

Report No. : FZ230306-01

DFS TEST REPORT

FCC ID	:	UDX-600155010
Equipment	:	Catalyst Wireless 9162I Series Wi-Fi 6E Access Point
Brand Name	:	CISCO
Model Name	:	CW9162I-B, CW9162I-MR
Applicant	:	Cisco Systems, Inc. 170 West Tasman Drive, San Jose, CA 95134 USA
Manufacturer	:	Cisco Systems, Inc. 170 West Tasman Drive, San Jose, CA 95134 USA
Standard	:	47 CFR FCC Part 15.407

The product was received on Mar. 03, 2022, and testing was started from Jun. 18, 2022 and completed on Jul. 06, 2022. We, Sporton International Inc. Hsinchu Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. Hsinchu Laboratory, the test report shall not be reproduced except in full.

Approved by: Sam Chen

Sporton International Inc. Hsinchu Laboratory No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.)

Table of Contents

Histo	ory of this test report	3
Sum	mary of Test Result	4
1	General Description	5
1.1	Information	5
1.2	Accessories	10
1.3	Support Equipment	10
1.4	Applicable Standards	10
1.5	Testing Location Information	11
2	Test Configuration of EUT	12
2.1	Test Channel Frequencies Configuration	12
2.2	The Worst Case Measurement Configuration	12
3	Dynamic Frequency Selection (DFS) Test Result	13
3.1	General DFS Information	13
3.2	Radar Test Waveform Calibration	18
3.3	UNII Detection Bandwidth	40
3.4	Channel Availability Check (CAC)	
3.5	In-service Monitoring	60
3.6	Statistical Performance Check	73
4	Test Equipment and Calibration Data	
5	Measurement Uncertainty	
Арре	endix A. Test Photos	

Photographs of EUT v01

History of this test report

Report No.	Version	Description	Issued Date
FZ230306-01	01	Initial issue of report	Sep. 13, 2022

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.3	FCC KDB 905462 7.8.1	DFS: UNII Detection Bandwidth Measurement	PASS	-
3.4	FCC KDB 905462 7.8.2.1	DFS: Initial Channel Availability Check Time	PASS	-
3.4	FCC KDB 905462 7.8.2.2	DFS: Radar Burst at the Beginning of the Channel Availability Check Time	PASS	-
3.4	FCC KDB 905462 7.8.2.3	DFS: Radar Burst at the End of the Channel Availability Check Time	PASS	-
3.5	FCC KDB 905462 7.8.3	DFS: In-Service Monitoring for Channel Move Time (CMT)	PASS	-
3.5	FCC KDB 905462 7.8.3	DFS: In-Service Monitoring for Channel Closing Transmission Time (CCTT)	PASS	-
3.5	FCC KDB 905462 7.8.3	DFS: In-Service Monitoring for Non-Occupancy Period (NOP)	PASS	-
3.6	FCC KDB 905462 7.8.4	DFS: Statistical Performance Check	PASS	-
3.1.4	FCC KDB 905462 8.1	User Access Restrictions	N/A	Manufacturer attestation NOT accessible to user
Note: Refe	erence to Sporton Project N	o.: 230306-02		

Declaration of Conformity:

- The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers. It's means measurement values may risk exceeding the limit of regulation standards, if measurement uncertainty is include in test results.
- 2. The measurement uncertainty please refer to report "Measurement Uncertainty".

Comments and Explanations:

- 1. The test configuration, test mode and test software were written in this test report are declared by the manufacturer.
- 2. The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Sam Chen

Report Producer: Vicky Huang

1 General Description

1.1 Information

1.1.1 **RF General Information**

Specification Items	Descript	ion							
Frequency Range	5250 MHz – 5350 MHz								
	5470 MHz – 5725 MHz								
Power Type	From Power Adapter or PoE								
Channel Bandwidth	20/40/80 MHz operating channel band	width							
	🖂 Master								
Operating Mode	Client with radar detection								
	Client without radar detection								
Communication Mode	IP Based (Load Based)	Frame Based							
TPC Function	With TPC	Without TPC							
Weather Band (5600~5650MHz)	⊠ With 5600~5650MHz	Without 5600~5650MHz							
	For Mode 1: Band 2: 80MHz: Requires 122.029 seconds to complete its power-on cycle. Band 3: 80MHz: Requires 121.594 seconds to complete its power-on cycle. For Mode 2: 80MHz: Requires 197.971 seconds to complete its power-on cycle.								
Firmware Number	For Cisco FW: lot_Bld] Software, (ap1g6b), [build-Inx-026:/san2/BUILD/workspace/CM66_MFG_PrePi Technical Support: http://www.cisco.com/techsupport Copyright (c) 1986-2022 by Cisco Systems, Inc. Compiled Mon May 2 17:25:45 PDT 2022 ROM: Bootstrap program is U-Boot boot loader BOOTLDR: U-Boot boot loader Version 2022042019 AP Running Image: 8.8.1.10 For Meraki FW: 29-202204211648-G8e22b695-L71158f39-jenkins-ihyoon-bestseller								
 VHT20, VHT40, VHT80 use modulation. HEW20, HEW40, HEW80 us 1024QAM modulation. 	mbination of OFDM-BPSK, QPSK, 16Q/ a combination of OFDM-BPSK, QP e a combination of OFDMA-BPSK, QF m and TPC have the capability to opera	AM, 64QAM modulation. SK, 16QAM, 64QAM, 256QAM PSK, 16QAM, 64QAM, 256QAM,							

 EUT employ a TPC mechanism and TPC have the capability to operate at least 6 dB below highest RF output power.

Note: The above information was declared by manufacturer.

Report No. : FZ230306-01

TPC Power Result For Radio 1

4 7 1/			
1 I X			
117			

Mode	Min Power	Max Power	Min EIRP	Max EIRP
	(dBm)	(dBm)	(dBm)	(dBm)
802.11a_Nss1,(6Mbps)_1TX	-	-	-	-
5.25-5.35GHz	17.16	23.16	18.83	24.83
5.47-5.725GHz	17.36	23.36	19.16	25.16
802.11ax HEW20_Nss1,(MCS0)_1TX	-	-	-	-
5.25-5.35GHz	17.53	23.53	19.20	25.20
5.47-5.725GHz	17.40	23.40	19.20	25.20
802.11ax HEW40_Nss1,(MCS0)_1TX	-	-	-	-
5.25-5.35GHz	17.60	23.60	19.27	25.27
5.47-5.725GHz	16.84	22.84	18.64	24.64
802.11ax HEW80_Nss1,(MCS0)_1TX	-	-	-	-
5.25-5.35GHz	15.77	21.77	17.44	23.44
5.47-5.725GHz	17.66	23.66	19.46	25.46

2TX

Mode	Min Power	Max Power	Min EIRP	Max EIRP
	(dBm)	(dBm)	(dBm)	(dBm)
802.11a_Nss1,(6Mbps)_2TX	-	-	-	-
5.25-5.35GHz	16.77	22.77	19.14	25.14
5.47-5.725GHz	16.80	22.80	18.62	24.62
802.11ax HEW20_Nss1,(MCS0)_2TX	-	-	-	-
5.25-5.35GHz	17.41	23.41	19.78	25.78
5.47-5.725GHz	17.69	23.69	19.51	25.51
802.11ax HEW40_Nss1,(MCS0)_2TX	-	-	-	-
5.25-5.35GHz	17.65	23.65	20.02	26.02
5.47-5.725GHz	17.57	23.57	19.39	25.39
802.11ax HEW80_Nss1,(MCS0)_2TX	-	-	-	-
5.25-5.35GHz	16.30	22.30	18.67	24.67
5.47-5.725GHz	17.68	23.68	19.50	25.50
802.11ax HEW20-BF_Nss1,(MCS0)_2TX	-	-	-	-
5.25-5.35GHz	17.41	23.41	21.48	27.48
5.47-5.725GHz	17.69	23.69	22.10	28.10
802.11ax HEW40-BF_Nss1,(MCS0)_2TX	-	-	-	-
5.25-5.35GHz	17.65	23.65	21.72	27.72
5.47-5.725GHz	17.57	23.57	21.98	27.98
802.11ax HEW80-BF_Nss1,(MCS0)_2TX	-	-	-	-
5.25-5.35GHz	16.30	22.30	20.37	26.37
5.47-5.725GHz	17.68	23.68	22.09	28.09

For Scanning Radio 3

Mode	Min Power	Max Power	Min EIRP	Max EIRP
	(dBm)	(dBm)	(dBm)	(dBm)
802.11a_Nss1,(6Mbps)_1TX	-	-	-	-
5.25-5.35GHz	15.55	21.55	21.09	27.09
5.47-5.725GHz	15.20	21.20	20.74	26.74
802.11ax HEW20_Nss1,(MCS0)_1TX	-	-	-	-
5.25-5.35GHz	15.08	21.08	20.62	26.62
5.47-5.725GHz	15.11	21.11	20.65	26.65

Note: The manufacturer declared that TPC is applied to this equipment. The test result of TPC is equal to RF output power minus 6dBm which is recorded as a reference for the manufacturer.

TEL : 886-3-656-9065 FAX : 886-3-656-9085 Report Template No.: CB-A12_3 Ver1.1 Page Number: 6 of 309Issued Date: Sep. 13, 2022Report Version: 01

1.1.2 Antenna Information

					Po	ort																	
Ant.	WLAN (Rad	2.4GHz io 1)	WLAN 5GHz (Radio 1)										(Radio 1)		WLA (Rad		WLAN 2.4GHz / WLAN 5GHz / WLAN 6GHz	BT (Radio 4)	Brand Name	Model Name	Antenna Type	Connector	Gain (dBi)
	1TX	2TX	1TX	2TX	1TX	2TX	(Scanning Radio 3)	(112010 4)															
1	1	2	1	2	-	-	-	-	WNC	95XEAJ15.G19	PIFA	I-PEX											
2	-	1	-	1	-	-	-	-	WNC	95XEAJ15.G20	PIFA	I-PEX											
3	-		-		1	2	-	-	WNC	95XEAJ15.G21	Dipole	I-PEX	Note 1										
4	-		-		-	1	-	-	WNC	95XEAJ15.G22	Dipole	I-PEX	NOLE 1										
5	-		-		-		-	1	WNC	95XEAJ15.G23	PIFA	I-PEX											
6	-		-		-		1	-	WNC	95XEAJ15.G24	PIFA	I-PEX											

Note 1:

	Antenna Gain (dBi)																
Ant. WLAN 2.4GHz (Radio 1)	2.4GHz		WLAN	5GHz (R	adio 1)		WLAN 6GHz (Radio 2)				WLAN 2.4GHz (Scanning (Scanning Radio 3)		WLAN 6GHz (Scanning Radio 3)				BT (Radio 4)
	(,	UNII 1	UNII 2A	UNII 2C	UNII 3	UNII 4	UNII 5	UNII 6	UNII 7	UNII 8	Radio 3)	UNII 1~UNII 3	UNII 5	UNII 6	UNII 7	UNII 8	
1	2.74	1.75	1.67	1.80	1.64	1.45	-	-	-	-	-	-	-	-	-	-	-
2	2.51	2.13	2.37	1.82	1.50	2.06	-	-	-	-	-	-	-	-	-	-	-
3	-	-	-	-	-	-	4.38	3.62	3.78	4.08	-	-	-	-	-	-	-
4	-	-	-	-	-	-	4.33	3.72	3.95	4.11	-	-	-	-	-	-	-
5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3.85
6	-	-	-	-	-	-	-	-	-	-	3.80	5.54	5.43	5.23	5.50	5.40	-

	Directional Gain (dBi)												
Ant				WLAN 5GHz (Radio 1)									
A III.	WLAN 2.4G	Hz (Radio 1)	UN	UNII 1		UNII 2A		UNII 2C		II 3	UNII 4		
	2T1S	2T2S	2T1S	2T2S	2T1S	2T2S	2T1S	2T2S	2T1S	2T2S	2T1S	2T2S	
1	5.40	0.74	4.40	0.40	4.07	0.07	4.44	4 00	4.00	1.04	0.00	0.00	
2	5.12	2.74	4.19	2.13	4.07	2.37	4.41	1.82	4.08	1.64	3.96	2.06	

Note 2: The EUT has six antennas.

Note 3: The above information (excepting antenna gain of Radio 1 2.4GHz, 5GHz UNII 1~UNII 4) was declared by manufacturer.

Note 4: Radio 1 2.4GHz, 5GHz UNII 1~UNII 4: Maximum Directional Gain following KDB662911 D03.

For Radio 1 For 2.4GHz: For IEEE 802.11b/g/n/VHT/ax mode (1TX/2RX): Only Port 1 can be use as transmitting antenna. Port 1, Port 2 can be used as receiving antennas. Port 1, Port 2 could receive simultaneously. For IEEE 802.11b/g/n/VHT/ax mode (2TX/2RX): Port 1, Port 2 can be use as transmitting antenna. Port 1, Port 2 could transmitting simultaneously. Port 1, Port 2 can be used as receiving antennas. Port 1, Port 2 could receive simultaneously. For 5GHz UNII 1~UNII 4: For IEEE 802.11a/n/ac/ax mode (1TX/2RX): Only Port 1 can be use as transmitting antenna. Port 1, Port 2 can be used as receiving antennas. Port 1, Port 2 could receive simultaneously. For IEEE 802.11a/n/ac/ax mode (2TX/2RX): Port 1, Port 2 can be use as transmitting antenna. Port 1, Port 2 could transmitting simultaneously. Port 1, Port 2 can be used as receiving antennas. Port 1, Port 2 could receive simultaneously. For Radio 2 For 6GHz UNII 5~UNII 8: For IEEE 802.11ax mode (1TX/2RX): Only Port 1 can be use as transmitting antenna. Port 1, Port 2 can be used as receiving antennas. Port 1, Port 2 could receive simultaneously. For IEEE 802.11ax mode (2TX/2RX): Port 1, Port 2 can be use as transmitting antenna. Port 1, Port 2 could transmitting simultaneously. Port 1, Port 2 can be used as receiving antennas. Port 1, Port 2 could receive simultaneously. For Radio 4 Bluetooth (1TX/1RX): Only Port 1 can be used as transmitting/receiving antenna. For Scanning Radio 3 For 2.4GHz: For IEEE 802.11b/g/n/VHT/ax mode (1TX/1RX): Only Port 1 can be used as transmitting/receiving antenna. For 5GHz UNII 1~UNII 4: For IEEE 802.11a/n/ac/ax mode (1TX/1RX): Only Port 1 can be used as transmitting/receiving antenna. For 6GHz UNII 5~UNII 8: For IEEE 802.11ax mode (1TX/1RX): Only Port 1 can be used as transmitting/receiving antenna.

TEL : 886-3-656-9065 FAX : 886-3-656-9085 Report Template No.: CB-A12_3 Ver1.1 Page Number: 8 of 309Issued Date: Sep. 13, 2022Report Version: 01

1.1.3 DFS Band Carrier Frequencies

There are three bandwidth systems.

For 20MHz bandwidth systems, use Channel 52, 56, 60, 64, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144.

For 40MHz bandwidth systems, use Channel 54, 62, 102, 110, 118, 126, 134, 142. For 80MHz bandwidth systems, use Channel 58, 106, 122, 138.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	52	5260 MHz	60	5300 MHz
5250~5350 MHz	54	5270 MHz	62	5310 MHz
Band 2	56	5280 MHz	64	5320 MHz
	58	5290 MHz	-	-
	100	5500 MHz	124	5620 MHz
	102	5510 MHz	126	5630 MHz
	104	5520 MHz	128	5640 MHz
	106	5530 MHz	132	5660 MHz
_ /	108	5540 MHz	134	5670 MHz
5470~5725 MHz	110	5550 MHz	136	5680 MHz
Band 3	112	5560 MHz	138	5690 MHz
	116	5580 MHz	140	5700 MHz
	118	5590 MHz	142	5710 MHz
	120	5600 MHz	144	5720 MHz
	122	5610 MHz	-	-

1.1.4 Table for Multiple Listing

Model Name	EUT No.	SW
CW9162I-B	1	Cisco
CW9162I-MR	2	Meraki

Note: The above information was declared by manufacturer.

1.1.5 Table for Radio function

Radio (R)	WLAN 2.4GHz	5GHz UNII 1~4	6GHz UNII 5~8	Bluetooth
R1	V	V	-	-
R2	-	-	V	-
R3 (Scanning radio)	V	V	V	-
R4	-	-	-	V

Note: The above information was declared by manufacturer.

TEL : 886-3-656-9065 FAX : 886-3-656-9085

Report Template No.: CB-A12_3 Ver1.1

1.2 **Accessories**

Accessories

Bracket*1

1.3 **Support Equipment**

For Mode 1:

	Support Equipment			
No.	Equipment	Brand Name	Model Name	FCC ID
А	Notebook	Lenovo	L440	N/A
В	Notebook	Lenovo	L490	N/A
С	WLAN module	Intel	AX210NGW	PD9AX210NG
D	Adapter	CISCO	MA-PWR-30W-US (MA-PWR-30W)	N/A

For Mode 2:

	Support Equipment			
No.	Equipment	Brand Name	Model Name	FCC ID
А	Notebook	Lenovo	L440	N/A
В	Notebook	Lenovo	L490	N/A
С	WLAN module	Intel	AX210NGW	PD9AX210NG
D	WLAN AP	BUFFALO	WZR-HP-G300NH2	FDI-09101896-0
Е	Adapter	CISCO	MA-PWR-30W-US (MA-PWR-30W)	N/A

1.4 **Applicable Standards**

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15.407 ٠
- FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02 ٠

1.5 Testing Location Information

Testing Location Information			
Test Lab. : Sporton International Inc. Hsinchu Laboratory			
Hsinchu	ADD: No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.)		
(TAF: 3787)	TEL: 886-3-656-9065 FAX: 886-3-656-9085		
	Test site Designation No. TW3787 with FCC.		
	Conformity Assessment Body Identifier (CABID) TW3787 with ISED.		

Test Condition	Test Site No.	Test Engineer	Test Environment (°C / %)	Test Date
DFS (For Mode 1)	DF01-CB	Young Yang	24.7~26.3 / 65~69	Jul. 06, 2022
DFS (For Mode 2)	DF01-CB	Kevin Huang	24.4~26.2 / 66~69	Jun. 18, 2022~ Jun. 20, 2022

2 Test Configuration of EUT

2.1 Test Channel Frequencies Configuration

Test Channel Frequencies Configuration		
IEEE Std.	Test Channel Freq. (MHz)	
802.11ax (HEW20)	5300MHz, 5500 MHz	
802.11ax (HEW40)	5310MHz, 5510 MHz	
802.11ax (HEW80)	5290MHz, 5530 MHz	

2.2 The Worst Case Measurement Configuration

Th	The Worst Case Mode for Following Conformance Tests		
Tests Item	Dynamic Frequency Selection (DFS)		
Test Condition	Radiated measurement The EUT shall be configured to operate at the highest transmitter output power setting. If more than one antenna assembly is intended for this power setting, the gain of the antenna assembly with the lowest gain shall be used. The DFS radar test signals have been aligned to the direction corresponding to the EUT's maximum antenna gain.		
Modulation Mode	802.11ax (HEW20), 802.11ax (HEW40), 802.11ax (HEW80)		
1	R1-Cisco FW		
2	R1-Meraki FW		

Note1: The radio 3 doesn't need to execute DFS testing due to no data transmission. Note2: The Adapter is for measurement only, would not be marketed.

Adapter information as below:

Power	Brand	Model
Adapter	CISCO	MA-PWR-30W-US (MA-PWR-30W)

According to the manufacturer's declaration, the console port is not used for end-users.

3 Dynamic Frequency Selection (DFS) Test Result

3.1 General DFS Information

3.1.1 DFS Parameters

Table D.1: DFS requirement values		
Parameter	Value	
Non-occupancy period	Minimum 30 minutes	
Channel Availability Check Time	60 seconds	
Channel Move Time	10 seconds (Note 1).	
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second periods. (Notes 1 and 2).	
U-NII Detection Bandwidth	Minimum 100% of the 99% power bandwidth (Note 3).	

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate Channel changes (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.
 Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 is used and for each frequency step the minimum percentage of detection is 90%. Measurements are performed with no data traffic.

Table D.2: Interference threshold values		
Maximum Transmit Power	Value (see note)	
EIRP ≥ 200 mW	-64 dBm	
EIRP < 200 mW and PSD < 10dBm/MHz	-62 dBm	
EIRP < 200 mW and PSD >= 10dBm/MHz -64 dBm		
Note 1. This is the level at the input of the receiver assuming a 0 dBi receive antenna		

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.
 Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.
 Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911D01.

3.1.2 Applicability of DFS Requirements Prior to Use of a Channel

	DFS Operational mode					
Requirement	Master	Client without radar detection	Client with radar detection			
Non-Occupancy Period	Yes	Not required	Yes			
DFS Detection Threshold	Yes	Not required	Yes			
Channel Availability Check Time	Yes	Not required	Not required			
U-NII Detection Bandwidth	Yes	Not required	Yes			

3.1.3 Applicability of DFS Requirements during Normal Operation

	DFS Operational mode					
Requirement	Master	Client without radar detection	Client with radar detection			
DFS Detection Threshold	Yes	Not required	Yes			
Channel Closing Transmission Time	Yes	Yes	Yes			
Channel Move Time	Yes	Yes	Yes			
U-NII Detection Bandwidth	Yes	Not required	Yes			

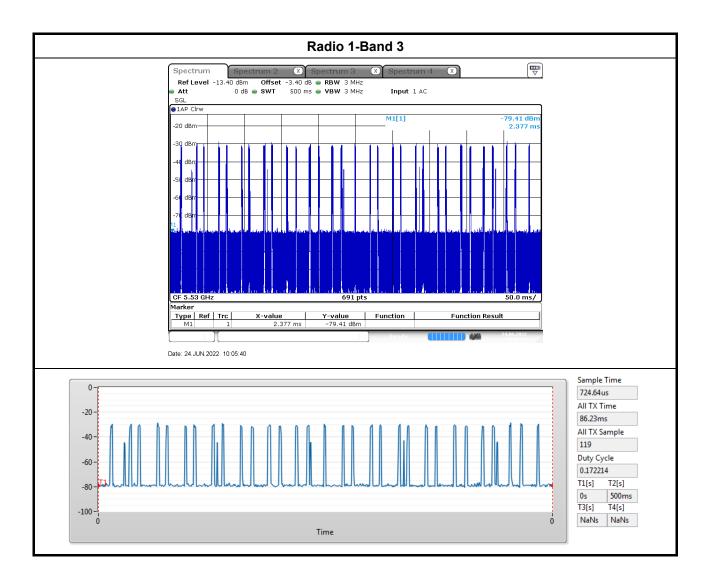
Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link
All other tests	Any single BW mode	Not required
Note: Frequencies selected for statist frequencies within the radar detection b bandwidth. For 802.11 devices it is succhannels and the channel center frequencies	ggested to select frequencies in eac	edge of the radar detection

3.1.4 User Access Restrictions

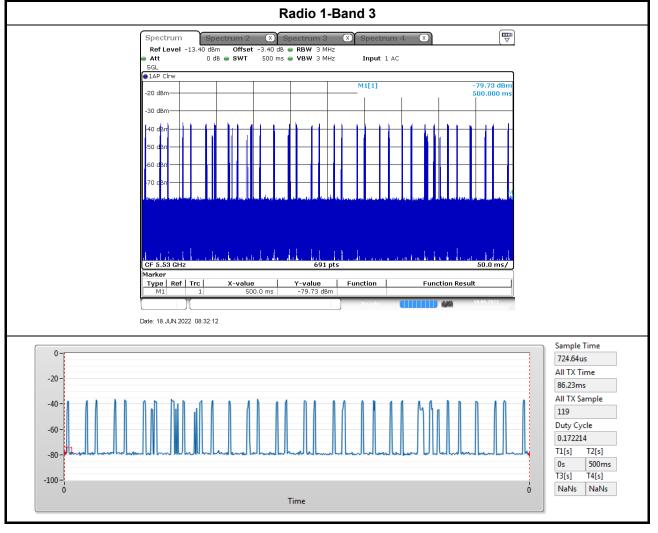

User Access Restrictions
DFS controls (hardware or software) related to radar detection are NOT accessible to the user. Manufacturer statement confirming that information regarding the parameters of the detected Radar Waveforms is not available to the end user.

3.1.5 Channel Loading/Data Streaming

	The data file (MPEG-4) has been transmitting in a streaming mode.
\boxtimes	Software to ping the client is permitted to simulate data transfer with random ping intervals.
\boxtimes	Minimum channel loading of approximately 17%.
	Unicast protocol has been used.
Mata	


Note:

Cisco FW-17% Traffic


TEL : 886-3-656-9065 FAX : 886-3-656-9085 Report Template No.: CB-A12_3 Ver1.1 Page Number: 15 of 309Issued Date: Sep. 13, 2022Report Version: 01

Meraki FW-17% Traffic

3.2 Radar Test Waveform Calibration

3.2.1 Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Trials
0	1	1428 18		See Note 1	See Note 1
1A	1	15 unique PRI in KDB 905462 D02 Table 5a	$\left[(1), (19 \times 10^6) \right]$	60%	15
1B	1	15 unique PRI within 518-3066, Excluding 1A PRI	$\left\{ \frac{1}{360} \times \left(\frac{19 \times 10^6}{PRI} \right) \right\}$	60%	15
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggrega	ate (Radar Type	s 1-4)		80%	120

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

A minimum of 30 unique waveforms are required for each of the short pulse radar types 1 through 4. If more than 30 waveforms are used for short pulse radar types 1 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. The aggregate is the average of the percentage of successful detections of short pulse radar types 1-4.

3.2.2 Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per <i>Burst</i>	Number of <i>Bursts</i>	Minimum Percentage of Successful Detection	Minimum Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

Each waveform is defined as follows:

• The transmission period for the Long Pulse Radar test signal is 12 seconds.

• There are a total of 8 to 20 Bursts in the 12 second period, with the number of Bursts being randomly chosen. This number is Burst Count.

• Each Burst consists of 1 to 3 pulses, with the number of pulses being randomly chosen. Each Burst within the 12 second sequence may have a different number of pulses.

- The pulse width is between 50 and 100 microseconds, with the pulse width being randomly chosen. Each pulse within a Burst will have the same pulse width. Pulses in different Bursts may have different pulse widths.
- Each pulse has a linear FM chirp between 5 and 20 MHz, with the chirp width being randomly chosen. Each pulse within a transmission period will have the same chirp width. The chirp is centered on the pulse. For

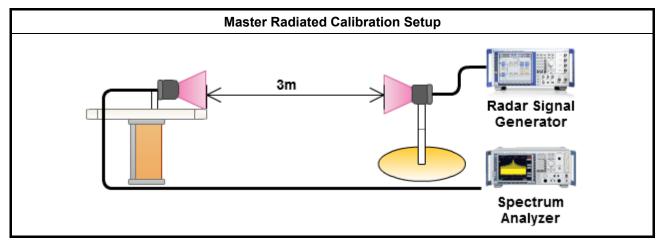
TEL : 886-3-656-9065 FAX : 886-3-656-9085 Report Template No.: CB-A12_3 Ver1.1 Page Number: 18 of 309Issued Date: Sep. 13, 2022Report Version: 01

example, with a radar frequency of 5300 MHz and a 20 MHz chirped signal, the chirp starts at 5290 MHz and ends at 5310 MHz.

- If more than one pulse is present in a Burst, the time between the pulses will be between 1000 and 2000 microseconds, with the time being randomly chosen. If three pulses are present in a Burst, the time between the first and second pulses is chosen independently of the time between the second and third pulses.
- The 12 second transmission period is divided into even intervals. The number of intervals is equal to Burst Count. Each interval is of length (12,000,000 / Burst Count) microseconds. Each interval contains one Burst. The start time for the Burst, relative to the beginning of the interval, is between 1 and [(12,000,000 / Burst Count) – (Total Burst Length) + (One Random PRI Interval)] microseconds, with the start time being randomly chosen. The step interval for the start time is 1 microsecond. The start time for each Burst is chosen independently.

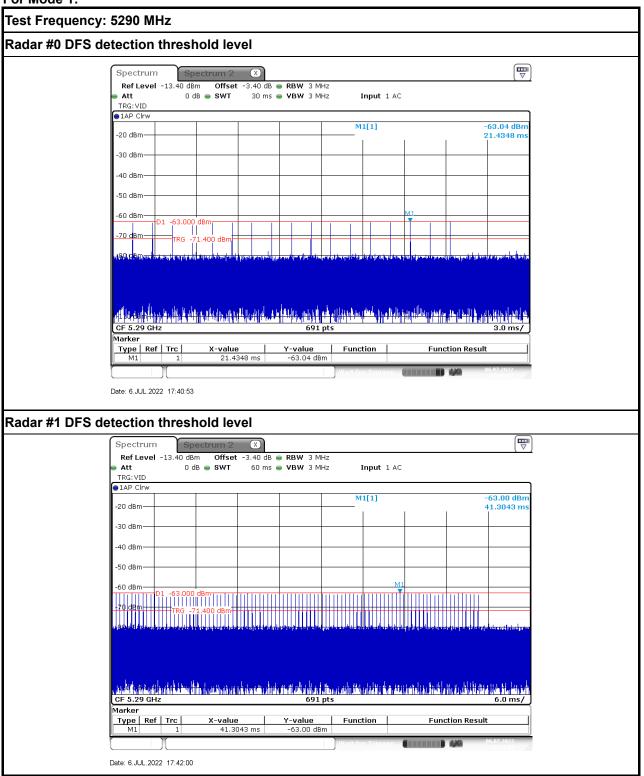
3.2.3 Frequency Hopping Radar Test Waveform

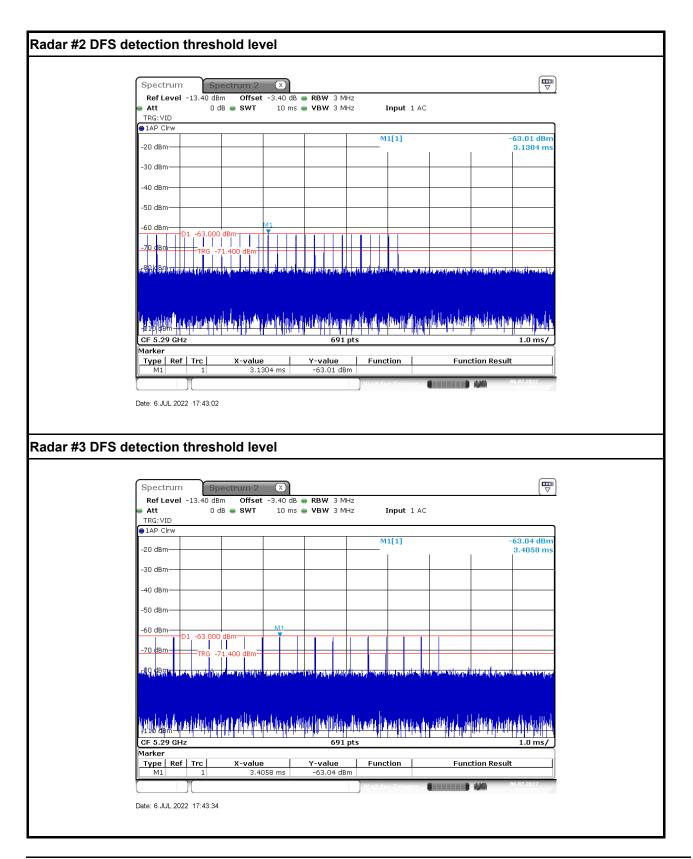
Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (ms)	Minimum Percentage of Successful Detection	Minimum Trials
6	1	333	9	0.333	300	70%	30


The FCC Type 6 waveform uses a static waveform with 100 bursts in the instruments ARB. In addition, the RF list mode is operated with a list containing 100 frequencies from a randomly generated list and it had be ensured that at least one of the random frequencies falls into the UNII Detection Bandwidth of the DUT. Each burst from the waveform file initiates a trigger pulse at the beginning that switches the RF list from one item to the next one.

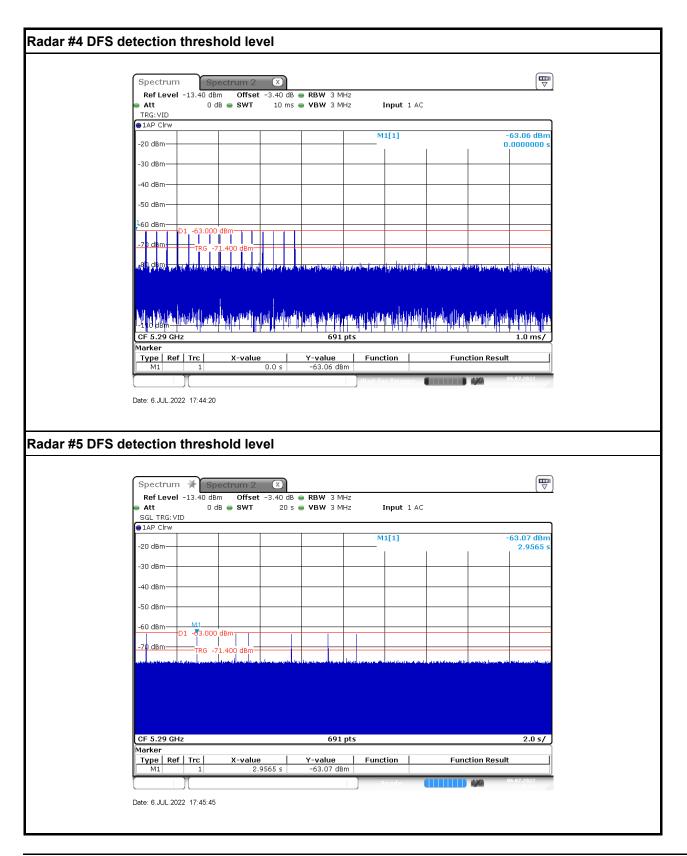
3.2.4 DFS Threshold Level

			DFS Threshold Level
DFS Threshold level:	-63	dBm	at the antenna connector
			in front of the antenna
The Interference Rada taken into account the			eshold Level is -64 dBm+ 0 [dBi] + 1 dB = -63 dBm. That had been age and antenna gain.

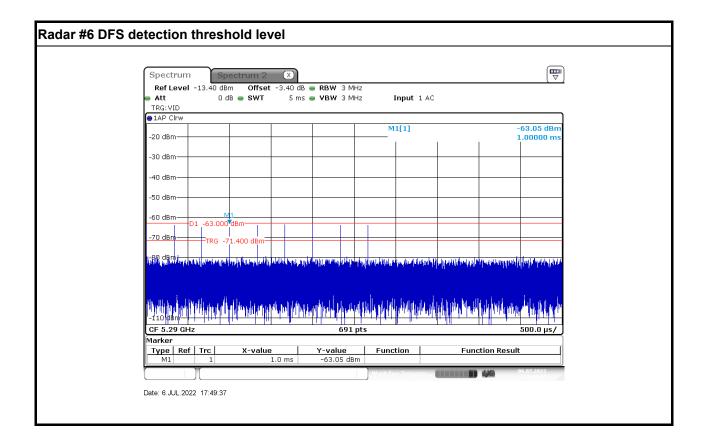

3.2.5 Calibration Setup

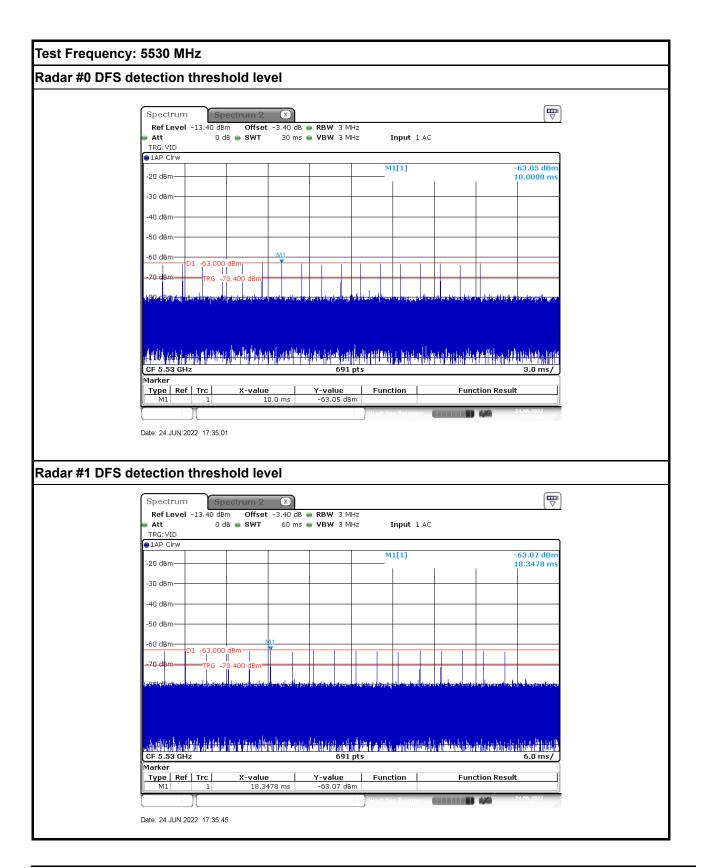

3.2.6 Radar Waveform calibration Plot

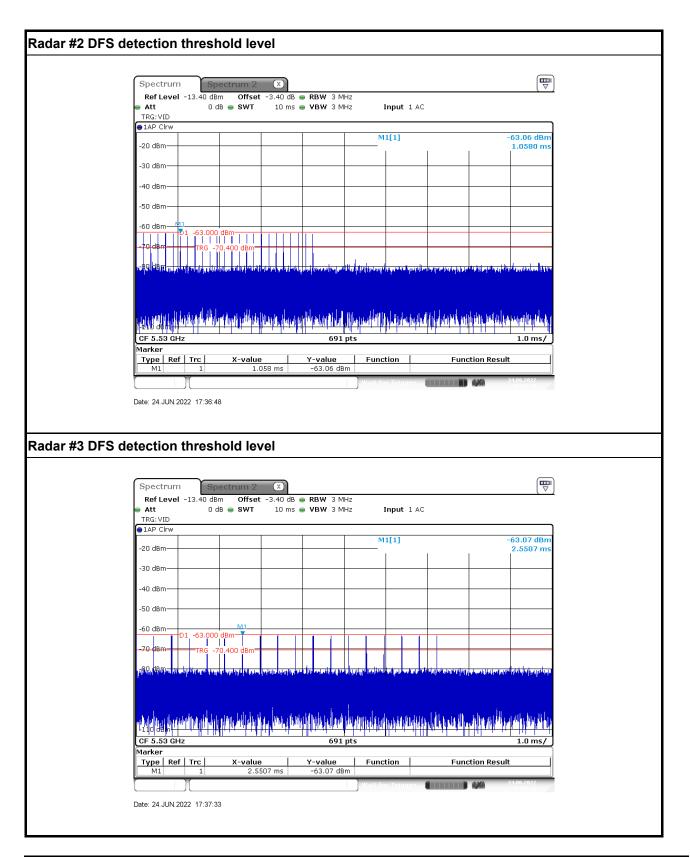
For Mode 1:

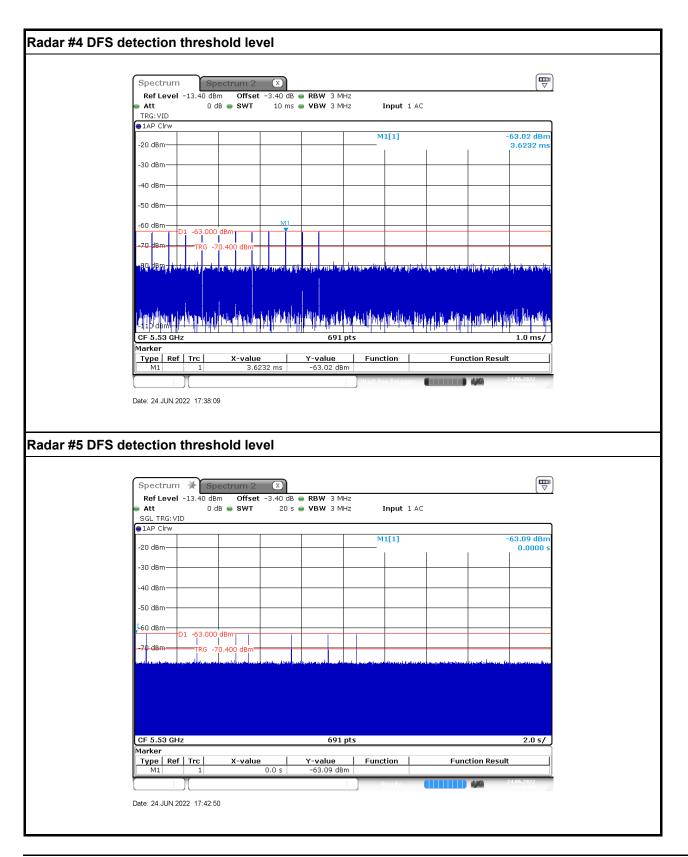


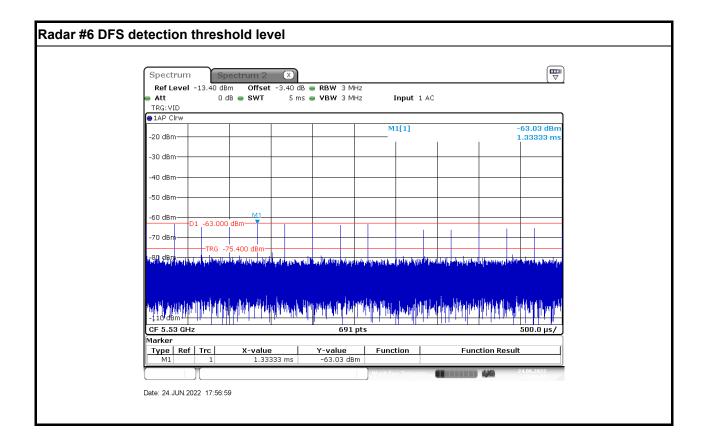
TEL : 886-3-656-9065 FAX : 886-3-656-9085 Report Template No.: CB-A12 3 Ver1.1 Page Number: 21 of 309Issued Date: Sep. 13, 2022Report Version: 01

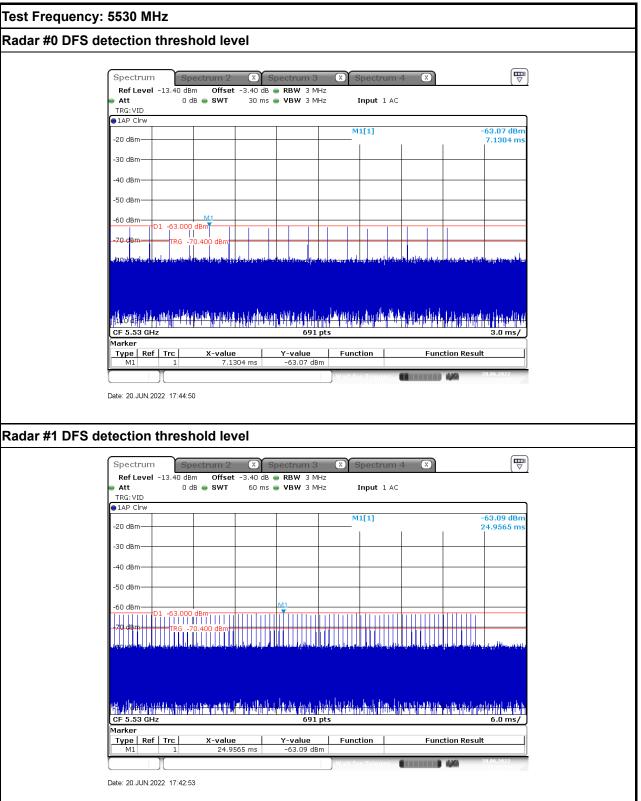


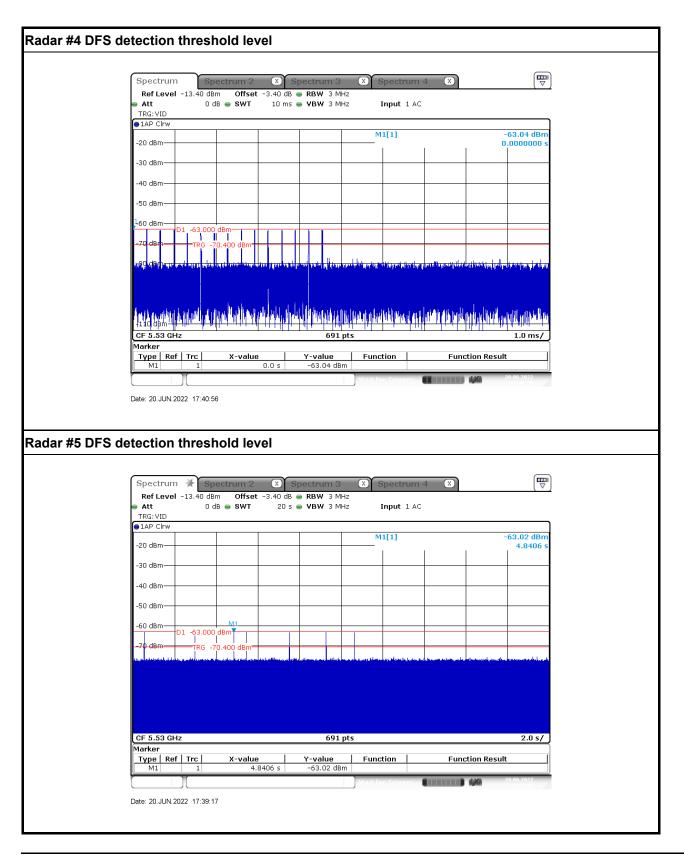


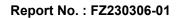


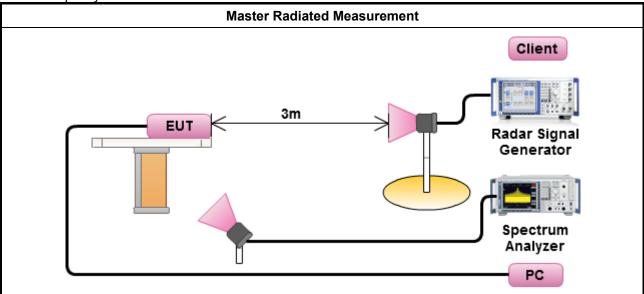


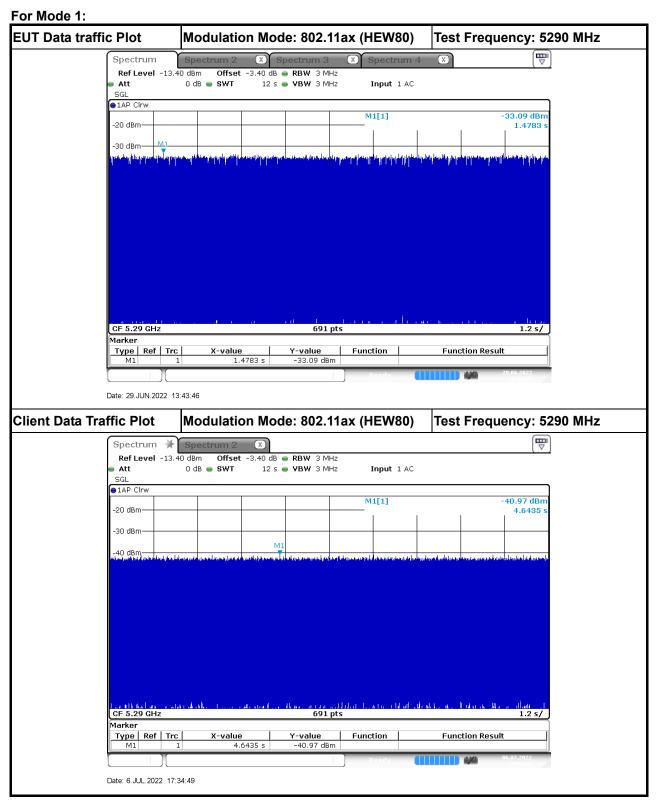



Page Number: 27 of 309Issued Date: Sep. 13, 2022Report Version: 01

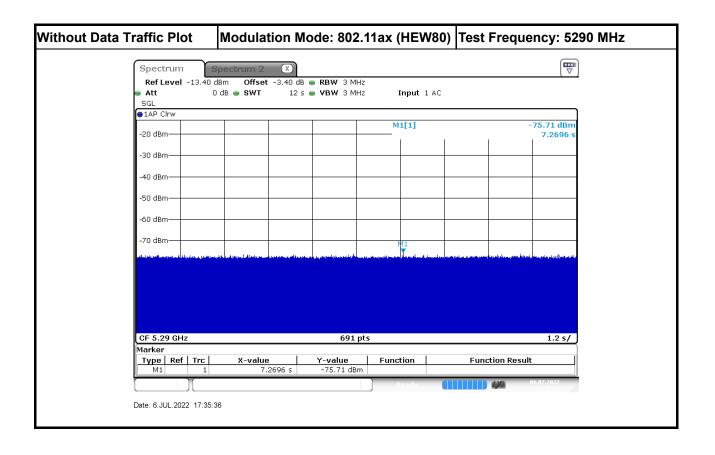

For Mode 2:

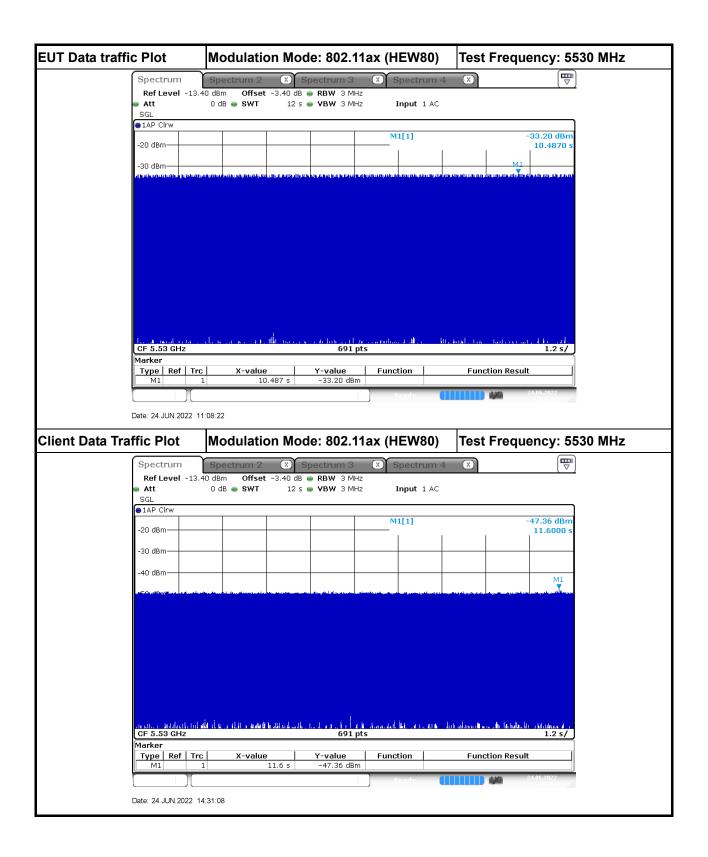


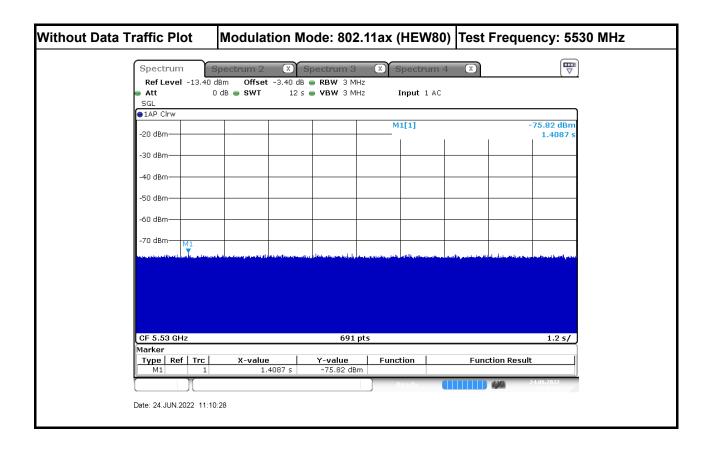

Ref Level -13.40 dBm Offset -3.40 dB RBW 3 MHz Input 1 AC Att 0 dB SWT 5 ms VBW 3 MHz Input 1 AC IAP Cinw -63.04 dBm -63.04 dBm -63.04 dBm 1AP Cinw -63.04 dBm -63.04 dBm -63.04 dBm 20 dBm -63.04 dBm -63.04 dBm -63.04 dBm 30 dBm -63.000 dBm -63.04 dBm -63.04 dBm 50 dBm -01 -63.000 dBm -63.04 dBm 50 dBm -01 -63.000 dBm -63.04 dBm 50 dBm -01 -63.000 dBm -01 50 dBm -01 -01 -01 50 dBm -01 -01 -01 510 dBm -01	Spectrum 💥 Spectru	m 2 🛛 🚿 Spectrum :	3 Spectrum	4 X	
Att 0 dB Swr 5 ms VBW 3 MHz Input 1 AC TRG: VID IAP Crw -63.04 dBm 1.60870 ms 20 dBm 0 1.60870 ms 1.60870 ms 30 dBm 0 0 1.60870 ms 30 dBm 0 0 0 0 50 dBm 0 0 0 0 70 dBm 0 0 0 0 0 110 dBm 0 0 0 0 0 0 10 dBm 0 0 0 0 0 0 0 110 dBm 0 0 0 0 0 0 0 0 0 110 dBm 0					(v.
1AP Clrw 20 dBm M1[1] -63.04 dBm 30 dBm 1.60870 ms 40 dBm 1.60870 ms 50 dBm 01 -63.000 dBm 10 dBm 1.60870 ms 110 dBm 1.608 ms 110 dBm 1.609 ms 110					
20 dBm M1[1] -63.04 dBm 30 dBm 1.60870 ms 40 dBm 1.60870 ms 50 dBm 1.60870 ms 100 dBm 1.60870 ms 110 dBm 1.60870 ms 110 dBm 1.60870 ms 110 dBm 1.60870 ms 110 dBm 1.609 pts 500.0 µs/ arker Trc Type Ref Trc X-value Y-value	TRG: VID				
20 dBm 1.60870 ms 30 dBm 1.60870 ms 30 dBm 1.60870 ms 40 dBm 1.60870 ms 50 dBm 1.60870 ms 70 dBm 1.60870 ms 10 dBm 1.60870 ms 110 dBm 1.60870 ms 110 dBm 1.60870 ms 110 dBm 1.60870 ms 110 dBm 1.60970 ms 110 dBm 1.60970 ms 110 dBm 1.60970 ms 110 dBm 1.60	●1AP Clrw		-		
40 dBm 40 dBm<	-20 dBm		M1[1]		
50 dBm 01 -63.000 dBm M1 50 dBm 01 -63.000 dBm 0 70 dBm TRG -70.400 dBm 0 10 dBm 0 0 110 dBm	-30 dBm				
50 dBm 01 -63.000 dBm M1 50 dBm 01 -63.000 dBm 0 70 dBm TRG -70.400 dBm 0 10 dBm 0 0 110 dBm					
S0 dBm D1 -63.000 dBm M1 M1 <td>-40 dBm</td> <td></td> <td></td> <td></td> <td></td>	-40 dBm				
30 dbill D1 -63.000'dBm 70 dBm TRG -70.400 dBm 40 dbill TRG -70.400 dBm 41 dbill	-50 dBm				
01 -63.000 dBm -70.400 dBm -70.400 dBm 20 -70.400 dBm -70.400 dBm -70.400 dBm 100 -70.300 dBm -70.400 dBm -70.400 dBm 110 -70.400 dBm -70.400 dBm -70.400 dBm	60 d0m	M1			
nutre in the second se	D1 -63.000 dBm				
nutre in the second se	-70-d8m-TRG -70,400	JBm			
110 dBm F 5.53 GHz 691 pts 500.0 μs/ arker Type Ref Trc X-value Y-value Function Function Result	الرائس فراقا والمراقع ومنافعته والمربع ومربقه والمعر الكروريان	a bell, al a ball a sub-particul bellow, program bellower	والفيطلة ويرويا فترجيه وتشري المتلية والمراب	Aller of the state of the state of states	متغالا بأقرط أرغستا وغا
F 5.53 GHz 691 pts 500.0 μs/ arker Type Ref Trc X-value Y-value Function Function Result				and the second second	
F 5.53 GHz 691 pts 500.0 μs/ arker Type Ref Trc X-value Y-value Function Function Result					
F 5.53 GHz 691 pts 500.0 μs/ arker Type Ref Trc X-value Y-value Function Function Result	with the state of the last	براجية سيريد بمحاط التماني	haitan sata ara s	data da baran	يران الم
F 5.53 GHz 691 pts 500.0 μs/ arker Type Ref Trc X-value Y-value Function Function Result	nfal id sie Hi lf die Kalender in d				
:F 5.53 GHz 691 pts 500.0 μs/ arker Type Ref Trc X-value Y-value Function Function Result	a start de la contrata llas	and of the last	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	La hana, tata t	11 1 I I I
arker Type Ref Trc X-value Y-value Function Function Result			<u> </u>		
Type Ref Trc X-value Y-value Function Function Result		69:	1 pts		500.0 µs/
		value V-value	Eunction	Function Posul	r 1
M1 1 1.0007 m3 05.04 dbm	M1 1	1.6087 ms -63.04 d		T unction Resul	·
Wait for Trigger 111111 🖬 🚧 20.06.2022			Wait for Trigger		20.06.2022

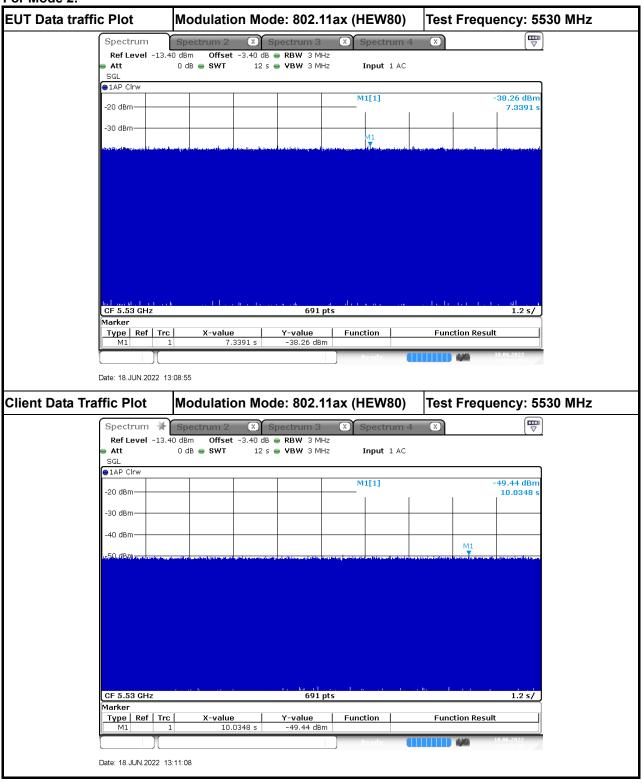

3.2.7 Test Setup

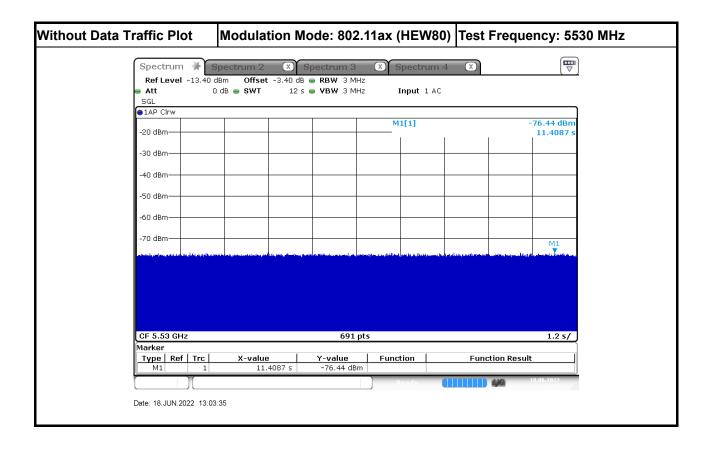
A spectrum analyzer is used as a monitor to verify that the EUT has vacated the Channel within the (Channel Closing Transmission Time and Channel Move Time, and does not transmit on a Channel during the Non-Occupancy Period after the detection and Channel move.




3.2.8 Data traffic Plot


TEL : 886-3-656-9065 FAX : 886-3-656-9085 Report Template No.: CB-A12_3 Ver1.1 Page Number: 34 of 309Issued Date: Sep. 13, 2022Report Version: 01





3.3 UNII Detection Bandwidth

3.3.1 UNII Detection Bandwidth Limit

For Mode 1

Channel Bandwidth (MHz)	Frequency (MHz)	99% Occupied Bandwidth (MHz)	UNII Detection Bandwidth Min. Limit (MHz)
20	5300 MHz	17.800	18.000
20	5500 MHz	17.800	18.000
40	5310 MHz	36.613	37.000
40	5510 MHz	36.034	37.000
80	5290 MHz	74.095	75.000
80	5530 MHz	76.989	77.000

UNII Detection Bandwidth is minimum 100% of the 99% power bandwidth. A single radar Burst is generated for a minimum of 10 trials, and the response of the UUT is noted. The UUT must detect the Radar Waveform 90% or more of the time.

For Mode 2

Channel Bandwidth (MHz)	Frequency (MHz)	99% Occupied Bandwidth (MHz)	UNII Detection Bandwidth Min. Limit (MHz)
20	5500 MHz	19.102	19.200
40	5510 MHz	37.192	38.000
80	5530 MHz	76.410	77.000

UNII Detection Bandwidth is minimum 100% of the 99% power bandwidth. A single radar Burst is generated for a minimum of 10 trials, and the response of the UUT is noted. The UUT must detect the Radar Waveform 90% or more of the time.

3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

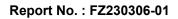
3.3.3 Test Procedures

Test Method

During the U-NII Detection Bandwidth detection test, radar type 0 is used and for each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic. The EUT is set up as a standalone device (no associated Client and no traffic). The radar frequency is increased in 1 MHz steps, repeating the above test sequence, until the detection rate falls below 90%. The highest frequency at which detection is greater than or equal to 90% is denoted as F_H . The radar frequency is decreased in 1 MHz steps, repeating the above test sequence, until the detection rate falls below 90%. The lowest frequency at which detection is greater than or equal to 90% is denoted as F_L . UNII Detection Bandwidth = $F_H - F_L$.

3.3.4 Test Result of UNII Detection Bandwidth

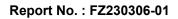
	EU	T Fre	quer	ncy=5	5 300	MHz					
Channel Bandwidth (MHz)	20										
		DF	S De	tecti	on Tr	ials (1=De	tecti	on, 0	= No	Detection)
Radar Frequency (MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate
	•	-	Ŭ	-	Ŭ	•	•	Ŭ	Ŭ		(%)
5290	0	0	0	0	0	0	0	0	0	0	0
5291(FL)	1	1	1	0	1	1	1	1	1	1	90
5292	1	1	1	1	1	1	1	1	1	1	100
5293	1	1	1	1	1	1	1	1	1	1	100
5294	1	1	1	1	1	1	1	1	1	1	100
5295	1	1	1	1	1	1	1	1	1	1	100
5300	1	1	1	1	1	1	1	1	1	1	100
5305	1	1	1	1	1	1	1	1	1	1	100
5306	1	1	1	1	1	1	1	1	1	1	100
5307	1	1	1	1	1	1	1	1	1	1	100
5308	1	1	1	1	1	1	1	1	1	1	100
5309(FH)	1	1	1	1	1	1	0	1	1	1	90
5310	0	0	0	0	0	0	0	0	0	0	0
Radar Type 0-Detection Bandwidth (MHz) = (FH-FL) = (5309MHz-5291MHz)=									18		
UNII Detection Bandwidth Min. Limit	MHz) =									18
Test Result PASS							PASS				


EUT Frequency=5500 MHz											
Channel Bandwidth (MHz)	20										
		DF	S De	tecti	on Tr	ials (1=De	tecti	on, 0	= No	Detection)
Radar Frequency (MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate (%)
5490	0	0	0	0	0	0	0	0	0	0	0
5491(FL)	1	0	1	1	1	1	1	1	1	1	90
5492	1	1	1	1	1	1	1	1	1	1	100
5493	1	1	1	1	1	1	1	1	1	1	100
5494	1	1	1	1	1	1	1	1	1	1	100
5495	1	1	1	1	1	1	1	1	1	1	100
5500	1	1	1	1	1	1	1	1	1	1	100
5505	1	1	1	1	1	1	1	1	1	1	100
5506	1	1	1	1	1	1	1	1	1	1	100
5507	1	1	1	1	1	1	1	1	1	1	100
5508	1	1	1	1	1	1	1	1	1	1	100
5509(FH)	1	1	1	0	1	1	1	1	1	1	90
5510	0 0 0 0 0 0 0 0 0 0 0 0										
Radar Type 0-Detection Bandwidth (M	ИHz)	= (F⊦	I-FL)	= (55	09MI	Hz-54	91M	Hz)=			18
UNII Detection Bandwidth Min. Limit	(MHz) =									18
Test Result											PASS

	EU	T Fre	quer	ncy=5	5310	MHz					
Channel Bandwidth (MHz)	40										
		DF	S De	tecti	on Tr	ials (1=De	tecti	on, 0	= No	Detection)
Radar Frequency (MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate
		-	,	-	_	•	'	_	-	_	(%)
5290	0	0	0	0	0	0	0	0	0	0	0
5291	0	0	0	0	0	0	0	0	0	0	0
5292(FL)	1	1	1	1	1	1	0	1	1	1	90
5293	1	1	1	1	1	1	1	1	1	1	100
5294	1	1	1	1	1	1	1	1	1	1	100
5295	1	1	1	1	1	1	1	1	1	1	100
5300	1	1	1	1	1	1	1	1	1	1	100
5305	1	1	1	1	1	1	1	1	1	1	100
5310	1	1	1	1	1	1	1	1	1	1	100
5315	1	1	1	1	1	1	1	1	1	1	100
5320	1	1	1	1	1	1	1	1	1	1	100
5325	1	1	1	1	1	1	1	1	1	1	100
5326	1	1	1	1	1	1	1	1	1	1	100
5327	1	1	1	1	1	1	1	1	1	1	100
5328	1	1	1	1	1	1	1	1	1	1	100
5329(FH)	1	1	1	0	1	1	1	1	1	1	90
5330	0 0 0 0 0 0 0 0 0 0 0 0										
Radar Type 0-Detection Bandwidth (N	ИHz)	= (F⊦	I-FL)	= (53	29MI	Hz-52	92MI	Hz)=			37
UNII Detection Bandwidth Min. Limit	,		,								37
Test Result	`										PASS

	EU	T Fre	quer	icy={	5510	MHz					
Channel Bandwidth (MHz)	40										
		DF	S De	tecti	on Tr	ials (1=De	etecti	on, 0	= No	Detection)
Radar Frequency (MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate (%)
5490	0	0	0	0	0	0	0	0	0	0	0
5491(FL)	1	1	1	1	1	1	0	1	1	1	90
5492	1	1	1	1	1	1	1	1	1	1	100
5493	1	1	1	1	1	1	1	1	1	1	100
5494	1	1	1	1	1	1	1	1	1	1	100
5495	1	1	1	1	1	1	1	1	1	1	100
5500	1	1	1	1	1	1	1	1	1	1	100
5505	1	1	1	1	1	1	1	1	1	1	100
5510	1	1	1	1	1	1	1	1	1	1	100
5515	1	1	1	1	1	1	1	1	1	1	100
5520	1	1	1	1	1	1	1	1	1	1	100
5525	1	1	1	1	1	1	1	1	1	1	100
5526	1	1	1	1	1	1	1	1	1	1	100
5527	1	1	1	1	1	1	1	1	1	1	100
5528(FH)	1	1	1	1	1	1	0	1	1	1	90
5529	0	0	0	0	0	0	0	0	0	0	0
Radar Type 0-Detection Bandwidth (ИHz)	= (F⊦	I-FL)	= (55	28MI	Hz-54	91M	Hz)=			37
UNII Detection Bandwidth Min. Limit	(MHz) =									37
Test Result	PASS										

	EU	T Fre	quer	ncy=5	5290	MHz					
Channel Bandwidth (MHz)	80										
		DF	S De	tecti	on Tr	ials (1=De	tecti	on, 0	= No	Detection)
Radar Frequency (MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate (%)
5249	0	0	0	0	0	0	0	0	0	0	0
5250(FL)	1	1	0	1	1	1	1	1	1	1	90
5251	1	1	1	1	1	1	1	1	1	1	100
5252	1	1	1	1	1	1	1	1	1	1	100
5253	1	1	1	1	1	1	1	1	1	1	100
5254	1	1	1	1	1	1	1	1	1	1	100
5255	1	1	1	1	1	1	1	1	1	1	100
5260	1	1	1	1	1	1	1	1	1	1	100
5265	1	1	1	1	1	1	1	1	1	1	100
5270	1	1	1	1	1	1	1	1	1	1	100
5275	1	1	1	1	1	1	1	1	1	1	100
5280	1	1	1	1	1	1	1	1	1	1	100
5285	1	1	1	1	1	1	1	1	1	1	100
5290	1	1	1	1	1	1	1	1	1	1	100
5295	1	1	1	1	1	1	1	1	1	1	100
5300	1	1	1	1	1	1	1	1	1	1	100
5305	1	1	1	1	1	1	1	1	1	1	100
5310	1	1	1	1	1	1	1	1	1	1	100
5315	1	1	1	1	1	1	1	1	1	1	100
5320	1	1	1	1	1	1	1	1	1	1	100
5325	1	1	1	1	1	1	1	1	1	1	100
5326	1	1	1	1	1	1	1	1	1	1	100
5327	1	1	1	1	1	1	1	1	1	1	100
5328	1	1	1	1	1	1	1	1	1	1	100
5329	1	1	1	1	1	1	1	1	1	1	100
5330(FH)	1	1	1	1	1	1	1	0	1	1	90
5531	0	0	0	0	0	0	0	0	0	0	0
Radar Type 0-Detection Bandwidth (N			1-FL)	= (53	30MI	HZ-52	250MI	HZ)=			80
UNII Detection Bandwidth Min. Limit	MHz) =									75
Test Result											PASS


	EU	T Fre	quer	ncy=5	5530	MHz					
Channel Bandwidth (MHz)	80										
		DF	S De	tecti	on Tr	ials (1=De	tecti	on, 0	= No	Detection)
Radar Frequency (MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate
		2	2	4	5	O	'	0	ק	10	(%)
5491	0	0	0	0	0	0	0	0	0	0	0
5492(FL)	1	1	1	1	1	0	1	1	1	1	90
5493	1	1	1	1	1	1	1	1	1	1	100
5494	1	1	1	1	1	1	1	1	1	1	100
5495	1	1	1	1	1	1	1	1	1	1	100
5500	1	1	1	1	1	1	1	1	1	1	100
5505	1	1	1	1	1	1	1	1	1	1	100
5510	1	1	1	1	1	1	1	1	1	1	100
5515	1	1	1	1	1	1	1	1	1	1	100
5520	1	1	1	1	1	1	1	1	1	1	100
5525	1	1	1	1	1	1	1	1	1	1	100
5530	1	1	1	1	1	1	1	1	1	1	100
5535	1	1	1	1	1	1	1	1	1	1	100
5540	1	1	1	1	1	1	1	1	1	1	100
5545	1	1	1	1	1	1	1	1	1	1	100
5550	1	1	1	1	1	1	1	1	1	1	100
5555	1	1	1	1	1	1	1	1	1	1	100
5560	1	1	1	1	1	1	1	1	1	1	100
5565	1	1	1	1	1	1	1	1	1	1	100
5566	1	1	1	1	1	1	1	1	1	1	100
5567	1	1	1	1	1	1	1	1	1	1	100
5568	1	1	1	1	1	1	1	1	1	1	100
5569(FH)	0	1	1	1	1	1	1	1	1	1	90
5570	0	0	0	0	0	0	0	0	0	0	0
Radar Type 0-Detection Bandwidth (M	ИНz)	= (F⊦	I-FL)	= (55	69MI	Hz-54	92MI	Hz)=			77
UNII Detection Bandwidth Min. Limit	(MHz) =									77
Test Result											PASS

	EU	T Fre	quer	ncy=5	500	MHz					
Channel Bandwidth (MHz)	20										
		DF	S De	tecti	on Tr	ials (1=De	tecti	on, 0	= No	Detection)
Radar Frequency (MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate (%)
5490	0	0	0	0	0	0	0	0	0	0	0
5490.6(FL)	1	1	1	1	0	1	1	1	1	1	90
5491	1	1	1	1	1	1	1	1	1	1	100
5492	1	1	1	1	1	1	1	1	1	1	100
5493	1	1	1	1	1	1	1	1	1	1	100
5494	1	1	1	1	1	1	1	1	1	1	100
5495	1	1	1	1	1	1	1	1	1	1	100
5500	1	1	1	1	1	1	1	1	1	1	100
5505	1	1	1	1	1	1	1	1	1	1	100
5506	1	1	1	1	1	1	1	1	1	1	100
5507	1	1	1	1	1	1	1	1	1	1	100
5508	1	1	1	1	1	1	1	1	1	1	100
5509	1	1	1	1	1	1	1	1	1	1	100
5510(FH)	1	1	1	0	1	1	1	1	1	1	90
5511	0	0	0	0	0	0	0	0	0	0	0
Radar Type 0-Detection Bandwidth (MHz)	= (F⊦	l-FL)	= (55	510MI	Hz-54	90.6	MHz)	=		19.4
UNII Detection Bandwidth Min. Limit	(MHz) =									19.2
Test Result	PASS										

	EU	T Fre	quer	ncy=5	5510	MHz					
Channel Bandwidth (MHz)	40										
		DF	S De	tecti	on Tr	ials (1=De	tecti	on, 0	= No	Detection)
Radar Frequency (MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate
		2	3	-	3	•	'	0	3	10	(%)
5490	0	0	0	0	0	0	0	0	0	0	0
5491(FL)	1	1	1	1	1	1	1	1	1	1	100
5492	1	1	1	1	1	1	1	1	1	1	100
5493	1	1	1	1	1	1	1	1	1	1	100
5494	1	1	1	1	1	1	1	1	1	1	100
5495	1	1	1	1	1	1	1	1	1	1	100
5500	1	1	1	1	1	1	1	1	1	1	100
5505	1	1	1	1	1	1	1	1	1	1	100
5510	1	1	1	1	1	1	1	1	1	1	100
5515	1	1	1	1	1	1	1	1	1	1	100
5520	1	1	1	1	1	1	1	1	1	1	100
5525	1	1	1	1	1	1	1	1	1	1	100
5526	1	1	1	1	1	1	1	1	1	1	100
5527	1	1	1	1	1	1	1	1	1	1	100
5528	1	1	1	1	1	1	1	1	1	1	100
5529(FH)	1	1	1	1	1	1	1	1	1	0	90
5530	0 0 0 0 0 0 0 0 0 0 0 0										
Radar Type 0-Detection Bandwidth (MHz)	= (F⊦	I-FL)	= (55	30MI	Hz-54	91MI	Hz)=			38
UNII Detection Bandwidth Min. Limit	(MHz) =									38
Test Result											PASS

	EU	T Fre	quer	ncy={	530	MHz					
Channel Bandwidth (MHz)	80										
		DF	S De	tecti	on Tr	ials (1=De	tecti	on, 0	= No	Detection)
Radar Frequency (MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate (%)
5489	0	0	0	0	0	0	0	0	0	0	0
5490(FL)	1	1	1	1	0	1	1	1	1	1	90
5491	1	1	1	1	1	1	1	1	1	1	100
5492	1	1	1	1	1	1	1	1	1	1	100
5493	1	1	1	1	1	1	1	1	1	1	100
5494	1	1	1	1	1	1	1	1	1	1	100
5495	1	1	1	1	1	1	1	1	1	1	100
5500	1	1	1	1	1	1	1	1	1	1	100
5505	1	1	1	1	1	1	1	1	1	1	100
5510	1	1	1	1	1	1	1	1	1	1	100
5515	1	1	1	1	1	1	1	1	1	1	100
5520	1	1	1	1	1	1	1	1	1	1	100
5525	1	1	1	1	1	1	1	1	1	1	100
5530	1	1	1	1	1	1	1	1	1	1	100
5535	1	1	1	1	1	1	1	1	1	1	100
5540	1	1	1	1	1	1	1	1	1	1	100
5545	1	1	1	1	1	1	1	1	1	1	100
5550	1	1	1	1	1	1	1	1	1	1	100
5555	1	1	1	1	1	1	1	1	1	1	100
5560	1	1	1	1	1	1	1	1	1	1	100
5565	1	1	1	1	1	1	1	1	1	1	100
5566	1	1	1	1	1	1	1	1	1	1	100
5567	1	1	1	1	1	1	1	1	1	1	100
5568	1	1	1	1	1	1	1	1	1	1	100
5569	1	1	1	1	1	1	1	1	1	1	100
5570(FH)	1	1	1	1	1	1	0	1	1	1	90
5571 Deday Type 0 Detection Dendwidth (N	0			0	0	0	0	0	0	0	0
Radar Type 0-Detection Bandwidth (N			1-FL)	= (55	7 UIVII	⊐Z-54	-90IVII	⊐z)=			80
UNII Detection Bandwidth Min. Limit	MHZ) =									77
Test Result											PASS

3.4 Channel Availability Check (CAC)

3.4.1 Channel Availability Check Limit

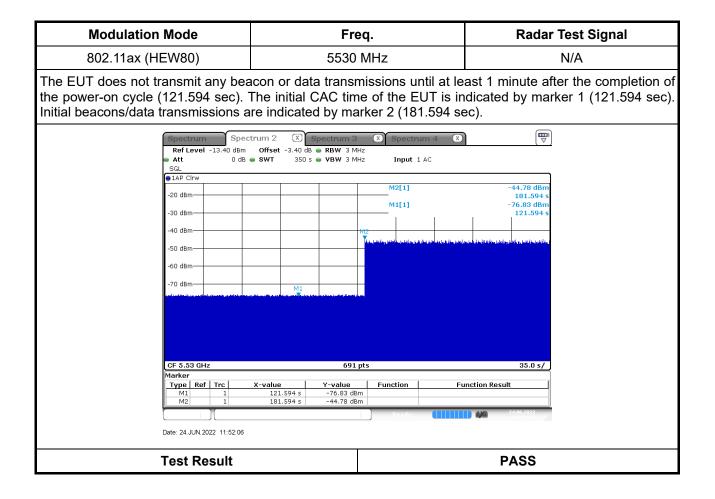
Channel Availability Check Limit

The EUT shall perform a Channel Availability Check to ensure that there is no radar operating on the channel. After power-up sequence, receive at least 1 minute (60 sec) on the intended operating frequency.

3.4.2 Measuring Instruments

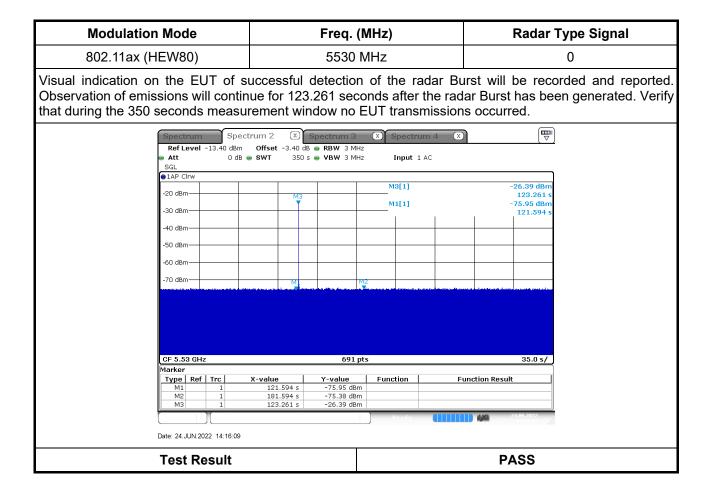
Refer a test equipment and calibration data table in this test report.

3.4.3 Test Procedures


Test Method
For Initial Channel Availability Check Time. The EUT does not emit beacon, control, or data signals on the test Channel until the power-up sequence has been completed and the UNII device checks for Radar Waveforms for one minute on the test Channel. This test does not use any Radar Waveforms.
For Radar Burst at the Beginning of the Channel Availability Check Time. To verify successful radar detection on the selected Channel during a period equal to the Beginning of the Channel Availability Check Time.
For Radar Burst at the End of the Channel Availability Check Time. To verify successful radar detection on the selected Channel during a period equal to the End of the Channel Availability Check Time.

3.4.4 Test Result of Initial Channel Availability Check Time

Modulation Mode	Freq		Radar	Test Signal
802.11ax (HEW80)	5290 M	Hz		N/A
The EUT does not transmit any bea the power-on cycle (122.029 sec). Initial beacons/data transmissions a	The initial CAC time	of the EUT is in	dicated by mark	
Spectrum Spectrum Ref Level -13.40 dBm 0 dB Att 0 dB SGL 1AP Clrw -20 dBm -40 dBm -30 dBm -50 dBm -60 dBm -70 dBm	trum 2 (X) Spectrum 3 Offset -3.40 dB • RBW 3 MHz • SWT 400 s • VBW 3 MHz	Spectrum 4 * Input 1 AC	-39.56 dBm 182.029 s -76.59 dBm 122.029 s	
CF 5.29 GHz	691 pts		40.0 s/	
Marker Type Ref Trc M1 1 1 M2 1 1 Date: 6.JUL.2022 13:44:55	X-value Y-value 122.029 s -76.59 dBm 182.029 s -39.56 dBm	Function Fu	nction Result	
Test Result			PASS	


Modulation Mode	Freq.		Radar Test Signal	
802.11ax (HEW80)	5530 MH	MHz N/A		
The EUT does not transmit any bea the power-on cycle (197.971 sec). Initial beacons/data transmissions a	The initial CAC time o	f the EUT is in	dicated by marker 1 (197.97	
Spectrum Spectrum Ref Level -13.40 dBm 0 dB Att 0 dB SGL 1AP Clrw -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -70 dBm	trum 2 (X) Spectrum 3 (A) Offset -3.40 dB (RBW 3 MHz) SWT 500 s VBW 3 MHz (M2) (Spectrum 4 (X) Input 1 AC M2[1] M1[1] And the dynamid of energy	-28.72 dBm 257.971 s -77.01 dBm 197.971 s	
CF 5.53 GHz	691 pts		50.0 s/	
Marker Type Ref Trc M1 1 M2 1 Date: 18,JUN,2022 10:37.07	X-value Y-value 197.971 s -77.01 dBm 257.971 s -28.72 dBm	Function Fu	Inction Result	
Test Result			PASS	

3.4.5 Test Result of Radar Burst at the Beginning of the Channel Availability Check Time

Modulation Mode			Freq. (N	IHz)		Radar Type S	ignal
802.11ax (HEW80)			5290 N	lHz		0	
/isual indication on the EU Observation of emissions wil nat during the 400 seconds	l continue	e for 125	.797 seco	nds after th	ne radar B	urst has been gen	
Spectrum Ref Level	Spectrum 13.40 dBm C 0 dB S	ffset -3.40 de	Spectrum 3 B B BW 3 MHz S VBW 3 MHz	X Spectrum Input 1 AC			
IAP Cirw							
				M3[1]		-29.29 dBm	
-20 dBm		мз		M1[1]		125.797 s -75.95 dBm 122.029 s	
-40 dBm							
-50 dBm							
-60 dBm							
-70 dBm			M2	- too, by Manager Al-free by and yor bit	باران و برواند و و در و	the an overlash a supervised on the books	
CF 5.29 GHz			691 pts			40.0 s/	
Marker Type Ref	Tro V-	value	Y-value	Function	Function	Pocult	
M1	1	122.029 s	-75.95 dBm	i unction	Function	NESUL	
M2	1	182.029 s	-76.59 dBm				
МЗ	1	125.797 s	-29.29 dBm				
Date: 6.JUL 2022	13:58:48			Ready		06.07.2022	
Test Re						PASS	

Modulation Mode	Freq. (MHz)	Radar T	ype Signal
802.11ax (HEW80)	5530	MHz		0
Visual indication on the EUT of su Observation of emissions will contin during the 500 seconds measureme	ue for 200 seconds	after the radar B	urst has been gei	
RefLevel -13.40 dBm Att 0 dB SGL	rum 2 (X) Spectrum 3 Offset -3.40 dB ● RBW 3 MH 9 SWT 500 s ● VBW 3 MH			
●1AP CIrw -20 dBm -30 dBm -40 dBm	M3	M3[1] M1[1]	-26.33 dBm 200.000 s -76.46 dBm 197.971 s	
-50 dBm				
-70 dBm		12 Roman waard dat dat and dat dat a set and set of the set		
CF 5.53 GHz	691 p	ts	50.0 s/	
M1 1 M2 1 M3 1	X-value Y-value 197.971 s -76.46 dBn 257.971 s -76.36 dBn 200.0 s -26.33 dBn		unction Result	
Date: 18.JUN 2022 11:43:09 Test Result			PASS	

3.4.6 Test Result of Radar Burst at the End of the Channel Availability Check Time

Modulation Mode	Freq	. (MHz)	Radar Type Signal
802.11ax (HEW80)	529	0 MHz	0
Visual indication on the EUT of s Observation of emissions will contin that during the 400 seconds measu	ue for 177.391 se	econds after the ra	dar Burst has been generated. Veri
RefLevel -13.40 dBm Att 0 dB SGL	trum 2 (X) Spectrum Offset -3.40 dB • RBW 3 • SWT 400 s • VBW 3	MHz	X
● 1AP Clrw		uotel.	00.00 lb
-20 dBm	M3	M3[1] M1[1]	-29,28 dBm 177.391 s -75.76 dBm 122.029 s
-40 dBm			
-50 dBm			
-60 dBm			
-70 dBm	M1 M2		
CF 5.29 GHz	69)1 pts	40.0 s/
Marker Type Ref Trc M1 1 M2 1 M3 1	X-value Y-value 122.029 s -75.76 182.029 s -76.13 177.391 s -29.28	dBm dBm	Function Result
Date: 6.JUL 2022 13:51:53		Ready	and the second sec
Test Result			PASS

Modulation Mode	Freq.	(MHz)	Radar Ty	vpe Signal
802.11ax (HEW80)	5530	MHz		0
Visual indication on the EUT of s Observation of emissions will contir that during the 350 seconds measu	ue for 180.072 sec	onds after the rad	ar Burst has been	
Ref Level -13.40 dBm	trum 2 (X) Spectrum 3 Offset -3.40 dB • RBW 3 M • SWT 350 s • VBW 3 M		-26.34 dBm 180.072 s	
-20 dBm -30 dBm -40 dBm -50 dBm		M3 M1[1]	180.072 s -75.01 dBm 121.594 s	
-60 dBm	Mi			
CF 5.53 GHz	691	nts	35.0 s/	
Marker Type Ref Trc M1 1 M2 1 M3 1	X-value Y-value 121.594 s -75.01 db 181.594 s -75.43 db 180.072 s -26.34 db	Function F	24.05.2022	
Date: 24 JUN 2022 14:22:28 Test Result			PASS	

Modulation Mode	Fre	q.	Radar Test	Signal
802.11ax (HEW80)	5530	MHz 0		
Visual indication on the EUT of s Observation of emissions will contin that during the 500 seconds measu	ue for 255.797 sec	onds after the rad	ar Burst has been ge	
Ref Level -13.40 dBm	rum 2 (X) Spectrum 3 Offset -3.40 dB • RBW 3 MH SWT 500 s • VBW 3 MH		-26.37 dBm 255.797 s -76.34 dBm 197.971 s	
CF 5.53 GHz	691 p	ts	50.0 s/	
Marker Type Ref Trc M1 1 1 1 M2 1 1 1 M3 1 1 1 Date: 18.JUN 2022 11:52:56 1	X-value Y-value 197.971 s -76.34 dBm 257.971 s -76.02 dBm 255.797 s -26.37 dBm		Instance in the second se	
Test Result			PASS	

3.5 In-service Monitoring

3.5.1 In-service Monitoring Limit

In-service Monitoring Limit					
Channel Move Time	10 sec				
Channel Closing Transmission Time	200 ms + an aggregate of 60 ms over remaining 10 sec periods.				
Non-occupancy period	Minimum 30 minutes				

3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

Test Method
Verified during In-Service Monitoring; Channel Closing Transmission Time, Channel Move Time. Client Device will associate with the EUT. Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds. Measure and record the transmissions from the EUT during the observation time (Channel Move Time). Compare the Channel Move Time and Channel Closing Transmission Time limits.
Verified during In-Service Monitoring; Channel Closing Transmission Time, Channel Move Time. One 12 sec plot needs to be reported for the Short Pulse Radar Types 0 sec plot. And zoom-in a 60 ms plot verified channel closing time for the aggregate transmission time starting from 200ms after the end of the radar signal to the completion of the channel move.
Verified during In-Service Monitoring; Non-Occupancy Period. Client Device will associate with the EUT. Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds. Measure and record the transmissions from the EUT during the observation time (Non-Occupancy Period). Compare the Non-Occupancy Period limits.

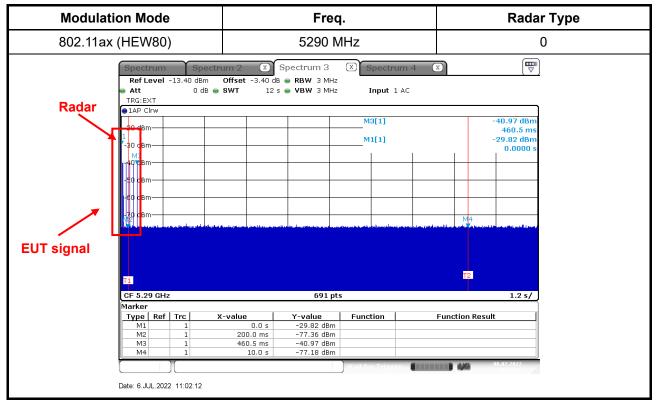
3.5.4 Test Result of Channel Move Time

For Mode 1:

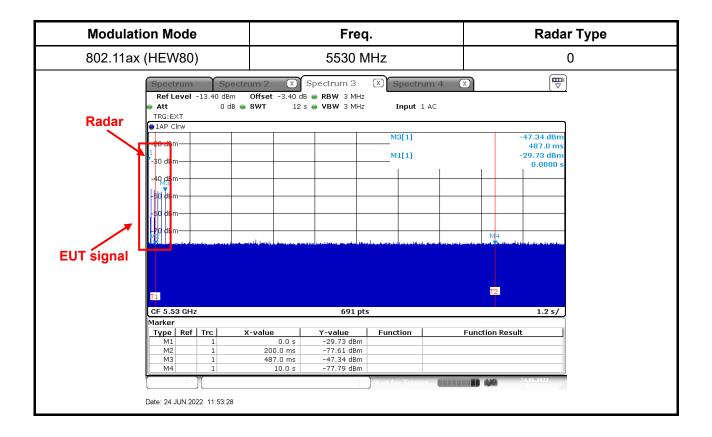
Modulation Mode: 802.11ax (HEW80)

Parameter	Test Result	Limit	
Farameter	Туре 0	Linnit	
Test Channel (MHz)	5290 MHz	-	
Channel Move Time (sec.)	0.460	< 10s	

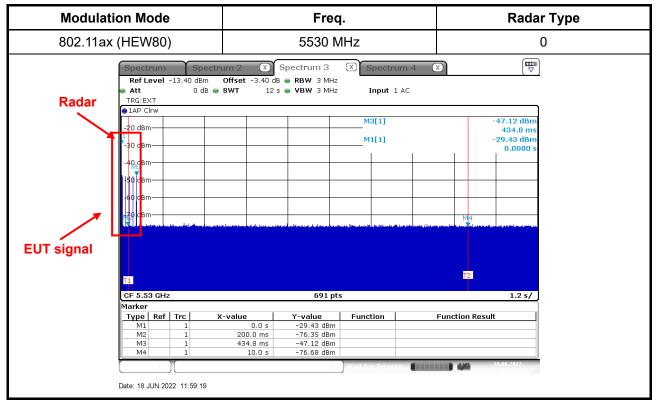
Modulation Mode: 802.11ax (HEW80)


Deremeter	Test Result	Limit	
Parameter	Туре 0	Limit	
Test Channel (MHz)	5530 MHz	-	
Channel Move Time (sec.)	0.487	< 10s	

For Mode 2:


Modulation Mode: 802.11ax (HEW80)

Parameter	Test Result	Limit	
Falameter	Туре 0	Limit	
Test Channel (MHz)	5530 MHz	-	
Channel Move Time (sec.)	0.434	< 10s	

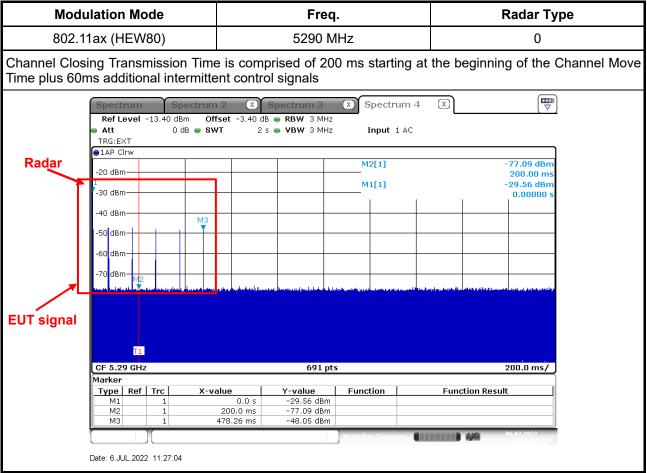


3.5.5 Test Result of Channel Closing Transmission Time

For Mode 1:

Modulation Mode: 802.11ax (HEW80)

Doromotor	Test Result	Lingit	
Parameter	Туре 0	Limit	
Test Channel (MHz)	5290 MHz	-	
Channel Closing Transmission Time (ms) (Note)	23.190	< 60ms	


Doromotor	Test Result	Limit	
Parameter	Туре 0	LIIIIL	
Test Channel (MHz)	5530 MHz	-	
Channel Closing Transmission Time (ms) (Note)	11.590	< 60ms	

For Mode 2:

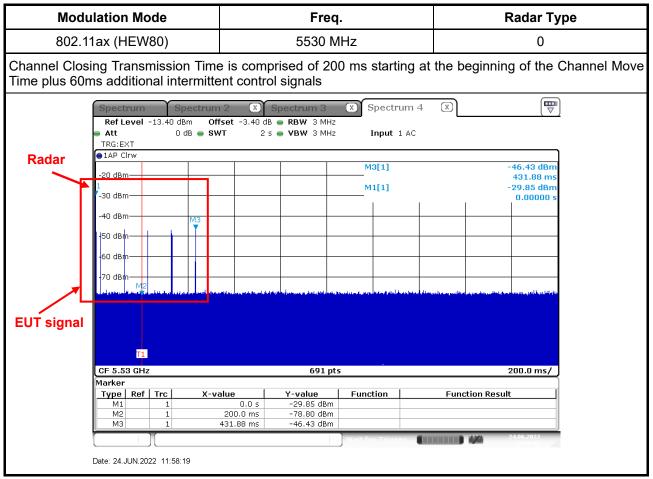
Parameter	Test Result	Limit	
Farameter	Туре 0		
Test Channel (MHz)	5530 MHz	-	
Channel Closing Transmission Time (ms) (Note)	14.490	< 60ms	

Note: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 seconds period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Dwell is the dwell time per spectrum analyzer sampling bin.

S is the sweep time

B is the number of spectrum analyzer sampling bins


C is the intermittent control signals of Channel Closing Transmission Time

N is the number of spectrum analyzer sampling bins (intermittent control signals) showing a U-NII transmission

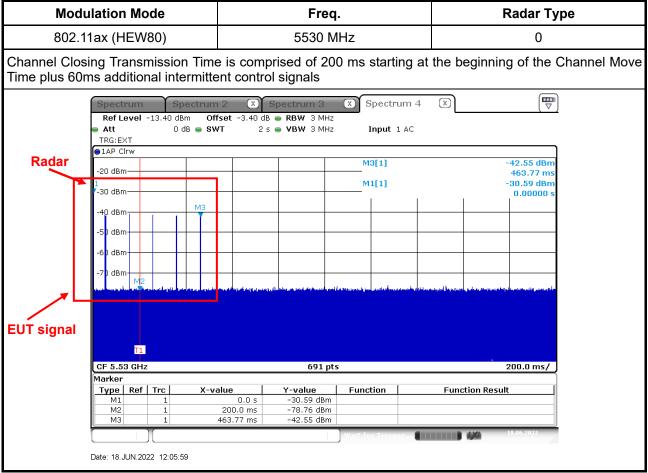
Dwell (2.900 ms)= S (2000 ms) / B (690)

C (23.190 ms) = N (8) X Dwell (2.900 ms)

Dwell is the dwell time per spectrum analyzer sampling bin.

S is the sweep time

B is the number of spectrum analyzer sampling bins


C is the intermittent control signals of Channel Closing Transmission Time

N is the number of spectrum analyzer sampling bins (intermittent control signals) showing a U-NII transmission

Dwell (2.900 ms)= S (2000 ms) / B (690)

C (11.590 ms) = N (4) X Dwell (2.900 ms)

Dwell is the dwell time per spectrum analyzer sampling bin.

S is the sweep time

B is the number of spectrum analyzer sampling bins

C is the intermittent control signals of Channel Closing Transmission Time

N is the number of spectrum analyzer sampling bins (intermittent control signals) showing a U-NII transmission

Dwell (2.900 ms)= S (2000 ms) / B (690)

C (14.490 ms) = N (5) X Dwell (2.900 ms)

3.5.6 Test Result of Non-Occupancy Period

For Mode 1:

Modulation Mode: 802.11ax (HEW80)

Parameter	Test Result	Limit	
Farameter	Туре 0		
Test Channel (MHz)	5290 MHz	-	
Non-Occupancy Period (min.)	≧30		

Modulation Mode: 802.11ax (HEW80)

Deremeter	Test Result	Limit
Parameter	Туре 0	Limit
Test Channel (MHz)	5530 MHz	-
Non-Occupancy Period (min.)	≧30	≧ 30 min

For Mode 2:

Modulation Mode: 802.11ax (HEW80)

Dovomotor	Test Result	Limit	
Parameter	Туре 0	– Limit	
Test Channel (MHz)	5530 MHz	-	
Non-Occupancy Period (min.)	≧30	≧ 30 min	

Modulation Mode	Freq.
802.11ax (HEW80)	5290 MHz

Non-Occupancy Period

During the 30 minutes observation time, UUT did not make any transmissions on a channel after a radar signal was detected on that channel by either the Channel Availability Check or the In-Service Monitoring.

-20 dBm			M1[1]		-29.53 dBm 98.55 s
M1 -30 dβm					
Bm					
3m					
3m					
ann Maria a saidh a sha a said	والأفصيبة ورويري ومراجع ومنافع والمتلا والمتلا والمتلا	المتعرب والمراجع والمراجع والمتعاد	a di su a fini una distanta di succito, inductor	A fully is second to be a fully at a second second	and the other states
					200.0 s/
CF 5.29 GHz		691 pts			200.0 \$7
CF 5.29 GHz Marker Type Ref Trc	X-value	691 pts	Function	Function Re	

Modulation Mode	Freq.
802.11ax (HEW80)	5530 MHz
Non-Occupancy Period During the 30 minutes observation time, UUT did no signal was detected on that channel by either the Cha	t make any transmissions on a channel after a radar nnel Availability Check or the In-Service Monitoring.
Spectrum Spectrum 2 (X) Spectrum 3 Ref Level -13.40 dBm Offset -3.40 dB • RBW 3 M Att 0 dB • SWT 2000 s • VBW 3 M SGL	Hz
●1AP Cirw	M1[1] -26.46 dBm
-20 dBm	M1[1] -26.46 dBm 98.55 s
-30 dBm	
3 Martin Ban-	
Зт-	
3m	
3m	
	hand with the second second state of the second
CF 5.53 GHz 691	pts 200.0 s/
Marker Type Ref Trc X-value Y-value	Function Function Result
Type Ref Trc X-value Y-value M1 1 98.55 s -26.46 dB	
	Ready 4406.2022
Date: 24.JUN.2022 14:08:29	

Modulation Mode	Freq.			
802.11ax (HEW80)	5530 MHz			
Non-Occupancy Period				

During the 30 minutes observation time, UUT did not make any transmissions on a channel after a radar signal was detected on that channel by either the Channel Availability Check or the In-Service Monitoring.

1AP Clrw						
-20 dAm			M1[1]		-	26.04 dBm 98.55 s
-30 dBm						
55 d.b.i.i						
ut dante						
3m						
2.11						
3m-						
3m						
		and the state of t	المراجع والمراجع والمراجع والمراجع والمراجع	والعربية بالمعربية والمعاد		والمعدولة والمعاد
CF 5.53 GHz		691 pts				200.0 s/
Marker			Function			
Type Ref Trc	X-value	Y-value			ion Result	

3.6 Statistical Performance Check

3.6.1 Statistical Performance Check Limit

Radar Type	Minimum Percentage of Successful Detection (Pd)	Minimum Trials
1	60%	30
2	60%	30
3	60%	30
4	60%	30
Aggregate (Radar Types 1-4)	80%	120
5	80%	30
6	70%	30

The percentage of successful detection is calculated by:

 $\frac{TotalWaveformDetections}{TotalWaveformTrails} \times 100 = Probability of Detection Radar Waveform$

In addition an aggregate minimum percentage of successful detection across all Short Pulse Radar Types 1-4 is required and is calculated as follows:

 $\frac{Pd1 + Pd2 + Pd3 + Pd4}{4}$

3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.6.3 Test Procedures

Test Method

For Statistical Performance Check test. Demonstrating a minimum channel loading of approximately 17% or greater of the test. Observe the transmissions of the UUT at the end of the Burst on the Operating Channel for duration greater than 10 seconds for Short Pulse Radar Types 1-4 and 6 to ensure detection occurs. Then Observe the transmissions of the UUT at the end of the Burst on the Operating Channel for duration greater than 22 seconds for Long Pulse Radar Type 5 to ensure detection occurs. The device can utilize a test mode to demonstrate when detection occurs to prevent the need to reset the device between trial runs.

3.6.4 Test Result of Statistical Performance Check

For Mode 1: For Band 2: Modulation Mode: 802.11ax (HEW20)

Type 1 Radar Statistical Performance

Trial #	Test Freq. (MHz)	Pulse Repetition Frequency Number	Pulse Repetition Frequency (Pulse Per Second)	PRI (us)	1=Detection 0=No Detection
1	5307	1	1930.5	518	1
2	5308	23	326.2	3066	1
3	5307	19	1139.0	878	1
4	5298	12	1355.0	738	1
5	5305	4	1730.1	578	1
6	5298	8	1519.8	658	1
7	5304	15	1253.1	798	1
8	5304	6	1618.1	618	1
9	5301	14	1285.3	778	1
10	5299	3	1792.1	558	1
11	5305	13	1319.3	758	1
12	5300	9	1474.9	678	1
13	5303	7	1567.4	638	1
14	5291	17	1193.3	838	1
15	5308	10	1432.7	698	1
16	5300	-	1692.0	591	1
17	5309	-	328.1	3048	1
18	5297	-	373.4	2678	1
19	5308	-	574.4	1741	1
20	5300	-	1216.5	822	1
21	5295	-	801.3	1248	1
22	5306	-	488.5	2047	1
23	5303	-	956.0	1046	1
24	5305	-	517.6	1932	0
25	5299	-	1422.5	703	1
26	5299	-	542.0	1845	1
27	5304	-	741.3	1349	1
28	5302	-	881.8	1134	1
29	5292	-	427.4	2340	1
30	5295	-	628.9	1590	1
Detection Percentage (%)					96.667
Limit					60%
Test Result					PASS