

Report No.: FR291332-02AD

0

RADIO TEST REPORT

FCC ID

: UDX-600130010

Equipment

: SMART Camera

Brand Name

: CISCO

Model Name

: MV13-HW

Applicant

: Cisco Systems, Inc.

170 West Tasman Drive, San Jose, CA 95134 USA

Manufacturer

: Cisco Systems, Inc.

170 West Tasman Drive, San Jose, CA 95134 USA

Standard

: 47 CFR FCC Part 15.247

The product was received on Mar. 15, 2023, and testing was started from Mar. 16, 2023 and completed on Jul. 19, 2023. We, Sporton International Inc. Hsinchu Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. Hsinchu Laboratory, the test report shall not be reproduced except in full.

Approved by: Sam Chen

Sporton International Inc. Hsinchu Laboratory

No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.)

TEL: 886-3-656-9065 FAX: 886-3-656-9085

Report Template No.: CB-A10_6 Ver1.3

Page Number

: 1 of 33

Issued Date

: Oct. 04, 2023

Report Version : 01

Table of Contents

Report No.: FR291332-02AD

Histo	ory of this test report	3
Sum	mary of Test Result	4
1	General Description	5
1.1	Information	5
1.2	Applicable Standards	8
1.3	Testing Location Information	8
1.4	Measurement Uncertainty	9
2	Test Configuration of EUT	10
2.1	Test Channel Mode	
2.2	The Worst Case Measurement Configuration	11
2.3	EUT Operation during Test	
2.4	Accessories	
2.5	Support Equipment	
2.6	Test Setup Diagram	15
3	Transmitter Test Result	18
3.1	AC Power-line Conducted Emissions	18
3.2	DTS Bandwidth	20
3.3	Maximum Conducted Output Power	21
3.4	Power Spectral Density	24
3.5	Emissions in Non-restricted Frequency Bands	26
3.6	Emissions in Restricted Frequency Bands	27
4	Test Equipment and Calibration Data	31
Appe	endix A. Test Results of AC Power-line Conducted Emissions	
Appe	endix B. Test Results of DTS Bandwidth	
Appe	endix C. Test Results of Maximum Conducted Output Power	
Appe	endix D. Test Results of Power Spectral Density	
Appe	endix E. Test Results of Emissions in Non-restricted Frequency Bands	
Арре	endix F. Test Results of Emissions in Restricted Frequency Bands	
Appe	endix G. Test Results of Radiated Emission Co-location	
Арре	endix H. Test Photos	

Photographs of EUT v01

TEL: 886-3-656-9065 Page Number : 2 of 33
FAX: 886-3-656-9085 Issued Date : Oct. 04, 2023

History of this test report

Report No.: FR291332-02AD

Report No.	Version	Description	Issued Date
FR291332-02AD	01	Initial issue of report	Oct. 04, 2023

TEL: 886-3-656-9065 Page Number : 3 of 33
FAX: 886-3-656-9085 Issued Date : Oct. 04, 2023

Summary of Test Result

Report No.: FR291332-02AD

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
1.1.2	15.203	Antenna Requirement	PASS	-
3.1	15.207	AC Power-line Conducted Emissions	PASS	-
3.2	15.247(a)	DTS Bandwidth	PASS	-
3.3	15.247(b)	Maximum Conducted Output Power	PASS	-
3.4	15.247(e)	Power Spectral Density	PASS	-
3.5	15.247(d)	Emissions in Non-restricted Frequency Bands	PASS	-
3.6	15.247(d)	Emissions in Restricted Frequency Bands	PASS	-

Conformity Assessment Condition:

- 1. The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.
- 2. The measurement uncertainty please refer to each test result in the chapter "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Sam Chen

Report Producer: Sophia Shiung

 TEL: 886-3-656-9065
 Page Number
 : 4 of 33

 FAX: 886-3-656-9085
 Issued Date
 : Oct. 04, 2023

1 General Description

1.1 Information

1.1.1 RF General Information

Frequency Range (MHz)	Bluetooth Mode	Ch. Frequency (MHz)	Channel Number
2400-2483.5	LE	2402-2480	0-39 [40]

Report No.: FR291332-02AD

Band	Mode	BWch (MHz)	Nant
2.4-2.4835GHz	BT-LE (1Mbps)	1.0	1TX
2.4-2.4835GHz	BT-LE (Coded S=2)	1.0	1TX
2.4-2.4835GHz	BT-LE (Coded S=8)	1.0	1TX
2.4-2.4835GHz	BT-LE (2Mbps)	2.0	1TX

Note:

Bluetooth LE uses a GFSK modulation.

BWch is the nominal channel bandwidth.

TEL: 886-3-656-9065 Page Number : 5 of 33
FAX: 886-3-656-9085 Issued Date : Oct. 04, 2023

1.1.2 Antenna Information

	Port					_		
Ant.	WLAN 2.4GHz	WLAN 5GHz	Bluetooth	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	1	1	1	SERCOMM	Ant1	PIFA Antenna	I-PEX	Note 1
2	2	2	2	SERCOMM	Ant2	PIFA Antenna	I-PEX	Note 1

Report No.: FR291332-02AD

Note 1:

A m4		Antenna	Gain (dBi)	
Ant.	2.4GHz	5GHz UNII 1~2A	5GHz UNII 2C	5GHz UNII 3
1	3.82	4.21	4.51	3.94
2	1.98	2.62	2.11	2.32

Note 2: The above information was declared by manufacturer.

Note 3: The EUT support TX/RX diversity function.

The Port 1 generated the worst case. Thus it was selected to test and record in the report.

Note 4: For 2.4GHz function

For IEEE 802.11 b/g/n/VHT (1TX/1RX):

Both Port 1 and Port 2 can be used as transmitting/receiving antenna.

But only one of them can transmit and receive signal at the same time.

For 5GHz function

For IEEE 802.11a/n/ac (1TX/1RX):

Both Port 1 and Port 2 can be used as transmitting/receiving antenna.

But only one of them can transmit and receive signal at the same time.

For bluetooth function

For bluetooth (1TX/1RX):

Both Port 1 and Port 2 can be used as transmitting/receiving antenna.

But only one of them can transmit and receive signal at the same time.

1.1.3 Mode Test Duty Cycle

Mode	DC	DCF(dB)	T(s)	VBW(Hz) ≥ 1/T
BT-LE(1Mbps)	0.629	2.01	393.125u	3k
BT-LE(2Mbps)	0.333	4.78	208.125u	10k

Note:

- DC is Duty Cycle.
- DCF is Duty Cycle Factor.

TEL: 886-3-656-9065 Page Number : 6 of 33
FAX: 886-3-656-9085 Issued Date : Oct. 04, 2023

1.1.4 EUT Operational Condition

EUT Power Type	From PoE				
Function	☑ Point-to-multipoint ☐ Point-to-point				
Test Software Version QRCT V4.0.00201.0					
	□ LE 1M PHY: 1 Mb/s				
Support Modo	□ LE Coded PHY (S=2): 500 Kb/s				
Support Mode	∠ LE Coded PHY (S=8): 125 Kb/s				
	LE 2M PHY: 2 Mb/s				

Report No.: FR291332-02AD

Note: The above information was declared by manufacturer.

1.1.5 Multiple Sources of Component Information

The EUT has second source verify for DDR4, UFS-3.1 256GB, PoE Transformer, LAN Transformer, ACT2, RF Connector, CMOS Coaxial Cable, LED Board Cable.

Note: The above information was declared by manufacturer.

1.1.6 EUT Combination Information

Item	Туре	EUT 1	EUT 2
1	DDR4	Main Source	Second Source
2	UFS-3.1 256GB	Main Source	Second Source
3	PoE Transformer	Main Source	Second Source
4	LAN Transformer	Main Source	Second Source
5	ACT2	Main Source	Second Source
6	RF Connector	Main Source	Second Source
7	CMOS Coaxial Cable	Main Source	Second Source
8	LED Board Cable	Main Source	Second Source
9	Mic Board Cable	Main Source	Second Source

Note 1: After evaluating, the EUT 1 was selected to test all the test items and recorded in the report; the EUT 2 was selected to test AC power-line conducted emissions and Emissions in Restricted Frequency Bands below 1GHz.

Note 2: The above information was declared by manufacturer.

TEL: 886-3-656-9065 Page Number: 7 of 33
FAX: 886-3-656-9085 Issued Date: 0ct. 04, 2023

1.2 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

Report No.: FR291332-02AD

- 47 CFR FCC Part 15.247
- ANSI C63.10-2013

The following reference test guidance is not within the scope of accreditation of TAF.

- FCC KDB 558074 D01 v05r02
- FCC KDB 414788 D01 v01r01

1.3 Testing Location Information

Testing Location Information

Test Lab.: Sporton International Inc. Hsinchu Laboratory

Hsinchu ADD: No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.)

(TAF: 3787) TEL: 886-3-656-9065 FAX: 886-3-656-9085

Test site Designation No. TW3787 with FCC.

Conformity Assessment Body Identifier (CABID) TW3787 with ISED.

Test Condition	Test Site No.	Test Engineer	Test Environment (°C / %)	Test Date
RF Conducted	TH03-CB	Brian Sun	23.5~24.2 / 62~69	Mar. 21, 2023~ May 05, 2023
Radiated < 1GHz	03CH05-CB	Black Lu	21.2-22.3 / 56-59	Jun. 23, 2023~ Jul. 10, 2023
Radiated > 1GHz	03CH06-CB	Roy Mai	21.7~22.8 / 56~59	Mar. 16, 2023~ May 10, 2023
Radiated (For Co-location)	03CH05-CB	Roy Mai	21.2~22.3 / 56~59	Mar. 16, 2023~ May 10, 2023
AC Conduction	CO01-CB	Gray Lee	21~22 / 54~55	Jul. 19, 2023

TEL: 886-3-656-9065 Page Number: 8 of 33
FAX: 886-3-656-9085 Issued Date: Cot. 04, 2023

1.4 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence

Report No.: FR291332-02AD

level (based on a coverage factor (k=2)

Test Items	Uncertainty	Remark
Conducted Emission (150kHz ~ 30MHz)	3.4 dB	Confidence levels of 95%
Radiated Emission (9kHz ~ 30MHz)	3.7 dB	Confidence levels of 95%
Radiated Emission (30MHz ~ 1,000MHz)	5.1 dB	Confidence levels of 95%
Radiated Emission (1GHz ~ 18GHz)	5.2 dB	Confidence levels of 95%
Radiated Emission (18GHz ~ 40GHz)	4.7 dB	Confidence levels of 95%
Conducted Emission	3.2 dB	Confidence levels of 95%
Output Power Measurement	0.8 dB	Confidence levels of 95%
Power Density Measurement	3.2 dB	Confidence levels of 95%
Bandwidth Measurement	2.0 %	Confidence levels of 95%

TEL: 886-3-656-9065 Page Number : 9 of 33
FAX: 886-3-656-9085 Issued Date : Oct. 04, 2023

2 Test Configuration of EUT

2.1 Test Channel Mode

Mode	Power Setting
BT-LE(1Mbps)	-
2402MHz	Maximum
2440MHz	Maximum
2480MHz	Maximum
BT-LE(2Mbps)	-
2402MHz	Maximum
2440MHz	Maximum
2478MHz	Maximum
2480MHz	Default

Report No.: FR291332-02AD

TEL: 886-3-656-9065 Page Number : 10 of 33
FAX: 886-3-656-9085 Issued Date : Oct. 04, 2023

2.2 The Worst Case Measurement Configuration

The Worst Case Mode for Following Conformance Tests			
Tests Item	AC power-line conducted emissions		
Condition AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz			
Operating Mode	Normal Link		
1	EUT 1 connected via Ethernet - Day mode + PoE 1		
2	EUT 1 connected via Ethernet - Night mode + PoE 1		
Mode 2 has been evaluated to be the worst case among Mode 1~2, thus measurement for Mode 3~6 will follow this same test mode.			
3	EUT 1 connected via WLAN 2.4GHz - Night mode + PoE 1		
4	EUT 1 connected via WLAN 2.4GHz - Night mode + PoE 2		
5	EUT 1 connected via WLAN 5GHz - Night mode + PoE 1		
6	EUT 1 connected via WLAN 5GHz - Night mode + PoE 2		
Mode 2 has been evaluated to be the worst case among Mode 1~6, thus measurement for Mode 7 will follow this same test mode.			
7	EUT 2 connected via Ethernet - Night mode + PoE 1		
For operating, Mode 2 is the worst case and it was recorded in this test report.			

Report No.: FR291332-02AD

The Worst Case Mode for Following Conformance Tests		
Tests Item	DTS Bandwidth Maximum Conducted Output Power Power Spectral Density Emissions in Non-restricted Frequency Bands	
Test Condition	Conducted measurement at transmit chains	
1	EUT 1	

TEL: 886-3-656-9065 Page Number : 11 of 33 FAX: 886-3-656-9085 Issued Date : Oct. 04, 2023

The Worst Case Mode for Following Conformance Tests			
Tests Item	Emissions in Restricted Frequency Bands		
Test Condition	Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EU regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type.		
Operating Mode < 1GHz	Normal Link		
1	EUT 1 in Z axis connected via Ethernet - Day mode + PoE 1		
2	EUT 1 in Y axis connected via Ethernet - Day mode + PoE 1		
3	EUT 1 in X axis connected via Ethernet - Day mode + PoE 1		
Mode 1 has been evaluate this same test mode.	d to be the worst case among Mode 1~3, thus measurement for Mode 4 will follow		
4	EUT 1 in Z axis connected via Ethernet - Night mode + PoE 1		
Mode 4 has been evaluate follow this same test mode	ed to be the worst case among Mode 1~4, thus measurement for Mode 5~8 will		
5	EUT 1 in Z axis connected via WLAN 2.4GHz - Night mode + PoE 1		
6	EUT 1 in Z axis connected via WLAN 2.4GHz - Night mode + PoE 2		
7	EUT 1 in Z axis connected via WLAN 5GHz - Night mode + PoE 1		
8	EUT 1 in Z axis connected via WLAN 5GHz - Night mode + PoE 2		
Mode 7 has been evaluate this same test mode.	d to be the worst case among Mode 1~8, thus measurement for Mode 9 will follow		
9	EUT 2 in Z axis connected via WLAN 5GHz - Night mode + PoE 1		
For operating, mode 9 is the worst case and it was recorded in this test report.			
	СТХ		
Operating Mode > 1GHz	The EUT was performed at X axis, Y axis and Z axis position, and the worst case was found at Z axis. Thus, the measurement will follow this same test configuration.		
1	EUT 1 in Z axis		

Report No.: FR291332-02AD

TEL: 886-3-656-9065 Page Number : 12 of 33
FAX: 886-3-656-9085 Issued Date : Oct. 04, 2023

The Worst Case Mode for Following Conformance Tests			
Tests Item Simultaneous Transmission Analysis - Radiated Emission Co-location			
Test Condition Radiated measurement			
	Normal Link		
Operating Mode	EUT in Y axis generated the worst case at Radiated measurement above 1GHz (CTX – Harmonic) for WLAN 2.4GHz and 5GHz. Consequently, the measurement will follow this same test mode.		
1	EUT 1 in Y axis + Bluetooth + WLAN 2.4GHz		
2 EUT 1 in Y axis + Bluetooth + WLAN 5GHz			
For operating, mode 2 is the worst case and it was recorded in this test report.			
Refer to Appendix G for Radiated Emission Co-location.			

Report No.: FR291332-02AD

The Worst Case Mode for Following Conformance Tests			
Tests Item	Tests Item Simultaneous Transmission Analysis - Co-location RF Exposure Evaluation		
Operating Mode			
1 EUT 1 + Bluetooth + WLAN 2.4GHz			
2 EUT 1 + Bluetooth + WLAN 5GHz			
Refer to Sporton Test Report No.: FA291332-02 for Co-location RF Exposure Evaluation.			

Note: The PoEs were for measurement only and would not be marketed.

Their information is shown as below:

Support Unit	Brand	Model
PoE 1	PHIHONG	POEA33U-1ATE
PoE 2	Cisco	MA-PWR-MV-LV

2.3 EUT Operation during Test

For CTX Mode:

The EUT was programmed to be in continuously transmitting mode.

For Normal Link Mode:

During the test, the EUT operation to normal function.

2.4 Accessories

Accessories
Wall-mounted rack 1*1
Wall-mounted rack 2*1
Wall-mounted rack 3*1

TEL: 886-3-656-9065 Page Number : 13 of 33
FAX: 886-3-656-9085 Issued Date : Oct. 04, 2023

2.5 Support Equipment

For AC Conduction:

Support Equipment						
No.	No. Equipment Brand Name Model Name FCC ID					
Α	PoE 1	PHIHONG	POEA30U-1AT-1	N/A		
В	LAN NB	DELL	E6430	N/A		
С	Smart phone	Samsung	Galaxy J2	N/A		

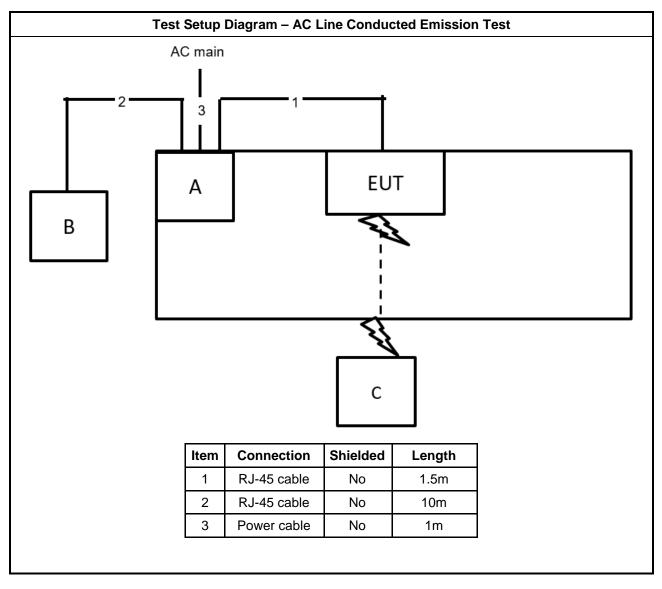
Report No.: FR291332-02AD

For Radiated (below 1GHz):

Support Equipment						
No.	No. Equipment Brand Name Model Name FCC ID					
Α	Notebook	Lenovo	L440	N/A		
В	PoE 1	PHIHONG	POEA33U-1ATE	N/A		
С	WLAN AP	ASUS	RT-AX88U	N/A		
D	Smart phone	Samsung	Galaxy J2	N/A		

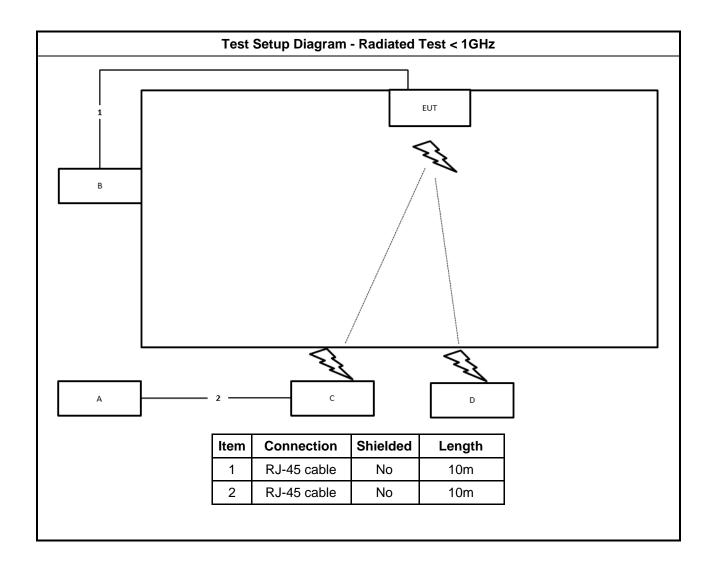
For Radiated (above 1GHz):

1 of Hadiaton (above 10112).					
Support Equipment					
No.	No. Equipment Brand Name Model Name FCC ID				
Α	Notebook	DELL	E4300	N/A	
В	PoE 1	PHIHONG	POEA30U-1AT-1	N/A	

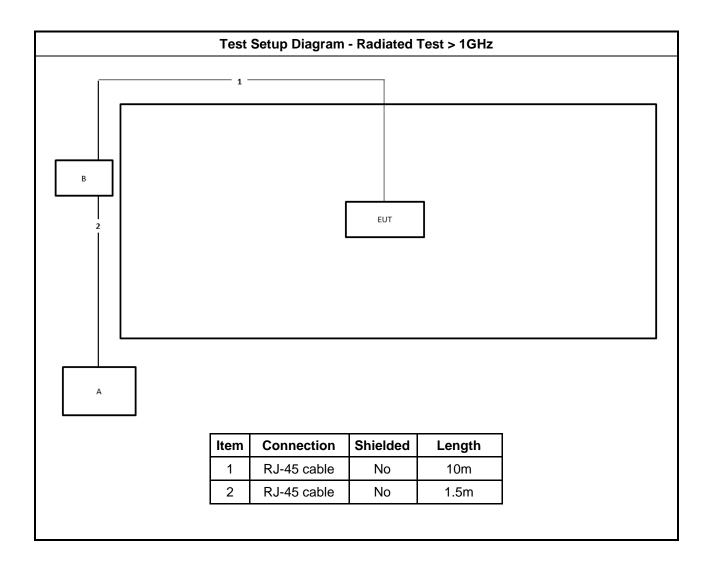

For RF Conducted:

Support Equipment						
No.	No. Equipment Brand Name Model Name FCC ID					
Α	Notebook	DELL	E4300	N/A		
В	PoE 2	Cisco	MA-PWR-MV-LV	N/A		

TEL: 886-3-656-9065 Page Number : 14 of 33 FAX: 886-3-656-9085 Issued Date : Oct. 04, 2023



2.6 Test Setup Diagram


TEL: 886-3-656-9065 Page Number : 15 of 33
FAX: 886-3-656-9085 Issued Date : Oct. 04, 2023

Report No.: FR291332-02AD

TEL: 886-3-656-9065 Page Number : 16 of 33
FAX: 886-3-656-9085 Issued Date : Oct. 04, 2023

Report No.: FR291332-02AD

TEL: 886-3-656-9065 Page Number : 17 of 33
FAX: 886-3-656-9085 Issued Date : Oct. 04, 2023

3 Transmitter Test Result

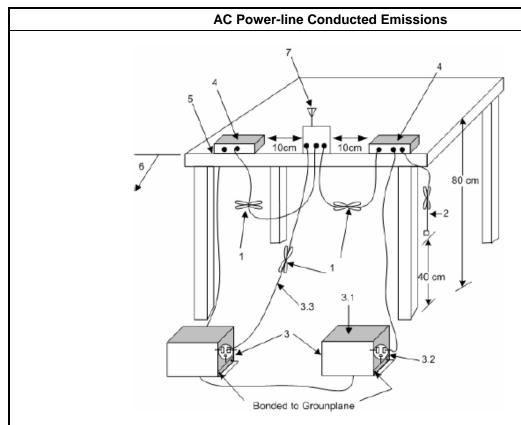
3.1 AC Power-line Conducted Emissions

3.1.1 AC Power-line Conducted Emissions Limit

AC Power-line Conducted Emissions Limit							
Frequency Emission (MHz) Quasi-Peak Average							
0.15-0.5 66 - 56 * 56 - 46 *							
0.5-5	56	46					
5-30 60 50							
Note 1: * Decreases with the logarithm of the frequency.							

Report No.: FR291332-02AD

3.1.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures

	Test Method
•	Refer as ANSI C63.10-2013, clause 6.2 for AC power-line conducted emissions.

TEL: 886-3-656-9065 Page Number : 18 of 33
FAX: 886-3-656-9085 Issued Date : Oct. 04, 2023

3.1.4 **Test Setup**

-Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long.

Report No.: FR291332-02AD

- 2—The I/O cables that are not connected to an accessory shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 3—EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω loads. LISN may be placed on top of, or immediately beneath, reference ground plane.
- 3.1—All other equipment powered from additional LISN(s).
- 3.2—A multiple-outlet strip may be used for multiple power cords of non-EUT equipment.
 3.3—LISN at least 80 cm from nearest part of EUT chassis.
 4—Non-EUT components of EUT system being tested.

- –Rear of EUT, including peripheráls, shall all be aligned and flush with edge of tabletop.
- 6—Edge of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground
- 7—Antenna can be integral or detachable. If detachable, then the antenna shall be attached for this test.

1.1.1. Measurement Results Calculation

The measured Level is calculated using:

- Corrected Reading: LISN Factor (LISN) + Attenuator (AT/AUX) + Cable Loss (CL) + Read Level (Raw) = Level
- Margin = -Limit + Level

Test Result of AC Power-line Conducted Emissions 3.1.5

Refer as Appendix A

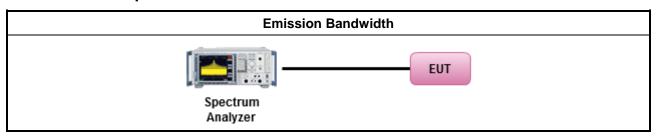
TEL: 886-3-656-9065 Page Number : 19 of 33 FAX: 886-3-656-9085 **Issued Date** : Oct. 04, 2023

3.2 DTS Bandwidth

3.2.1 6dB Bandwidth Limit

6dB Bandwidth Limit					
Systems using digital modulation techniques:					
■ 6 dB bandwidth ≥ 500 kHz.					

Report No.: FR291332-02AD


3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

	Test Method							
•	For	the emission bandwidth shall be measured using one of the options below:						
		Refer as FCC KDB 558074, clause 8.2 & C63.10 clause 11.8.1 Option 1 for 6 dB bandwidth measurement.						
		Refer as FCC KDB 558074, clause 8.2 & C63.10 clause 11.8.2 Option 2 for 6 dB bandwidth measurement.						
		Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.						

3.2.4 Test Setup

3.2.5 Test Result of Emission Bandwidth

Refer as Appendix B

TEL: 886-3-656-9065 Page Number : 20 of 33 FAX: 886-3-656-9085 Issued Date : Oct. 04, 2023

3.3 Maximum Conducted Output Power

3.3.1 Maximum Conducted Output Power Limit

Maximum Conducted Output Power Limit

- If $G_{TX} \le 6$ dBi, then $P_{Out} \le 30$ dBm (1 W)
- Point-to-multipoint systems (P2M): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)$ dBm
- Point-to-point systems (P2P): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)/3$ dBm
- Smart antenna system (SAS):
 - Single beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)/3$ dBm
 - Overlap beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)/3$ dBm
 - Aggregate power on all beams: If G_{TX} > 6 dBi, then P_{Out} = 30 (G_{TX} 6)/3 + 8dB dBm

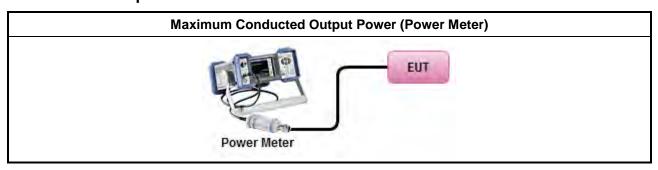
Report No.: FR291332-02AD

 P_{Out} = maximum peak conducted output power or maximum conducted output power in dBm, G_{TX} = the maximum transmitting antenna directional gain in dBi.

3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

TEL: 886-3-656-9065 Page Number : 21 of 33
FAX: 886-3-656-9085 Issued Date : Oct. 04, 2023


3.3.3 Test Procedures

		Test Method					
•	Max	imum Peak Conducted Output Power					
		Refer as FCC KDB 558074, clause 8.3.1.1 & C63.10 clause 11.9.1.1 (RBW ≥ EBW method).					
		Refer as FCC KDB 558074, clause 8.3.1.3 & C63.10 clause 11.9.1.3 (peak power meter).					
•	Max	imum Conducted Output Power					
[duty cycle ≥ 98% or external video / power trigger]							
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.2 Method AVGSA-1.					
		Refer as FCC KDB 558074, clause $8.3.2.2$ & C63.10 clause $11.9.2.2.3$ Method AVGSA-1A. (alternative)					
	duty	cycle < 98% and average over on/off periods with duty factor					
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.4 Method AVGSA-2.					
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.5 Method AVGSA-2A (alternative)					
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.6 Method AVGSA-3					
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.7 Method AVGSA-3A (alternative)					
	Measurement using a power meter (PM)						
		Refer as FCC KDB 558074, clause $8.3.2.3 \& C63.10$ clause $11.9.2.3.1$ Method AVGPM (using an RF average power meter).					
		Refer as FCC KDB 558074, clause $8.3.2.3 \& C63.10$ clause $11.9.2.3.2$ Method AVGPM-G (using an gate RF average power meter).					
•	For	conducted measurement.					
	•	If the EUT supports multiple transmit chains using options given below: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.					
	•	If multiple transmit chains, EIRP calculation could be following as methods: $P_{total} = P_1 + P_2 + \ldots + P_n$ (calculated in linear unit [mW] and transfer to log unit [dBm]) $EIRP_{total} = P_{total} + DG$					

Report No.: FR291332-02AD

TEL: 886-3-656-9065 Page Number : 22 of 33
FAX: 886-3-656-9085 Issued Date : Oct. 04, 2023

3.3.4 Test Setup

Report No. : FR291332-02AD

3.3.5 Test Result of Maximum Conducted Output Power

Refer as Appendix C

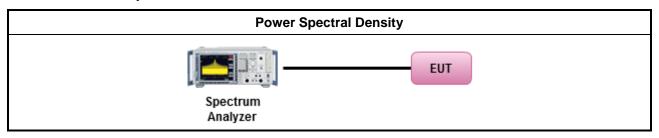
TEL: 886-3-656-9065 Page Number : 23 of 33
FAX: 886-3-656-9085 Issued Date : Oct. 04, 2023

3.4 Power Spectral Density

3.4.1 Power Spectral Density Limit

Power Spectral Density Limit ■ Power Spectral Density (PSD)≤8 dBm/3kHz

Report No.: FR291332-02AD


3.4.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.4.3 Test Procedures

	Test Method								
•	Peak power spectral density procedures that the same method as used to determine the conducted output power. If maximum peak conducted output power was measured to demonstrate compliance to the output power limit, then the peak PSD procedure below (Method PKPSD) shall be used. If maximum conducted output power was measured to demonstrate compliance to the output power limit, then one of the average PSD procedures shall be used, as applicable based on the following criteria (the peak PSD procedure is also an acceptable option).								
	Refer as FCC KDB 558074, clause 8.4 & C63.10 clause 11.10 Method Max. PSD.								
	[duty cycle ≥ 98% or external video / power trigger]								
•	For conducted measurement.								
	If The EUT supports multiple transmit chains using options given below:								
	Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power spectral density (PSD). Sample all transmit ports simultaneously using a spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the NTX output to obtain the value for the first frequency bin of the summed spectrum.). Add up the amplitude (power) values for the different transmit chains and use this as the new data trace.								
	Option 2: Measure and sum spectral maxima across the outputs. With this technique, spectra are measured at each output of the device at the required resolution bandwidth. The maximum value (peak) of each spectrum is determined. These maximum values are then summed mathematically in linear power units across the outputs. These operations shall be performed separately over frequency spans that have different out-of-band or spurious emission limits,								
	Option 3: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.								

3.4.4 Test Setup

Report No. : FR291332-02AD

3.4.5 Test Result of Power Spectral Density

Refer as Appendix D

TEL: 886-3-656-9065 Page Number : 25 of 33
FAX: 886-3-656-9085 Issued Date : Oct. 04, 2023

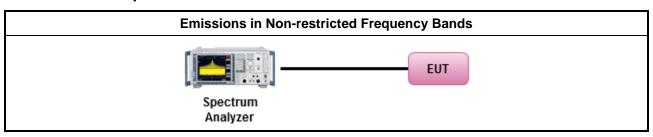
3.5 Emissions in Non-restricted Frequency Bands

3.5.1 Emissions in Non-restricted Frequency Bands Limit

Un-restricted Band Emissions Limit				
RF output power procedure	Limit (dBc)			
Peak output power procedure	20			
Average output power procedure	30			

Report No.: FR291332-02AD

- Note 1: If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.
- Note 2: If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.


3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

Test Method	
 Refer as FCC KDB 558074, clause 8.5 for unwanted emissions into non-restricted bands. 	

3.5.4 Test Setup

3.5.5 Test Result of Emissions in Non-restricted Frequency Bands

Refer as Appendix E

TEL: 886-3-656-9065 Page Number : 26 of 33
FAX: 886-3-656-9085 Issued Date : Oct. 04, 2023

3.6 Emissions in Restricted Frequency Bands

3.6.1 Emissions in Restricted Frequency Bands Limit

Restricted Band Emissions Limit							
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)				
0.009~0.490 2400/F(kHz)		48.5 - 13.8	300				
0.490~1.705	24000/F(kHz)	33.8 - 23	30				
1.705~30.0	30	29	30				
30~88 100		40	3				
88~216	150	43.5	3				
216~960 200		46	3				
Above 960 500		54	3				

Report No.: FR291332-02AD

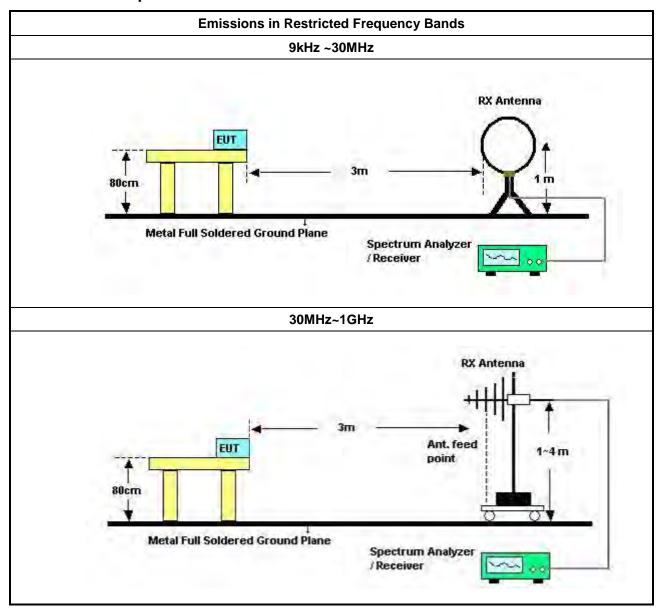
- Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).
- Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB / decade). The test report shall specify the extrapolation method used to determine compliance of the FLIT
- Note 3: Using the distance of 1m during the test for above 18 GHz, and the test value to correct for the distance factor at 3m.

3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

TEL: 886-3-656-9065 Page Number : 27 of 33
FAX: 886-3-656-9085 Issued Date : Oct. 04, 2023

3.6.3 Test Procedures


		Test Method					
•	The average emission levels shall be measured in [duty cycle ≥ 98 or duty factor].						
•	Refer as ANSI C63.10, clause 6.10.3 band-edge testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band.						
•	For	the transmitter unwanted emissions shall be measured using following options below:					
	■ Refer as FCC KDB 558074, clause 8.6 for unwanted emissions into restricted bands.						
		Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.5.1(trace averaging for duty cycle ≥98%).					
		Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.5.2(trace averaging + duty factor).					
		☐ Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.5.3(Reduced VBW≥1/T).					
		Refer as ANSI C63.10, clause 7.5 average value of pulsed emissions.					
		Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.4 measurement procedure peak limit.					
•	For	the transmitter band-edge emissions shall be measured using following options below:					
	Refer as FCC KDB 558074 clause 8.7 & c63.10 clause 11.13.1, When the performing peak or average radiated measurements, emissions within 2 MHz of the authorized band edge may be measured using the marker-delta method described below.						
	•	Refer as FCC KDB 558074, clause 8.7 (ANSI C63.10, clause 6.10.6) for marker-delta method for band-edge measurements.					
	•	Refer as FCC KDB 558074, clause 8.7 for narrower resolution bandwidth (100kHz) using the band power and summing the spectral levels (i.e., 1 MHz).					
	•	For conducted unwanted emissions into restricted bands (absolute emission limits). Devices with multiple transmit chains using options given below: (1) Measure and sum the spectra across the outputs or (2) Measure and add 10 log(N) dB					
	•	For FCC KDB 662911 The methodology described here may overestimate array gain, thereby resulting in apparent failures to satisfy the out-of-band limits even if the device is actually compliant. In such cases, compliance may be demonstrated by performing radiated tests around the frequencies at which the apparent failures occurred.					

Report No.: FR291332-02AD

TEL: 886-3-656-9065 Page Number : 28 of 33
FAX: 886-3-656-9085 Issued Date : Oct. 04, 2023

3.6.4 Test Setup

TEL: 886-3-656-9065 Page Number : 29 of 33
FAX: 886-3-656-9085 Issued Date : Oct. 04, 2023

Report No.: FR291332-02AD

3.6.5 Measurement Results Calculation

The measured Level is calculated using:

Corrected Reading: Antenna factor (AF) + Cable loss (CL) + Read level (Raw) - Preamp factor (PA)(if applicable) = Level.

Spectrum Analyzer

3.6.6 Emissions in Restricted Frequency Bands (Below 30MHz)

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to KDB414788 Radiated Test Site, and the result came out very similar.

All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

The radiated emissions were investigated from 9 kHz or the lowest frequency generated within the device, up to the 10th harmonic or 40 GHz, whichever is appropriate.

3.6.7 Test Result of Emissions in Restricted Frequency Bands

Refer as Appendix F

TEL: 886-3-656-9065 Page Number: 30 of 33
FAX: 886-3-656-9085 Issued Date: Oct. 04, 2023

4 Test Equipment and Calibration Data

Instrument	Brand	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
EMI Receiver	Agilent	N9038A	My52260123	9kHz ~ 8.4GHz	Feb. 20, 2023	Feb. 19, 2024	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50- 16-2	04083	150kHz ~ 100MHz	Feb. 16, 2023	Feb. 15, 2024	Conduction (CO01-CB)
LISN	Schwarzbeck	NSLK 8127	8127647	9kHz ~ 30MHz	Apr. 27, 2023	Apr. 26, 2024	Conduction (CO01-CB)
Pulse Limiter	Rohde& Schwarz	ESH3-Z2	100430	9kHz ~ 30MHz	Feb. 09, 2023	Feb. 08, 2024	Conduction (CO01-CB)
COND Cable	Woken	Cable	Low cable-CO01	9kHz ~ 30MHz	Oct. 18, 2022	Oct. 17, 2023	Conduction (CO01-CB)
Software	SPORTON	SENSE	V5.10	-	N.C.R.	N.C.R.	Conduction (CO01-CB)
Loop Antenna	Teseq	HLA 6120	31244	9kHz - 30 MHz	Mar. 23, 2023	Mar. 22, 2024	Radiation (03CH05-CB)
3m Semi Anechoic Chamber NSA	TDK	SAC-3M	03CH05-CB	30 MHz ~ 1 GHz	Aug. 03, 2022	Aug. 02, 2023	Radiation (03CH05-CB)
Bilog Antenna with 6dB Attenuator	TESEQ & EMCI	CBL 6112D & N-6-06	35236 & AT-N0610	30MHz ~ 2GHz	Mar. 24, 2023	Mar. 23, 2024	Radiation (03CH05-CB)
Amplifier	EMCI	EMC330N	980331	20MHz ~ 3GHz	May 03, 2023	May 02, 2024	Radiation (03CH05-CB)
RF Cable-low	Woken	RG402	Low Cable-04+23	30MHz~1GHz	Oct. 03, 2022	Oct. 02, 2023	Radiation (03CH05-CB)
3m Semi Anechoic Chamber VSWR	TDK	SAC-3M	03CH05-CB	1GHz ~18GHz 3m	Nov. 06, 2022	Nov. 05, 2023	Radiation (03CH05-CB)
Horn Antenna	SCHWARZBE CK	BBHA9120D	BBHA 9120 D-1291	1GHz~18GHz	Jun. 23, 2022	Jun. 22, 2023	Radiation (03CH05-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Aug. 22, 2022	Aug. 21, 2023	Radiation (03CH05-CB)
Pre-Amplifier	EMCI	EMC12630SE	980287	1GHz – 26.5GHz	Jul. 01, 2022	Jun. 30, 2023	Radiation (03CH05-CB)
Pre-Amplifier	SGH	SGH184	20221107-3	18GHz ~ 40GHz	Nov. 16, 2022	Nov. 15, 2023	Radiation (03CH05-CB)
RF Cable-high	Woken	RG402	High Cable-28	1GHz~18GHz	Oct. 03, 2022	Oct. 02, 2023	Radiation (03CH05-CB)
RF Cable-high	Woken	RG402	High Cable-04+28	1GHz~18GHz	Oct. 03, 2022	Oct. 02, 2023	Radiation (03CH05-CB)
High Cable	Woken	WCA0929M	40G#5+6	1GHz ~ 40 GHz	Dec. 07, 2022	Dec. 06, 2023	Radiation (03CH05-CB)
High Cable	Woken	WCA0929M	40G#5	1GHz ~ 40 GHz	Dec. 07, 2022	Dec. 06, 2023	Radiation (03CH05-CB)

TEL: 886-3-656-9065 FAX: 886-3-656-9085

Report Template No.: CB-A10_6 Ver1.3

Page Number : 31 of 33 Issued Date : Oct. 04, 2023

Report No.: FR291332-02AD

Report Version : 01

RF Cable-high

RF Cable-high

Woken

Woken

RG402

RG402

Calibration Calibration Instrument Model No. Serial No. Characteristics Remark **Brand Date Due Date** Radiation Dec. 07, 2022 Dec. 06, 2023 High Cable Woken WCA0929M 40G#6 1GHz ~ 40 GHz (03CH05-CB) Radiation Test Software **SPORTON SENSE** V5.10 N.C.R. N.C.R. (03CH05-CB) 3m Semi Anechoic 1GHz ~18GHz Radiation **TDK** SAC-3M 03CH06-CB Sep. 30, 2022 Sep. 29, 2023 (03CH06-CB) Chamber 3m **VSWR SCHWARZBE BBHA** Radiation Horn Antenna **BBHA9120D** 1GHz~18GHz Aug. 08, 2023 Aug. 09, 2022 9120D-1292 (03CH06-CB) Radiation Horn Antenna Schwarzbeck **BBHA 9170** BBHA9170252 15GHz ~ 40GHz Aug. 22, 2022 Aug. 21, 2023 (03CH06-CB) 0.5GHz ~ Radiation Pre-Amplifier Agilent 83017A MY53270064 Aug 02, 2022 Aug 01, 2023 26.5GHz (03CH06-CB) Radiation Pre-Amplifier SGH SGH184 20221107-3 18GHz ~ 40GHz Nov. 16, 2022 Nov. 15, 2023 (03CH06-CB) Spectrum Radiation R&S FSP40 100080 9kHz~40GHz Dec. 21, 2022 Dec. 20, 2023 analyzer (03CH06-CB) Radiation RF Cable-high Woken RG402 High Cable-68 1GHz~18GHz Oct. 03, 2022 Oct. 02, 2023 (03CH06-CB) High Radiation RF Cable-high Woken RG402 1GHz~18GHz Dec. 21, 2022 Dec. 20, 2023 (03CH06-CB) Cable-05+68 Radiation High Cable Woken WCA0929M 40G#5+6 1GHz ~ 40 GHz Dec. 07, 2022 Dec. 06, 2023 (03CH06-CB) Radiation High Cable Woken WCA0929M 40G#5 1GHz ~ 40 GHz Dec. 07, 2022 Dec. 06, 2023 (03CH06-CB) Radiation High Cable Woken WCA0929M 40G#6 1GHz ~ 40 GHz Dec. 07, 2022 Dec. 06, 2023 (03CH06-CB) Radiation **Test Software SPORTON** SENSE V5.10 N.C.R. N.C.R. (03CH06-CB) Conducted Signal R&S FSV40 101903 9kHz ~ 40GHz May 27, 2022 May 26, 2023 Analyzer (TH03-CB) 300MHz~ Conducted Power Sensor Anritsu MA2411B 1531344 Jul. 31, 2022 Jul. 30, 2023 (TH03-CB) 40GHz 300MHz~ Conducted Power Meter Anritsu ML2495A 1728002 Jul. 31, 2022 Jul. 30, 2023 (TH03-CB) 40GHz Conducted Oct. 03, 2022 RF Cable-high Woken RG402 High Cable-11 1 GHz -18 GHz Oct. 02, 2023 (TH03-CB) Conducted RF Cable-high Woken RG402 High Cable-12 1 GHz -18 GHz Oct. 03, 2022 Oct. 02, 2023 (TH03-CB) Conducted RF Cable-high Woken RG402 High Cable-13 1 GHz -18 GHz Oct. 03, 2022 Oct. 02, 2023 (TH03-CB)

Report No.: FR291332-02AD

Conducted

(TH03-CB)
Conducted

(TH03-CB)

TEL: 886-3-656-9065 Page Number: 32 of 33
FAX: 886-3-656-9085 Issued Date: Oct. 04, 2023

1 GHz -18 GHz

1 GHz -18 GHz

Oct. 03, 2022

Oct. 03, 2022

Oct. 02, 2023

Oct. 02, 2023

Report Template No.: CB-A10_6 Ver1.3 Report Version : 01

High Cable-14

High Cable-15

Instrument	Brand	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
Switch	SPTCB	SP-SWI	SWI-03	1 GHz – 26.5 GHz	Oct. 04, 2022	Oct. 03, 2023	Conducted (TH03-CB)
Test Software	SPORTON	SENSE	V5.10	-	N.C.R.	N.C.R.	Conducted (TH03-CB)

Report No.: FR291332-02AD

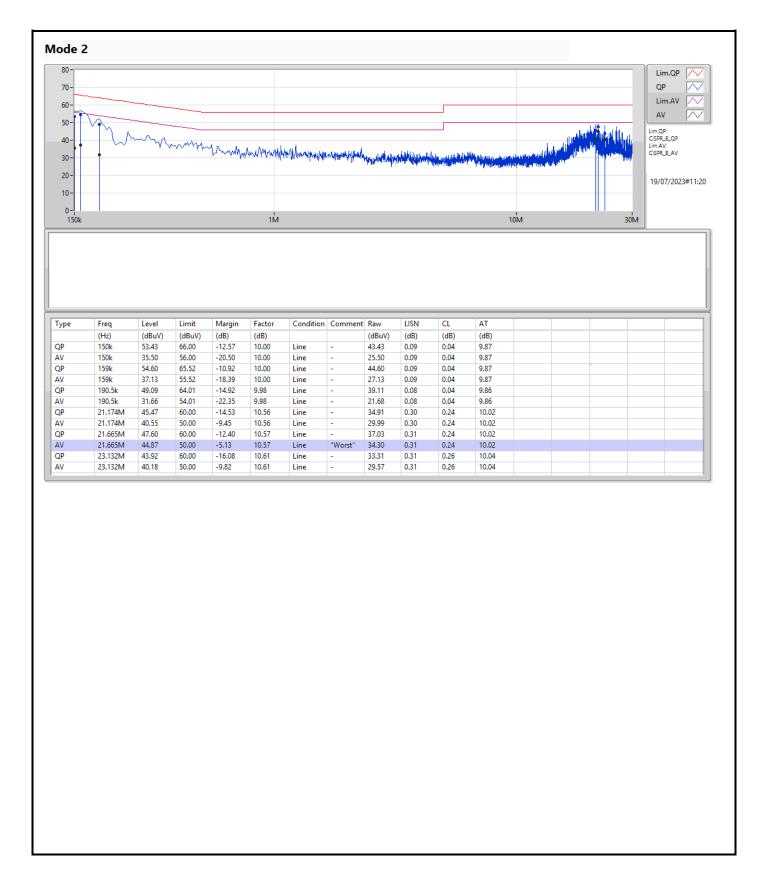
Note: Calibration Interval of instruments listed above is one year.

NCR means Non-Calibration required.

TEL: 886-3-656-9065 Page Number : 33 of 33 FAX: 886-3-656-9085 Issued Date : Oct. 04, 2023

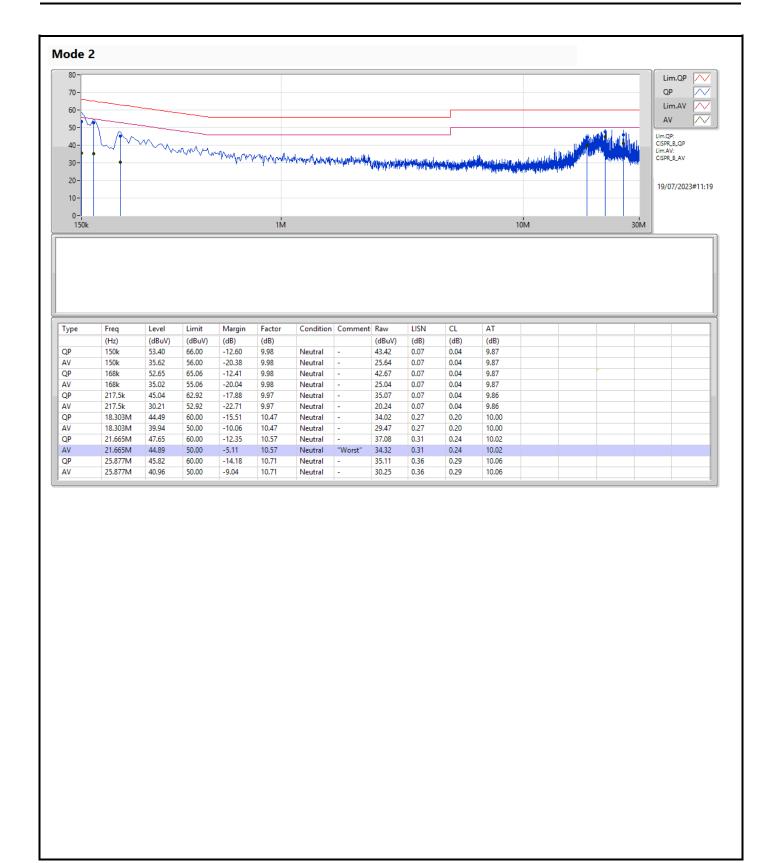
Conducted Emissions at Powerline

Appendix A


Summary

Mode	Result	Туре	Freq (Hz)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Condition
Mode 2	Pass	AV	21.665M	44.89	50.00	-5.11	Neutral

Sporton International Inc. Hsinchu Laboratory Page No. : 1 of 3


Report No. : FR291332-02AD

Page No. : 2 of 3

Report No. : FR291332-02AD

Page No. : 3 of 3

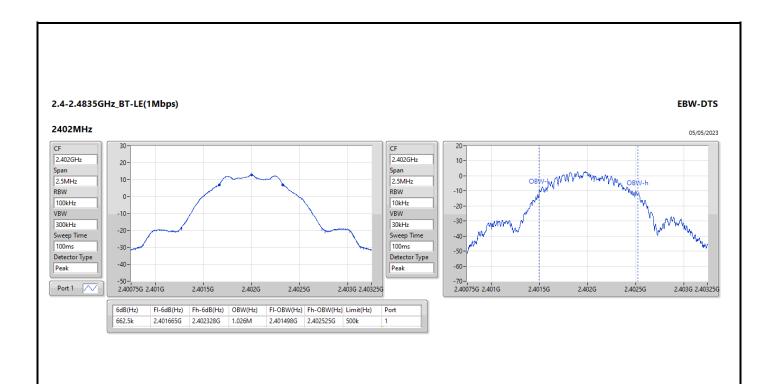
Report No. : FR291332-02AD

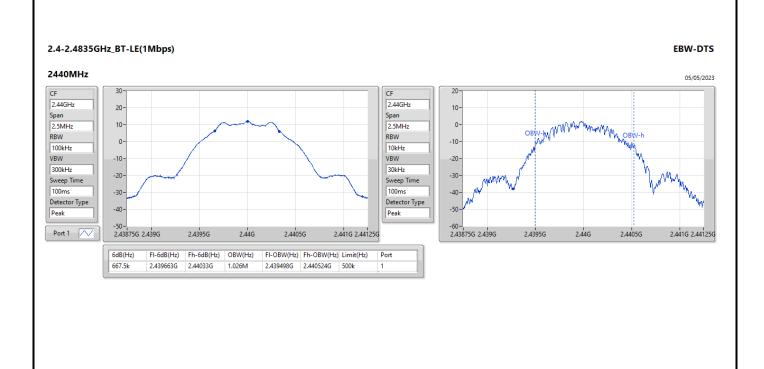
Summary

Mode	Max-N dB	Max-OBW	ITU-Code	Min-N dB	Min-OBW
	(Hz)	(Hz)		(Hz)	(Hz)
2.4-2.4835GHz	-	-	-	-	=
BT-LE(1Mbps)	667.5k	1.029M	1M03F1D	662.5k	1.026M
BT-LE(2Mbps)	1.145M	2.039M	2M04F1D	1.14M	2.03M

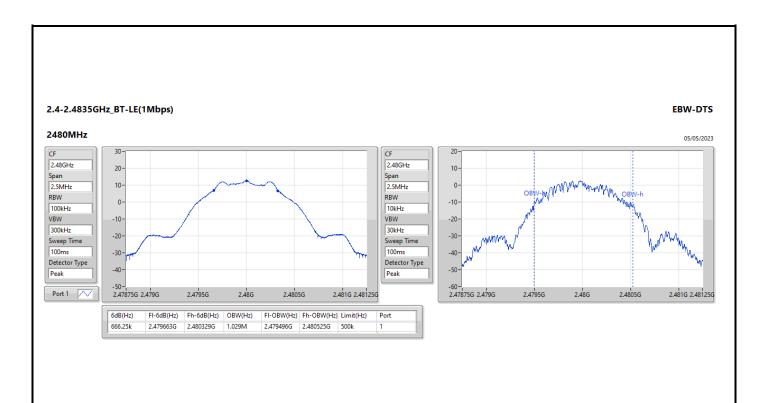
 $Max-N\ dB=Maximum\ 6dB\ down\ bandwidth;\ Max-OBW=Maximum\ 99\%\ occupied\ bandwidth;\ Min-OBW=Minimum\ 99\%\ occupied\ bandwidth;\ Minimum\ 99\%\ occupied$

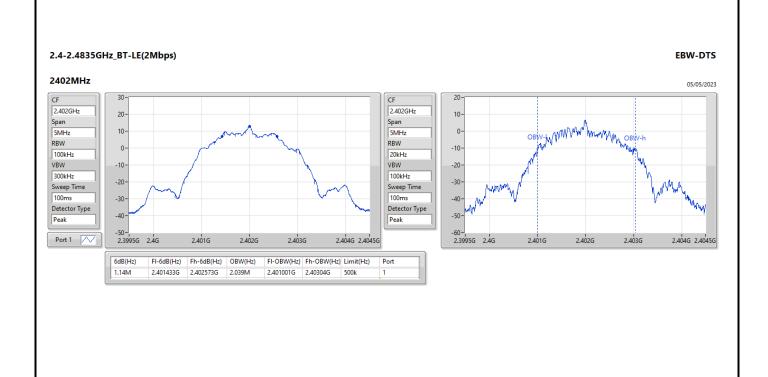
Sporton International Inc. Hsinchu Laboratory Page No. : 1 of 5

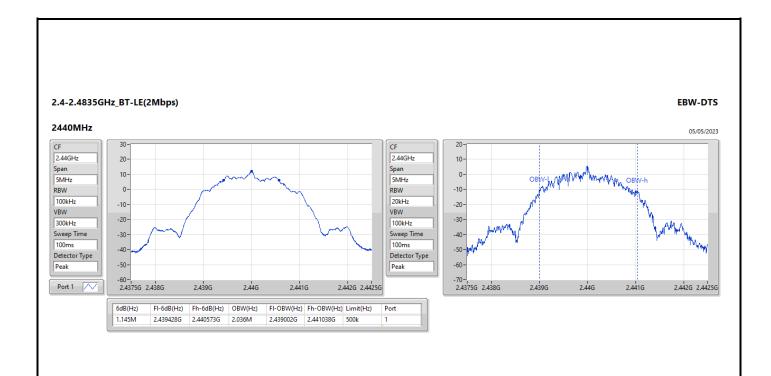


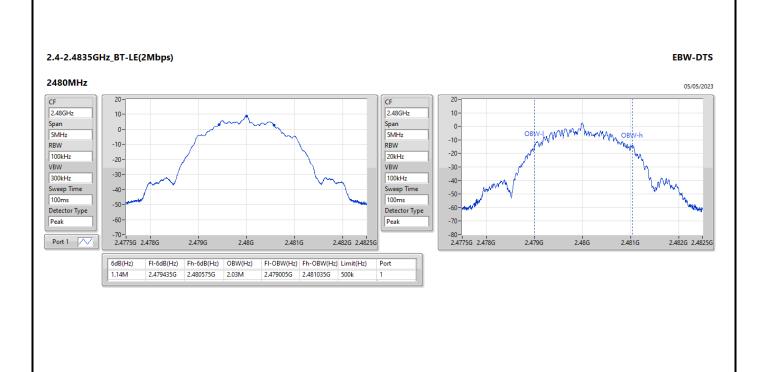

Result

Mode	Result	Limit	Port 1-N dB	Port 1-OBW	
		(Hz)	(Hz)	(Hz)	
BT-LE(1Mbps)	-	-	-	-	
2402MHz	Pass	500k	662.5k	1.026M	
2440MHz	Pass	500k	667.5k	1.026M	
2480MHz	Pass	500k	666.25k	1.029M	
BT-LE(2Mbps)	-	=	-	-	
2402MHz	Pass	500k	1.14M	2.039M	
2440MHz	Pass	500k 1.145M		2.036M	
2480MHz	Pass	500k	1.14M	2.03M	


Port X-N dB = Port X 6dB down bandwidth; Port X-OBW = Port X 99% occupied bandwidth


Sporton International Inc. Hsinchu Laboratory Page No. : 2 of 5




Page No. : 3 of 5

Page No. : 4 of 5

Page No. : 5 of 5

Average Power-DTS

Appendix C

Summary

Mode	Total Power	Power
	(dBm)	(W)
2.4-2.4835GHz	-	-
BT-LE(1Mbps)	12.55	0.01799
BT-LE(2Mbps)	11.93	0.01560

Sporton International Inc. Hsinchu Laboratory Page No. : 1 of 2

Appendix C

Mode	Result	DG	Total Power	Power Limit	
		(dBi)	(dBm)	(dBm)	
BT-LE(1Mbps)	-	-	-	=	
2402MHz	Pass	3.82	12.55	30.00	
2440MHz	Pass	3.82	11.46	30.00	
2480MHz	Pass	3.82	12.27	30.00	
BT-LE(2Mbps)	-	-	-	=	
2402MHz	Pass	3.82	11.93	30.00	
2440MHz	Pass	3.82	11.16	30.00	
2478MHz	Pass	3.82	11.81	30.00	
2480MHz	Pass	3.82	7.99	30.00	

DG = Directional Gain; Port X = Port X output power

Page No. : 2 of 2

PSD-DTS Appendix D

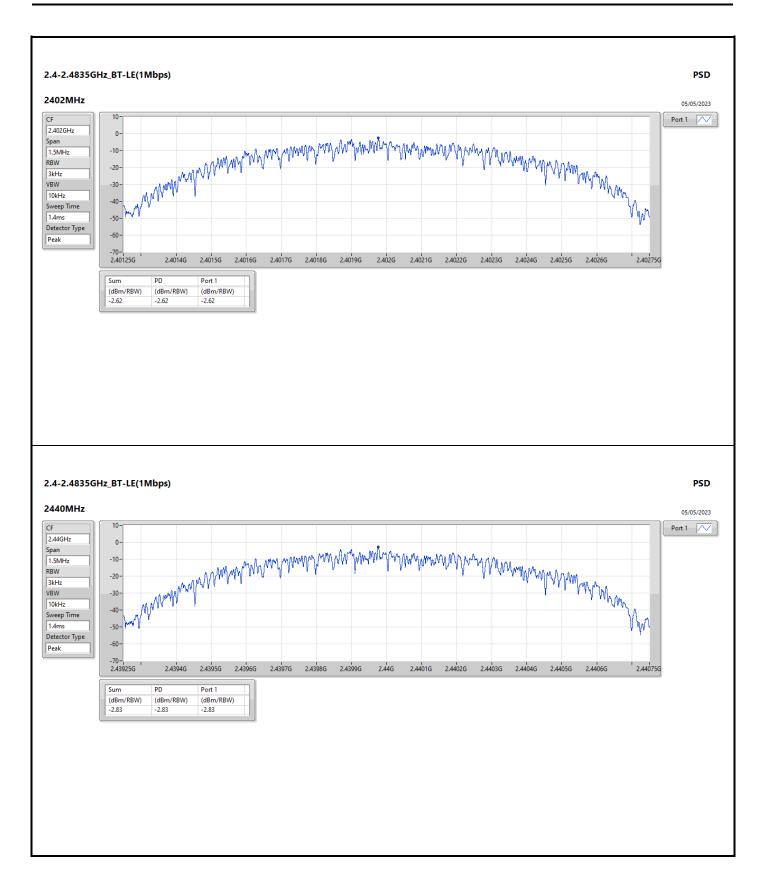
Summary

Mode	PD (dBm/RBW)
2.4-2.4835GHz	
BT-LE(1Mbps)	-2.62
BT-LE(2Mbps)	-5.78

RBW = 3kHz;

Sporton International Inc. Hsinchu Laboratory Page No. : 1 of 5

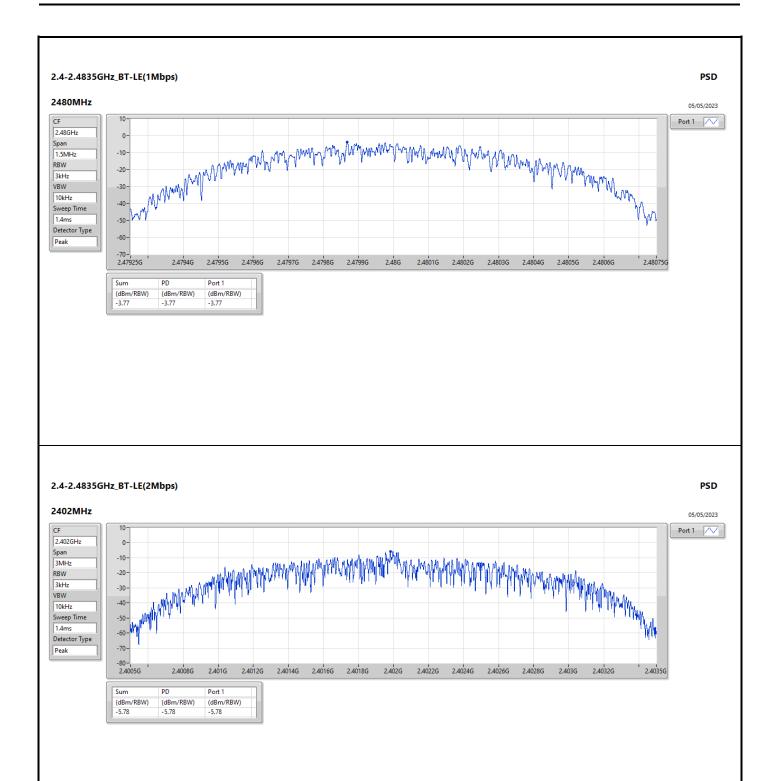
Appendix D **PSD-DTS**


Result

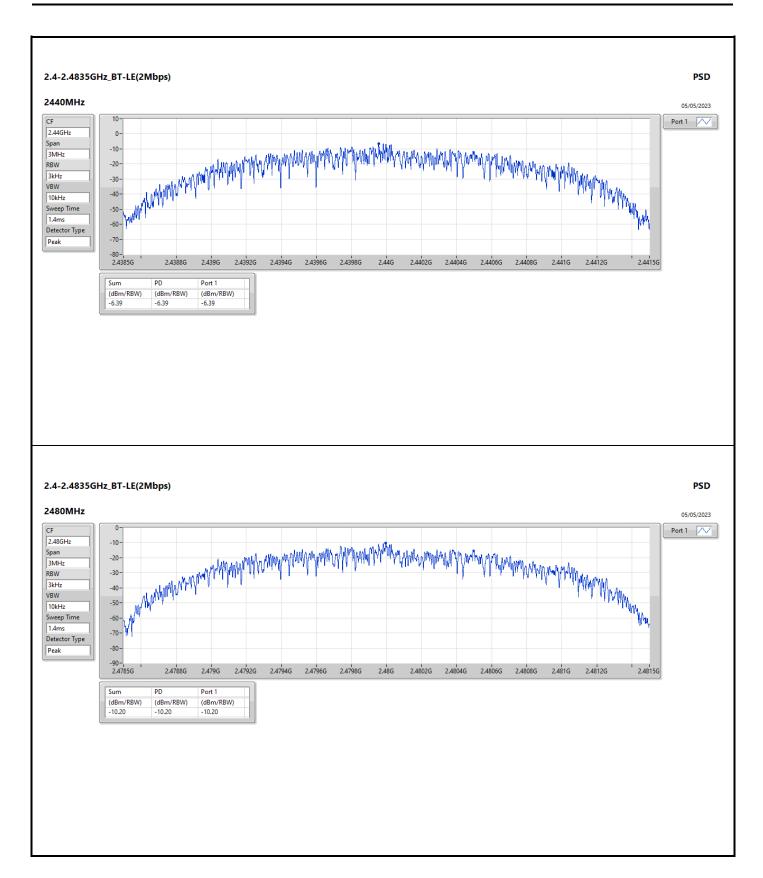
Mode	Result	DG	PD	PD Limit	
		(dBi)	(dBm/RBW)	(dBm/RBW)	
BT-LE(1Mbps)	-	-	-	=	
2402MHz	Pass	3.82	-2.62	8.00	
2440MHz	Pass	3.82	-2.83	8.00	
2480MHz	Pass	3.82	-3.77	8.00	
BT-LE(2Mbps)	-	-	-	-	
2402MHz	Pass	3.82	-5.78	8.00	
2440MHz	Pass	3.82	-6.39	8.00	
2480MHz	Pass	3.82	-10.20	8.00	

Sporton International Inc. Hsinchu Laboratory Page No.

DG = Directional Gain; RBW = 3kHz; PD = trace bin-by-bin of each transmits port summing can be performed maximum power density; Port X = Port X Power Density;


Appendix D

Page No. : 3 of 5


SPORTON LAB.

PSD-DTS Appendix D

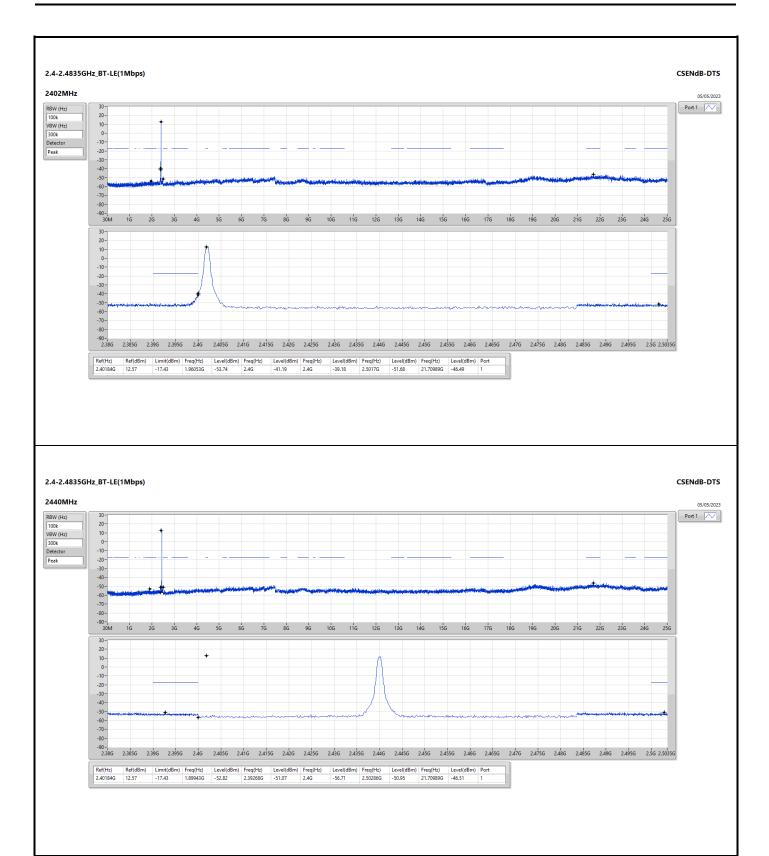
Page No. : 4 of 5

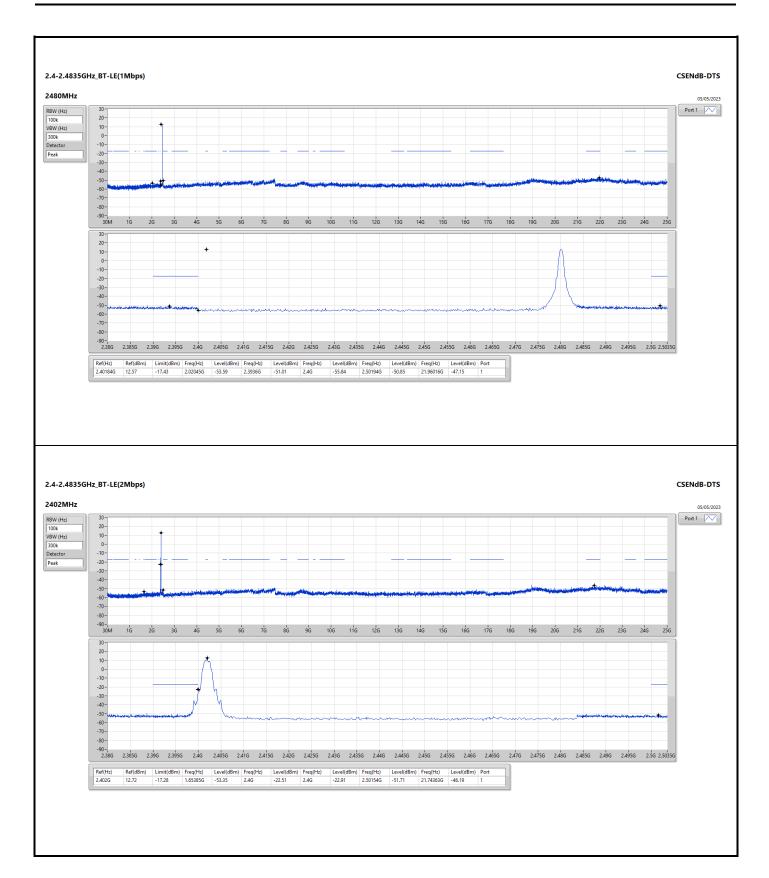
Appendix D

Page No. : 5 of 5

Summary

Mode	Result	Ref	Ref	Limit	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Port
		(Hz)	(dBm)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	
2.4-2.4835GHz	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BT-LE(1Mbps)	Pass	2.40184G	12.57	-17.43	1.96053G	-53.74	2.4G	-41.19	2.4G	-39.18	2.5017G	-51.68	21.70989G	-46.49	1
BT-LE(2Mbps)	Pass	2.402G	12.72	-17.28	1.65385G	-53.35	2.4G	-22.51	2.4G	-22.91	2.50154G	-51.71	21.74363G	-46.19	1


Sporton International Inc. Hsinchu Laboratory Page No. : 1 of 5


Result

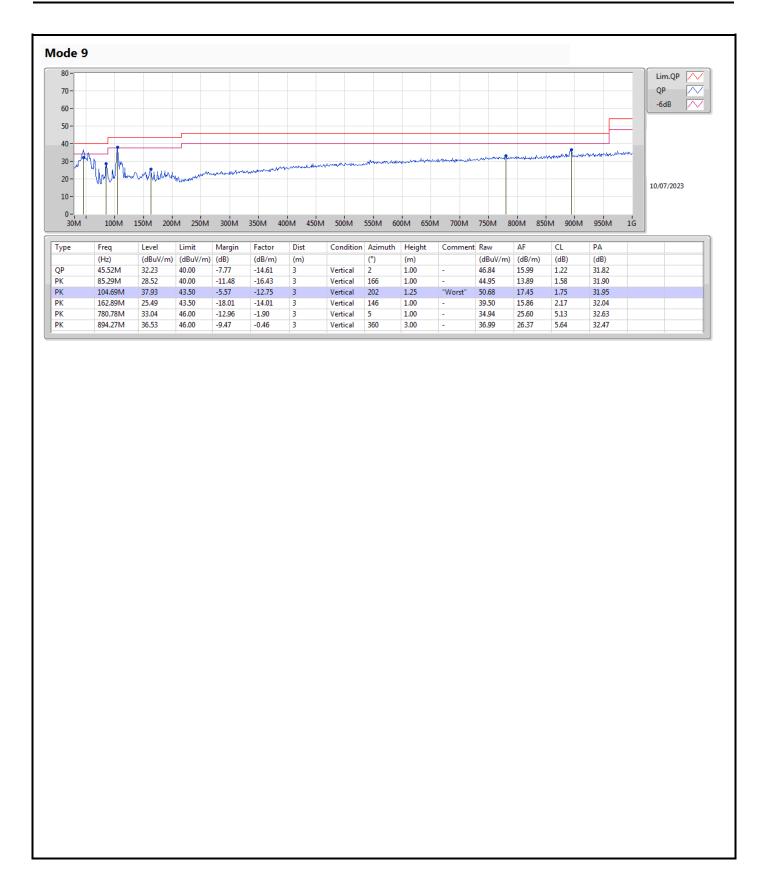
Mode	Result	Ref	Ref	Limit	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Port
		(Hz)	(dBm)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	
BT-LE(1Mbps)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2402MHz	Pass	2.40184G	12.57	-17.43	1.96053G	-53.74	2.4G	-41.19	2.4G	-39.18	2.5017G	-51.68	21.70989G	-46.49	1
2440MHz	Pass	2.40184G	12.57	-17.43	1.89943G	-52.82	2.39268G	-51.07	2.4G	-56.71	2.50286G	-50.95	21.70989G	-46.51	1
2480MHz	Pass	2.40184G	12.57	-17.43	2.02045G	-53.59	2.3936G	-51.01	2.4G	-55.84	2.50194G	-50.85	21.96016G	-47.15	1
BT-LE(2Mbps)	-		-	-	-	-	-	-	-	-	-	-	-	-	-
2402MHz	Pass	2.402G	12.72	-17.28	1.65385G	-53.35	2.4G	-22.51	2.4G	-22.91	2.50154G	-51.71	21.74363G	-46.19	1
2440MHz	Pass	2.402G	12.72	-17.28	1.7972G	-54.27	2.39056G	-50.76	2.4G	-56.19	2.50298G	-51.16	21.61146G	-46.97	1
2480MHz	Pass	2.402G	12.72	-17.28	1.92998G	-53.22	2.39396G	-50.26	2.4G	-56.73	2.50266G	-51.65	21.64802G	-46.90	1

Sporton International Inc. Hsinchu Laboratory Page No. : 2 of 5

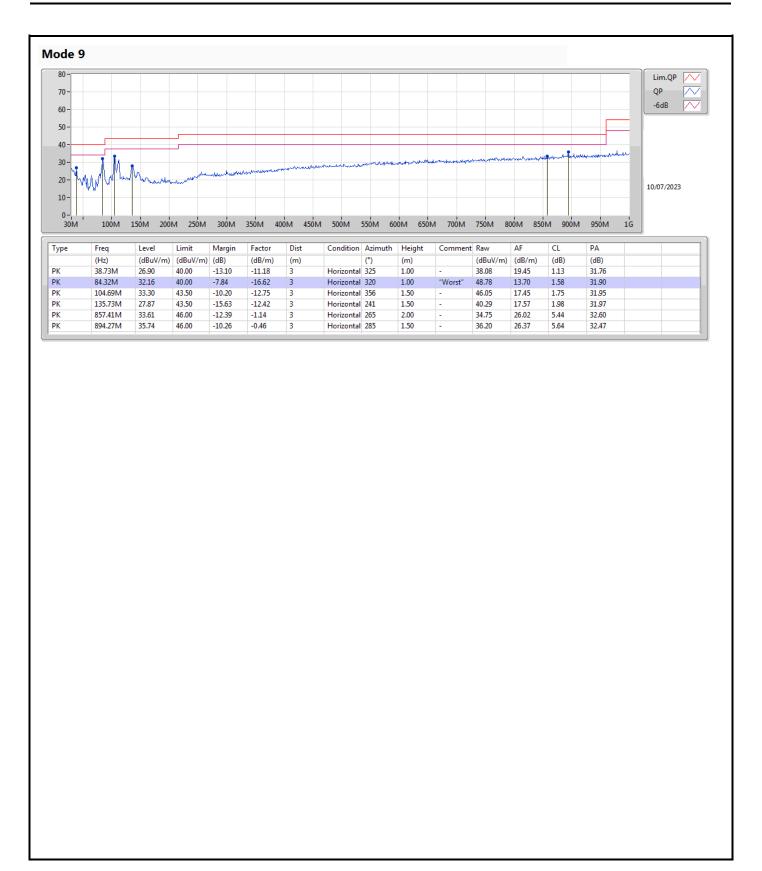
Page No. : 3 of 5

Page No. : 4 of 5

Page No. : 5 of 5


Radiated Emissions below 1GHz

Appendix F.1


Summary

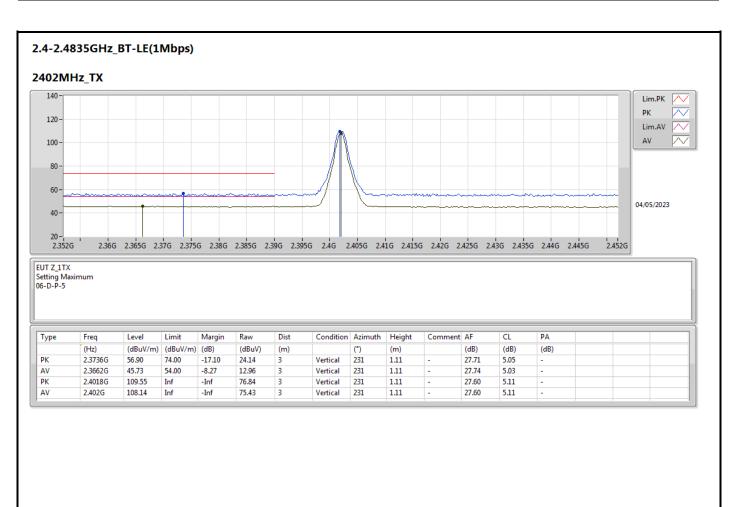
Mode	Result	Туре	Freq (Hz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Condition
Mode 9	Pass	PK	104.69M	37.93	43.50	-5.57	Vertical

Sporton International Inc. Hsinchu Laboratory Page No. : 1 of 3

Page No. : 2 of 3

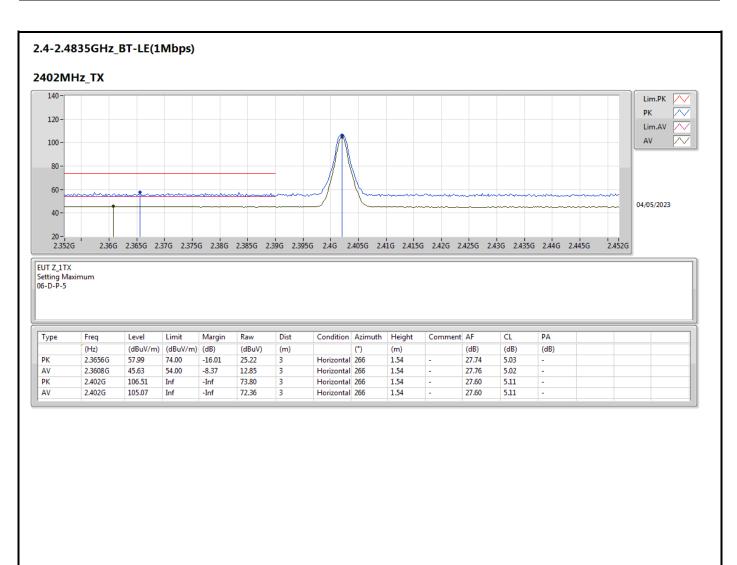
Page No. : 3 of 3

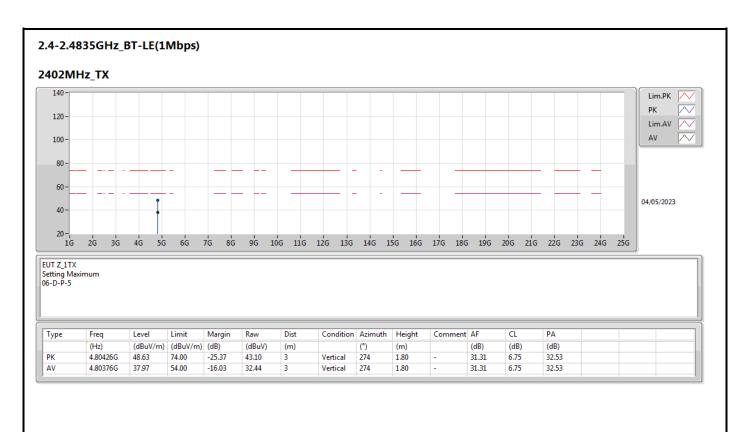
RSE TX above 1GHz


Appendix F.2

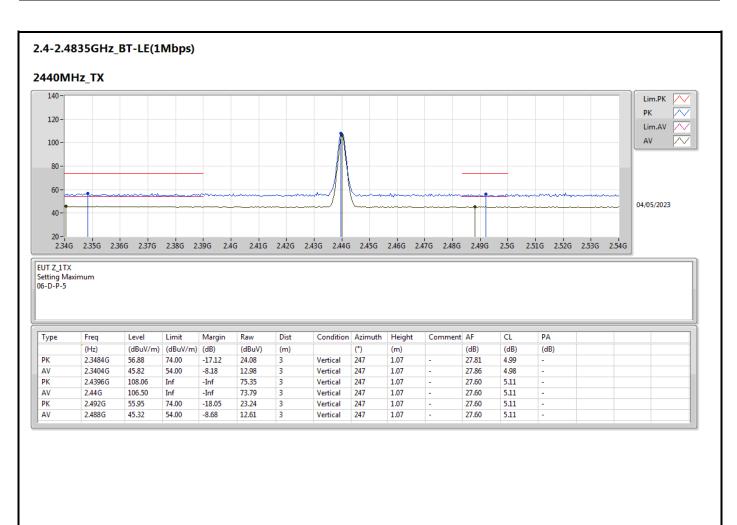
Summary

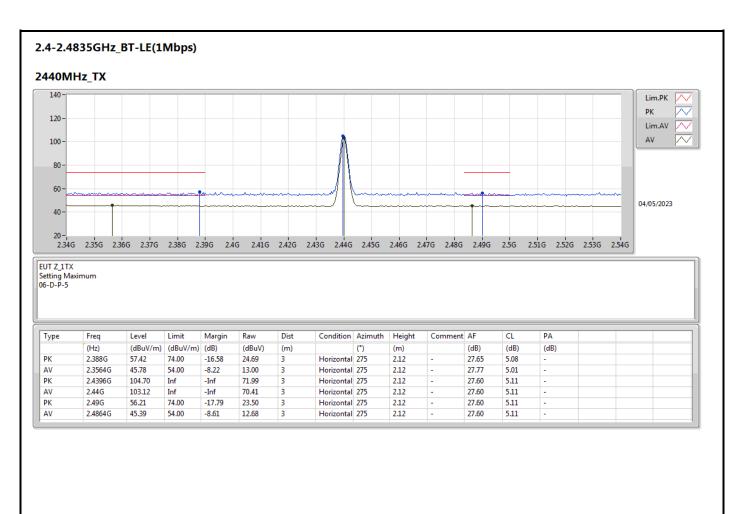
Mode	Result	Туре	Freq (Hz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Dist (m)	Condition	Azimuth (°)	Height (m)	Comments
2.4-2.4835GHz	-	-	-	-	-	-	-	-	-	-	-
BT-LE(2Mbps)	Pass	AV	2.4835G	52.90	54.00	-1.10	3	Vertical	258	1.80	-

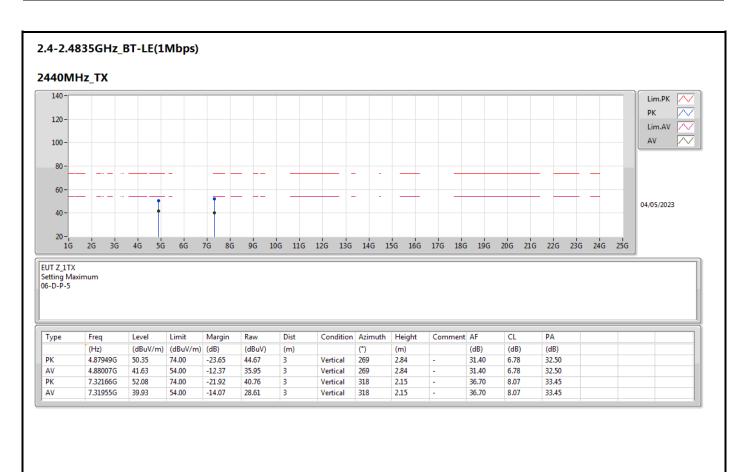

Sporton International Inc. Hsinchu Laboratory Page No. : 1 of 27


Page No. : 2 of 27

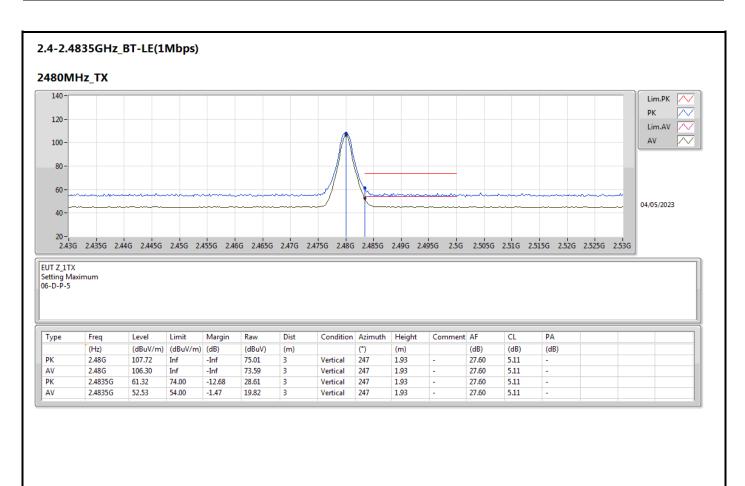
Page No. : 3 of 27

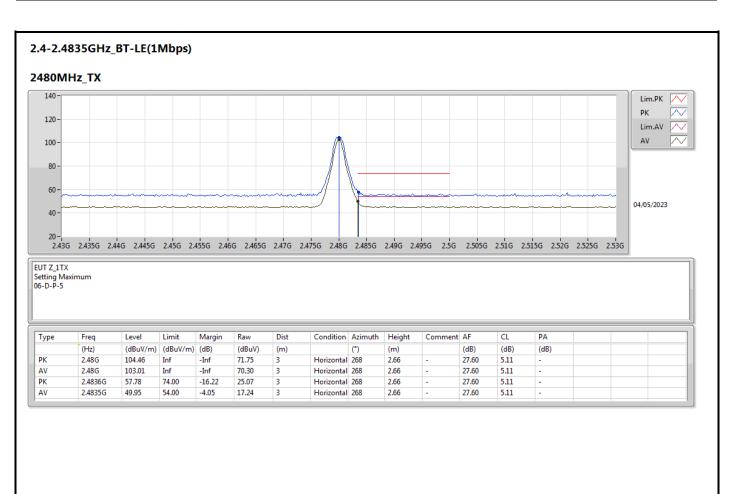

Page No. : 4 of 27

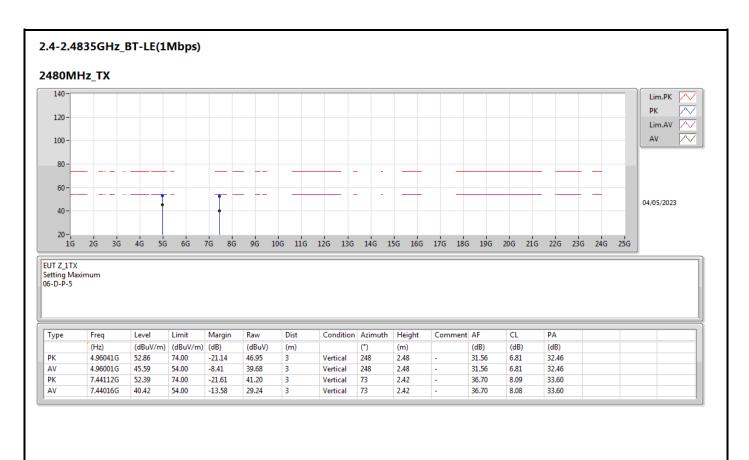

Page No. : 5 of 27

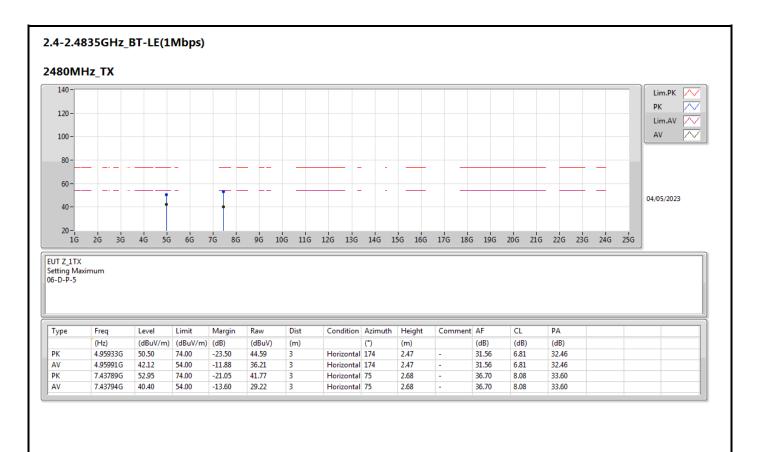

Page No. : 6 of 27

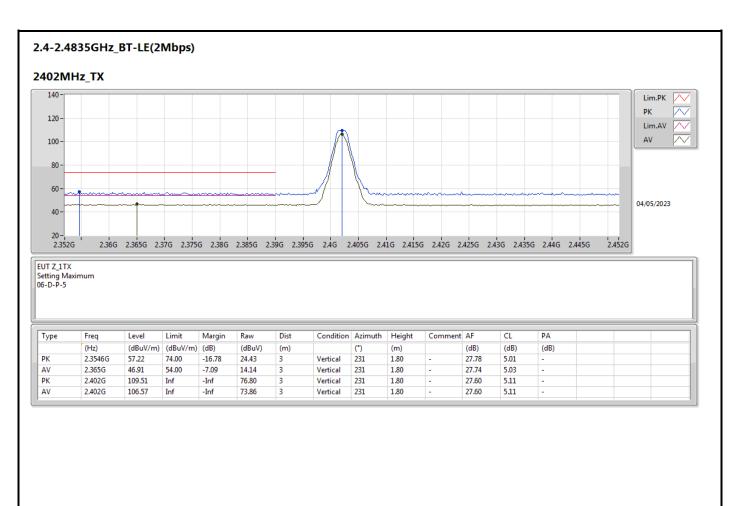

Page No. : 7 of 27

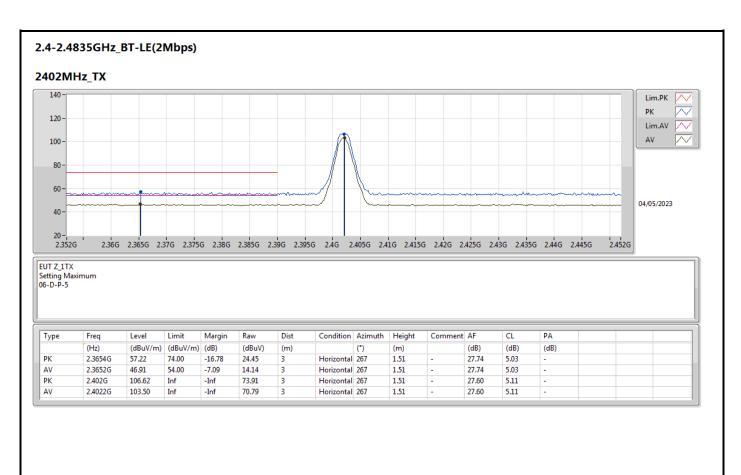

Page No. : 8 of 27

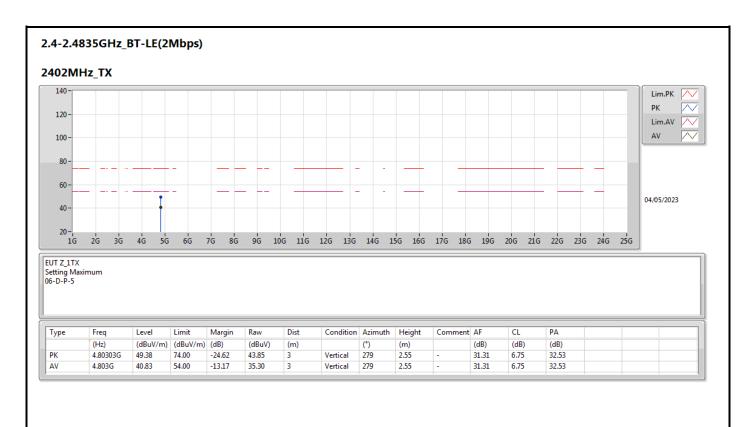

Page No. : 9 of 27


Page No. : 10 of 27

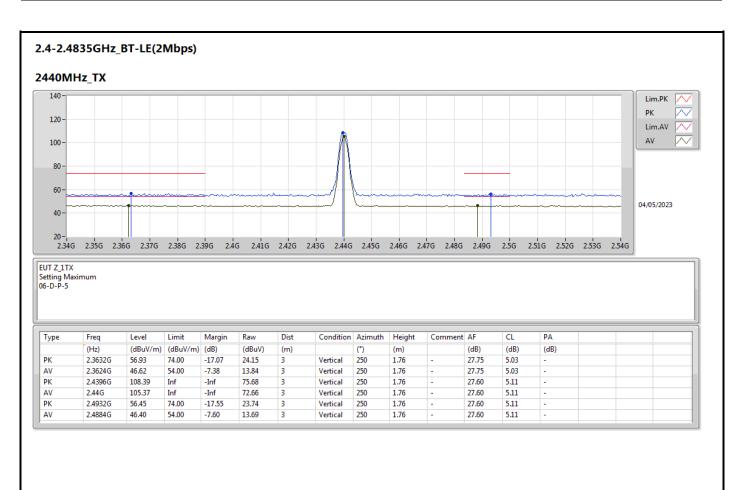

Page No. : 11 of 27

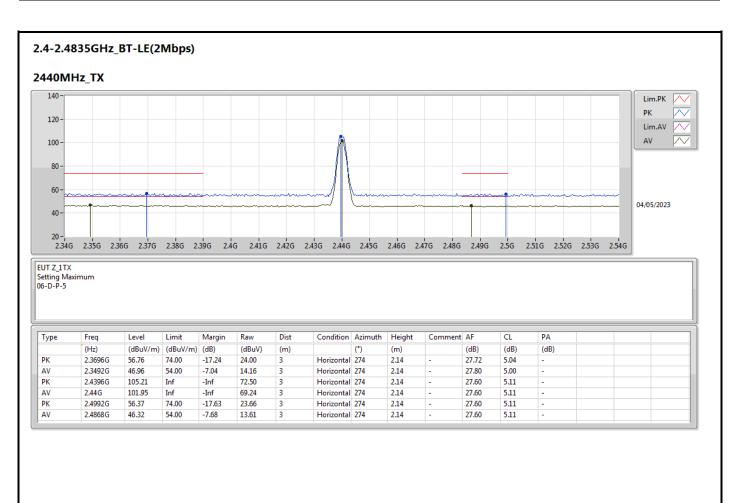

Page No. : 12 of 27

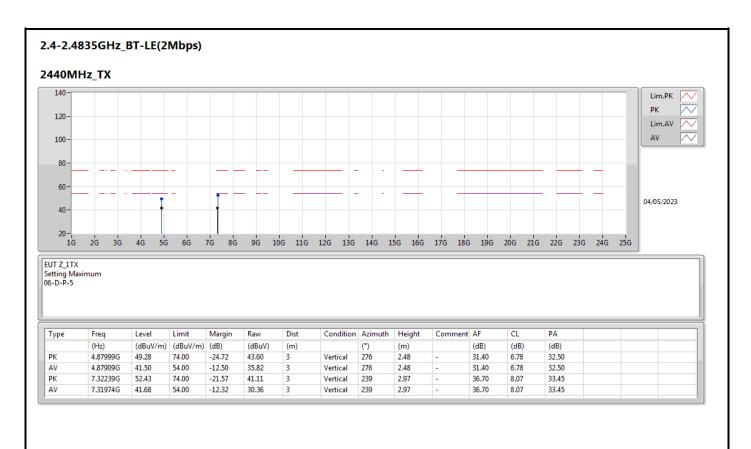

Page No. : 13 of 27

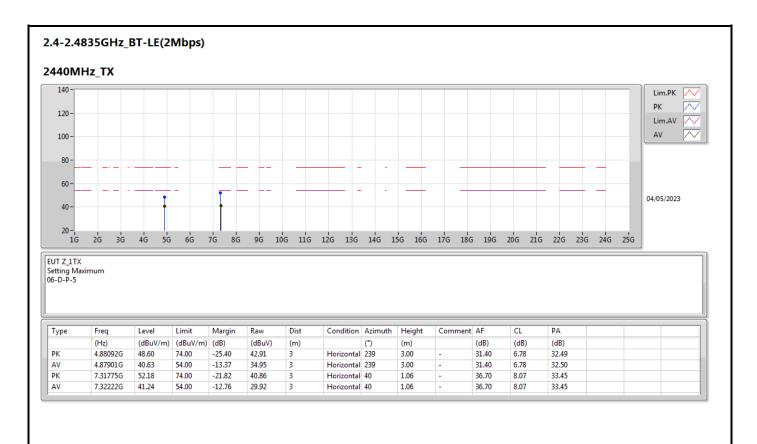

Page No. : 14 of 27

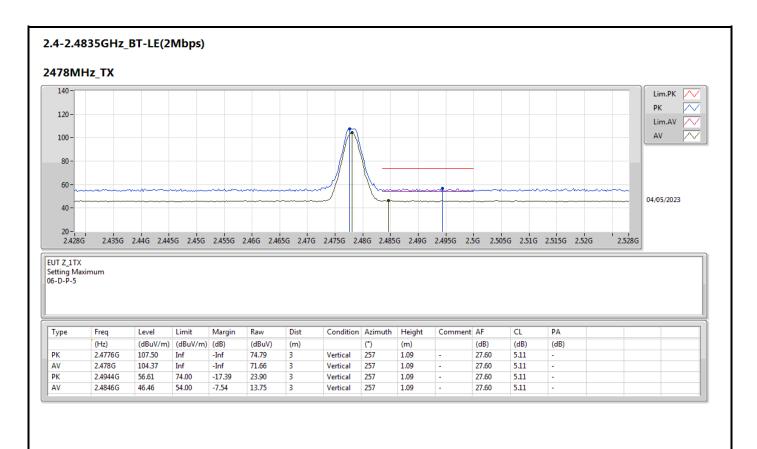

Page No. : 15 of 27

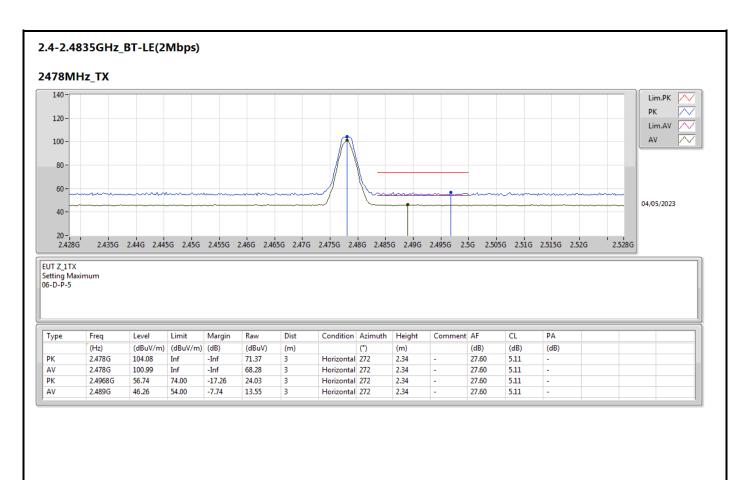

Page No. : 16 of 27

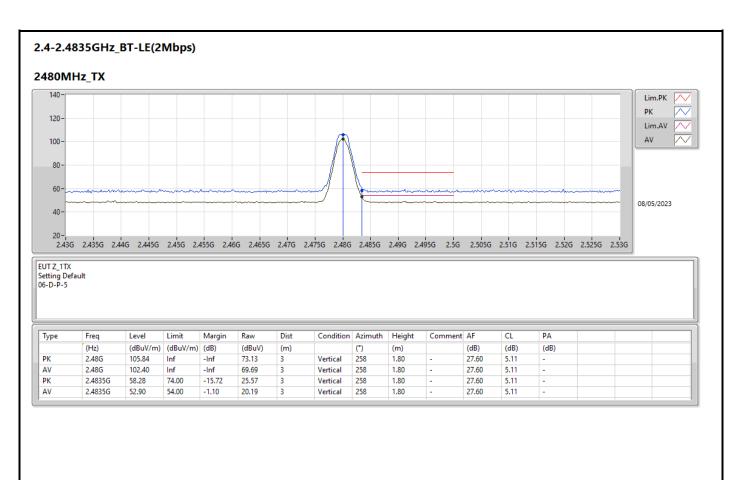

Page No. : 17 of 27

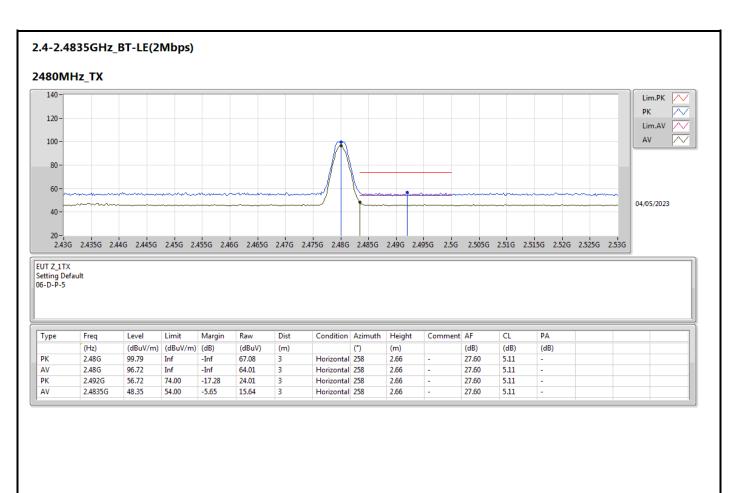

Page No. : 18 of 27

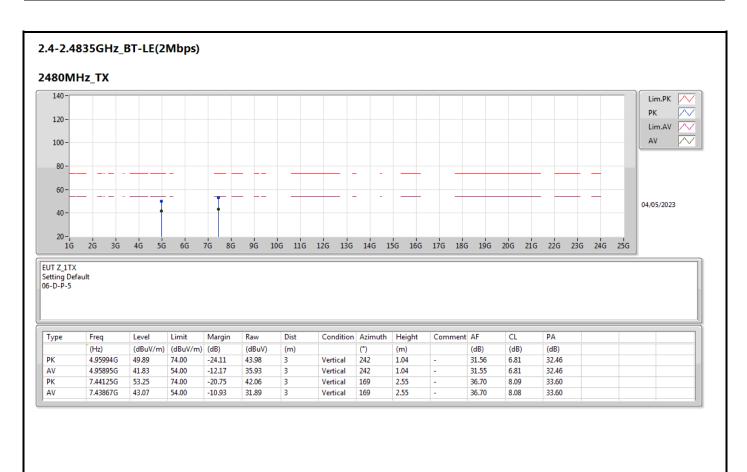

Page No. : 19 of 27

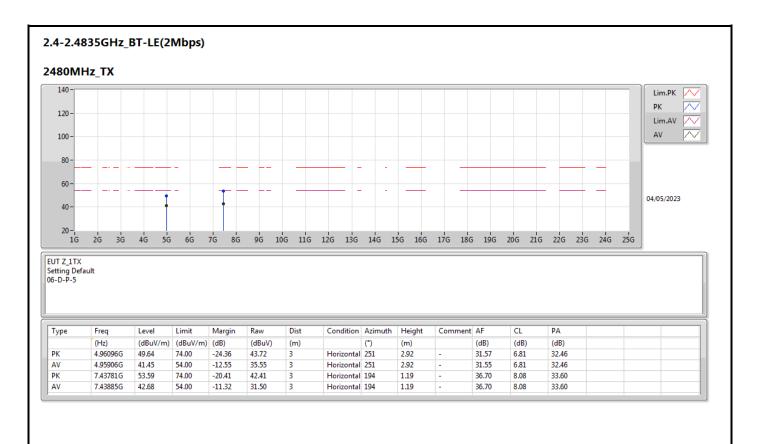

Page No. : 20 of 27


Page No. : 21 of 27


Page No. : 22 of 27

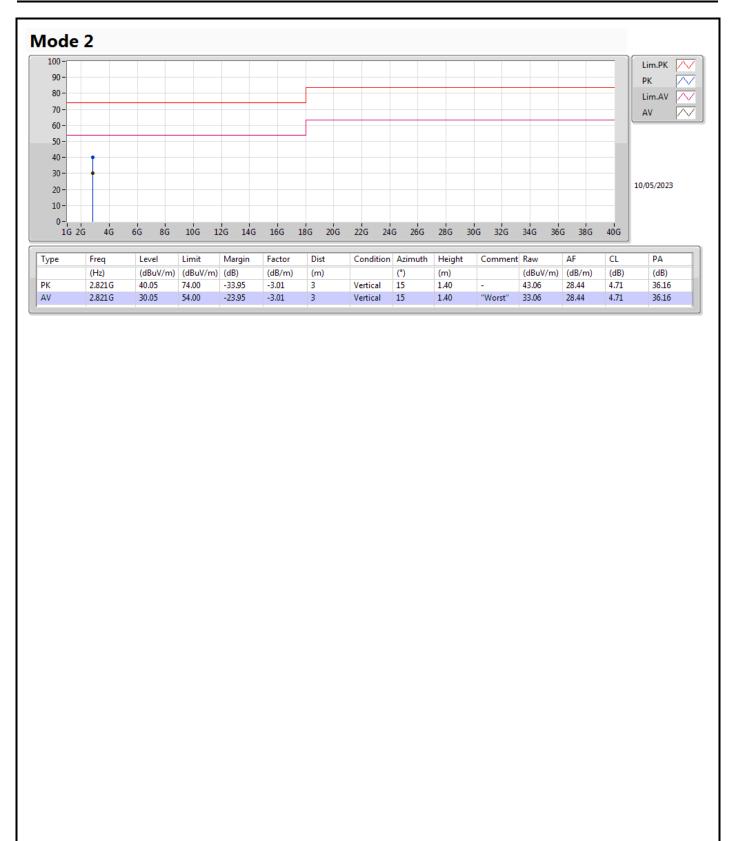

Page No. : 23 of 27


Page No. : 24 of 27

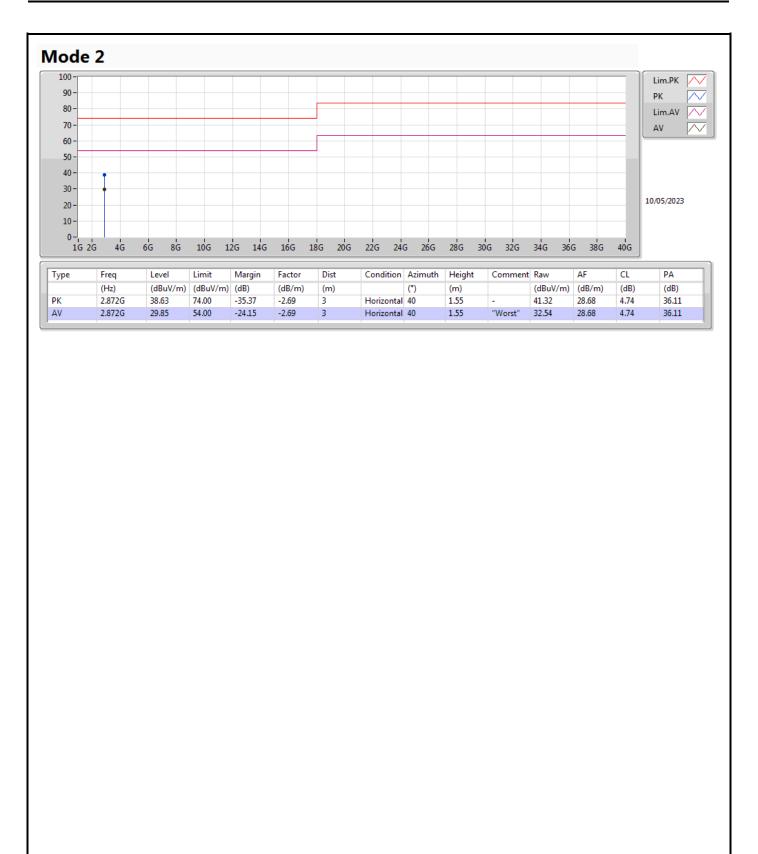

Page No. : 25 of 27

Page No. : 26 of 27

Page No. : 27 of 27


Radiated Emission Co-location

Appendix G


Summary

Mode	Result	Туре	Freq (Hz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Condition
Mode 2	Pass	AV	2.821G	30.05	54.00	-23.95	Vertical

Sporton International Inc. Hsinchu Laboratory Page No. : 1 of 3

Page No. : 2 of 3

Page No. : 3 of 3