	-17.321	74.000				
9748.000	8.266	38.640	46.907	-27.093	74.000				
Average									
Detector:									
7311.000	8.089	33.460	41.549	-12.451	54.000				

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	: No.3 OAT		sion Data 1n-20BW_14.4Mbps((2.4G Band) (246	2 MHz)
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4924.000	0.191	45.960	46.151	-27.849	74.000
7386.000	8.373	42.570	50.944	-23.056	74.000
9848.000	7.964	39.800	47.764	-26.236	74.000
Average					
Detector:					
Vertical Peak Detector:					
4924.000	0.805	47.110	47.915	-26.085	74.000
7386.000	9.180	41.900	51.080	-22.920	74.000
9848.000	8.801	40.140	48.941	-25.059	74.000
Average					
Detector:					

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	: No.3 OA		ion Data 1n-40BW_30Mbps(2	.4G Band) (2422)	MHz)
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4844.000	0.280	42.480	42.761	-31.239	74.000
7266.000	7.106	39.170	46.276	-27.724	74.000
9688.000	7.663	39.240	46.903	-27.097	74.000
Average					
Detector:					
Vertical					
Peak Detector:					
4844.000	0.707	45.260	45.968	-28.032	74.000
7266.000	7.626	40.630	48.256	-25.744	74.000
9688.000	8.284	39.490	47.774	-26.226	74.000
Average					
Detector:					

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	: No.3 OA		sion Data 1n-40BW_30Mbps(2	.4G Band) (2437	MHz)
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4874.000	0.076	46.600	46.677	-27.323	74.000
7311.000	7.512	46.120	53.632	-20.368	74.000
9748.000	7.630	39.260	46.890	-27.110	74.000
Average					
Detector:					
Vertical					
Peak Detector:					
4874.000	0.532	49.360	49.892	-24.108	74.000
7311.000	8.089	44.140	52.229	-21.771	74.000
9748.000	8.266	40.080	48.347	-25.653	74.000
Average					
Detector:					

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	: No.3 OA		sion Data 1n-40BW_30Mbps(2	.4G Band) (2452	MHz)
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal Peak Detector:					
4904.000	0.000	43.500	43.501	-30.499	74.000
7356.000	8.308	38.590	46.898	-27.102	74.000
9808.000	7.850	39.490	47.340	-26.660	74.000
Average					
Detector:					
Vertical					
Peak Detector:					
4904.000	0.513	44.160	44.674	-29.326	74.000
7356.000	9.022	38.540	47.562	-26.438	74.000
9808.000	8.512	39.460	47.972	-26.028	74.000
Average					
Detector:					

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	: No.3 OA		sion Data 1n-20BW_14.4Mbps	(5G Band) (5745)	MHz)
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level	C	
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
11490.000	13.004	47.120	60.124	-13.876	74.000
Average					
Detector:					
11490.000	13.004	31.660	44.664	-9.336	54.000
Vertical					
Peak Detector:					
11490.000	14.520	48.740	63.260	-10.740	74.000
Average					
Detector:					
11490.000	14.520	31.930	46.450	-7.550	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site	 Router Harmonic Radiated Emission Data No.3 OATS 						
Test Mode	: Mode 6: Transmit - 802.11n-20BW_14.4Mbps(5G Band) (5785 MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11570.000	13.207	47.040	60.247	-13.753	74.000		
Average Detector:							
11570.000	13.207	31.270	44.477	-9.523	54.000		
Vertical							
Peak Detector:							
11570.000	14.573	50.260	64.832	-9.168	74.000		
Average Detector:							
11570.000	14.573	32.800	47.372	-6.628	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Router Harmonic Radiated Emission Data No.3 OATS Mode 6: Transmit - 802.11n-20BW_14.4Mbps(5G Band) (5825 MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11650.000	11.504	47.480	58.984	-15.016	74.000		
Average Detector: 11650.000	11.504	30.570	42.074	-11.926	54.000		
Vertical Peak Detector: 11650.000	12.959	51.440	64.399	-9.601	74.000		
Average Detector: 11650.000	12.959	35.120	48.079	-5.921	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	: No.3 OA		sion Data 1n-40BW_30Mbps(5	G Band) (5755M	Hz)
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level	-	
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
11510.000	13.044	46.440	59.483	-14.517	74.000
Average					
Detector:					
11510.000	13.044	30.070	43.113	-10.887	54.000
Vertical					
Peak Detector:					
11510.000	14.536	46.620	61.156	-12.844	74.000
Average					
Detector:					
11510.000	14.536	29.580	44.116	-9.884	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Router Harmonic Radiated Emission Data No.3 OATS Mode 7: Transmit - 802.11n-40BW_30Mbps(5G Band) (5795 MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11590.000	13.364	46.600	59.964	-14.036	74.000		
Average Detector: 11590.000	13.364	29.760	43.124	-10.876	54.000		
Vertical							
Peak Detector: 11590.000	14.687	50.650	65.337	-8.663	74.000		
Average Detector:	14.005	22.210	16.005	7.000	54.000		
11590.000	14.687	32.310	46.997	-7.003	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Router General Radiated Emission Data No.3 OATS Mode 1: Transmit (802.11b 1Mbps) (2437 MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
111.480	-7.489	43.009	35.521	-7.979	43.500		
249.220	-6.216	40.175	33.959	-12.041	46.000		
359.800	-0.226	41.958	41.732	-4.268	46.000		
375.320	0.918	38.818	39.736	-6.264	46.000		
499.480	1.991	40.859	42.849	-3.151	46.000		
875.840	5.816	26.408	32.224	-13.776	46.000		
Vertical							
41.640	-6.175	43.119	36.945	-3.055	40.000		
105.660	-7.676	47.878	40.201	-3.299	43.500		
375.320	0.918	38.576	39.494	-6.506	46.000		
499.480	1.991	39.928	41.918	-4.082	46.000		
625.580	1.419	30.837	32.257	-13.743	46.000		
875.840	5.816	26.515	32.331	-13.669	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site	: No.3 OA				
Test Mode	: Mode 2:	Transmit (802.11	g 6Mbps) (2437 MH	Z)	
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
 MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
107.600	-7.597	42.254	34.657	-8.843	43.500
249.220	-6.216	38.310	32.094	-13.906	46.000
499.480	1.991	40.364	42.354	-3.646	46.000
625.580	1.419	32.834	34.254	-11.746	46.000
875.840	5.816	27.405	33.221	-12.779	46.000
967.020	7.299	23.546	30.845	-23.155	54.000
Vertical					
43.580	-10.919	46.048	35.129	-4.871	40.000
105.660	-4.576	44.989	40.412	-3.088	43.500
249.220	-5.096	35.385	30.289	-15.711	46.000
499.480	-0.199	39.530	39.330	-6.670	46.000
625.580	0.299	30.755	31.055	-14.945	46.000
875.840	0.516	27.560	28.076	-17.924	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	: No.3 OA		n Data 1a 6Mbps (5785MHz)	
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
107.600	-7.597	42.689	35.092	-8.408	43.500
249.220	-6.216	39.604	33.388	-12.612	46.000
375.320	0.918	36.749	37.667	-8.333	46.000
499.480	1.991	40.893	42.883	-3.117	46.000
625.580	1.419	31.153	32.573	-13.427	46.000
914.640	6.410	29.881	36.291	-9.709	46.000
Vertical					
107.600	-4.027	44.160	40.133	-3.367	43.500
375.320	0.388	38.184	38.572	-7.428	46.000
499.480	-0.199	40.157	39.957	-6.043	46.000
625.580	0.299	29.634	29.934	-16.066	46.000
747.800	1.665	24.285	25.950	-20.050	46.000
875.840	0.516	26.008	26.524	-19.476	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	: No.3 OA		n Data 1n-20BW_14.4Mbps	(2.4G Band) (243	37 MHz)
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
117.300	-7.350	42.286	34.936	-8.564	43.500
249.220	-6.216	38.491	32.275	-13.725	46.000
499.480	1.991	40.311	42.301	-3.699	46.000
625.580	1.419	33.138	34.558	-11.442	46.000
831.220	7.121	25.342	32.463	-13.537	46.000
875.840	5.816	26.417	32.233	-13.767	46.000
Vertical					
109.540	-3.507	43.044	39.536	-3.964	43.500
249.220	-5.096	35.487	30.391	-15.609	46.000
499.480	-0.199	39.599	39.399	-6.601	46.000
625.580	0.299	30.999	31.299	-14.701	46.000
875.840	0.516	26.011	26.527	-19.473	46.000
965.080	3.832	22.403	26.235	-27.765	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	: No.3 OA		n Data .n-40BW_30Mbps(2	.4G Band) (2437	MHz)
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
113.420	-7.449	44.276	36.827	-6.673	43.500
249.220	-6.216	39.161	32.945	-13.055	46.000
499.480	1.991	40.699	42.689	-3.311	46.000
625.580	1.419	33.155	34.575	-11.425	46.000
875.840	5.816	26.467	32.283	-13.717	46.000
930.160	7.530	22.802	30.332	-15.668	46.000
Vertical					
43.580	-10.919	46.236	35.317	-4.683	40.000
107.600	-4.027	44.225	40.198	-3.302	43.500
249.220	-5.096	35.418	30.322	-15.678	46.000
499.480	-0.199	39.355	39.155	-6.845	46.000
625.580	0.299	30.213	30.513	-15.487	46.000
875.840	0.516	26.105	26.621	-19.379	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	: No.3 O/		n Data 1n-20BW_14.4Mbps	(5G Band) (5785	MHz)
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level	-	
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
107.600	-7.597	43.673	36.076	-7.424	43.500
249.220	-6.216	39.036	32.820	-13.180	46.000
375.320	0.918	37.959	38.877	-7.123	46.000
499.480	1.991	40.888	42.878	-3.122	46.000
625.580	1.419	31.598	33.018	-12.982	46.000
875.840	5.816	25.402	31.218	-14.782	46.000
Vertical					
107.600	-4.027	44.524	40.497	-3.003	43.500
204.600	-5.473	37.844	32.371	-11.129	43.500
375.320	0.388	38.012	38.400	-7.600	46.000
499.480	-0.199	39.722	39.522	-6.478	46.000
600.360	1.302	28.576	29.878	-16.122	46.000
875.840	0.516	26.742	27.258	-18.742	46.000

-

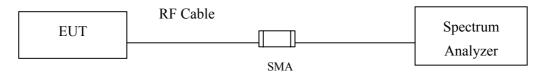
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	: No.3 O		n Data 1n-40BW_30Mbps(5	G Band) (5755M	Hz)
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
107.600	-7.597	43.541	35.944	-7.556	43.500
249.220	-6.216	38.311	32.095	-13.905	46.000
375.320	0.918	37.622	38.540	-7.460	46.000
499.480	1.991	40.875	42.865	-3.135	46.000
625.580	1.419	31.773	33.193	-12.807	46.000
831.220	7.121	24.840	31.961	-14.039	46.000
Vertical					
109.540	-3.507	43.806	40.298	-3.202	43.500
249.220	-5.096	35.100	30.004	-15.996	46.000
375.320	0.388	37.855	38.243	-7.757	46.000
499.480	-0.199	40.613	40.413	-5.587	46.000
625.580	0.299	29.987	30.287	-15.713	46.000
875.840	0.516	26.024	26.540	-19.460	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

5. **RF** antenna conducted test

5.1. Test Equipment


	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Х	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2012
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2012
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2012

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

5.2. Test Setup

RF antenna Conducted Measurement:

5.3. Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

5.4. Test Procedure

The EUT was tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

Set RBW = 100 kHz, Set VBW> RBW, scan up through 10th harmonic.

5.5. Uncertainty

The measurement uncertainty Conducted is defined as ± 1.27 dB

5.6. Test Result of RF antenna conducted test

Product	:	Router
Test Item	:	RF antenna conducted test
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

Channel 01 (2412MHz) 30MHz-25GHz-Chain A

	um Analyzer - Swept SA								
	RF 50 Ω AC		SEI	VSE:INT		ALIGNAUTO : Log-Pwr		4 Aug 31, 2012	Frequency
Start Fred	q 30.000000 MH Ref 20.00 dBm	Z PNO: Fast 😱 IFGain:Low	Trig: Free Atten: 30		Avg Type	-	түр DE 1 999.1:	27 MHz 77 dBm	Auto Tune
10.0									Center Freq 515.000000 MHz
.10.0									Start Free 30.000000 MH;
30.0								-23.84 dBm	Stop Free 1.000000000 GH:
40.0								1	CF Step 97.000000 MH <u>Auto</u> Mar
a sold a light for dry		n hann a baile an		nologia nal		i _{na la} nda ang salat na s	n en forste en forste forst En forste fors	Angen (S. C.	Freq Offse 0 H
-70.0									
Start 30.0 #Res BW		#VBW	1.0 MHz		ţ	Sweep 9		000 GHz 0001 pts)	
MSG						I STATUS			

Agilent Spectru	m Analyzer - Swept SA							
w Start Freq	RF 50 Ω AC	GHz]	NSE:INT	ALIGNAUTO : Log-Pwr	TRAC	M Aug 31, 2012 E 1 2 3 4 5 6	Frequency
10 dB/div	Ref 20.00 dBm	PNO: Fast ၞ IFGain:Low	┘ Trig: Free Atten: 30		Mk	r1 2.412	2 4 GHz 16 dBm	Auto Tune
10.0	^1							Center Freq 6.50000000 GHz
-10.0								Start Freq 1.000000000 GHz
-20.0							-23.84 dBm	Stop Freq 12.000000000 GHz
-40.0			. 1. March Millinger, Local	4.51. 141.				CF Step 1.10000000 GHz <u>Auto</u> Man
-60.0			an er		n far fan fyn fan Land yn swyter anwei ar far fan yweither dae ber		las sensiti propinsi ka	Freq Offset 0 Hz
-70.0 Start 1.000		4./5.14	4.0.000-		Sumo-		.000 GHz	
#Res BW 1	UU KHZ	#VBW	1.0 MHz				0001 pts)	

Agilent Spectrum	n Analyzer - Swept SA							
	RF 50 Ω AC		SEN	VSE:INT		ALIGNAUTO	02:45:00 AM Aug 31, 20 TRACE 1 2 3 4 5	
Start Freq	12.000000000	PNO: Fast IFGain:Low	Trig: Free Atten: 30		Avg Type	: Log-Pwr	TYPE MWWWW DET P N N N N	₩
10 dB/div I	Ref 20.00 dBm					Mkr	1 23.546 6 GH -40.78 dBr	
								Center Freq
10.0								18.500000000 GHz
0.00								Start Free
-10.0								12.000000000 GHz
-20.0							-23.84 dt	Stop Free
-30.0								25.00000000 GH
-40.0							∳ ¹	CF Ster
	10 M		وأوليت والمعادين	unter and a set of the	muchant	one Philippin		1.300000000 GH Auto Mar
-50.0	Larry Alley at the second	and deal or provide the deal of the	a new print with the	maa ka di dada ya shika a				
-60.0								Freq Offset
-70.0								
Start 12.000 #Res BW 10		#VBW	1.0 MHz			Sweep	Stop 25.000 GH 1.20 s (10001 pt	
MSG								

Agilent Spectrum Ana	alyzer - Swept SA						
Start Freq 30	50 Ω AC 0.000000 MHz P		SENSE:INT	ALIGN Avg Type: Log	-Pwr TRAC TYP	M Aug 31, 2012 E 1 2 3 4 5 6 E M WWWWWW T P N N N N N	Frequency
10 dB/div Ref	⊮ 20.00 dBm	Gain:Low Atte	n: 30 dB		Mkr1 890.9		Auto Tun
10.0							Center Fre 515.000000 MH
0.0							Start Fre 30.000000 MF
0.0						-18.63 dBm	Stop Fre 1.00000000 GF
0.0						1	CF Ste 97.000000 Mł Auto Ma
	(Mapatel (Marine or Marjar Anto) (Marel (Mar				anganatik baha namala	i els dificilitados escalas anticidades escalas escalas escalas escalas escalas escalas escalas escalas escalas	Freq Offs
70.0							
tart 30.0 MHz Res BW 100 I		#VBW 1.0 I	ЛНz	Swe	Stop 1.0 ep 90.0 ms (1	0000 GHz 0001 pts)	
SG				Ú0	STATUS		

Channel 06 (2437MHz) 30MHz -25GHz-Chain A

1	RF 50 Ω AC		SENSE:INT		ALIGN AUTO	02:42:54 AM Aug 31, 2012	
tart Freq) GHz PNO: Fast 😱	Trig: Free Run	Avg Type:		TRACE 123456 TYPE MWWWWM DET P N N N N N	Frequency
	Ref 20.00 dBm	IFGain:Low	Atten: 30 dB		Mk	r1 2.435 5 GHz 11.37 dBm	Auto Tun
og 10.0	♦ ¹						Center Fre 6.50000000 GF
10.0							Start Fro 1.000000000 G
20.0						-18.63 dBm	Stop Fr 12.000000000 G
0.0							CF St 1.100000000 G
0.0	and the second second			per al data seguela			<u>Auto</u> M
0.0		international design		and the second second second	day protocol in the law		Freq Offs 0
0.0							
tart 1.000 Res BW 1		#VBW	1.0 MHz		Sweep	Stop 12.000 GHz 1.02 s (10001 pts)	
G					I STATUS		

	1 Analyzer - Swept SA								
Start Freq	RF 50 Ω AC 12.000000000	CH-	SEN	SE:INT		ALIGNAUTO		M Aug 31, 2012	Frequency
	Ref 20.00 dBm	PNO: Fast 😱 IFGain:Low	Trig: Free Atten: 30		ing type	Period and full	TYP DE 1 23.486	8 8 GHz 8 dBm	Auto Tune
10.0									Center Freq 18.50000000 GHz
-10.0									Start Fred 12.000000000 GHz
-20.0								-18.63 dBm	Stop Free 25.000000000 GH;
-40.0			and all states	- Marine Marine		a yan bashi da ka sayaa y			CF Step 1.300000000 GH: <u>Auto</u> Mar
-60.0									Freq Offse 0 H
-70.0 Start 12.000 #Res BW 10		#VBW	1.0 MHz			Sweep	Stop 25. 1.20 s (1	.000 GHz 0001 pts)	
ISG									

	02:41:37 AM Aug 31, 2012	ALIGN AUTO		ISE:INT	SE		AC AC	Analyzer - Sw RF 50 Ω	ent spectrun
Frequency	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N		Ауд Туре	Run	Trig: Free Atten: 30	NO: Fast 😱 Gain:Low	0 MHz	30.0000	art Freq
Auto Tur	1 880.011 MHz -54.45 dBm	Mkr		u D	Atten: 30	ain:Low		ef 20.00	dB/div
Center Fre									
515.000000 MH									0
Start Fre									0
30.000000 MH									0
Stop Fro	-23.11 dBm								0
1.000000000 GI			-						0
CF Ste	[0
97.000000 Mi <u>Auto</u> Mi	41								0
FreqOffs		halan an hailail	the open la berrand	hellestellinger		and the burning	فأطرار والوقر والمترا	والملوطنين ومرور بأخو الر	in .
	a bi da basta constanta da bi da basta a bi p		en an	and, protonologie	an a		al the state of the band		0
									0
	Stop 1.0000 GHz 0.0 ms (10001 pts)	weep 90			1.0 MHz	#VBW			art 30.0 M es BW 10
		STATUS							

Channel 11 (2462MHz) 30MHz -25GHz-Chain A

	um Analyzer - Swept SA RF 50 Ω AC		SENSE:INT	ALIGN AUTO	02:41:18 AM Aug 31, 2012	
tart Free			Trig: Free Run Atten: 30 dB	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency
0 dB/div	Ref 20.00 dBm		Atten. 30 dB	Mk	r1 2.459 7 GHz 6.89 dBm	Auto Tun
og 10.0	•1					Center Fre 6.500000000 G⊦
0.0						Start Fre 1.000000000 G⊦
0.0					-23.11 dBm	Stop Fre 12.00000000 GF
0.0						CF Ste 1.100000000 GF <u>Auto</u> Ma
			la en lanta (an la la constante a la la la constante a general a de la constante a			Freq Offs
70.0						
tart 1.00 Res BW		#VBW	1.0 MHz	Sweep	Stop 12.000 GHz 1.02 s (10001 pts)	
G						

Agilent Spectrum	n Analyzer - Swept SA		08			
LXI	RF 50 Ω AC		SENSE:INT	ALIGN AUT		Frequency
Start Freq	12.0000000	DO GHZ PNO: Fast 😱 IFGain:Low	Trig: Free Run Atten: 30 dB	Avg Type: Log-Pw	TRACE 123456 TYPE MWWWWW DET P N N N N N	Frequency
10 dB/div Log	Ref 20.00 dBm			M	kr1 24.264 2 GHz -40.84 dBm	Auto Tune
10.0						Center Freq 18.50000000 GHz
0.00						
0.00						Start Freq
-10.0						12.000000000 GHz
-20.0					-23.11 dBm	Stop Freq
-30.0						25.00000000 GHz
-40.0					1	CF Step 1.30000000 GHz
-50.0		in a local de la company d	na and a same filler desired			<u>Auto</u> Man
-60.0	Helipotela"					FreqOffset
-70.0						0 Hz
Start 12.00 #Res BW 1		#VBW	1.0 MHz	Swee	Stop 25.000 GHz p 1.20 s (10001 pts)	
MSG				K osta	TUS	

	1 Aug 31, 2012	01:59:22 AN	ALIGNAUTO		INSE:INT	SE	-	AC	RF 50 Ω	nt Spectru
Frequency	123456	TRACI	: Log-Pwr	Avg Type		7	1	00 MHz	30.0000	rt Freq
		DE			e Run)dB	Trig: Fre Atten: 30	NO: Fast 🖵 Gain:Low	P		
Auto Tu	23 MHz	1 869 9	Mkr1							
	3 dBm	-54.41						dBm	Ref 20.00	B/div
				1	1				101 20.00	
Center Fr										
515.000000 M)
							-)
Start Fr										
30.000000 M				-	-					·
Stop Fr	-22.59 dBm						Contract (1)			
1.000000000 G										
CF St 97.000000 M							-			1
Auto M										
		1								
Eron Offe	Haddpunder	wallstoppullant	Langer and Line and	In a saluk frantes	And the second second second second second	In the standard and	والمطرارات فالمعادية	فاللوائل لاتماله خطار	a hun handell hands	المراجع
Freq Offs	kantjatty Jan Kalen, i jet jejsar	ي بناية بالمالي (ب معلم) بي معد -	and the second	ni i ann airteireireirei	The second s	le su de la sectore de la s	and the second second	a fail and a second second second	the phase of the local	aless Alessa Alessa
0										
	000 GHz	Stop 1.0					1		IHz	rt 30.0 I
	000 GHz 0001 pts)		Sweep 90			1.0 MHz	#VBW			rt 30.0 es BW 1
						1.0 MHz	#VBW			
			Sweep 90		· ·	1.0 MHz	#VBW		00 kHz	es BW 1
	0001 pts)).0 ms (1)	Sweep 90				#VBW		00 kHz Analyzer - Sw	es BW 1
Frequency	1 Aug 31, 2012	0.0 ms (10	Sweep 90		ENSE:INT	SE		2 AC	00 kHz Analyzer - Sw	es BW 1
Frequency	0001 pts)	0.0 ms (10 01:57:02 AM TRACI	Sweep 90		ENSE:INT) Trig: Fre	Z NO: Fast C	AC 0000 GH2 P	00 kHz Analyzer - Sw RF 50 גר	es BW 1
Frequency Auto Tu	1 Aug 31, 2012 1 2 3 4 5 6 MWWWWW P N N N N N	0.0 ms (10 01:57:02 AM TRACI TYP DE	Sweep 90		ENSE:INT	SE	z	AC 0000 GH2 P	00 kHz Analyzer - Sw RF 50 גר	es BW 1
	Aug 31, 2012 1 2 3 4 5 6 MWWWWW P NNNNN 6 GHz	0.0 ms (10 01:57:02 AM TRACI TYP DE 1 2.414	Sweep 90		ENSE:INT) Trig: Fre	Z NO: Fast C	2 AC 0000 GH2 P IF	00 kHz Analyzer - Sw RF 50 S 1.000000	nt Spectru
	1 Aug 31, 2012 1 2 3 4 5 6 MWWWWW P N N N N N	0.0 ms (10 01:57:02 AM TRACI TYP DE 1 2.414	Sweep 90		ENSE:INT) Trig: Fre	Z NO: Fast C	2 AC 0000 GH2 P IF	00 kHz Analyzer - Sw RF 50 גר	es BW 1
	Aug 31, 2012 1 2 3 4 5 6 MWWWWW P NNNNN 6 GHz	0.0 ms (10 01:57:02 AM TRACI TYP DE 1 2.414	Sweep 90		ENSE:INT) Trig: Fre	Z NO: Fast C	2 AC 0000 GH2 P IF	00 kHz Analyzer - Sw RF 50 S 1.000000 Ref 20.00	nt Spectru rt Freq IB/div
Auto Tu	Aug 31, 2012 1 2 3 4 5 6 MWWWWW P NNNNN 6 GHz	0.0 ms (10 01:57:02 AM TRACI TYP DE 1 2.414	Sweep 90		ENSE:INT) Trig: Fre	Z NO: Fast C	2 AC 0000 GH2 P IF	00 kHz Analyzer - Sw RF 50 S 1.000000	nt Spectru
Auto Tu Center Fr	Aug 31, 2012 1 2 3 4 5 6 MWWWWW P NNNNN 6 GHz	0.0 ms (10 01:57:02 AM TRACI TYP DE 1 2.414	Sweep 90		ENSE:INT) Trig: Fre	Z NO: Fast C	2 AC 0000 GH2 P IF	00 kHz Analyzer - Sw RF 50 S 1.000000 Ref 20.00	nt Spectru rt Freq B/div
Auto Tu Center Fr 6.50000000 G	Aug 31, 2012 1 2 3 4 5 6 MWWWWW P NNNNN 6 GHz	0.0 ms (10 01:57:02 AM TRACI TYP DE 1 2.414	Sweep 90		ENSE:INT) Trig: Fre	Z NO: Fast C	2 AC 0000 GH2 P IF	00 kHz Analyzer - Sw RF 50 S 1.000000 Ref 20.00	nt Spectru rt Freq B/div
Auto Tu Center Fr 6.50000000 G Start Fr	Aug 31, 2012 1 2 3 4 5 6 MWWWWW P NNNNN 6 GHz	0.0 ms (10 01:57:02 AM TRACI TYP DE 1 2.414	Sweep 90		ENSE:INT) Trig: Fre	Z NO: Fast C	2 AC 0000 GH2 P IF	00 kHz Analyzer - Sw RF 50 S 1.000000 Ref 20.00	nt Spectru rt Freq B/div
Auto Tu Center Fr 6.50000000 G	Aug 31, 2012 1 2 3 4 5 6 MWWWWW P NNNNN 6 GHz	0.0 ms (10 01:57:02 AM TRACI TYP DE 1 2.414	Sweep 90		ENSE:INT) Trig: Fre	Z NO: Fast C	2 AC 0000 GH2 P IF	00 kHz Analyzer - Sw RF 50 S 1.000000 Ref 20.00	nt Spectru rt Freq B/div
Auto Tu Center Fr 6.50000000 G Start Fr	Aug 31, 2012 12 3 4 5 6 MWWWWW P NNNNN 6 GHz	0.0 ms (10 01:57:02 AM TRACI TYP DE 1 2.414	Sweep 90		ENSE:INT) Trig: Fre	Z NO: Fast C	2 AC 0000 GH2 P IF	00 kHz Analyzer - Sw RF 50 S 1.000000 Ref 20.00	nt Spectru
Auto Tu Center Fr 6.50000000 G Start Fr 1.00000000 G	Aug 31, 2012 12 3 4 5 6 MWWWWW P NNNNN 6 GHz	0.0 ms (10 01:57:02 AM TRACI TYP DE 1 2.414	Sweep 90		ENSE:INT) Trig: Fre	Z NO: Fast C	2 AC 0000 GH2 P IF	00 kHz Analyzer - Sw RF 50 S 1.000000 Ref 20.00	nt Spectru
Auto Tu Center Fr 6.50000000 G Start Fr 1.00000000 G Stop Fr	4 Aug 31, 2012 1 2 3 4 5 6 M WWWWW 1 6 GHz 1 1 dBm	0.0 ms (10 01:57:02 AM TRACI TYP DE 1 2.414	Sweep 90		ENSE:INT) Trig: Fre	Z NO: Fast C	2 AC 0000 GH2 P IF	00 kHz Analyzer - Sw RF 50 S 1.000000 Ref 20.00	nt Spectru rt Freq
Auto Tu Center Fr 6.50000000 G Start Fr 1.00000000 G	4 Aug 31, 2012 1 2 3 4 5 6 M WWWWW 1 6 GHz 1 1 dBm	0.0 ms (10 01:57:02 AM TRACI TYP DE 1 2.414	Sweep 90		ENSE:INT) Trig: Fre	Z NO: Fast C	2 AC 0000 GH2 P IF	00 kHz Analyzer - Sw RF 50 S 1.000000 Ref 20.00	nt Spectru rt Freq B/div
Auto Tu Center Fn 6.50000000 G Start Fn 1.000000000 G Stop Fn 12.000000000 G	4 Aug 31, 2012 1 2 3 4 5 6 M WWWWW 1 6 GHz 1 1 dBm	0.0 ms (10 01:57:02 AM TRACI TYP DE 1 2.414	Sweep 90		ENSE:INT) Trig: Fre	Z NO: Fast C	2 AC 0000 GH2 P IF	00 kHz Analyzer - Sw RF 50 S 1.000000 Ref 20.00	nt Spectru rt Freq
Auto Tu Center Fr 6.50000000 G Start Fr 1.00000000 G Stop Fr 12.00000000 G	4 Aug 31, 2012 1 2 3 4 5 6 M WWWWW 1 6 GHz 1 1 dBm	0.0 ms (10 01:57:02 AM TRACI TYP DE 1 2.414	Sweep 90		ENSE:INT) Trig: Fre	Z NO: Fast C	2 AC 0000 GH2 P IF	00 kHz Analyzer - Sw RF 50 S 1.000000 Ref 20.00	nt Spectru rt Freq
Auto Tu Center Fr 6.50000000 G Start Fr 1.00000000 G Stop Fr 12.00000000 G	-22.59 dBm	0.0 ms (11	Sweep 90	Avg Type	e Run D dB	Trig:Fre Atten: 30	Z NO: Fast G Gain:Low	2 AC 0000 GH2 P IF	00 kHz Analyzer - Sw RF 50 S 1.000000 Ref 20.00	IB/div
Auto Tu Center Fr 6.50000000 G Start Fr 1.00000000 G Stop Fr 12.00000000 G	-22.59 dBm	0.0 ms (11	Sweep 90	Avg Type	e Run D dB	Trig:Fre Atten: 30	Z NO: Fast G Gain:Low	ac P IF1 dBm	Analyzer - Sw RF 50 G 1.000000	IB/div
Auto Tu Center Fr 6.50000000 G Start Fr 1.00000000 G Stop Fr 12.00000000 G CF Sto 1.10000000 G Auto M	-22.59 dBm	0.0 ms (11	Sweep 90	Avg Type	e Run D dB	Trig:Fre Atten: 30	Z NO: Fast G Gain:Low	ac P IF1 dBm	Analyzer - Sw RF 50 G 1.000000	IB/div
Auto Tu Center Fr 6.50000000 G Start Fr 1.00000000 G Stop Fr 12.00000000 G CF Stu 1.10000000 G Auto M	-22.59 dBm	0.0 ms (11	Sweep 90		e Run D dB	Trig:Fre Atten: 30	Z NO: Fast G Gain:Low	2 AC 0000 GH2 P IF	Analyzer - Sw RF 50 G 1.000000	IB/div
Auto Tu Center Fr 6.50000000 G Start Fr 1.00000000 G Stop Fr 12.00000000 G CF Sto 1.10000000 G Auto M	-22.59 dBm	0.0 ms (11	Sweep 90	Avg Type	e Run D dB	Trig:Fre Atten: 30	Z NO: Fast G Gain:Low	ac P IF1 dBm	Analyzer - Sw RF 50 G 1.000000	IB/div
Auto Tu Center Fr 6.50000000 G Start Fr 1.00000000 G Stop Fr 12.00000000 G CF Stu 1.10000000 G Auto M	-22.59 dBm	0.0 ms (11	Sweep 90	Avg Type	e Run D dB	Trig:Fre Atten: 30	Z NO: Fast G Gain:Low	ac P IF1 dBm	Analyzer - Sw RF 50 G 1.000000	IB/div
Auto Tu Center Fr 6.50000000 G Start Fr 1.00000000 G Stop Fr 12.00000000 G CF Stu 1.10000000 G Auto M	-22.59 dBm	0.0 ms (11	Sweep 90	Avg Type	e Run D dB	Trig:Fre Atten: 30	Z NO: Fast G Gain:Low	ac P IF1 dBm	Analyzer - Sw RF 50 G 1.000000	IN Spectru
Auto Tu Center Fr 6.50000000 G Start Fr 1.00000000 G Stop Fr 12.00000000 G CF Stu 1.10000000 G Auto M	-22.59 dbn	0.0 ms (1)	Sweep 90	Avg Type	e Run D dB	Trig:Fre Atten: 30	Z NO: Fast G Gain:Low	ac P IF1 dBm	00 kHz Analyzer - Sw RF 50 C 1.000000 Ref 20.00 1 1 1 1 1 1 1 1 1 1 1 1 1	IB/div
Auto Tu Center Fr 6.50000000 G Start Fr 1.00000000 G Stop Fr 12.00000000 G CF Stu 1.10000000 G Auto M	-22.59 dBm	0.0 ms (11	Sweep 90	Avg Type	e Run d B	Trig:Fre Atten: 30	Z NO: Fast (Gain:Low	ac P IF1 dBm	00 kHz	IN Spectru

Channel 01 (2412MHz) 30MHz-25GHz-Chain B

Agilent Spectrun	n Analyzer - Swept !								
Start Freq	RF 50 Ω A		SENS		Avg Type:	ALIGN AUTO	TRAC	Aug 31, 2012	Frequency
10 dB/div	Ref 20.00 dBi	PNO: Fast 🌩 IFGain:Low	┘ Trig: Free F Atten: 30 d			Mkr	DE 1 23.681	PNNNNN	Auto Tune
10.0									Center Freq 18.50000000 GHz
0.00									Start Freq 12.000000000 GHz
-20.0								-22.59 dBm	Stop Freq 25.00000000 GHz
-40.0			Lines of the family from the	lantin tin tin tin					CF Step 1.30000000 GHz <u>Auto</u> Man
-60.0		eletrifa parti de contra andre de de de		none to the to a		<u> </u>			Freq Offset 0 Hz
-70.0							Stop 25	000 GHz	
#Res BW 1		#VBW	1.0 MHz			Sweep		000 GHZ 0001 pts)	
MSG									

Agilent Spectrum Anal	yzer - Swept SA					
Start Freq 30.	50 Ω AC .0000000 MHz .PN	0: East		ALIGN AUT Avg Type: Log-Pw	r TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
10 dB/div Ref	ıFG 20.00 dBm	ain:Low Atten:	30 dB	М	tr1 910.954 MHz -54.68 dBm	Auto Tun
10.0						Center Fre 515.000000 M⊢
0.0						Start Fre 30.000000 M⊦
0.0					-19.82 dƏn	Stop Fre 1.000000000 GF
0.0					1	CF Ste 97.000000 Mi <u>Auto</u> Mi
D.O Alter the second second	e lind all the low post of your loop of the pro- try material and a strategic and provide the	an te dan pakadan dan badat dapat sama bi mananan mananan mananan mananan pakamp	teldenostilen tijni artiklen steren tijni	na halada berterenta atasati makina Alamata manakanan		Freq Offs
70.0						
tart 30.0 MHz Res BW 100 k	Hz	#VBW 1.0 MH	z	Sweep	Stop 1.0000 GHz 90.0 ms (10001 pts)	
SG				To STA	rus	

Channel 06 (2437MHz) 30MHz -25GHz-Chain B

a	Analyzer - Swept	AC	SENSE:If	JTI	ALIGN AUTO	02:01:13 AM Aug 31, 2012	
Start Freq	1.0000000	DO GHz PNO: Fast	Trig: Free Rur	Avg Typ	e: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE MWWWWWW DET P N N N N N	Frequency
0 dB/div i	Ref 20.00 dB	IFGain:Low	Atten: 30 dB		Mk	r1 2.438 8 GHz 10.18 dBm	Auto Tune
10.0	● ¹						Center Fre 6.500000000 G⊢
10.0							Start Fre 1.000000000 GF
30.0						-19.82 dBm	Stop Fre 12.000000000 GH
10.0							CF Ste 1.100000000 Gi <u>Auto</u> Mi
60.0					l'in <mark>la parte presidente de la constante de la La constante de la constante de</mark>		Freq Offs
70.0 Start 1.000		500 2003 e-480.				Stop 12.000 GHz	
Res BW 10	00 kHz	#VBI	V 1.0 MHz		Sweep	1.02 s (10001 pts)	

Agilent Spectru	m Analyzer - Swept S					
	RF 50 Ω A0		SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	02:02:10 AM Aug 31, 2012 TRACE 1 2 3 4 5 6	Frequency
Start Freq	12.0000000	DU GHZ PNO: Fast 🖵 IFGain:Low	Trig: Free Run Atten: 30 dB		TYPE MWWWWW DET PNNNNN	Auto Tune
10 dB/div	Ref 20.00 dBn	1		Mkr	1 23.601 2 GHz -41.25 dBm	Auto Tune
						Center Freq
10.0						18.500000000 GHz
0.00						Start Freq
-10.0	_					12.000000000 GHz
-20.0					-19.82 dBm	Stop Fred
-30.0						25.000000000 GHz
-40.0					1	CF Step
-50.0		adata da bara				1.300000000 GHz <u>Auto</u> Mar
-50.0	Property of the second second		and a set of the second se	-face a la de la constitución de la		
-60.0	hand the second s					Freq Offset
-70.0						0 Hz
Start 12.00 #Res BW 1		#VBW	1.0 MHz	Sweep	Stop 25.000 GHz 1.20 s (10001 pts)	
MSG						

	03:45 AM Aug 31, 2012	то	ALIGN AU		ISE:INT	SE			Analyzer - Sw RF 50 Ω	
Frequency	TRACE 1 2 3 4 5 6 TYPE MWWWWWW DET P N N N N N	wr	e: Log-Pi	Avg Ty		Trig: Free Atten: 30	PNO: Fast 😱 Gain:Low		30.0000	t Freq
Auto Tui	18.513 MHz -54.94 dBm	1kr1	N			TREET. OF	Gam.Low		ef 20.00 (3/div F
Center Fre										
515.000000 MI			0							
Start Fro										
30.000000 MI		-	6							
Stop Fr	-24.18 dBm		1							
1.000000000 GI										
CF Ste										
97.000000 MI <u>Auto</u> M										
FreqOffs	na an a	danta		an the starting	Petrolandan	and an in the later	ومعرباته فقار والرقاء والار	LILLER LILLING	فالاف بأسمينان أر	ki ta Jawan Lumi
		North March 199	mendiation	n parten de président	Deni Merijaani Arpa	ny Annaly Mandalay Ba	in a suit suis faire difficie	t al Mira, e Libba	en an an teath an teachan an te	and a particular
	op 1.0000 GHz ns (10001 pts)	90.	Sweep			1.0 MHz	#VBW			t 30.0 M s BW 10
		ATUS	In ST.				10000000000000000000000000000000000000			

Channel 11 (2462MHz) 30MHz -25GHz-Chain B

ilent Spectrum Analyzer - Sw RF 50 G		SENSE:INT	ALIGNAUTO	02:03:17 AM Aug 31, 2012	English
art Freq 1.00000	DOOO GHz PNO: Fast IFGain:Low	Trig: Free Run Atten: 30 dB	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE M WWWWWW DET P N N N N N	Frequency
dB/div Ref 20.00			Mk	r1 2.460 8 GHz 5.82 dBm	Auto Tun
					Center Fre 6.500000000 GH
.00					Start Fre 1.000000000 GF
0.0				-24.18 dBm	Stop Fre 12.000000000 GR
0.0					CF Ste 1.10000000 GI
	Hilling J		a an da an airte a tha an airte a tha an airte a tha tha tha tha	tere states titles, he calification of states	<u>Auto</u> Ma
		and the second sec		a na ana ana ana ana ana ana ana ana an	Freq Offs 01
0.0					
tart 1.000 GHz Res BW 100 kHz	#VBW	1.0 MHz	Sweep	Stop 12.000 GHz 1.02 s (10001 pts)	

Agilent Spectrur	n Analyzer - Swept SA		0.2						
LXI	RF 50 Ω AC		SENSE	INT		ALIGNAUTO	02:04:06 AM /		Frequency
Start Freq	12.00000000	PNO: Fast 😱	Trig: Free R		Avg Type	Log-Pwr	TYPE	123456 MWW/WWW	requercy
	Ref 20.00 dBm	IFGain:Low	Atten: 30 dE			Mkr	1 23.722	^{P NNNNN} 1 GHz 3 dBm	Auto Tune
10.0									Center Freq
									18.500000000 GHz
0.00									Start Freq
-10.0									12.000000000 GHz
-20.0						;		-24.18 dBm	Stop Freq
-30.0									25.000000000 GHz
-40.0								1	CF Step
		hall plan and speed on the filler of a	a na thiadach		and coloradoport	de la ^{sul l} a special y			1.300000000 GHz Auto Man
-50.0			The provide states and a second	elende phille an air	a hay tradition in the	ayaa di kala paysa			
-60.0	a ja das								Freq Offset
-70.0									0 Hz
Start 12.00 #Res BW 1		#VBW	1.0 MHz			Sweep	Stop 25.0 1.20 s (10		
MSG		~				STATUS	and a function of the second		

Product	:	Router
Test Item	:	RF Antenna Conducted Spurious
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

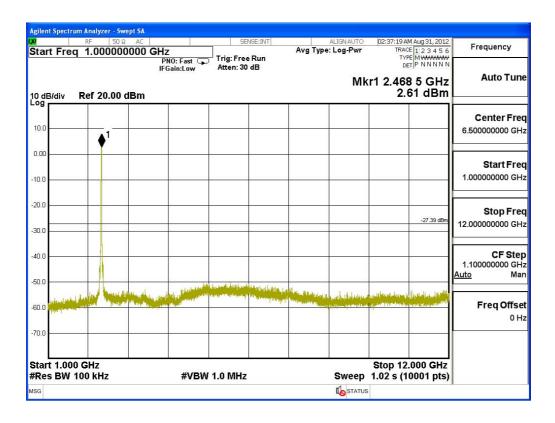
Channel 01 (2412MHz) 30MHz -25GHz-Chain A

Agilent Spectrum An						
Start Freq 30	0.000000 MHz	NO: Fast C Trig: Fre		e: Log-Pwr	02:40:10 AM Aug 31, 2012 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
10 dB/div Ref		Sain:Low Atten: 30		Mkr1	^{DET} PNNNNN 387.445 MHz -54.62 dBm	Auto Tune
10.0						Center Freq 515.000000 MHz
-10.0						Start Freq 30.000000 MHz
-20.0					-26.45 dBm	Stop Fred 1.000000000 GH2
-40.0		1				CF Step 97.000000 MHz <u>Auto</u> Mar
-60.0	ing the production of the second s		in a second s		oken whighted by please to be	Freq Offset 0 Hz
-70.0						
Start 30.0 MHz #Res BW 100	allerana.	#VBW 1.0 MHz	!		Stop 1.0000 GHz .0 ms (10001 pts)	
MSG				K STATUS		

Agilen	t Spectrun	n Analyzer - S	iwept SA			1.0					
LXI		RF 50			SEN	ISE:INT		ALIGN AUTO		M Aug 31, 2012	Frequency
Star	t Freq	1.00000	00000 GH		Trig: Free	Dun	Avg Type	: Log-Pwr		E123456 EM WWWW	Trequency
			LE LE	NO: Fast 😱 Gain:Low	Atten: 30				DI	PNNNN	
			See.	ounicon				ML	-1 0 44	9 0 GHz	Auto Tune
	6054X 8							IVIN		55 dBm	
10 dE Log	3/div	Ref 20.00	dBm						э.	JU UBIII	
Log											
10.0											Center Freq
10.0		▲ 1									6.50000000 GHz
		The second se									
0.00											
											Start Freq
-10.0			-								1.00000000 GHz
-20.0											
-20.0											Stop Freq
										-26.45 dBm	12.000000000 GHz
-30.0							60				
-40.0							-				CF Step
											1.100000000 GHz
-50.0											<u>Auto</u> Man
		L. A. Mathe	all designed and the start of	a la phippine "	and the function of the state	Million Bailter La La	Alalk Huker at 1911	Contractory of	hour all and de floot	and the second	
-60.0	- Landinger Al	and and a strength	and the second second second	and a second second second	and the second	A. Martin State		an Prins prins and the second s	Las Paras Astrone	market and the state	Freq Offset
-60.0	A show a ship to a		792.	1.00							0 Hz
											0 112
-70.0						2					
04.0	t 1.000	011-							Oton 10		
	s BW 1			#\/R\M	1.0 MHz			Swoon		.000 GHz 0001 pts)	
				#VDVV	1.0 10112					0001 pts)	
MSG								I STATUS			

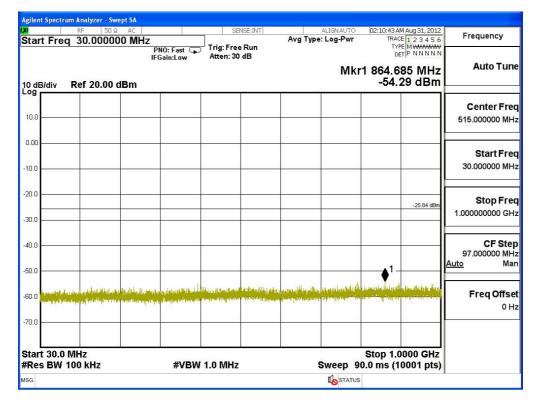
								um Analyzer - S	
Frequency	02:40:30 AM Aug 31, 2012 TRACE 1 2 3 4 5 6 TYPE MWWWWW	LIGNAUTO	Avg Typ	NSE:INT]	Hz PNO: Fast 🔾	Ω AC 100000 G	RF 50	x Start Fre
Auto Tune	DET P NNNNN 1 23.603 8 GHz -40.70 dBm	Mkr			Atten: 30	Gain:Low	JE	Ref 20.00	10 dB/div
Center Freq 18.500000000 GHz							8		10.0
Start Freq 12.000000000 GHz									-10.0
Stop Freq 25.00000000 GHz	-26.45 dBm								-20.0
CF Step 1.300000000 GH Auto Mar			l a contratt state	Terrene kara					-40.0
Freq Offse 0 Ha				ine al Maline pa	and and a second se				-60.0 4 10 10 10 10 10 10 10 10 10 10 10 10 10
	Stop 25.000 GHz 1.20 s (10001 pts)	Sweep			1.0 MHz	#VBW			-70.0 Start 12.0 #Res BW
									MSG

	55 AM Aug 31, 2012	io 102	ALIGN AUT		ISE:INT	SE	-		RF 50	ione official i
Frequency	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N		: Log-Pw	Avg Typ	Run	Trig: Free Atten: 30	NO: Fast 😱 Gain:Low	00 MHz P	30.0000	art Freq
Auto Tu	0.214 MHz 54.38 dBm	kr1 8	Μ			Atten oo	Gain:Luw		Ref 20.00	dB/div
Center Fr										g
515.000000 M).0
Start Fr										00
30.000000 M								-		0.0
Stop Fr	-22.38 dBm	_							_	i.o
1.000000000 G										1.0
CF Ste		_						_	_	1.0
97.000000 M Auto M										0.0
Ere # Offe	the manufation	ատերո	in a state of the	Luite a dispute	halo had and a	an la hadaan ku	la sul parte hitta tata ta	الاعدادية المانية	e and sold to detailed a state	م الم ومرود الم
Freq Offs 0	en en de la constante de la co	- the second second	Ale the state of the	factorial terms from	han har the parameters of the second	ala di dista je di ka	a sandi ya bahan dalah da pida a	de des setelles , lebles (b.)	nsi di banatak idan dika	
).0
	1.0000 GHz s (10001 pts)	St 90.0	Sweep			1.0 MHz	#VBW			art 30.0 I tes BW 1
		and the second	STAT							3


Channel 06 (2437MHz) 30MHz -25GHz-Chain A

G							I STATUS		
	000 GHz W 100 kHz		#VBW	/ 1.0 MHz			Sweep	Stop 12.000 G 1.02 s (10001 p	
70.0									
SU.U <mark>paparan</mark>		ing the lot of the part of the second			1997 B	intelle dise int _{e alex} .	WIL UNITED IN CONTRACTOR	dan san da kasara da Kasara da kasara da k	Freq Offs
6.0			M Days Long and the second	National Contraction		Mall (Independent	المرافلين المرادر		
									1.100000000 GI Auto Mi
0.0									CF Ste
0.0									12.000000000 G
0.0								-22.38	Stop Fr
0.0									1.000000000 G
).00									Start Fr
10.0	∮ 1								6,50000000 G
odB/div	Ref 20.	00 dBm						7.62 dB	
		95	roain:Low	Atten. 30	MD (Mk	r1 2.441 0 GI	Hz Auto Tu
tart Fi	req 1.000		IZ PNO: Fast 🕞 FGain:Low	Trig: Free Atten: 30		Avg Type:	Log-Pwr	TRACE 1234 TYPE MWWW DET PININ	
2		50Ω AC		SEN	ISE:INT		ALIGNAUTO	02:38:38 AM Aug 31, 2	

Agilent Spectrum	1 Analyzer - Swept SA							
LXI	RF 50 Ω AC		SENS	BE:INT		ALIGN AUTO	02:39:16 AM Aug 31, 2012	
Start Freq	12.000000000	PNO: Fast 😱	Trig: Free I		Avg Type	: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	
	Ref 20.00 dBm	IFGain:Low	Atten: 30 c	IB		Mkr	1 23.642 8 GHz -41.45 dBm	Auto Tune
10.0								Center Freq 18.500000000 GHz
-10.0								Start Fred 12.000000000 GHz
-20.0							-22.38 dBm	Stop Fred 25.00000000 GHz
-40.0			J. J. March 1	lata Manata	allel su sul legitere	a futur a second de la compañía de l		CF Step 1.300000000 GH <u>Auto</u> Mar
-60.0	HL FILL			a per Mang and And				Freq Offse
-70.0								
Start 12.000 #Res BW 10		#VBW	1.0 MHz			Sweep	Stop 25.000 GHz 1.20 s (10001 pts)	(
MSG						K STATUS	6	

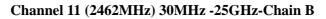

	OΩ AC	SE	INSE:INT		.IGN AUTO	02:37:37 AM Aug 31, 2012	Frequency
tart Freq 30.000	000 MHz PNO: Fast IFGain:Low			Avg Type: I	_og-Pwr	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	
dB/div Ref 20.0					Mkr	1 896.598 MHz -53.86 dBm	Auto Tur
							Center Fre 515.000000 Mi
.00							Start Fr 30.000000 M
0.0						-27.39 dBm	Stop Fr 1.000000000 G
0.0						1	CF Ste 97.000000 M <u>Auto</u> M
and the particular in the standard free	n filmshashasha an asala ka kasha biliyo Arrista na ay masanan yaya na ay shasarili na	er bester bei den der Bereichter bester bei der Bereichter bei der Bereichter bei der Bereichter bei der Bereich	literi (ni konstantoni) Sportstani ingenerajni	ana (Ala) ang			Freq Offs 0
tart 30.0 MHz Res BW 100 kHz	#\/[3W 1.0 MHz		81	ween Of	Stop 1.0000 GHz).0 ms (10001 pts)	
G G	# V I				STATUS		

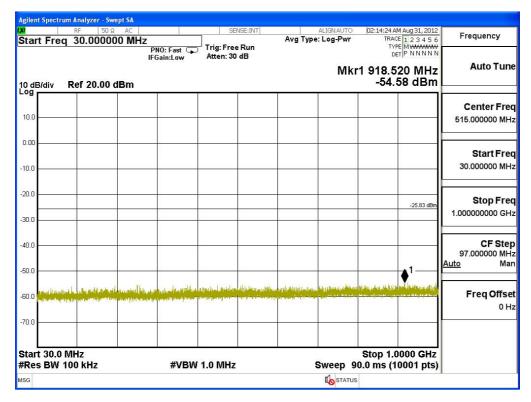
Channel 11 (2462MHz) 30MHz -25GHz-Chain A

Agilent Spectrum Analyzer - Swept SA					
KF 50 Ω AC Start Freg 12.00000000	0 GHz	Avg Type	ALIGNAUTO Log-Pwr	02:37:55 AM Aug 31, 2012 TRACE 1 2 3 4 5 6	Frequency
10 dB/div Ref 20.00 dBm	PNO: Fast Trig: Free IFGain:Low Atten: 30		Mkr	TYPE MWWWWW DET P NNNNN 1 23.651 9 GHz -40.64 dBm	Auto Tune
10.0					Center Freq 18.500000000 GHz
-10.0					Start Fred 12.000000000 GHz
-20.0				-27.39 dBm	Stop Fred 25.000000000 GHz
-40.0			Har strik for a strike strategy		CF St ep 1.300000000 GHz <u>Auto</u> Mar
-60.0					Freq Offse 0 Ha
-70.0 Start 12.000 GHz #Res BW 100 kHz	#VBW 1.0 MHz		Sweep	Stop 25.000 GHz 1.20 s (10001 pts)	
MSG					

Channel 01 (2412MHz) 30MHz -25GHz-Chain B

Agilent Spectrum Analyzer - Swept SA				
<mark>0%</mark> RF 50 Ω AC	SENSE:INT	ALIGN AUTO	02:10:17 AM Aug 31, 2012	Frequency
Start Freq 1.000000000 GHz	Trig: Free Run	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE MWWWWW	Trequency
PNO: Fast IFGain:Low	Atten: 30 dB		DET P N N N N N	
in Guine Gw		MIZ	-1 0 440 0 CU-	Auto Tune
		IVIK	r1 2.419 0 GHz	
10 dB/div Ref 20.00 dBm			4.16 dBm	
Log				
				Center Freq
10.0				6.50000000 GHz
0.00				
				Start Freq
-10.0				1.000000000 GHz
10.0				
-20.0				Stop Freq
			-25.84 dBm	12.000000000 GHz
-30.0				12.00000000 GH2
-40.0				CF Step
40.0				1.10000000 GHz
				<u>Auto</u> Man
-50.0	and the second stands of the second s	ALCENT 1	i.	
and a statistic by West and a statistic and but the state of the state	and been and being being a special	a shi kali ni shi ka sa ka shi shi a ga a ka sa shi s	apostal alternative and a state of the	
-60.0	7500	And the second s	A CONTRACTOR OF	Freq Offset
				0 Hz
-70.0				
1000				
Start 1.000 GHz			Stop 12.000 GHz	
	1.0 MHz	Sweep	1.02 s (10001 pts)	
MSG		STATUS		


Agilent Spectrum Analy							
Start Freq 12.	50 Ω AC 0000000000 GH			Avg Type	ALIGNAUTO Log-Pwr	02:11:16 AM Aug 31, 2012 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
10 dB/div Ref 2		ain:Low Atten: 3			Mkr	DET ^P NNNNN 1 23.696 1 GHz -40.66 dBm	Auto Tune
10.0							Center Freq 18.500000000 GHz
-10.0							Start Fred 12.000000000 GHz
-20.0						-25.84 dBm	Stop Fred 25.000000000 GH2
-40.0		and a second	end of the late	(1) bit as short as parts	up district in a basis		CF Step 1.300000000 GH: <u>Auto</u> Mar
-50.0 -60.0				ad A de la contra d			Freq Offse
-70.0							
Start 12.000 GH #Res BW 100 kl		#VBW 1.0 MH	z		and the second s	Stop 25.000 GHz 1.20 s (10001 pts)	
MSG					K STATUS		


	02:12:48 AM Aug 31, 2012	ALIGN AUTO		ISE:INT	SEI			Analyzer - Sw RF 50 Ω	
Frequency	TRACE 1 2 3 4 5 6 TYPE MWWWWWW DET P N N N N N		Avg Type	Run	Trig: Free Atten: 30	NO: Fast 😱 Gain:Low	0 MHz PM	30.00000	art Freq
Auto Tur	1 959.745 MHz -54.59 dBm	Mkr				Jam.Low		Ref 20.00 (dB/div
Center Fre									^e
515.000000 MH									
Start Fre									.00
30.000000 MH									0.0
Stop Fre	-24.41 dBm								0.0
1.000000000 Gł			6						0.0
CF Ste 97.000000 MI								-	0.0
<u>Auto</u> Ma	1-								0.0
Freq Offs	rinni landapar en dispensi i de se des 1999 - parte de la companya de la co		and her splay the			le o da la contra fila para españa de contra fila	a ^{nt} etylennyjpan ^{it} tyl Annanskahatanikan		
									0.0
	Stop 1.0000 GHz 0.0 ms (10001 pts)	weep 90			1.0 MHz	#VBW			art 30.0 M Res BW 1
						10000000000000000000000000000000000000			3

Channel 06 (2437MHz) 30MHz -25GHz-Chain B

	I <mark>m Analyzer - Swept S/</mark> RF 50 Ω AC		SENSE:INT	ALIGNAUTO	02:12:28 AM Aug 31, 2012	
tart Fred) GHz PNO: Fast 😱	Trig: Free Run Atten: 30 dB	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency
0 dB/div	Ref 20.00 dBm	IFGain:Low	Atten: 30 dB	Mk	r1 2.434 4 GHz 5.587 dBm	Auto Tun
og 10.0	•1					Center Fre 6.500000000 G⊦
0.00						Start Fre 1.000000000 G⊦
30.0					-24.41 dBm	Stop Fre 12.000000000 GF
10.0						CF Ste 1.100000000 GH
50.0	where we have been and				al and and an an and a start of the	<u>Auto</u> Ma
0.0 <mark>yr yn ddad</mark>					and the latter of the south of the	Freq Offs 0 I
70.0						
tart 1.000 Res BW		#VBW	1.0 MHz	Sweep	Stop 12.000 GHz 1.02 s (10001 pts)	
G				I STATUS		

Agilent Spectrum Analyzer - Swept					
Σtart Freq 12.000000	000 GHz	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	02:13:09 AM Aug 31, 2012 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
10 dB/div Ref 20.00 dE	IFGain:Low	Atten: 30 dB	Mkr	DET P NNNNN 1 23.475 1 GHz -41.71 dBm	Auto Tune
10.0					Center Freq 18.50000000 GHz
-10.0					Start Freq 12.000000000 GHz
-20.0				-24.41 dBm	Stop Freq 25.00000000 GHz
-40.0		Lable and the state of the second	and the state of the state of the state of the		CF Step 1.300000000 GHz <u>Auto</u> Man
-60.0	dag beerkening bliker process eiter stel benatter sonder	ye Abby sold is best to the sold arguments of p			Freq Offsel 0 Hz
-70.0 Start 12.000 GHz #Res BW 100 kHz	#VBW 1	.0 MHz	Sweep	Stop 25.000 GHz 1.20 s (10001 pts)	
MSG					

Agilent Spect	rum Analyzer - Swept S					
Start Fre	RF 50 Ω A0		SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	02:13:58 AM Aug 31, 2012 TRACE 1 2 3 4 5 6	Frequency
10 dB/div	Ref 20.00 dBn	PNO: Fast 😱 IFGain:Low	Trig: Free Run Atten: 30 dB	Mł	type Mutuut Det P NNNNN ar1 2.455 3 GHz 4.17 dBm	Auto Tune
10.0						Center Freq 6.50000000 GHz
-10.0						Start Freq 1.000000000 GHz
-20.0					-25.83 dBm	Stop Freq 12.000000000 GHz
-40.0			Andres			CF Step 1.100000000 GHz <u>Auto</u> Man
-60.0	well here here					Freq Offset 0 Hz
-70.0 Start 1.00 #Res BW		#VBW	1.0 MHz	Sween	Stop 12.000 GHz 1.02 s (10001 pts)	
MSG						

SG					STATUS		
tart 12.00 Res BW 1		#VBW	1.0 MHz		Sweep	Stop 25.000 GHz 1.20 s (10001 pts)	
70.0							
50.0 Haldedo	in the phildel						Freq Offs 0 H
50.0 مريسة اللي م	In the second second						Auto Ma
10.0				Made		and the second	CF Ste 1.30000000 GI
80.0						•1	25.00000000 Gł
20.0						-25.83 dBm	Stop Fre
10.0							12.000000000 G
0.00							Start Fre
10.0							18.500000000 GH
odB/div	Ref 20.00 dBr	n				-40.85 dBm	Center Fre
		IFGain:Low	Atten: 30 dB		Mkr	1 23.616 8 GHz	Auto Tur
tart Freq		00 GHz PNO: Fast 😱	Trig: Free Run		: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency
1	RF 50 Ω A		SENSE:INT		ALIGN AUTO	02:14:47 AM Aug 31, 2012	-