

CFR 47 FCC PART 15 SUBPART E ISED RSS-247 ISSUE 2

CERTIFICATION TEST REPORT

For

2K Outdoor Floodlight Camera

PROJECT NUMBER: 4790053054

REPORT NUMBER: 4790053054-6

FCC ID: UCZ-W452AS-Z

IC: 8575A-W452ASZ

ISSUE DATE: Sep 10, 2021

Prepared for

Lorex Technology Inc.

Prepared by

UL-CCIC COMPANY LIMITED No. 2, Chengwan Road, Suzhou Industrial Park, People's Republic of China Tel: +86 512-6808 6400 Fax: +86 512-6808 4099 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products.

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	09/10/2021	Initial Issue	

TABLE OF CONTENTS

1.	A	ATTESTATION OF TEST RESULTS	4
2.	Т		6
3.	F	ACILITIES AND ACCREDITATIO	6
4.	С	CALIBRATION AND UNCERTAINTY	7
4	.1	. MEASURING INSTRUMENT CALIBRATION	7
4	.2	. MEASUREMENT UNCERTAINTY	7
5.	E	EQUIPMENT UNDER TEST	8
5	.1	. DESCRIPTION OF EUT	8
5	.1	. MAXIMUM OUTPUT POWER	9
5	.2	CHANNEL LIST	0
5	.3	2. TEST CHANNEL CONFIGURATION	1
5	.4	DESCRIPTION OF AVAILABLE ANTENNAS	3
5	.5	5. THE WORSE CASE POWER SETTING PARAMETER	4
5	.6	DESCRIPTION OF TEST SETUP	6
5	.7	. MEASURING INSTRUMENT AND SOFTWARE USED	7
6.	A	ANTENNA PORT TEST RESULTS	9
6	.1	. ON TIME AND DUTY CYCLE	9
6	.2	2. 6dB/26dB/99% OCCUPIED BANDWIDTH	2
6	.3	MAXIMUM CONDUCTED AVERAGE OUTPUT POWER	4
6	.4	POWER SPECTRAL DENSITY	8
7.	R	RADIATED TEST RESULTS	2
7	.1	. RESTRICTED BANDEDGE 12	9
7	.2	. HARMONICS AND SPURIOUS EMISSIONS	9
8.	F	REQUENCY STABILITY	Э
9.	D	OYNAMIC FREQUENCY SELECTION	1
10.		AC POWER LINE CONDUCTED EMISSIONS	6
11.		ANTENNA REQUIREMENTS	D

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name:	Lorex Technology Inc.
Address:	250 Royal crest Court, Markham, L3R 3S1, Ontario, Canada.
Manufacturer Information	
Company Name:	Lorex Technology Inc.
Address:	250 Royal crest Court, Markham, L3R 3S1, Ontario, Canada.
EUT Description	
Product Name:	2K Outdoor Floodlight Camera
Model Name:	W452AS-Z
Sample Number:	4113018
Data of Receipt Sample:	Aug 02, 2021
Date Tested:	Aug 02, 2021 ~ Aug 31, 2021

APPLICABLE STANDARDS					
STANDARD TEST RESULTS					
CFR 47 FCC PART 15 SUBPART E	PASS				
ISED RSS-247 Issue 2	PASS				
ISED RSS-GEN Issue 5	PASS				

Summary of Test Results						
Clause	se Test Items FCC/IC Rules		Test Results			
1	6dB/26dB Bandwidth	FCC 15.407 (a)&(e) RSS-247 Clause 6.2	PASS			
2	99% Occupied Bandwidth	RSS-Gen Clause 6.6	PASS			
3	Maximum Conducted Output Power	FCC 15.407 (a) RSS-247 Clause 6.2	PASS			
4	Power Spectral Density	FCC 15.407 (a) RSS-247 Clause 6.2	PASS			
5	Antenna Conducted Spurious Emission	FCC 15.407 (b) RSS-247 Clause 6.2	PASS			
6	Radiated Bandedge and Spurious Emission	FCC 15.407 (a), FCC 15.209, FCC 15.205, RSS-247 Clause 6.2 RSS-GEN Clause 8.9	PASS			
7	Conducted Emission Test for AC Power Port	FCC 15.207 RSS-GEN Clause 8.8	PASS			
8	Frequency Stability	FCC 15.407 (g)	PASS			
9	Dynamic Frequency Selection	FCC 15.407 (h) RSS-247 Clause 6.3	PASS			
10	Antenna Requirement	FCC 15.203 RSS-GEN Clause 8.3	PASS			

Remark:

1) The measurement result for the sample received is <Pass> according to < ANSI C63.10-2013, FCC CFR 47 Part 2, FCC CFR 47 Part 15C and ISED RSS-247 ISSUE 2> when <Accuracy Method> 2) It is a slave device without radar detection.

Prepared By:

Tom Tang

Tom Tang Project Engineer

Approved By:

Chris Zhong.

Checked By:

eon Wu

Leon Wu Senior Project Engineer

Chris Zhong Laboratory Leader

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2013, CFR 47 FCC Part 2, CFR 47 FCC Part 15, KDB 789033 D02 v02r01, RSS-GEN Issue 5, RSS-247 Issue 2, KDB414788 D01 Radiated Test Site v01r01, KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02 and 905462 C Client Without DFS New Rules v01r02.

3. FACILITIES AND ACCREDITATIO

Test Location	UL-CCIC Company Limited, EMC&RF Lab
Address	No. 2, Chengwan Road, Suzhou Industrial Park, Suzhou 215122, China
Accreditation Certificate	A2LA (Certificate No.: 4829.01) UL-CCIC COMPANY LIMITED has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1247) UL-CCIC COMPANY LIMITED has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules. IC (IC Designation No.: 25056 CAB No.: CN0073) UL-CCIC COMPANY LIMITED has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules.

Remark 1: All tests measurement facilities use to collect the measurement data are located at No. 2, Chengwan Road, Suzhou Industrial Park, Suzhou 215122, People's Republic of China

Remark 2: For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. These measurements below 30MHz had been correlated to measurements performed on an OFS based on KDB 414788.

Remark 3: The test anechoic chamber in UL-CCIC COMPANY LIMITED had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty			
Uncertainty for Conduction emission test	3.1dB			
Uncertainty for Radiation Emission test (include Fundamental emission) (9KHz-30MHz)	3.4dB			
Uncertainty for Radiation Emission test (include Fundamental emission) (30MHz-1GHz)	3.4dB			
Uncertainty for Radiation Emission test	3.9dB (1GHz-18Gz)			
(1GHz to 40GHz) (include Fundamental emission)	4.2dB (18GHz-26.5Gz)			
	4.6dB (26.5GHz-40Gz)			
Remark: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.				

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

Product Name:	2K Outdoor Floodlight Camera			
Model No.:	W452AS-Z			
Operating Frequency:	 IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz IEEE 802.11n(HT40): 2422MHz to 2452MHz IEEE 802.11a/n/ac 20MHz:5180MHz to 5240MHz (ISED not include this bas 5260MHz to 5320MHz, 5500MHz to 5720MHz (ISED not include 5600MH 5640MHz), 5745MHz to 5825MHz IEEE 802.11n/ac 40MHz: 5190MHz to 5230MHz (ISED not include this bas 5270MHz to 5310MHz, 5510MHz to 5710MHz (ISED not include 5590MH 5630MHz), 5755MHz-5795MHz IEEE 802.11ac 80MHz: 5210MHz (ISED not include this channel), 5290M 5530MHz to 5690MHz (ISED not include 5610MHz), 5775MHz This report just including 5G WIFI part. 			
Type of Modulation:	IEEE for 802.11b: DSSS (CCK, DQPSK, DBPSK) IEEE for 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11n (HT20 and HT40): OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11a/n: OFDM (BPSK, QPSK,16QAM, 64QAM) IEEE for 802.11ac: OFDM (BPSK, QPSK,16QAM, 64QAM, 256QAM)			
Channels Step:	Channels with 5MHz step			
Test software of EUT:	SecureCRT (ma	nufacturer declare)		
Antenna Type:	Patch antenna			
Antenna Gain:	UNII-1 BAND	Antenna1: 3.08 dBi Antenna2: 3.08 dBi		
	UNII-2A BAND	Antenna1: 3.58 dBi Antenna2: 3.58 dBi		
	UNII-2C BAND Antenna1: 2.74 dBi Antenna2: 2.74 dBi			
	UNII-3 BAND	Antenna1: 1.40 dBi Antenna2: 1.40 dBi		
	Remark: This da data	ta is provided by customer and our lab isn't responsible for this		

5.2. MAXIMUM OUTPUT POWER

UNII-1 BAND

IEEE Std. 802.11	Frequency (MHz)		verage Condu (dBm)	age Conducted Power (dBm)		Max Average EIRP (dBm)		
		Ant 1	Ant 2	Total	Ant 1	Ant 2	Total	
а	5150 ~ 5250	9.50	/	/	12.58	/	/	
ac VHT20		7.91	5.50	9.60	10.52	8.58	15.69	
ac VHT40		7.94	5.52	9.90	11.02	8.60	15.99	
ac VHT80		6.40	3.74	8.30	9.48	6.82	14.39	

UNII-2A BAND

IEEE Std. 802.11	Frequency	y Maximum Aver		erage Conducted Power (dBm)		
	(MHz)	Ant 1	Ant 2	Total		
а	5250 ~ 5350	10.13	/	/		
ac VHT20		7.38	6.46	10.0		
ac VHT40		7.60	6.74	10.20		
ac VHT80		6.51	5.00	8.80		

UNII-2C BAND

IEEE Std. 802.11	Frequency	Max Power (dBm)		
	(MHz)	Ant 1	Ant 2	Total
а	5470 ~ 5725	10.56	/	/
ac VHT20		7.88	7.28	10.60
ac VHT40		8.89	7.46	11.20
ac VHT80		7.77	4.99	9.60

UNII-3 BAND

IEEE Std. 802.11	Frequency	Max Power (dBm)		
	(MHz)	Ant 1	Ant 2	Total
а	5725 ~ 5850	11.40	/	/
ac VHT20		8.27	7.24	10.80
ac VHT40		8.93	7.41	11.20
ac VHT80		7.86	5.99	10.00

Remark:

- 1. Only the antenna1 can transmit at the 11a mode.
- 2. The UNII-1 band is disabled for ISED

5.3. CHANNEL LIST

UNII-1		UNII-1		UNII-1	
(For Bandwidt	(For Bandwidth = 20 MHz)		(For Bandwidth = 40 MHz)		th = 80 MHz)
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	38	5190	42	5210
40	5200	46	5230		
44	5220				
48	5240				

Remark: The UNII-1 band is disabled for ISED

UNII-2A		UNII-2A		UNII-2A	
(For Bandwidt	(For Bandwidth = 20 MHz)		(For Bandwidth = 40 MHz)		th = 80 MHz)
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
52	5260	54	5270	58	5290
56	5280	62	5310		
60	5300				
64	5320				

UNII-2C (For Bandwidth = 20 MHz)		UNII-2C (For Bandwidth = 40 MHz)		UNII-2C (For Bandwidth = 80 MHz)	
(For Bandwidt	n = 20 MHZ)	(For Bandwid	tn = 40 IMHZ	(For Bandwid	th = 80 MHZ)
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
100	5500	102	5510	106	5530
104	5520	110	5550	122	5610
108	5540	118	5590	138	5690
112	5560	126	5630		
116	5580	134	5670		
120	5600	142	5710		
124	5620				
128	5640				
132	5660				
136	5680				
140	5700				
144	5720				

UNII-3 (For Bandwidth = 20 MHz)		UNII-3 (For Bandwidth = 40 MHz)		UNII-3 (For Bandwidth = 80 MHz)	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	151	5755	155	5775
153	5765	159	5795		
157	5785				
161	5805				
165	5825				

5.4. TEST CHANNEL CONFIGURATION

UNII-1 Test Channel Configuration						
IEEE Std.	Test Channel Number	Frequency				
802.11a	CH 36(Low Channel), CH 40(MID Channel), CH 48(High Channel)	5180 MHz, 5200 MHz, 5240 MHz				
802.11n HT20	CH 36(Low Channel), CH 40(MID Channel), CH 48(High Channel)	5180 MHz, 5200 MHz, 5240 MHz				
802.11n HT40	CH 38(Low Channel), CH 46(High Channel)	5190 MHz, 5230 MHz				
802.11ac VHT20	CH 36(Low Channel), CH 40(MID Channel), CH 48(High Channel)	5180 MHz, 5200 MHz, 5240 MHz				
802.11ac VHT40	CH 38(Low Channel), CH 46(High Channel)	5190 MHz, 5230 MHz				
802.11ac VHT80	CH 42(Low Channel)	5210 MHz				

UNII-2A Test Channel Configuration						
IEEE Std.	Test Channel Number	Frequency				
802.11a	CH 52(Low Channel), CH 56(MID Channel), CH 64(High Channel)	5260 MHz, 5280 MHz, 5320 MHz				
802.11n HT20	CH 52(Low Channel), CH 56(MID Channel), CH 64(High Channel)	5260 MHz, 5280 MHz, 5320 MHz				
802.11n HT40	CH 54(Low Channel), CH 62(High Channel)	5270 MHz, 5310 MHz				
802.11ac VHT20	CH 52(Low Channel), CH 56(MID Channel), CH 64(High Channel)	5260 MHz, 5280 MHz, 5320 MHz				
802.11ac VHT40	CH 54(Low Channel), CH 62(High Channel)	5270 MHz, 5310 MHz				
802.11ac VHT80	CH 58(Low Channel)	5290 MHz				

	UNII-2C Test Channel Configuration						
IEEE Std.	Test Channel Number	Frequency					
802.11a	CH 100(Low Channel), CH 116(MID Channel),	5500 MHz, 5580 MHz,					
002.11a	CH 140(MID Channel), CH 144(High Channel)	5700 MHz,5720 MHz					
802.11n HT20	CH 100(Low Channel), CH 116(MID Channel),	5500 MHz, 5580 MHz,					
002.11111120	CH 140(MID Channel), CH 144(High Channel)	5700 MHz,5720 MHz					
802.11n HT40	CH 102(Low Channel), CH 110(MID Channel),	5510 MHz, 5550 MHz,					
002.11111140	CH 134(MID Channel), CH 142(High Channel)	5670 MHz, 5710 MHz,					
802.11ac VHT20	CH 100(Low Channel), CH 116(MID Channel),	5500 MHz, 5580 MHz,					
	CH 140(MID Channel), CH 144(High Channel)	5700 MHz,5720 MHz					
802.11ac VHT40	CH 102(Low Channel), CH 110(MID Channel),	5510 MHz, 5550 MHz,					
002.11aC VH140	CH 134(MID Channel), CH 142(High Channel)	5670 MHz, 5710 MHz,					
802.11ac VHT80	CH 102(Low Channel), CH 122(MID Channel) CH 138(High Channel)	5530 MHz, 5610 MHz, 5690 MHz					

UNII-3 Test Channel Configuration						
IEEE Std.	Test Channel Number	Frequency				
802.11a	CH 149(Low Channel), CH 157(MID Channel), CH 165(High Channel)	5745 MHz, 5785 MHz, 5825 MHz				
802.11n HT20	CH 149(Low Channel), CH 157(MID Channel), CH 165(High Channel)	5745 MHz, 5785 MHz, 5825 MHz				
802.11n HT40	CH 151(Low Channel), CH 159(High Channel)	5755MHz, 5795MHz				
802.11ac VHT20	CH 149(Low Channel), CH 157(MID Channel), CH 165(High Channel)	5745 MHz, 5785 MHz, 5825 MHz				
802.11ac VHT40	CH 151(Low Channel), CH 159(High Channel)	5755 MHz, 5795 MHz				
802.11ac VHT80	CH 155(Low Channel)	5775 MHz				

5.5. DESCRIPTION OF AVAILABLE ANTENNAS

	Frequency	Antenna	Maximum Antenna Gain	Directional Gain (dBi)	
C	c Band		(dBi)	MIMO Mode	
1	UNII-1	Patch	3.08	6.09	
2	UNII-1	Patch	3.08	0.09	
1	UNII-2A	Patch	3.58	6.59	
2	UNII-2A	Patch	3.58	0.59	
1	UNII-2C	Patch	2.74	5.75	
2	UNII-2C	Patch	2.74	5.75	
1	UNII-3	Patch	1.40	3.41	
2	UNII-3	Patch	1.40	5.41	

IEEE Std. 802.11	Transmit and Receive Mode	Description			
а	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.			
n HT20	⊠2TX, 2RX	ANT 1, 2 can be used as transmitting/receiving antenna.			
n HT40	⊠2TX, 2RX	ANT 1, 2 can be used as transmitting/receiving antenna.			
ac VHT20	⊠2TX, 2RX	ANT 1, 2 can be used as transmitting/receiving antenna.			
ac VHT40	⊠2TX, 2RX	ANT 1, 2 can be used as transmitting/receiving antenna.			
ac VHT80	⊠2TX, 2RX	ANT 1, 2 can be used as transmitting/receiving antenna.			
	Remark: 1. Only 802.11n and 802.11ac modes can support for SISO and MIMO transmission, and for the modes of 11a only the antenna1 is working.				

2. 2.4 GHz WLAN& 5 GHz WLAN can't transmit simultaneously. (Declared by customer.)

Remark : MIMO Mode Directional gain= 10 log $[(10^{G1/20} + 10^{G2/20})^2/N_{ANT}]$ G_{ANT}: Average of the Antenna Gain N_{ANT}: Antenna numbers

5.6. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter				
Test Software	Secure CRT			

<u>UNII-1</u>						
IEEE Std. 802.11	Rate	Channel	Test Software Setting Value			
IEEE Std. 802.11	Trate	Channel	ANT 1	ANT 2		
		36	default	/		
а	6M	40	default	/		
		48	default	/		
	MCS0	36	default	default		
ac VHT20		40	default	default		
		48	default	default		
ac VHT40	MCS0	38	default	default		
		46	default	default		
ac VHT80	MCS0	42	default	default		

U	N	I-2/	1

IEEE Std. 802.11	Dete	Rate Channel		e Setting Value
IEEE Slu. 802.11	Rale	Channel	ANT 1	ANT 2
		52	default	/
а	6M	60	default	/
		64	default	/
		52	default	default
ac VHT20	MCS0	60	default	default
		64	default	default
aa \/\\\T40	MCSO	54	default	default
ac VHT40	MCS0	62	default	default
ac VHT80	MCS0	58	default	default

UNII-2C

Toot Software Setting Value						
IEEE Std. 802.11	Rate	Channel	Test Software Setting Value			
	Tuto	ondinio	ANT 1	ANT 2		
		100	default	/		
а	6M	116	default	/		
a	OIVI	140	default	/		
		144	default	/		
		100	default	default		
ac VHT20	MCS0	116	default	default		
		140	default	default		
		144	default	default		
		102	default	default		
ac VHT40	MCS0	118	default	default		
	MC30	134	default	default		
		142	default	default		
		106	default	default		
ac VHT80	MCS0	122	default	default		
		138	default	default		

UNII-3

	Dete	Channal	Test Software Setting Value		
IEEE Std. 802.11	Rate	Channel	ANT 1	ANT 2	
		149	default	/	
а	6M	157	default	/	
		165	default	/	
		149	default	default	
ac VHT20	MCS0	157	default	default	
		165	default	default	
ac VHT40	MCS0	151	default	default	
	1000	159	default	default	
ac VHT80	MCS0	155	default	default	

Remark: Since 802.11ac VHT20/VHT40 modes are different from 802.11n HT20/HT40 only in control messages, so all the tests are performed on the worst case (802.11ac VHT20/802.11ac VHT40) mode between these 4 modes and only the worst data was recorded in this report.

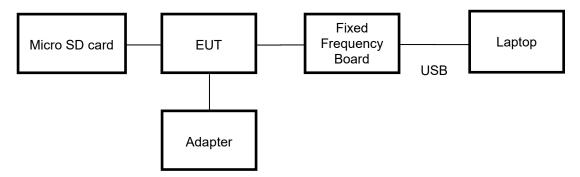
5.7. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	Description
1	Laptop	ThinkPad	E550c	N/A
2	Fixed Frequency Board	N/A	N/A	Supply by UL Lab
3	AC/DC Adaptor	ΗΟΙΟΤΟ	ADS-12AM-12 12012EPG	INPUT: 100-240V~50/60Hz Max.0.3A OUTPUT: 12.0V-1.0A 12.0W

I/O PORT

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	USB	USB to TTL	100cm Length (Supply by UL Lab)	N/A


ACCESSORY

Item	Accessory	Brand Name	Model Name	Description
1	Micro SD card	Sandisk	A1	32GB

TEST SETUP

The EUT can work in an engineer mode with a software through a PC.

SETUP DIAGRAM FOR TESTS

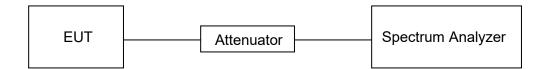
Remark: The EUT has been built one Micro SD card during the testing

5.8. MEASURING INSTRUMENT AND SOFTWARE USED

	Conducted Emissions (Instrument)								
Used	Equipment	Manufacturer	Model		Serial		Upper Last Cal.	Last Cal.	Next Cal.
V	EMI Test Receiver	R&S	ESR	3	1267	'00	2019-12-12	2020-12-05	2021-12-04
V	Two-Line V-Network	R&S	ENV2	216	1267	'01	2019-12-12	2020-12-05	2021-12-04
	Artificial Mains Networks	R&S	ENY	81	1267	'11	2019-12-12	2020-12-05	2021-12-04
				Soft	ware				
Used	Des	scription		Ma	anufactu	rer	Name	Version	
\checkmark	Test Software for 0	Conducted distur	bance		R&S		EMC32	Ver. 9.25	
		Ra	diated E	Emissi	i ons (In	strum	ient)		
Used	Equipment	Manufacturer	Model	No.	Serial	No.	Upper Last Cal.	Last Cal.	Next Cal.
\checkmark	Spectrum Analyzer	Keysight	N901		1557		2020-05-10	2021-05-09	2022-05-08
V	EMI test receiver	R&S	ESR	26	1267	03	2019-12-12	2020-12-05	2021-12-04
	Receiver Antenna (9kHz-30MHz)	Schwarzbeck	FMZB ²	1513	1554	-56	2018-06-15	2021-06-03	2022-06-02
	Receiver Antenna (30MHz-1GHz)	SunAR RF Motion	JB1	1	1778	21	N/A	2019-01-28	2022-01-27
\checkmark	Receiver Antenna (1GHz-18GHz)	R&S	HF90	07	1267	05	2018-01-29	2019-01-28	2022-01-27
V	Receiver Antenna (18GHz-26.5GHz)	Schwarzbeck	BBHAS	9170	1267	'06	2018-01-06	2019-01-05	2022-01-04
V	Receiver Antenna (26.5GHz-40GHz)	ΤΟΥΟ	HAP 26	-40W	1555	67	2020-07-22	2021-07-29	2022-07-28
V	Pre-amplification (To 18GHz)	Compliance Direction System Inc.	PAP-1G	18-50	1778	25	2019-03-18	2020-12-05	2022-03-25
V	Pre-amplification (To 26.5GHz)	R&S	SCU-2	26D	1353	91	2019-02-06	2020-09-27	2021-09-26
V	Band Reject Filter	Wainwright	WRCJ 5120-5 5350-5 40S	150- 380-	3		2020-05-10	2021-05-09	2022-05-08
V	Band Reject Filter	Wainwright	WRCJV16- 5440-5470- 5725-5755- 40SS		4		2020-05-10	2021-05-09	2022-05-08
V	Band Reject Filter	Wainwright	WRCJV12- 5695-5725- 5850-5880- 40SS		5		2020-05-10	2021-05-09	2022-05-08
V	Highpass Filter	Wainwright	WHKX10- 5850-6500- 6 1800-40SS		2020-05-10	2021-05-09	2022-05-08		
				Soft	ware				
Used	Descr	ription	Ma	anufac	turer		Name	Version	
\checkmark	Test Software for R	adiated disturbar	nce	Tonsce	nd		TS+	Ver. 2.5	

REPORT No.: 4790053054-6 Page 18 of 350

	Other instruments						
Used	Equipment	Manufacturer	Model No.	Serial No.	Upper Last Cal.	Last Cal.	Next Cal.
\checkmark	Spectrum Analyzer	Keysight	N9010B	155368	2020-05-10	2021-05-09	2022-05-08
	Power Meter	Keysight	U2021XA	155370	2020-05-10	2021-05-09	2022-05-08


6. ANTENNA PORT TEST RESULTS

6.1. ON TIME AND DUTY CYCLE

LIMITS

None; for reporting purposes only.

TEST SETUP

TEST ENVIRONMENT

Environment Parameter	Selected Values During Tests		
Relative Humidity	65%		
Atmospheric Pressure:	101kPa		
Temperature	21.5°C		
Test date	08/12/2021		

RESULTS

ANTENNA 1

Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/T Minimum VBW (KHz)	Final setting For VBW (KHz)
11a	2.06	2.19	0.941	94.1	0.26	0.49	1
11ac HT20	1.93	2.10	0.919	91.9	0.37	0.52	1
11ac HT40	0.95	1.08	0.880	88.0	0.56	1.05	2
11ac HT80	0.46	0.60	0.767	76.7	1.15	2.17	3

Remark:

- 1. Duty Cycle Correction Factor=10log (1/x).
- 2. Where: x is Duty Cycle (Linear)
- 3. Where: T is On Time
- 4. If that calculated VBW is not available on the analyzer then the next higher value should be used.
- 5. Antenna 1 and Antenna 2 has the same duty cycle, only Antenna 1 data show here.

6.2. 6dB/26dB/99% OCCUPIED BANDWIDTH

LIMITS

	CFR 47 FCC Part15, Subpart E ISED RSS-247 ISSUE 2	
Test Item	Limit	Frequency Range (MHz)
26 dB Emission Bandwidth	For reporting purposes only.	5150 ~ 5250
26 dB Emission Bandwidth	For reporting purposes only.	5250 ~ 5350
26 dB Emission Bandwidth	For reporting purposes only.	5470 ~ 5725 (For FCC) 5470 ~ 5600 (For ISED) 5650 ~ 5725 (For ISED)
6 dB Emission Bandwidth	The minimum 6 dB emission bandwidth shall be 500 kHz.	5725 ~ 5850
99 % Occupied Bandwidth	For reporting purposes only.	5150 ~ 5825 (For ISED)

TEST PROCEDURE

Refer to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 section II.C1. for 26 dB Emission Bandwidth; section II.C2. for 6 dB Emission Bandwidth; section II.D. for 99 % Occupied Bandwidth.

Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	For 6 dB Emission Bandwidth: RBW=100 kHz For 26 dB Emission bandwidth: approximately 1 % of the EBW. For 99 % Occupied Bandwidth: approximately 1 % ~ 5 % of the OBW.
VBW	For 6 dB Bandwidth: ≥ 3*RBW For 26 dB Bandwidth: > RBW For 99 % Bandwidth: >3*RBW
Trace	Max hold
Sweep	Auto couple

a) Use the 99 % power bandwidth function of the instrument, allow the trace to stabilize and report the measured bandwidth.

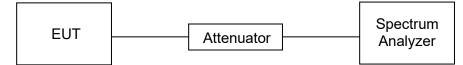
b) Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6/26 dB relative to the maximum level measured in the fundamental emission.

Calculation for 99 % Bandwidth and 26 dB Bandwidth of UNII-2C and UNII-3 Straddle Channel:

For Example: Fundamental Frequency: 5720 MHz

FL: 5710.60 MHz FH: 5728.33 MHz Turning Frequency: 5725 MHz UNII-2C Band Portion = 5725-5710.60 = 14.40 MHz UNII-3 Band Portion = 5728.33-5725 = 3.30 MHz **Calculation for 6dB Bandwidth of UNII-3 Straddle Channel:** For Example: Fundamental frequency: 5720 MHz 6 dB BW: 16.44 MHz FL: 5711.76 MHz

FH: 5728.2 MHz


Turning Frequency: 5725 MHz

6 dB Bandwidth of UNII-3 band Portion = 5728.2-5725=3.2 MHz

TEST ENVIRONMENT

Environment Parameter	Selected Values During Tests
Relative Humidity	65%
Atmospheric Pressure:	101kPa
Temperature	21.5°C
Test date	08/12/2021

TEST SETUP

RESULTS TABLE ANTENNA 1 (WORST-CASE CONFIGURATION)

1) 26 dB Emission Bandwidth Part:

1) 20 UD E	1111551011	Banuwiuth Pa	rt.			
Test Mode	Antenna	Channel	26dB EBW [MHz]	FL[MHz]	FH[MHz]	Verdict
		5180	5180	20.680	5169.480	PASS
		5200	5200	20.040	5189.960	PASS
		5240	5240	20.440	5229.800	PASS
		5260	5260	19.840	5249.960	PASS
		5280	5280	20.560	5269.640	PASS
		5320	5320	20.160	5309.920	PASS
		5500	5500	20.680	5489.800	PASS
11A	Ant1	5580	5580	20.680	5569.480	PASS
1173		5700	5700	20.440	5689.640	PASS
		5720	5720	20.320	5709.800	PASS
		5720 UNII-2C	5720_UNII-2C	15.200	5709.800	PASS
		5720 UNII-3	5720 UNII-3	5.120	5725.000	PASS
		5745	<u>5720_0111-3</u> 5745	20.760	5734.600	PASS
		5785	5785	20.200		PASS
			5785		5774.960	PASS PASS
		5825		19.880	5815.000	
		5180	5180	21.080	5169.400	PASS
		5200	5200	21.040	5189.520	PASS
		5240	5240	21.160	5229.360	PASS
		5260	5260	20.400	5249.600	PASS
		5280	5280	20.920	5269.440	PASS
		5320	5320	20.800	5309.440	PASS
11AC20		5500	5500	20.840	5489.600	PASS
MIMO	Ant1	5580	5580	20.240	5569.800	PASS
		5700	5700	20.720	5689.400	PASS
		5720	5720	20.800	5709.440	PASS
		5720_UNII-2C	5720_UNII-2C	15.560	5709.440	PASS
		5720_UNII-3	5720_UNII-3	5.240	5725.000	PASS
		5745	5745	20.520	5734.640	PASS
		5785	5785	20.880	5774.560	PASS
		5825	5825	21.080	5814.400	PASS
		5190	5190	41.840	5168.880	PASS
		5230	5230	42.480	5208.480	PASS
		5270	5270	42.480	5248.640	PASS
	Ant1	5310	5310	42.480	5288.480	PASS
		5510	5510	42.160	5488.960	PASS
11AC40		5550	5550	41.600	5529.120	PASS
MIMO		5670	5670	42.160	5648.720	PASS
		5710	5710	42.320	5688.720	PASS
		5710_UNII-2C	5710_UNII-2C	36.280	5688.720	PASS
		5710_UNII-3	5710_UNII-3	6.040	5725.000	PASS
		5755	5755	43.120	5733.400	PASS
		5795	5795	42.160	5773.800	PASS
		5210	5210	81.760	5168.880	PASS
		5290	5290	81.600	5248.880	PASS
		5530	5530	81.440	5489.200	PASS
11AC80	A + 4	5610	5610	80.800	5569.680	PASS
MIMO	Ant1	5690	5690	81.600	5649.360	PASS
		5690 UNII-2C	5690 UNII-2C	75.640	5649.360	PASS
		5690 UNII-3	5690 UNII-3	5.960	5725.000	PASS
			5775	80.640	5734.680	PASS

Remark: The two antennas had been tested, but only the worst data was recorded in the report.

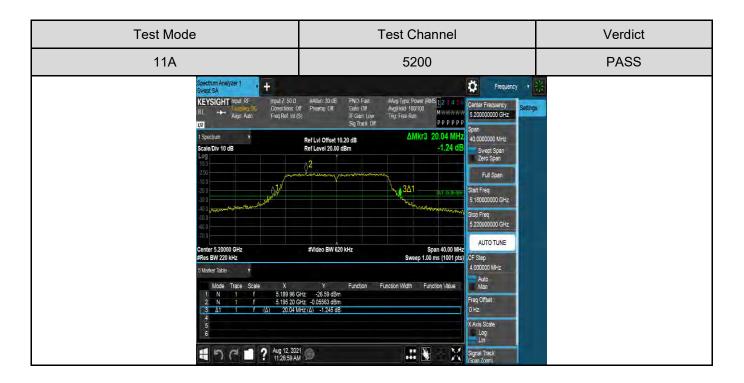
2) Occupied channel bandwidth Part:

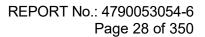
Test Mode	Antenna	Channel	Occupied Bandwidth	FL[MHz]	FH[MHz]	Verdict
Test Mode	Antenna		[MHz]			
		5180	16.937	5171.43	5188.367	PASS
		5200	16.928	5191.457	5208.385	PASS
		5240	16.863	5231.504	5248.367	PASS
		5260	16.786	5251.515	5268.301	PASS
		5280	16.971	5271.456	5288.427	PASS
		5320	16.877	5311.471	5328.348	PASS
		5500	16.943	5491.498	5508.441	PASS
11A	Ant1	5580	16.861	5571.506	5588.367	PASS
		5700	16.965	5691.429	5708.394	PASS
		5720	16.738	5711.596	5728.334	PASS
		5720_UNII-2C	13.404	5711.596	5725	PASS
		5720_UNII-3	3.334	5725	5728.334	PASS
		5745	16.832	5736.545	5753.377	PASS
		5785	16.822	5776.499	5793.321	PASS
		5825	16.85	5816.519	5833.369	PASS
		5180	17.846	5171.005	5188.851	PASS
		5200	17.842	5191.007	5208.849	PASS
		5240	17.863	5230.982	5248.845	PASS
		5260	17.929	5251.03	5268.959	PASS
		5280	17.813	5271.028	5288.841	PASS
		5320	17.798	5311.035	5328.833	PASS
11AC20		5500	17.864	5491.061	5508.925	PASS
MIMO	Ant1	5580	17.816	5571.021	5588.837	PASS
WIIWO		5700	17.877	5690.96	5708.837	PASS
		5720	17.827	5711.044	5728.871	PASS
		5720_UNII-2C	13.956	5711.044	5725	PASS
		5720_UNII-3	3.871	5725	5728.871	PASS
		5745	17.829	5736.014	5753.843	PASS
		5785	17.827	5776.031	5793.858	PASS
		5825	17.764	5816.034	5833.798	PASS
		5190	36.514	5171.622	5208.136	PASS
		5230	36.577	5211.629	5248.206	PASS
		5270	36.55	5251.704	5288.254	PASS
		5310	36.504	5291.642	5328.146	PASS
		5510	36.557	5491.757	5528.314	PASS
11AC40	Ant1	5550	36.581	5531.769	5568.35	PASS
MIMO		5670	36.545	5651.616	5688.161	PASS
		5710	36.544	5691.681	5728.225	PASS
		5710_UNII-2C	33.319	5691.681	5725	PASS
		5710_UNII-3	3.225	5725	5728.225	PASS
		5755	36.573	5736.648	5773.221	PASS
		5795	36.514	5776.596	5813.11	PASS
		5210	75.726	5172.145	5247.871	PASS
		5290	75.467	5252.272	5327.739	PASS
		5530	75.546	5492.332	5567.878	PASS
11AC80	Ant1	5610	75.551	5572.283	5647.834	PASS
MIMO		5690	75.535	5652.153	5727.688	PASS
		5690_UNII-2C	72.847	5652.153	5725	PASS
		5690_UNII-3	2.688	5725	5727.688	PASS
		5775	75.496	5737.252	5812.748	PASS

Remark: The two antennas had been tested, but only the worst data was recorded in the report.

3) 6dB Minimum Emission Bandwidth

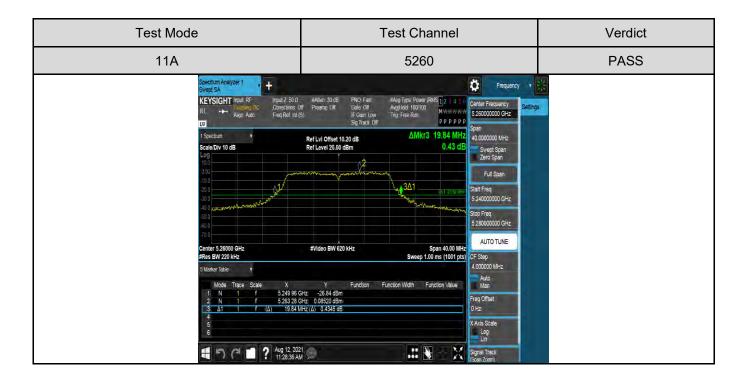
Test Mode	Antenna	Channel	6db EBW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		5745	16.360	5736.760	5753.120	0.5	PASS
11A	Ant1	5785	16.440	5776.720	5793.160	0.5	PASS
		5825	16.400	5816.760	5833.160	0.5	PASS
114.000		5745	16.840	5736.520	5753.360	0.5	PASS
11AC20 MIMO	Ant1	5785	16.840	5776.520	5793.360	0.5	PASS
IVIIIVIO		5825	17.000	5816.360	5833.360	0.5	PASS
11AC40	A not 1	5755	35.360	5737.160	5772.520	0.5	PASS
MIMO	Ant1	5795	35.840	5776.920	5812.760	0.5	PASS
11AC80 MIMO	Ant1	5775	74.240	5737.240	5811.480	0.5	PASS

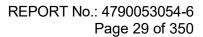

Remark: The two antennas had been tested, but only the worst data was recorded in the report.

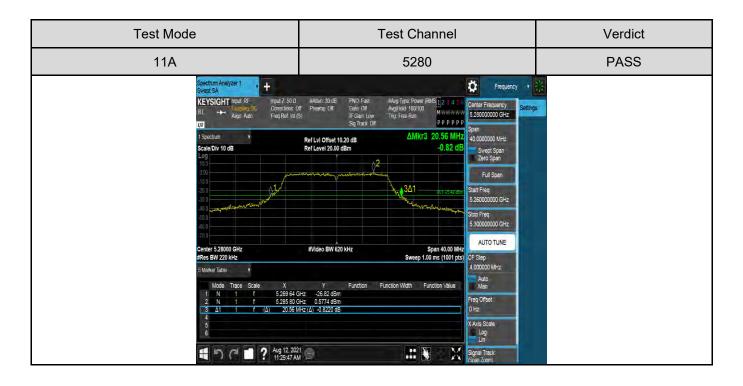


Test Graphs

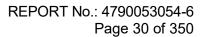
1) For 26 dB Emission Bandwidth Part:

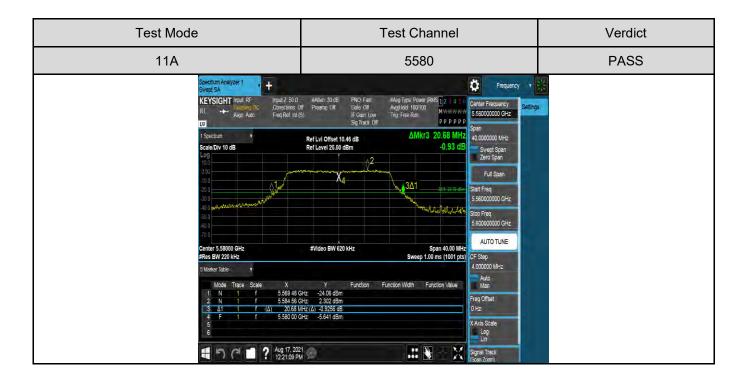


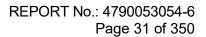


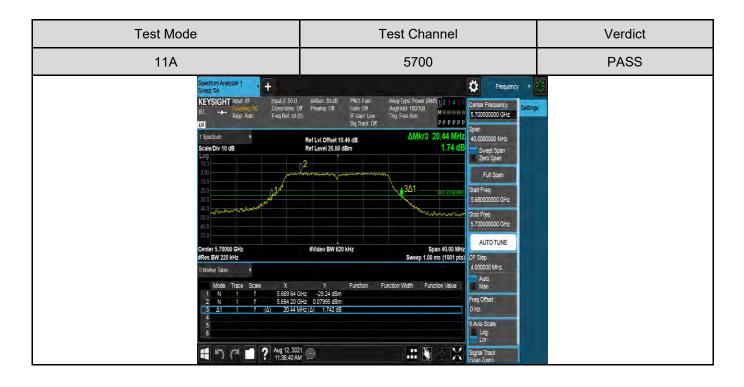


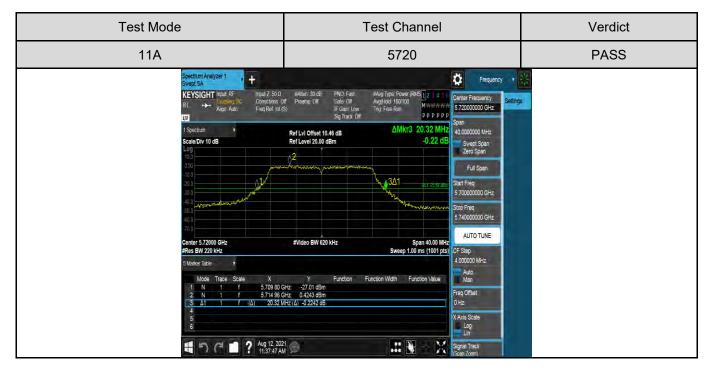
Test Mode	Test Channel	Verdict
11A	5240	PASS
Scale Div 10 dB	F Gam Low Sig Track Off They Free Run P p P p P P Ref Level 20.00 dBm 5.24000000 GHz Span 40.000000 MHz Ref Level 20.00 dBm -1.48 GB Span 2.48 GB Span 2.48 GB Span 40.000000 MHz Span 40.000000 MHz # Strike DBW 620 KHz Span 40.00 MHz Span 5.20000000 GHz Span 5.2000000 GHz Span 5.2000000 GHz #Video BW 620 KHz Span 40.00 MHz Span 40.00 MHz Span 5.2000000 GHz Span 5.20000000 GHz #Video BW 620 KHz Span 40.00 MHz Man 5.2000000 GHz Span 5.2000000 GHz Span 6.2000000 GHz #Video BW 620 KHz Span 40.00 MHz Sweep 1.00 ms (1001 pb Man Free 6.2000000 GHz AUTO TUNE # Video BW 620 KHz Span 40.00 MHz Man Auto Man P Fen C Stee Log Auto Man * 2 - 0.2056 dBm (z (Δ) - 1.480 dB Log Log Log Log	Settings

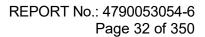


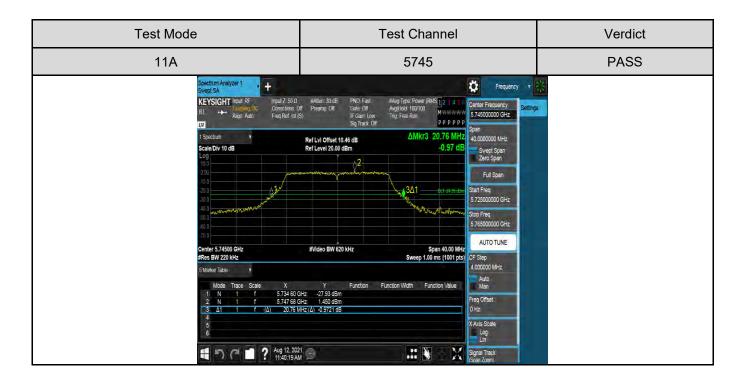


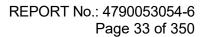


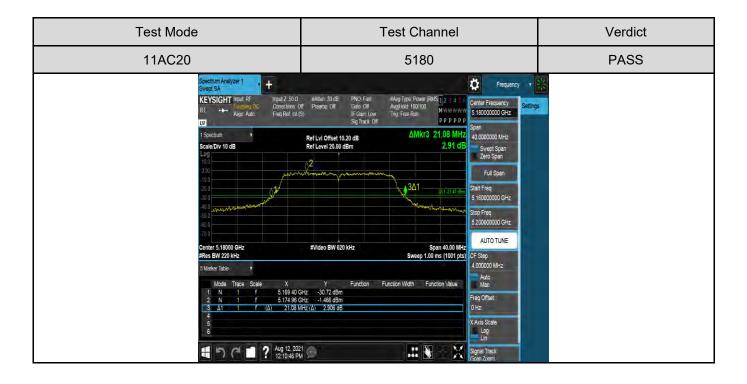


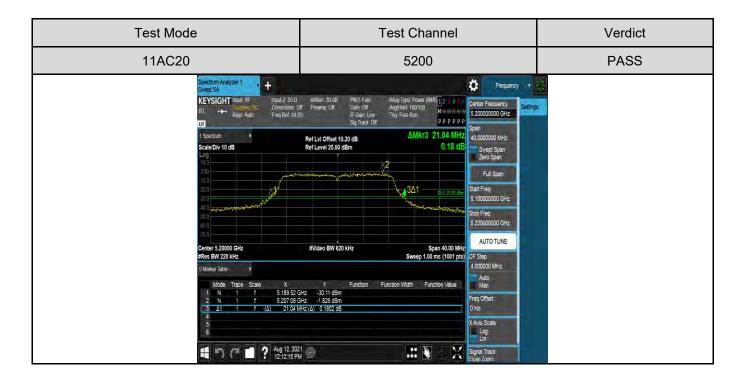

Test Mode	Test Channel	Verdict
11A	5500	PASS
Spectrum Analyzer 1 Verset SA KEYSIGHT Inga RF RL Align Auto 1 Spectrum Scale Div 10 dB Log 10 20 20 20 20 20 20 20 20 20 2	ns: 0ff Ptemp: 0ft Calle 0ff Andfred 100100 Ptemp: 0ff Scatter Precidency Scotter Pr	Settings
1 N 1 F 5.485 2 N 1 F 5.493	80 GHz -26.23 dBm 28 GHz -0.0874 dBm 68 MHz (Δ) -0.9940 dB Freq Offset 0 Hz X Avis State Lin	

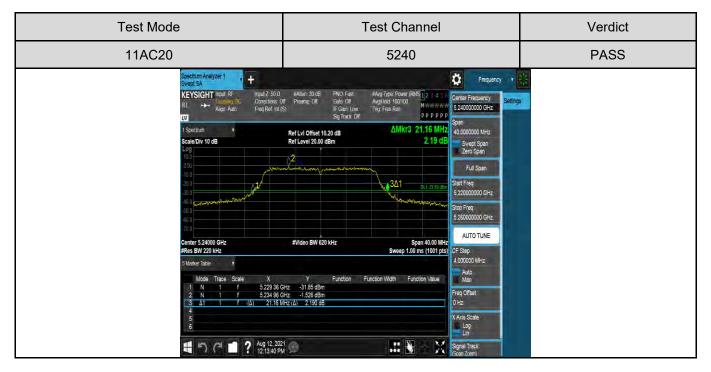






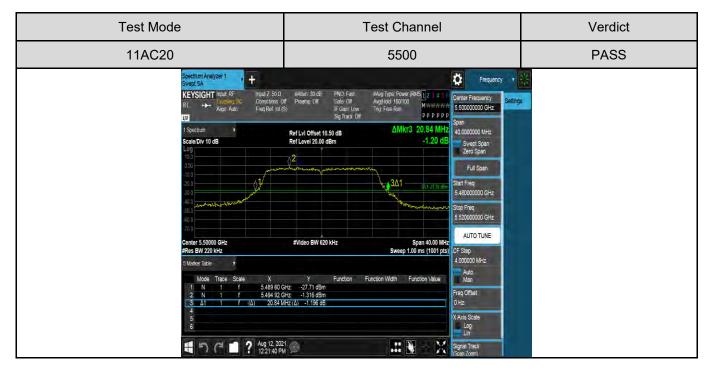


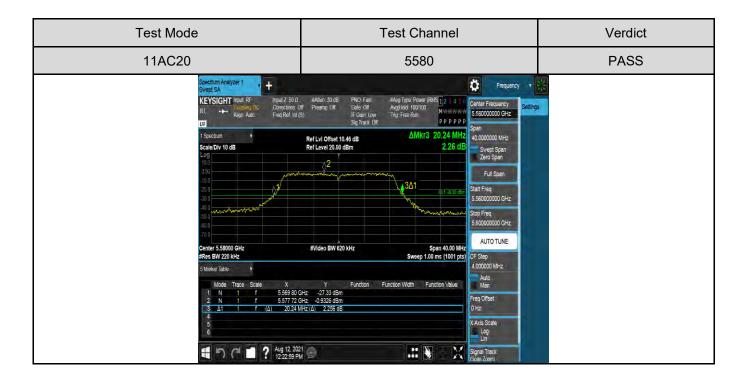


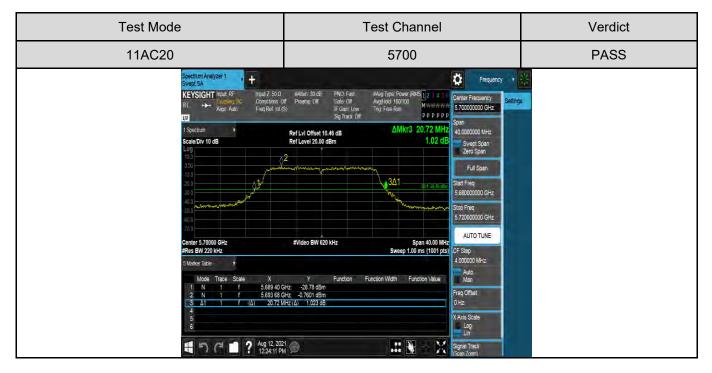


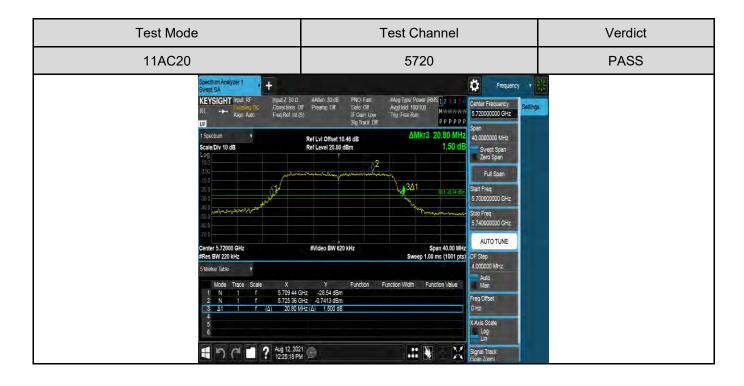
Test Mode	Test Channel	Verdict
11A	5825	PASS
RC Alger Auto: Freq Ref. CO 1 Spectrum	s Off Preamp Off Gate Off Avg(Hold 100/100	Setings
2 N 1 f 5.828	Y Function Function Width Function Value 0 GHz -26 00 GBm Fireq Offset 8 GHz 0.5549 dBm D Hz 9 MHz (A) 0.1872 dB D Hz 2021 Image: State S	

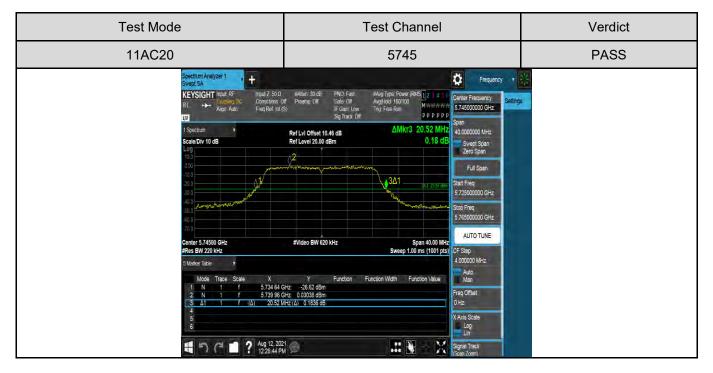


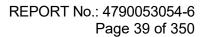


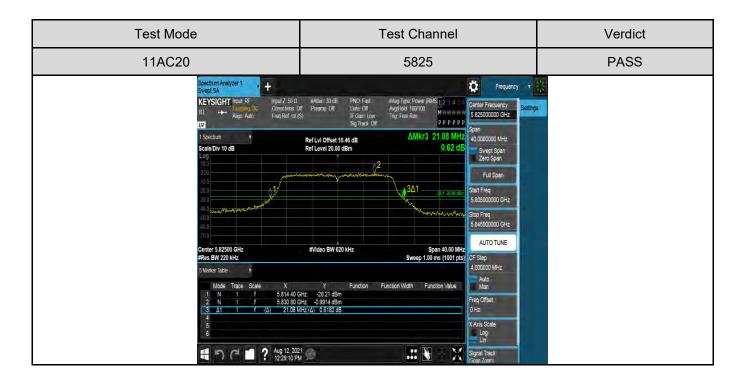


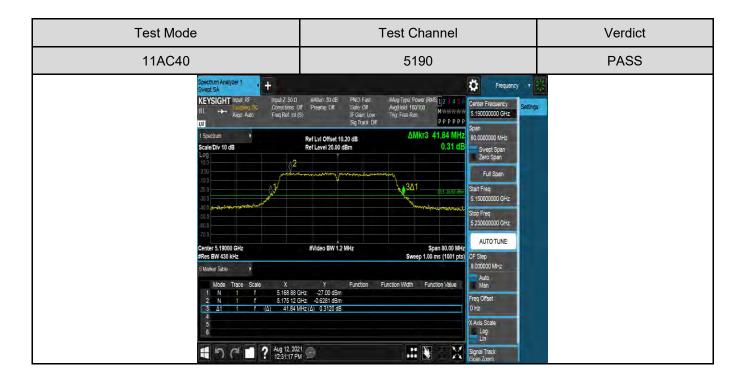




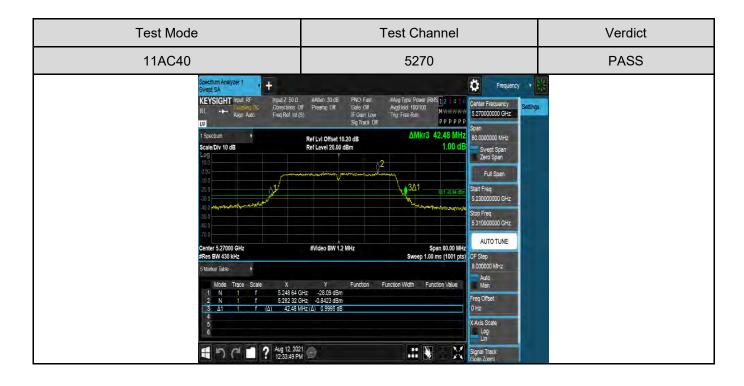






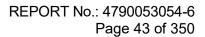


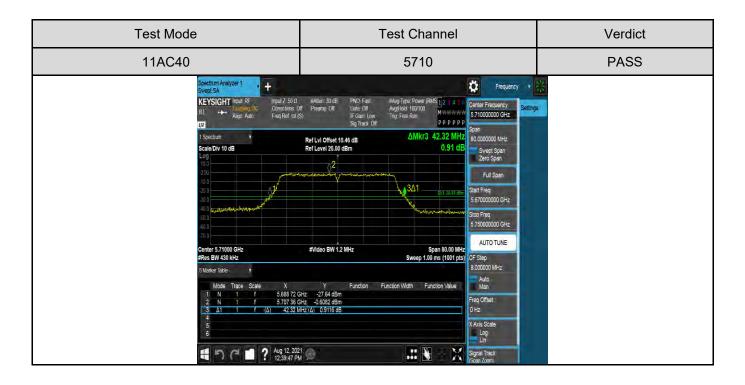
Test Mode		Te	est Channel		Verdict
11AC20			5785		PASS
Si K K R Sa L L L L L L L L L L L L L L L L L L	Align Auto Align Auto Align Auto Catellon 1 of B Catellon 1 of B Mode Trace Scale X 1 N 1 f 5.774 56 C	ff Preamp Off Gale Off Area So France Off France Off So France	Span 40.00 MHz Sweep 1.00 ms (1001 pts) ction Wath Function Value	Center Frequency 578200000 GHz Span 40.000000 MHz Sweet Span Zero Span Full Span Full Span Star Freq 5.85000000 GHz Stop Freq 5.85000000 GHz AUTO TUNE OF Step 4.00000 MHz Auto Man Freq Offset 0 Hz XAvis Stale Log Lin Signa Track Signa Track	

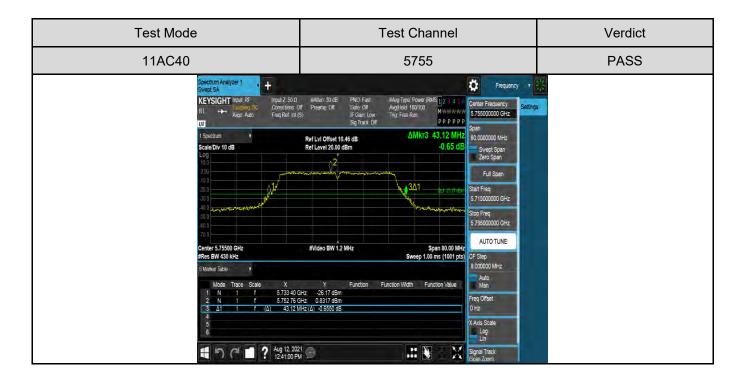


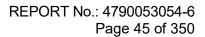


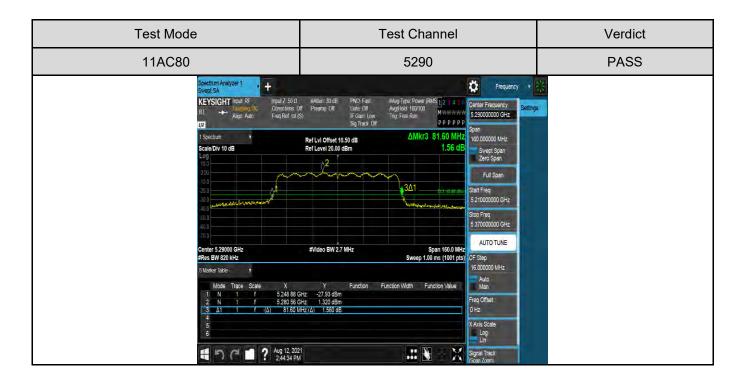


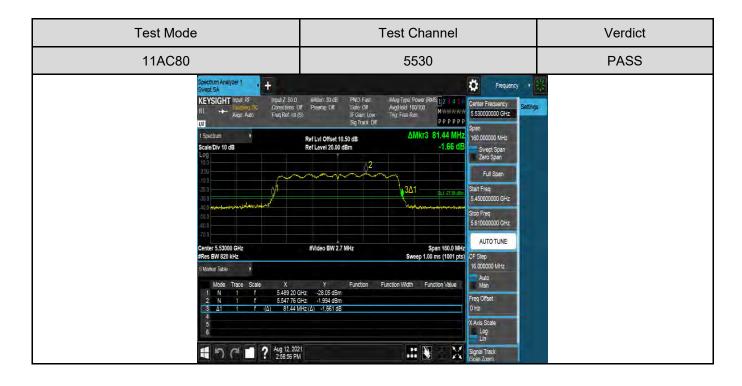






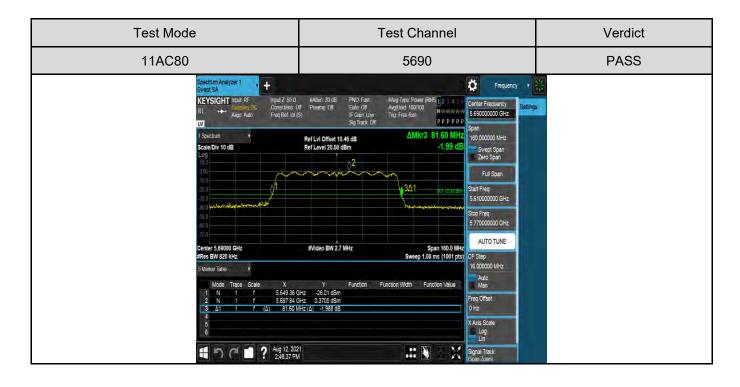

Test Mode	e	Test Chan	nel	Verdict
11AC40		5670		PASS
	NL Algo Auto Free Ref Int. 13 Sectum 1 13 Sectum 1 100 1 101 10 102 1 103 1 104 1 105 1 105 1 106 1 107 1 108 1 109 1 100 1 <td>Off Preemp: Off Oale Off Anglield 100/100 Sig Track Off Tig Free Run M Sig Track Off Sig Track Off Mkr3 42. Ref Level 20.00 dBm 2 3Δ1 Video BW 1.2 MHz Span FVideo BW 1.2 MHz Span Sy Function Function Wath Y Function GHz -2.21 dBm Y Function Function Function MHz(2) 0.825 dB</td> <td>WWWW Seeing P P P P P Sean 16 MH2 Sean 0.83 dB Svept Span - Zero Span Full Span 1 Staff Freq Scatorocou GHz Staff Freq Scatorocou GHz Staff Freq Scatorocou GHz Stop Freq Stop Freq S Octorocou GHz AUTO TUNE 80.00000 MHz OF Step Auto Auto</td> <td></td>	Off Preemp: Off Oale Off Anglield 100/100 Sig Track Off Tig Free Run M Sig Track Off Sig Track Off Mkr3 42. Ref Level 20.00 dBm 2 3Δ1 Video BW 1.2 MHz Span FVideo BW 1.2 MHz Span Sy Function Function Wath Y Function GHz -2.21 dBm Y Function Function Function MHz(2) 0.825 dB	WWWW Seeing P P P P P Sean 16 MH2 Sean 0.83 dB Svept Span - Zero Span Full Span 1 Staff Freq Scatorocou GHz Staff Freq Scatorocou GHz Staff Freq Scatorocou GHz Stop Freq Stop Freq S Octorocou GHz AUTO TUNE 80.00000 MHz OF Step Auto Auto	

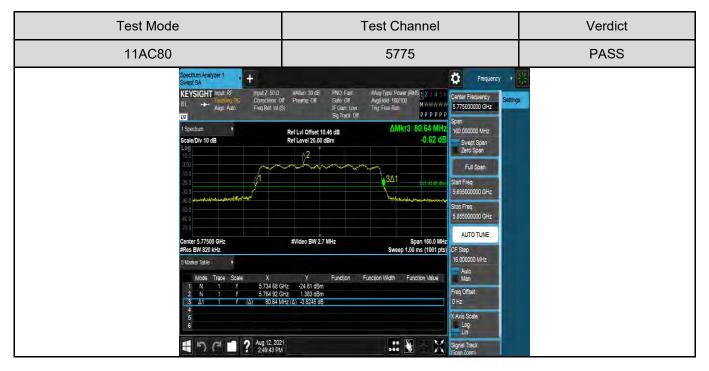


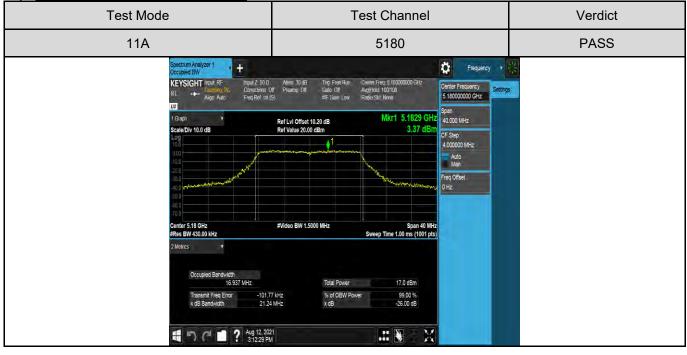


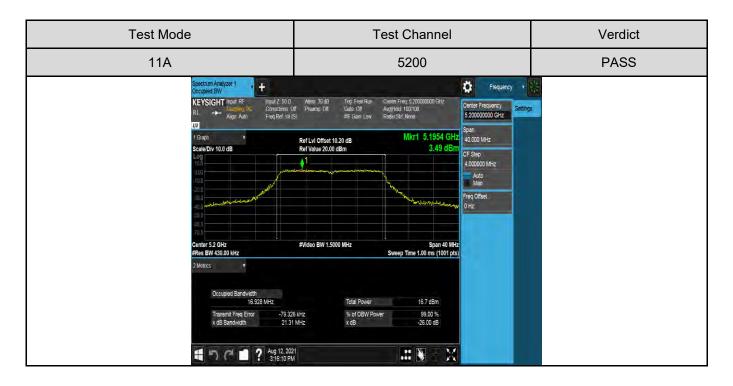


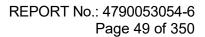
11AC80 5210 PASS	Test Mode	Test Channel	Verdict
KEYSIGHT Input Z 50.0 #Attim 30 db PMID Fact. #Avg Type: Power (PMS) 2 4 4 5 6 Center Frequency RL Competitors Off Pleaning Off Fide Off	11AC80	5210	PASS
AUTO TUNE Center 5.21000 GHz #Video BW 2.7 MHz Span 160.0 MHz RRes BW 820 MHz Sweep 1.00 ms (1001 pts) GF Step 6 Marker Table • • Mode Trace Scale Step • Mode Trace Scale Step • Mode 1 f 5168 85 GHz • 28 65 dBm 1 1 f 5168 85 GHz • 28 65 dBm • Main 2 N 1 f 5168 85 GHz • 28 65 dBm • Main 3 A.1 f 120 0 GHz • 4106 dBm • Main • Main 5 6 • • • • • • 6 • • • • • • • 6 • • • • • • • • 6 •	Sweet SA mpad 2 50 0. RL Augit Auto 1 Spectrum Scale Div 10 dB Log 100 300	#Atten: 30.dB PMO: Fast Bit Gam LW #Ang Type Power (RMS 12 3 4 16 Ang Type Power (RMS 12 3 16 Ang Type P	rgs

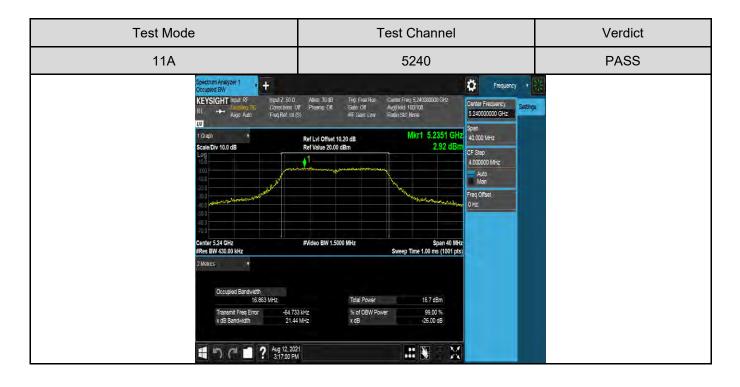




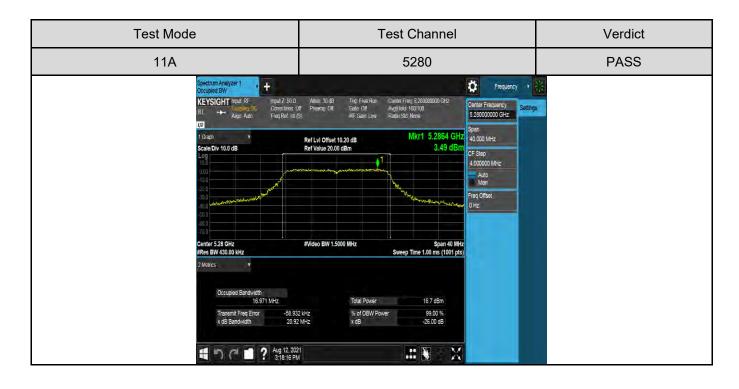


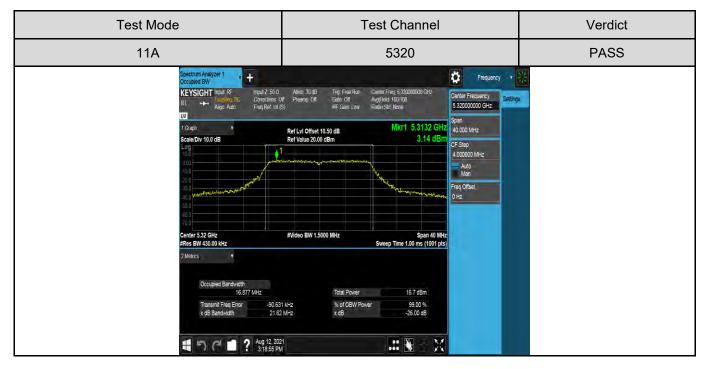


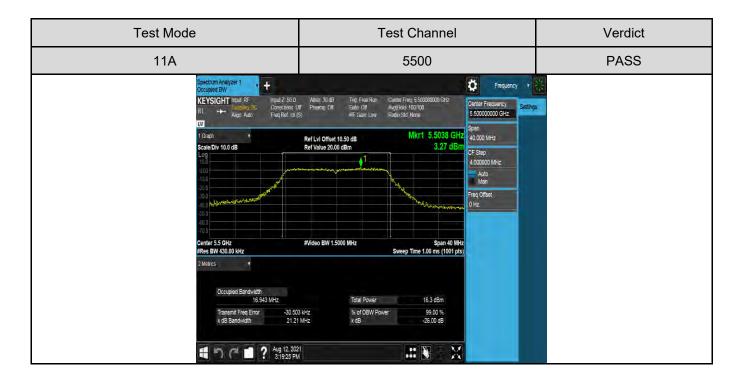


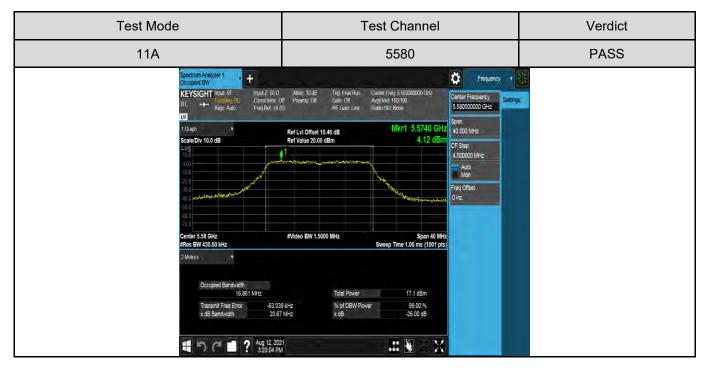

2) For Occupied Bandwidth Part:

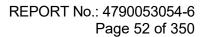


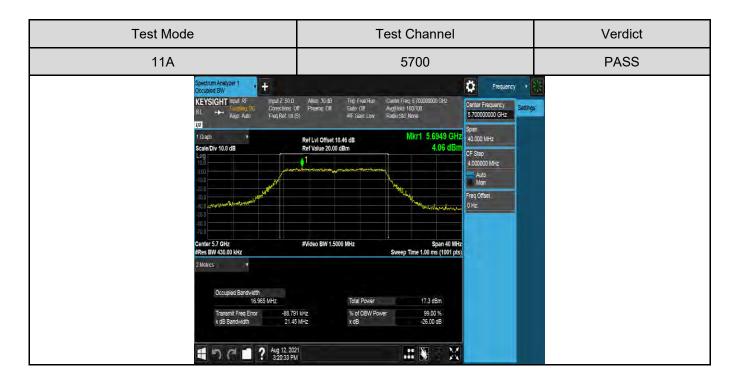


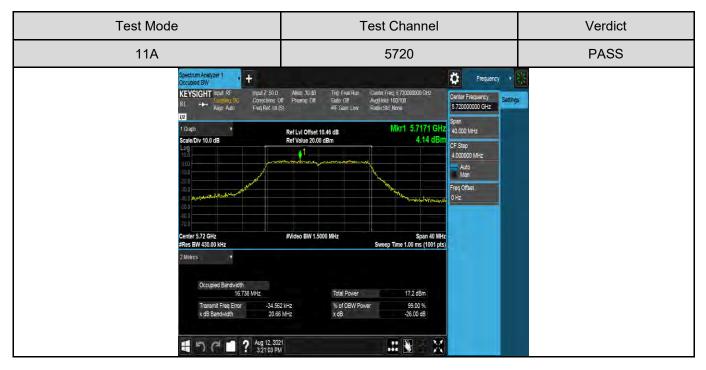


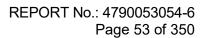


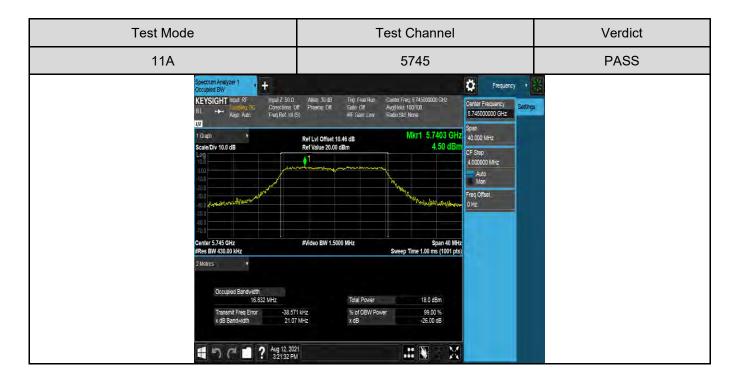




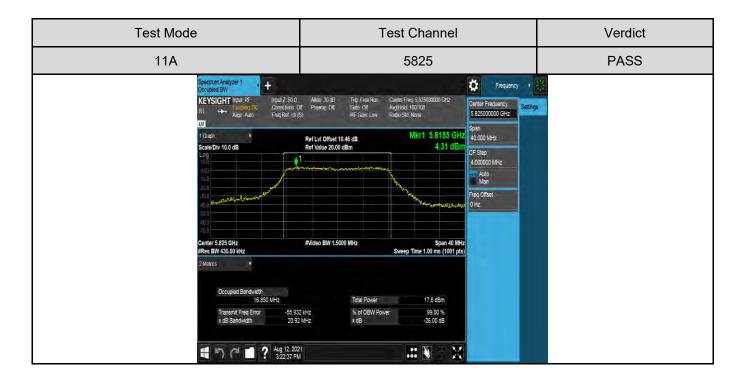




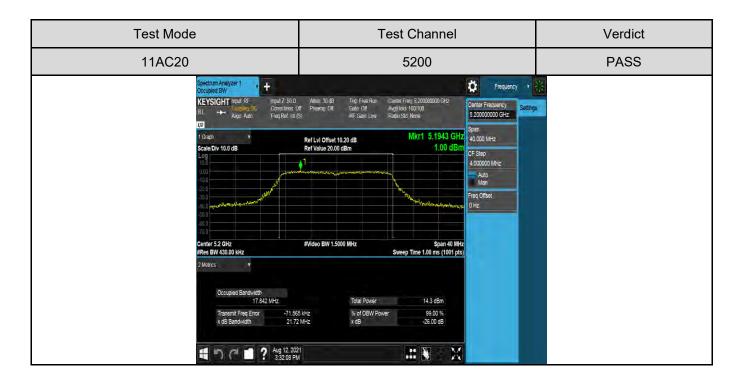


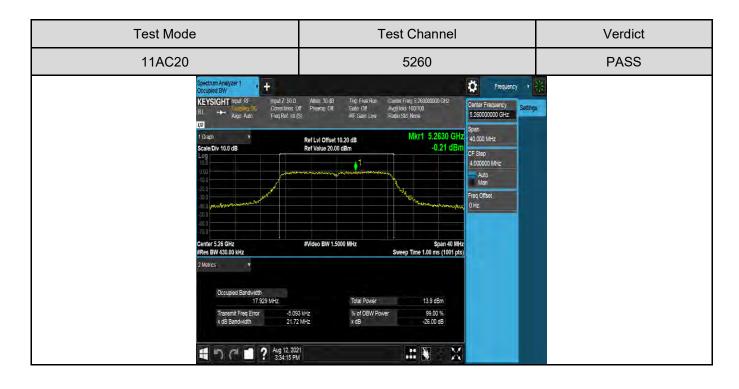


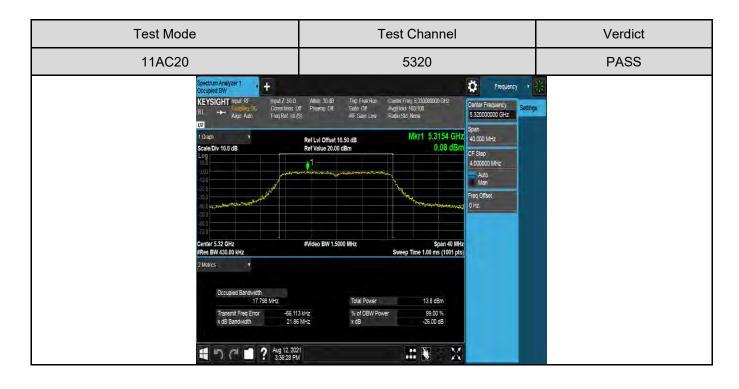


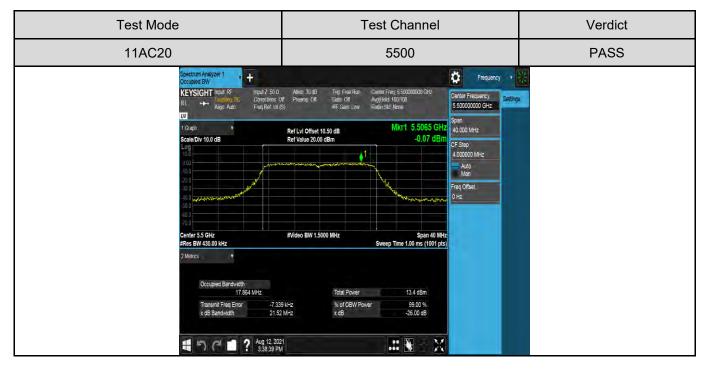


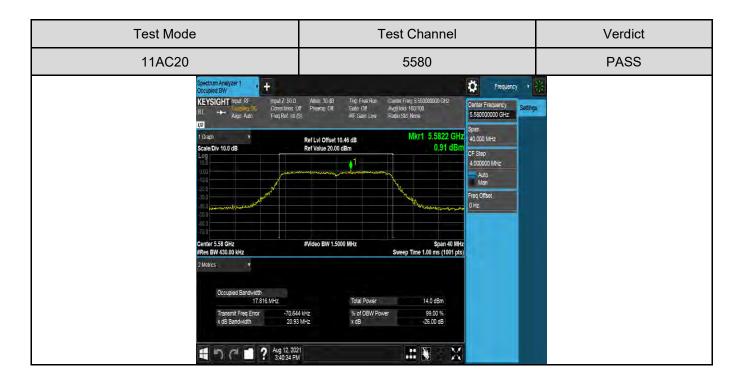


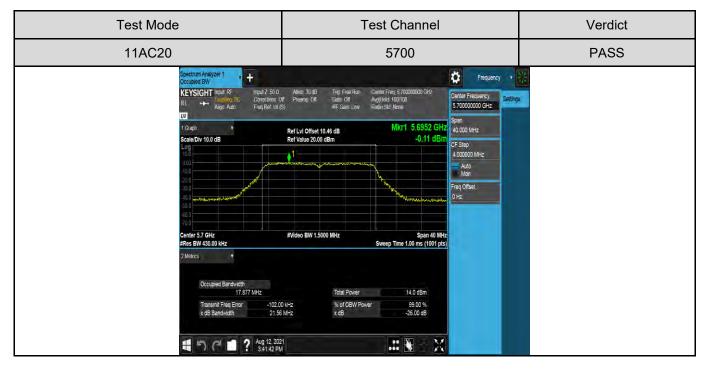


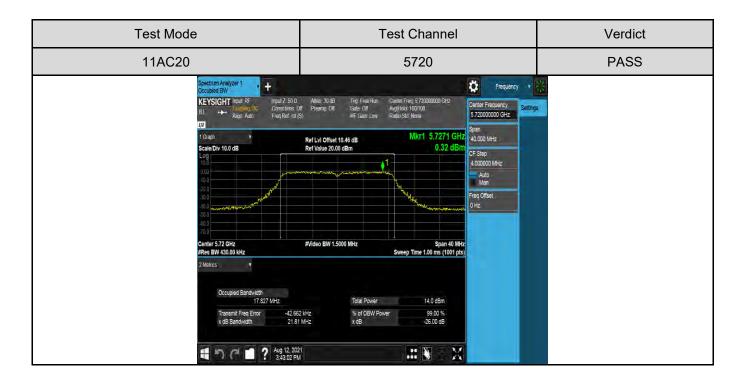


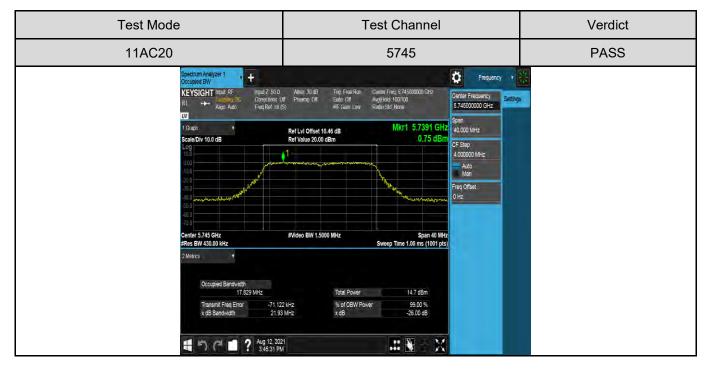


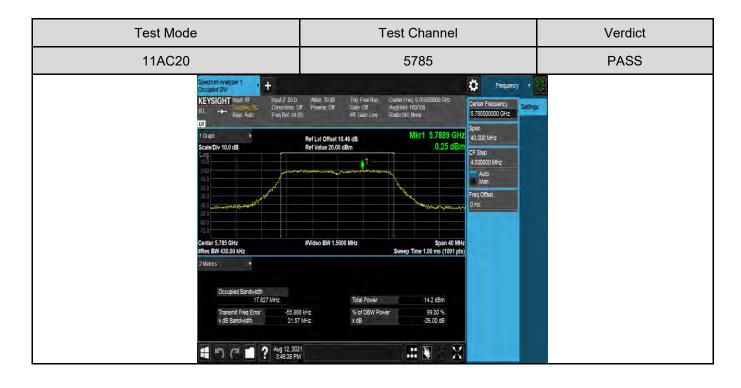


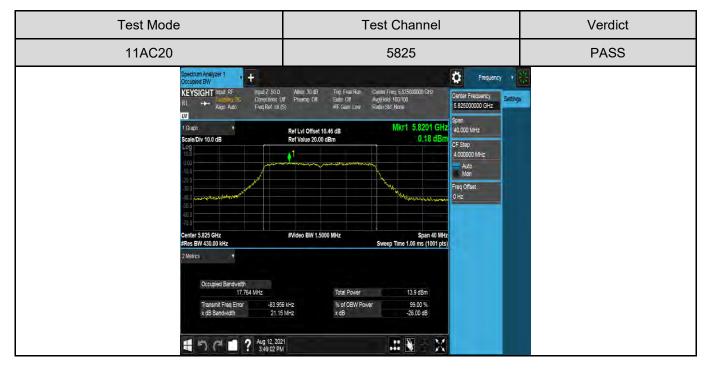


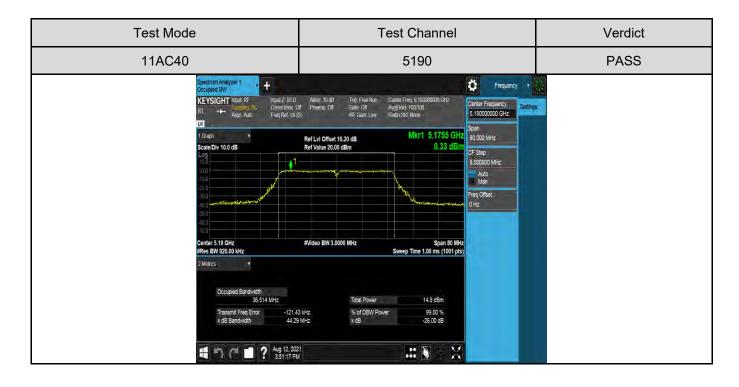


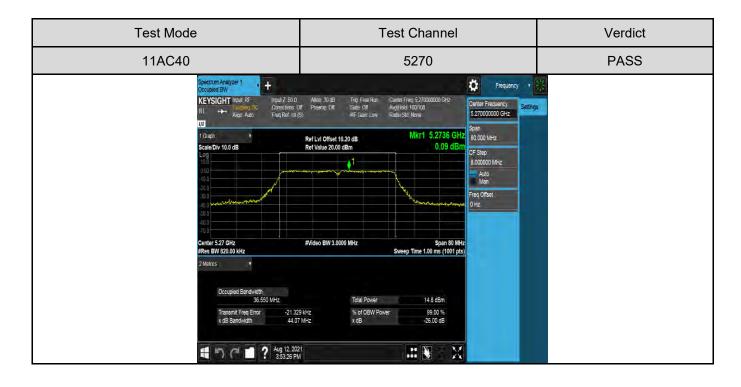


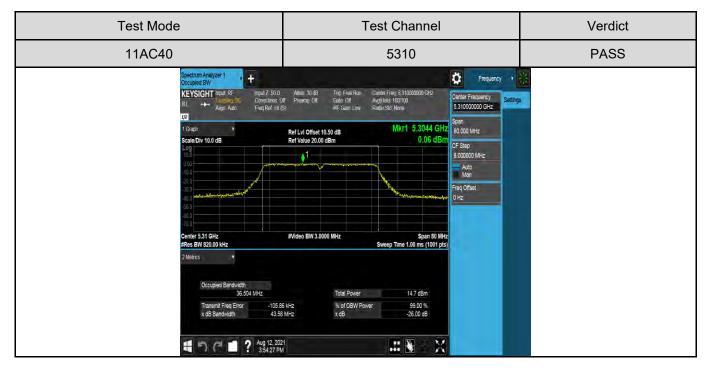


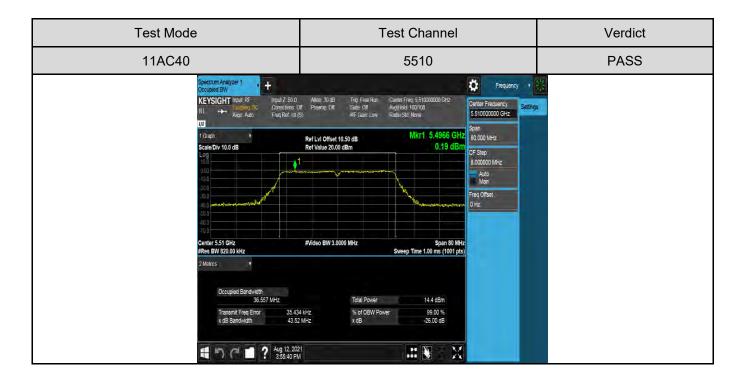


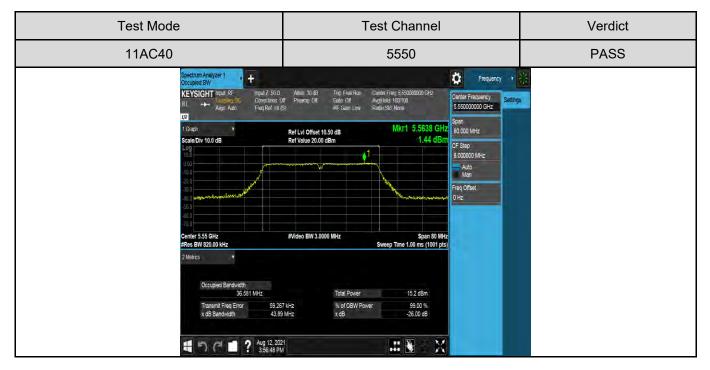


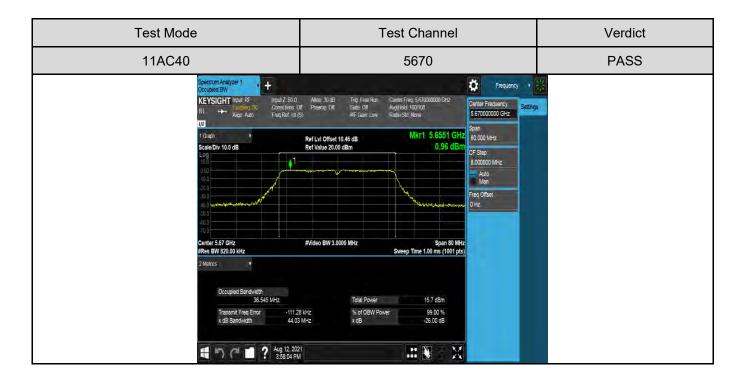


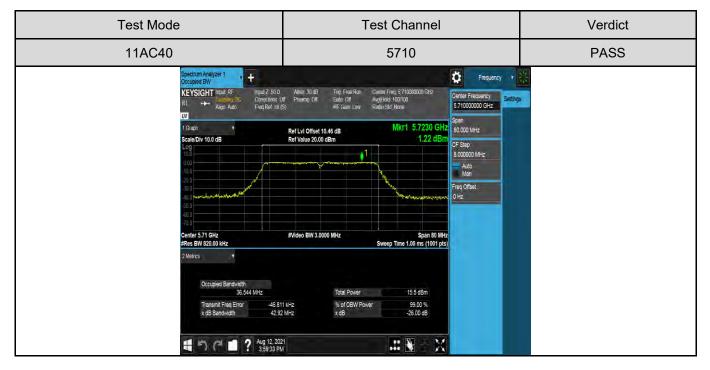


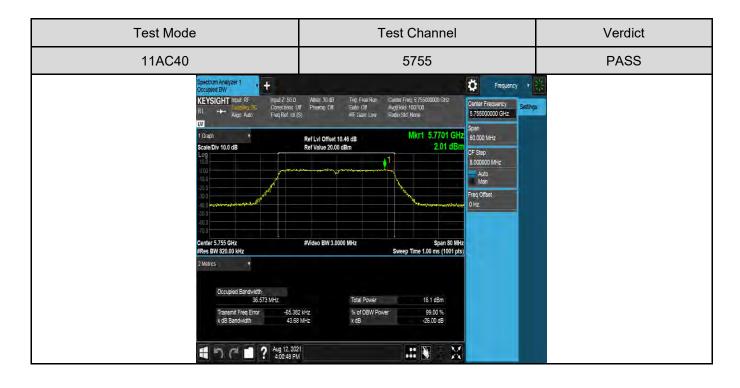


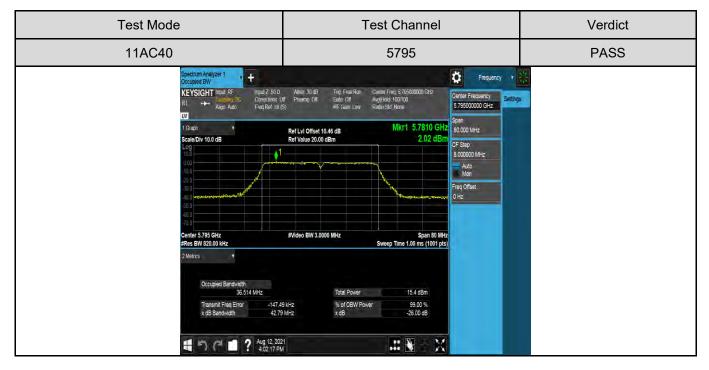


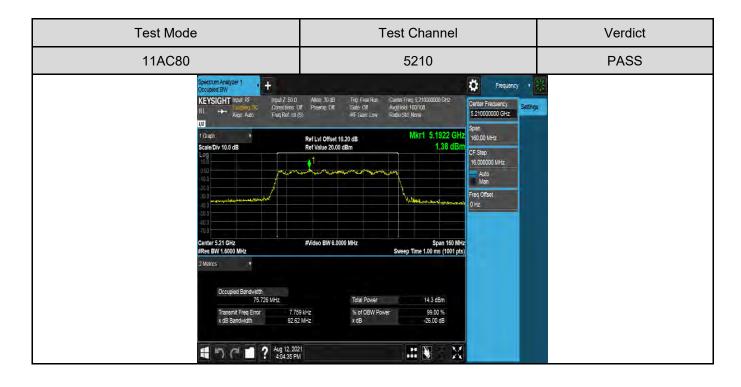


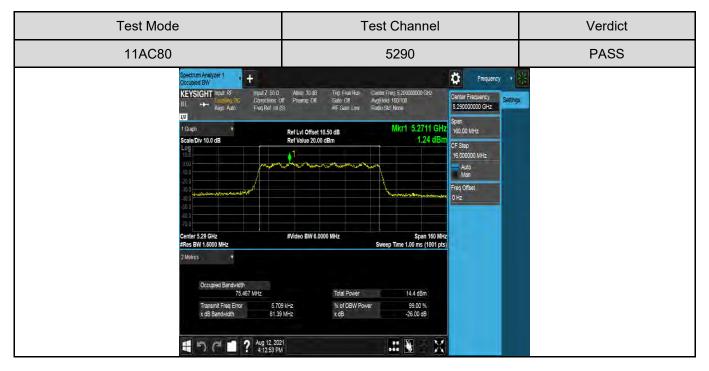


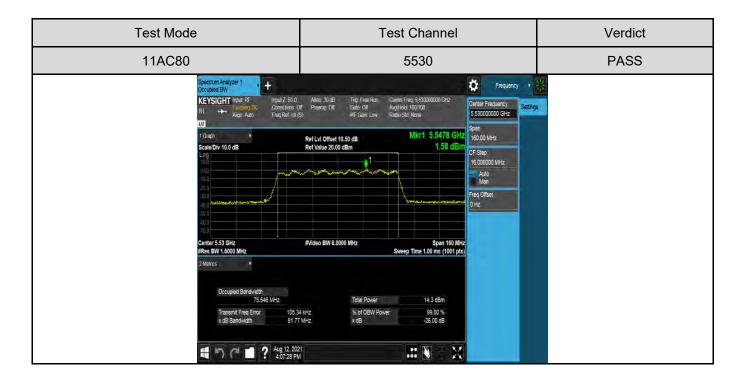


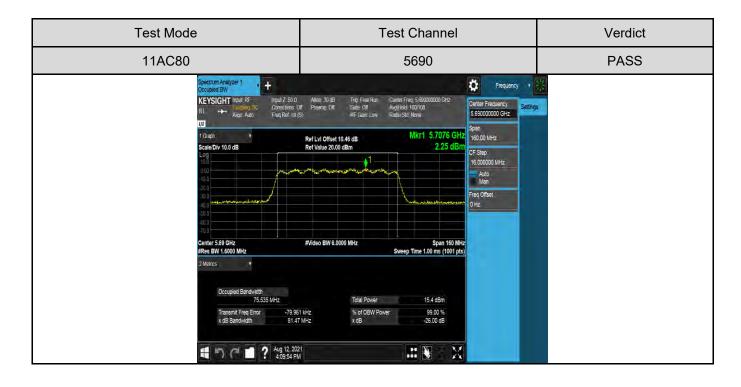




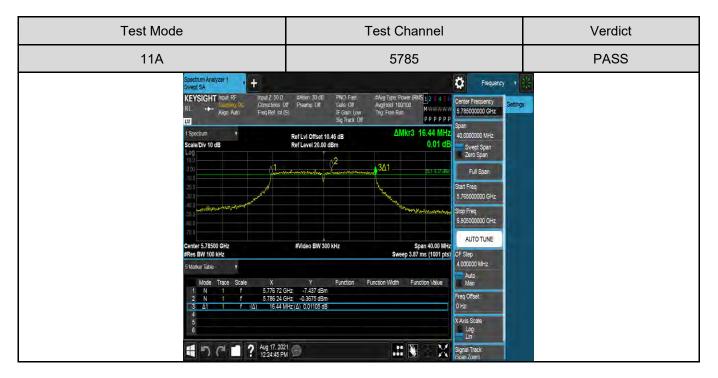


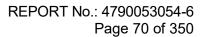


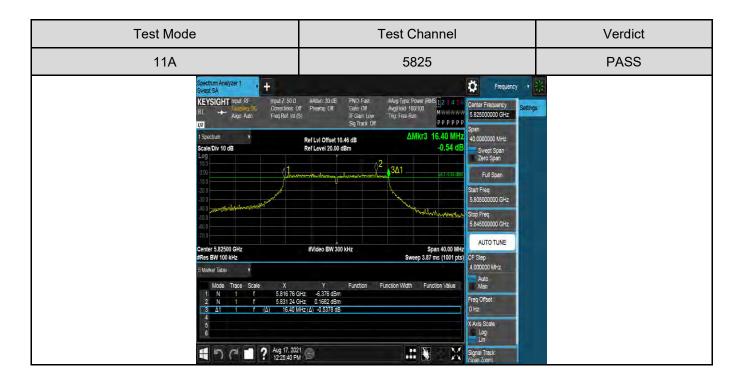


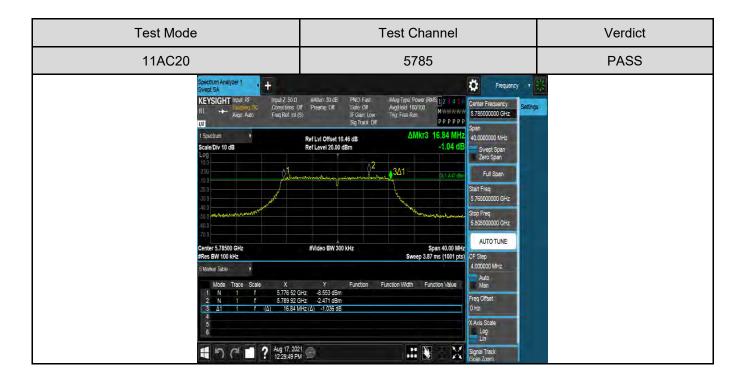




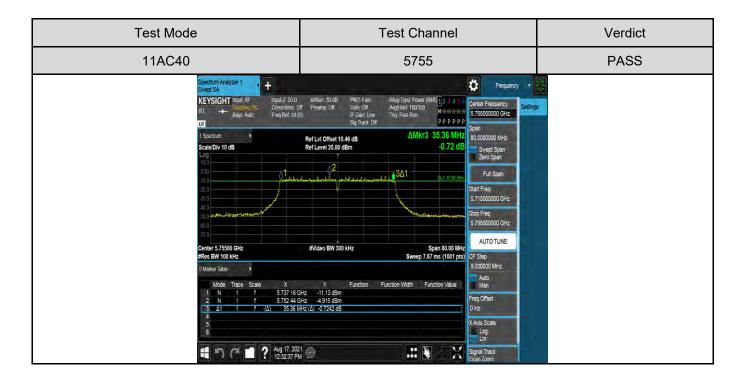





3) For 6 dB Emission Bandwidth Part:









Test Mode		Test Cha	nnel	Verdict
11AC80		5775		PASS
	20 0 30 0 50 0	Anglished 100100 Anglished 100100 [S] FGan Low Sig Track Off Tig Free Run Ref Level 20.00 dBm ΔΜΚΓ3 1 #Video BW 300 KHz Sg #Video BW 300 KHz Sg Sweep 15.3 Y Function GHz -6.30 dBm	Multiwer Span Setting P P P P P P Span Span 142 4 MH2 160 000000 MHz Span 120 200000 MHz Sysen Span P L 24 MH2 Swert Span Zero Span Staff Freq Staff Freq Scenered Scenered Staff Freq	

6.3. MAXIMUM CONDUCTED AVERAGE OUTPUT POWER

LIMITS

CFR 47 FCC Part15, Subpart E				
Test Item	Limit	Frequency Range (MHz)		
Conducted	 Outdoor Access Point: 1 W (30 dBm) Indoor Access Point: 1 W (30 dBm) Fixed Point-To-Point Access Points: 1 W (30 dBm) Client Devices: 250 mW (24 dBm) 	5150 ~ 5250		
Output Power	Shall not exceed the lesser of 250 mW (24dBm) or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz.	5250 ~ 5350 5470 ~ 5725		
	Shall not exceed 1 Watt (30 dBm).	5725 ~ 5850		

	ISED RSS-247 ISSUE 2				
Test Item	Limit	Frequency Range (MHz)			
	The maximum e.i.r.p. shall not exceed 200 mW (23 dBm) or 10 + 10 log ₁₀ B, dBm, whichever power is less. B is the 99 % emission bandwidth in megahertz.	5150 ~ 5250			
Conducted Output Power or e.i.r.p.	 a. The maximum conducted output power shall not exceed 250 mW (24 dBm) or 11 + 10 log₁₀B dBm, whichever is less. b. The maximum e.i.r.p. shall not exceed 1.0 W (30 dBm) or 17 + 10 log₁₀B dBm, whichever is less. B is the 99 % emission bandwidth in megahertz. Remark that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W. 	5250 ~ 5350 5470 ~ 5600 5650 ~ 5725			
	Shall not exceed 1 Watt (30 dBm).	5725 ~ 5850			

Remark:

The above limits are based upon the maximum antenna gain does not exceed 6 dBi.

If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

Refer to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 section II.E.

Method SA-1 (trace averaging with the EUT transmitting at full power throughout each sweep):

(i) Set span to encompass the entire emission bandwidth (EBW) (or, alternatively, the entire 99% occupied bandwidth) of the signal.

(ii) Set RBW = 1 MHz.

(iii) Set VBW ≥ 3 MHz.

(iv) Number of points in sweep $\ge 2 \times \text{span} / \text{RBW}$. (This ensures that bin-to-bin spacing is $\le \text{RBW}/2$, so that narrowband signals are not lost between frequency bins.)

(v) Sweep time = auto.

(vi) Detector = power averaging (rms), if available. Otherwise, use sample detector mode.

(vii) If transmit duty cycle < 98 %, use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle \ge 98 %, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run."

(viii) Trace average at least 100 traces in power averaging (rms) mode.

(ix) Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth) band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at 1 MHz intervals extending across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the spectrum.

Method PM (Measurement using an RF average power meter):

(i) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the following conditions are satisfied:

a. The EUT is configured to transmit continuously or to transmit with a constant duty cycle.

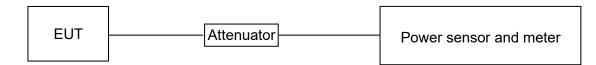
b. At all times when the EUT is transmitting, it must be transmitting at its maximum power control level.

c. The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.

(ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in II.B.

(iii) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.

(iv) Adjust the measurement in dBm by adding 10 log (1/x) where x is the duty cycle (e.g., 10 log (1/0.25) if the duty cycle is 25 %).


Method PM-G (Measurement using a gated RF average power meter):

Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

Straddle channel power was measured using spectrum analyzer.

TEST SETUP

TEST RESULT TABLE

Mode Frequency (MHz)		Average Conducted Output Power (dBm)			FCC Conducted Power Limit	ISED Conducted Power	Average EIRP (dBm)			ISED EIRP Limit
	(11112)	ANT 1	ANT 2	Total	(dBm)	Limit (dBm)	ANT 1	ANT 2	Total	(dBm)
	5180	9.37	1	/	24.00	/	12.45	/	/	22.30
	5200	9.47	/	/	24.00	/	12.55	/	/	22.30
	5240	9.50	/	/	24.00	/	12.58	/	/	22.30
	5260	9.60	/	/	23.55	23.55	13.18	/	/	29.55
	5280	9.88	/	/	23.55	23.55	13.46	/	/	29.55
	5320	10.13	/	/	23.55	23.55	13.71	/	/	29.55
802.11a	5500	9.80	/	/	23.55	23.55	12.54	/	/	29.55
002.114	5580	10.50	/	/	23.55	23.55	13.24	/	/	29.55
	5700	10.56	/	/	23.55	23.55	13.30	/	/	29.55
	5720_UNII-2C	8.70	/	/	23.55	23.55	11.44	/	/	29.55
	5720_UNII-3	2.38	/	/	30.00	30.00	5.12	/	/	36.00
	5745	11.40	1	/	30.00	30.00	12.80	/	/	36.00
	5785	10.34	/	/	30.00	30.00	11.74	/	/	36.00
	5825	11.30	/	/	30.00	30.00	12.70	/	/	36.00

Mode Frequency (MHz)		Average Conducted Output Power (dBm)			FCC Conducted Power Limit	ISED Conducted Power	Average EIRP (dBm)			ISED EIRP Limit
	(11112)	ANT 1	ANT 2	Total	(dBm)	Limit (dBm)	ANT 1	ANT 2	Total	(dBm)
	5180	7.91	4.03	9.40	24.00	/	10.99	7.11	15.49	22.30
	5200	7.50	4.36	9.20	24.00	/	10.58	7.44	15.29	22.30
	5240	7.44	5.50	9.60	24.00	/	10.52	8.58	15.69	22.30
	5260	7.49	5.69	9.70	24.00	23.55	11.07	9.27	16.29	29.55
	5280	7.21	6.04	9.70	24.00	23.55	10.79	9.62	16.29	29.55
	5320	7.38	6.46	10.00	24.00	23.55	10.96	10.04	16.59	29.55
802.11	5500	7.00	5.48	9.30	24.00	23.55	9.74	8.22	15.05	29.55
ac VHT20	5580	7.64	5.61	9.80	24.00	23.55	10.38	8.35	15.55	29.55
	5700	7.88	7.28	10.60	24.00	23.55	10.62	10.02	16.35	29.55
	5720_UNII-2C	6.31	5.60	9.00	24.00	23.55	9.05	8.34	14.75	29.55
	5720_UNII-3	0.30	-0.48	2.90	30.00	30.00	1.70	0.92	6.31	36.00
	5745	8.27	7.24	10.80	30.00	30.00	9.67	8.64	14.21	36.00
	5785	7.89	6.51	10.30	30.00	30.00	9.29	7.91	13.71	36.00
	5825	7.52	5.11	9.50	30.00	30.00	8.92	6.51	12.91	36.00
	5190	7.56	4.39	9.30	24.00	/	10.64	7.47	15.39	22.30
	5230	7.94	5.52	9.90	24.00	/	11.02	8.60	15.99	22.30
	5270	7.57	6.38	10.00	24.00	24.00	11.15	9.96	16.59	30.00
	5310	7.60	6.74	10.20	24.00	24.00	11.18	10.32	16.79	30.00
000.44	5510	7.56	6.18	9.90	24.00	24.00	10.30	8.92	15.65	30.00
802.11 ac VHT40	5550	8.05	6.56	10.40	24.00	24.00	10.79	9.30	16.15	30.00
	5670	8.89	7.46	11.20	24.00	24.00	11.63	10.20	16.95	30.00
	5720_UNII-2C	8.30	7.79	11.10	24.00	24.00	11.04	10.53	16.85	30.00
	5720_UNII-3	-3.29	-3.60	-0.40	30.00	30.00	-1.89	-2.20	3.01	36.00
	5755	8.93	7.41	11.20	30.00	30.00	10.33	8.81	14.61	36.00
	5795	8.45	7.12	10.80	30.00	30.00	9.85	8.52	14.21	36.00
	5210	6.40	3.74	8.30	24.00	/	9.48	6.82	14.39	22.30
	5290	6.51	5.00	8.80	24.00	24.00	10.09	8.58	15.39	30.00
	5530	6.97	5.44	9.30	24.00	24.00	9.71	8.18	15.05	30.00
802.11 ac VHT80	5610	7.77	4.99	9.60	24.00	24.00	10.51	7.73	15.35	30.00
	5690_UNII-2C	7.96	6.73	10.40	24.00	24.00	10.70	9.47	16.15	30.00
	5690_UNII-3	-7.42	-8.31	-4.80	30.00	30.00	-6.02	-6.91	-1.39	36.00
	5775	7.86	5.99	10.00	30.00	30.00	9.26	7.39	13.41	36.00

Remark: 1. Only the antenna1 can transmit at the 11a mode.

2. Average EIRP = Average Conducted Output Power + Antenna gain/Directional gain.

3. The test results have already included the duty cycle correction factor. About correction Factor please refer to section 6.2.

4. MIMO mode use the same power setting, only the worst EIRP data was recorded in the report, for more about the antenna gain/directional gain, please refer to clause 5.4.

6.4. POWER SPECTRAL DENSITY

LIMITS

CFR 47 FCC Part15, Subpart E				
Test Item	Limit	Frequency Range (MHz)		
Power Spectral Density	Outdoor Access Point: 17 dBm/MHz Indoor Access Point: 17 dBm/MHz Fixed Point-To-Point Access Points: 17 dBm/MHz Client Devices: 11 dBm/MHz	5150 ~ 5250		
Density	11 dBm/MHz	5250 ~ 5350 5470 ~ 5725		
	30 dBm/500kHz	5725 ~ 5850		

ISED RSS-247 ISSUE 2				
Test Item	Limit	Frequency Range (MHz)		
	The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.	5150 ~ 5250		
Power Spectral Density	The power spectral density shall not exceed 11 dBm inany 1.0 MHz band.	5250 ~ 5350 5470 ~ 5600 5650 ~ 5725		
	30 dBm / 500 kHz	5725 ~ 5850		

Remark:

The above limits are based upon the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

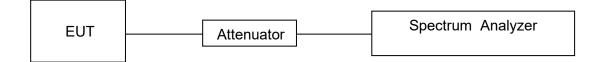
TEST PROCEDURE

Refer to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 section II.F.

Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test		
Detector	RMS		
RBW	1 MHz		
VBW	≥3 × RBW		
Span	Encompass the entire emissions bandwidth (EBW) of the signal		
Trace	Max hold		
Sweep time	Auto		

For U-NII-1, U-NII-2A and U-NII-2C band:


For U-NII-3:

Center Frequency	The center frequency of the channel under test
Detector	RMS
RBW	500 kHz
VBW	≥3 × RBW
Span	Encompass the entire emissions bandwidth (EBW) of the signal
Trace	Max hold
Sweep time	Auto

Allow trace to fully stabilize and Use the peak search function on the instrument to find the peak of the spectrum and record its value.

Add 10 log (1/x), where x is the duty cycle, to the peak of the spectrum, the result is the Maximum PSD over 1 MHz / 500 kHz reference bandwidth.

TEST SETUP

RESULTS

Test Maste	A	Ohannal	Power	Limit	EIRP	Limit	Mandiat
Test Mode	Antenna	Channel	[dBm/MHz]	[dBm/MHz]	[dBm/MHz]	[dBm/MHz]	Verdict
11A	Ant1	5180	0.259	<=11		<=10	PASS
	Ant1	5200	0.168	<=11		<=10	PASS
	Ant1	5240	0.498	<=11		<=10	PASS
	Ant1	5260	0.265	<=11	/	/	PASS
	Ant1	5280	0.389	<=11	/	/	PASS
	Ant1	5320	0.328	<=11	/	/	PASS
	Ant1	5500	0.203	<=11	/	/	PASS
	Ant1	5580	0.747	<=11	/	/	PASS
	Ant1	5700	0.285	<=11	/	/	PASS
	Ant1	5720_UNII-2C	0.321	<=11	/	/	PASS
	Ant1	5720_UNII-3	-2.685	<=30	/	/	PASS
	Ant1	5745	-2.155	<=30	/	/	PASS
	Ant1	5785	-2.474	<=30	/	/	PASS
	Ant1	5825	-1.846	<=30	/	/	PASS
11AC20MIMO	Ant1	5180	-3.004	<=11	/	/	PASS
	Ant2		-6.814	<=11	/	/	PASS
	total		-1.49	<=11		<=10	PASS
	Ant1	5200	-3.652	<=11	/	/	PASS
	Ant2		-6.685	<=11	/	/	PASS
	total		-1.90	<=11		<=10	PASS
	Ant1	5240	-3.740	<=11	/	/	PASS
	Ant2		-5.744	<=11	/	/	PASS
	total		-1.62	<=11		<=10	PASS
	Ant1	5260	-3.590	<=11	/	/	PASS
	Ant2		-5.547	<=11	/	/	PASS
	total		-1.45	<=11	/	/	PASS
	Ant1	5280	-3.944	<=11	/	/	PASS
	Ant2		-5.321	<=11	/	/	PASS
	total		-1.57	<=11	/	/	PASS
	Ant1	5320	-3.734	<=11	/	/	PASS
	Ant2		-4.948	<=11	/	/	PASS
	total		-1.29	<=11	/	/	PASS
	Ant1	5500	-4.081	<=11	/	/	PASS
	Ant2		-6.489	<=11	/	/	PASS
	total		-2.11	<=11	/	/	PASS
	Ant1	5580	-3.098	<=11	/	/	PASS
	Ant2		-6.341	<=11	/	/	PASS
	total		-1.41	<=11	/	/	PASS
	Ant1	5700	-3.507	<=11	/	/	PASS
	Ant2		-4.719	<=11	/	/	PASS
	total		-1.06	<=11	/	/	PASS
	Ant1	5720_UNII-2C	-3.927	<=11	/	/	PASS
	Ant2		-5.470	<=11	/	/	PASS
	total		-1.62	<=11	/	/	PASS
	Ant1	5720_UNII-3	-6.746	<=30	/	/	PASS
	Ant2		-8.486	<=30	/	/	PASS
	total		-4.52	<=30	/	/	PASS
	Ant1	5745	-5.829	<=30	/	/	PASS
	Ant2		-8.345	<=30	/	/	PASS