Prediction of MPE Limit 47 CFR § 2.1091

$$S_{20} = \frac{P_A G_N}{4\pi R_{20}^2} \qquad S_C = \frac{P_A G_N}{4\pi R_C^2} \qquad R_C = \sqrt{\frac{P_A G_N}{4\pi S_L}}$$
$$S_L = \frac{f}{1500} (mW/cm^2)$$

- **S**₂₀ = Power Density of the Device at 20cm
- **S_L =** Power Density Limit
- S_c = Power Density of the Device at the Compliance Distance R_c
- **R**₂₀ = 20cm
- **R**_c = Minimum Distance to the Radiating Element to Meet Compliance
- P_T = Power Input to Antenna
- **P_A =** Adjust Power
- G_N = Numeric Gain of the Antenna
 - **f** = Transmit Frequency

Transmit Duty Cycle = 100%

Use Group = General Popuation

Transmit Duty Cycle:	100.00	(%)
Tx Frequency (f):	787.00	(MHz)
RF Power at Antenna Input Port (P_T):	400.00	(mW)
Antenna Gain:	16.15	(dBi)
Numeric Antenna Gain (G _N):	41.21	(numeric)
Cable or Other Loss:	0.00	(dB)
Duty Cycle/Loss Adjusted Power (P _A):	400.00	(mW)
S _L =	0.525	(mW/cm ²)
S ₂₀ at 20cm =	3.279	(mW/cm ²)
R _c =	50.0	(cm)
s _c =	0.52	(mW/cm ²)

RESULT 50cm