

# FCC 47 CFR PART 15 SUBPART E CERTIFICATION TEST REPORT

For

1080p FHD Wi-Fi Deterrence Camera

MODEL NUMBER: W281AA-Z
ADDITIONAL MODEL NUMBER: W281AA, W281AAx, W281AAx-y, (x can be blank or any letter A-Z, y can be blank or any letter A-Z)

**PROJECT NUMBER: 4789059198** 

REPORT NUMBER: 4789059198-3

FCC ID: UCZ-W281AA-Z

**ISSUE DATE: Aug. 15, 2019** 

Prepared for

LOREX Technology Inc.

Prepared by

UL-CCIC COMPANY LIMITED

No. 2, Chengwan Road, Suzhou Industrial Park, People's Republic of China

Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products. This report does not imply that the product(s) has met the criteria for certification.



Page 2 of 152

# **Revision History**

| Rev. | Issue Date | Revisions     | Revised By |
|------|------------|---------------|------------|
| V0   | 8/15/2019  | Initial Issue |            |



# **TABLE OF CONTENTS**

| 1. | AT.             | TESTATION OF TEST RESULTS              | 5          |
|----|-----------------|----------------------------------------|------------|
| 2. | TE              | ST METHODOLOGY                         | 7          |
| 3. | FA              | CILITIES AND ACCREDITATIO              | 7          |
| 4. | CA              | LIBRATION AND UNCERTAINTY              | 8          |
|    | 4.1.            | MEASURING INSTRUMENT CALIBRATION       | 8          |
|    | 4.2.            | MEASUREMENT UNCERTAINTY                | 8          |
| 5. | EQ              | UIPMENT UNDER TEST                     | 9          |
|    | 5.1.            | DESCRIPTION OF EUT                     |            |
|    | 5.2.            | CHANNELS LIST                          | 1 <i>C</i> |
|    | 5.1.            | DESCRIPTION OF AVAILABLE ANTENNAS      | 11         |
|    | 5.2.            | TEST ENVIRONMENT                       | 12         |
|    | 5.1.            | WORST-CASE CONFIGURATIONS              |            |
|    | 5.2.            | DESCRIPTION OF TEST SETUP              |            |
|    | 5.3.            | MEASURING INSTRUMENT AND SOFTWARE USED |            |
| 6  | ΔΝ              | TENNA PORT TEST RESULTS                | 17         |
|    | 6.1.            |                                        |            |
|    | 6.1             | .1. LIMITS                             | 17         |
|    | 6.1<br>6.1      |                                        |            |
|    | _               |                                        |            |
|    | 6.2.            | 6/26 dB BANDWIDTH                      |            |
|    | 6.2             |                                        | 20         |
|    | 6.2             | .3. TEST SETUP                         | 20         |
|    | 6.2             |                                        |            |
|    | 6.2             |                                        |            |
|    | <i>6.3.</i> 6.3 | MAXIMUM AVERAGE CONDUCTED OUTPUT POWER |            |
|    | 6.3             |                                        |            |
|    | 6.3             | .3. TEST SETUP                         | 31         |
|    | 6.3             |                                        | 32         |
|    | 6.4.            | POWER SPECTRAL DENSITY                 |            |
|    | 6.4             |                                        |            |
|    | 6.4             |                                        |            |
|    | 6.4<br>6.4      |                                        |            |
|    | 6.4             |                                        |            |



Page 4 of 152

| 7. | RA   | DIATED TEST RESULTS                                     | 58  |
|----|------|---------------------------------------------------------|-----|
|    | 7.1. | LIMITS                                                  | 58  |
|    | 7.2. | TEST SETUP AND PROCEDURE                                | 60  |
|    | 7.3. | TEST ENVIRONMENT                                        | 63  |
|    | 7.4. | RESTRICTED BANDEDGE                                     |     |
|    |      | .1. UNII BAND I                                         |     |
|    | 7.4  | .2. UNII BAND III                                       | 79  |
|    | 7.5. | HARMONICS AND SPURIOUS EMISSIONS                        | 94  |
|    | 7.5  |                                                         |     |
|    | 7.5  | .2. UNII-III BAND                                       | 113 |
|    | 7.6. | SPURIOUS EMISSIONS 18~26.5GHz                           | 132 |
|    | 7.7. | SPURIOUS EMISSIONS 26.5~40GHz                           | 135 |
|    | 7.8. | SPURIOUS EMISSIONS 30M ~ 1 GHz                          | 138 |
|    | 7.9. | SPURIOUS EMISSIONS BELOW 30M (WORST-CASE CONFIGURATION) | 141 |
| 8. | FR   | EQUENCY STABILITY                                       | 145 |
| 9. | AC   | POWER LINE CONDUCTED EMISSIONS                          | 148 |
| 10 | . 4  | ANTENNA REQUIREMENTS                                    | 152 |



Page 5 of 152

## 1. ATTESTATION OF TEST RESULTS

**Applicant Information** 

Company Name: LOREX Technology Inc.

Address: 250 Royal Crest Court, Markham, ON L3R 3S1 Canada

**Manufacturer Information** 

Company Name: LOREX Technology Inc.

Address: 250 Royal Crest Court, Markham, ON L3R 3S1 Canada

**Factory Information** 

Company Name: ZHEJIANG DAHUA VISION TECHNOLOGY CO.,LTD Address: No.1199, Bin'an road, Binjiang District, Hangzhou,

P.R.China.

Company Name: ZHEJIANG DAHUA ZHILIAN CO.,LTD.

Address: No.28, Donggiao Road, Dongzhou Street, Fuyang District,

Hangzhou, P.R. China.

**EUT Description** 

Product Name 1080p FHD Wi-Fi Deterrence Camera

Model Name W281AA-Z

Additional No. W281AA, W281AAx, W281AAx-y, (x can be blank or any letter A-

Z, y can be blank or any letter A-Z)

Sample Number 2369250 Data of Receipt Sample Jun. 24, 2019

Date Tested Jun. 24, 2019~ Aug. 14, 2019

**APPLICABLE STANDARDS** 

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart E Pass



Page 6 of 152

|        | Summary of Test Results                      |                                            |                 |  |  |
|--------|----------------------------------------------|--------------------------------------------|-----------------|--|--|
| Clause | Test Items                                   | FCC Rules                                  | Test<br>Results |  |  |
| 1      | 6/26db Bandwidth                             | FCC 15.407 (a)&(e)                         | PASS            |  |  |
| 2      | Maximum Average Conducted<br>Output Power    | FCC 15.407 (a)                             | PASS            |  |  |
| 3      | Power Spectral Density                       | FCC 15.407 (a)                             | PASS            |  |  |
| 4      | Radiated Bandedge and Spurious<br>Emission   | FCC 15.407 (a)<br>FCC 15.209<br>FCC 15.205 | PASS            |  |  |
| 5      | Conducted Emission Test For AC<br>Power Port | FCC 15.207                                 | PASS            |  |  |
| 6      | Frequency Stability                          | FCC 15.407 (g)                             | PASS            |  |  |
| 7      | Antenna Requirement                          | FCC 15.203                                 | PASS            |  |  |

#### Remark:

| Prepared By:                           | Reviewed By:                           |
|----------------------------------------|----------------------------------------|
| Tom Tang                               | Chris Zhong                            |
| Tom Tang<br>Engineer Project Associate | Chris Zhong<br>Senior Project Engineer |
| Authorized By:                         |                                        |
| Scholl Zhang                           |                                        |
| Scholl Zhang<br>Laboratory Leader      |                                        |

<sup>1)</sup> The measurement result for the sample received is <Pass> according to < ANSI C63.10-2013, FCC CFR 47 Part 2, FCC CFR 47 Part 15> when <Accuracy Method> decision rule is applied.



Page 7 of 152

#### 2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2013, FCC CFR 47 Part 2, FCC CFR 47 Part 15, KDB 789033 D02 v02r01, KDB 662911 D01 v02r01, and KDB414788 D01 Radiated Test Site v01r01.

## 3. FACILITIES AND ACCREDITATIO

| Accreditation<br>Certificate | A2LA (Certificate No.: 4829.01)  UL-CCIC COMPANY LIMITED has been assessed and proved to be in compliance with A2LA.  FCC (FCC Designation No.: CN1247)  UL-CCIC COMPANY LIMITED has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules.  IC (IC Designation No.: 25056)  UL-CCIC COMPANY LIMITED has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules. |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

Note 1: All tests measurement facilities use to collect the measurement data are located at No. 2, Chengwan Road, Suzhou Industrial Park, Suzhou 215122, People's Republic of China

Note 2: For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. These measurements below 30MHz had been correlated to measurements performed on an OFS.

Note 3: The test anechoic chamber in UL-CCIC COMPANY LIMITED had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.



Page 8 of 152

## 4. CALIBRATION AND UNCERTAINTY

#### 4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognize national standards.

#### 4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

| Test Item                                                          | Uncertainty           |
|--------------------------------------------------------------------|-----------------------|
| Conduction emission                                                | 3.00dB                |
| Radiation Emission test(include Fundamental emission) (9KHz-30MHz) | 3.32dB                |
| Radiation Emission test(include Fundamental emission) (30MHz-1GHz) | 3.27dB                |
| Radiation Emission test                                            | 3.80dB (1GHz-18Gz)    |
| (1GHz to 40GHz)( include Fundamental emission)                     | 4.11dB (18GHz-26.5Gz) |
|                                                                    | 4.51dB (26.5GHz-40Gz) |

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 9 of 152

# 5. EQUIPMENT UNDER TEST

# 5.1. DESCRIPTION OF EUT

| Product Name:         | 1080p FHD Wi-Fi Deterrence Camera                          |                                       |                          |  |
|-----------------------|------------------------------------------------------------|---------------------------------------|--------------------------|--|
| Model No.:            | W281AA-Z                                                   |                                       |                          |  |
| Operating Frequency:  | IEEE 802.1                                                 | 11b/g/n(HT20): 2412MHz to 2462        | MHz                      |  |
|                       | IEEE 802.1                                                 | 11n(HT40): 2422MHz to 2452MHz         | 2                        |  |
|                       |                                                            | 11a/n/ac 20MHz:5180MHz to 5240        | ′                        |  |
|                       |                                                            | 11n/ac 40MHz:5190MHz to 5230N         | •                        |  |
|                       | IEEE 802.1                                                 | 11ac 80MHz: 5230MHz, 5775 MH          | Z                        |  |
|                       | Remark: Fo                                                 | or this test report just for the 5GH: | z part                   |  |
| Type of Modulation:   | IEEE for 80                                                | 02.11b: DSSS (CCK, DQPSK, DB          | PSK)                     |  |
|                       |                                                            | 02.11g: OFDM (64QAM, 16QAM,           | ,                        |  |
|                       |                                                            | 02.11n (HT20 and HT40): OFDM          |                          |  |
|                       | IEEE for 802.11a: OFDM (BPSK,QPSK,16QAM,64QAM)             |                                       |                          |  |
|                       | IEEE for 802.ac : OFDM (BPSK,QPSK,16QAM,64QAM,256QAM)      |                                       |                          |  |
| Channels Step:        | Channels with 5MHz step                                    |                                       |                          |  |
| Sample Type:          | Fixed production                                           |                                       |                          |  |
| Test power grade:     | 35 (manufa                                                 | acturer declare)                      |                          |  |
| Test software of EUT: | Secure CR                                                  | T (manufacturer declare)              |                          |  |
| Antenna Type:         | PCB Anten                                                  | ina                                   |                          |  |
| Antenna Gain:         | Antenna1                                                   | 5150MHz~5250MHz:2.03 dBi              | 5725MHz~5825MHz:2.24 dBi |  |
|                       | Antenna2 5150MHz~5250MHz:4.35 dBi 5725MHz~5825MHz:6.81 dBi |                                       |                          |  |
| Adapter               | NAME:SWITCHING POWER SUPPLY                                |                                       |                          |  |
|                       | MODEL:S0188YU1200150                                       |                                       |                          |  |
|                       | INPUT:100-240V,50/60Hz, 600mA                              |                                       |                          |  |
|                       | OUTPUT:5V/9V/12V 3A/2A/1.5A                                |                                       |                          |  |

#### Remark:

#### Model No.:

| Number:                                                                    | Name:     | Number: | Name:  | Number: | Name:   |
|----------------------------------------------------------------------------|-----------|---------|--------|---------|---------|
| 1                                                                          | W281AA-Z  | 2       | W281AA | 3       | W281AAx |
| 4                                                                          | W281AAx-y |         |        |         |         |
| Remark: x can be blank or any letter A-Z, y can be blank or any letter A-Z |           |         |        |         |         |

Only the main model **W281AA-Z** was tested and only the data of this model is shown in this test report. Since Their electrical circuit design, layout, components used and internal wiring are identical, only the model name and selling area are different.



5.2. CHANNELS LIST

| 20 MHz Bandwidth Channel frequencies |     |                    |  |  |
|--------------------------------------|-----|--------------------|--|--|
| Band Channel                         |     | Frequency<br>(MHz) |  |  |
|                                      | 36  | 5180               |  |  |
| UNII-1                               | 40  | 5200               |  |  |
| OIVII I                              | 44  | 5220               |  |  |
|                                      | 48  | 5240               |  |  |
|                                      | 149 | 5745               |  |  |
|                                      | 153 | 5765               |  |  |
| UNII-3                               | 157 | 5785               |  |  |
|                                      | 161 | 5805               |  |  |
|                                      | 165 | 5825               |  |  |

| 40 MHz Bandwidth Channel frequencies |     |      |  |  |
|--------------------------------------|-----|------|--|--|
| Band Channel Frequency (MHz)         |     |      |  |  |
| LINIII                               | 38  | 5190 |  |  |
| UNII-1                               | 46  | 5230 |  |  |
| UNII-3                               | 151 | 5755 |  |  |
|                                      | 159 | 5795 |  |  |

| 80 MHz Bandwidth Channel frequencies |         |                    |  |  |
|--------------------------------------|---------|--------------------|--|--|
| Band                                 | Channel | Frequency<br>(MHz) |  |  |
| UNII-1                               | 42      | 5210               |  |  |
| UNII-3                               | 155     | 5775               |  |  |

#### Remark:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected

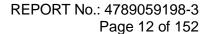
2.24



1

5.1. DESCRIPTION OF AVAILABLE ANTENNAS

5725-5825


| Ant. | Frequency (MHz) | Antenna Type | Antenna Gain (dBi) |  |
|------|-----------------|--------------|--------------------|--|
|      | 5150-5250       |              | 2.03               |  |

PCB Antenna

| Ant. | Frequency (MHz) | Antenna Type | Antenna Gain (dBi) |
|------|-----------------|--------------|--------------------|
| 2    | 5150-5250       | PCB Antenna  | 4.35               |
| 2    | 5725-5825       | PCB Antenna  | 6.81               |

| Test Mode        | Transmit and Receive Mode | Description                                                                |  |  |
|------------------|---------------------------|----------------------------------------------------------------------------|--|--|
| 802.11a 2TX, 2RX |                           | Antenna 1 and Antenna2 can both be used as transmitting/receiving antenna. |  |  |
| 802.11n HT20     | 2TX, 2RX                  | Antenna 1 and Antenna2 can both be used as transmitting/receiving antenna. |  |  |
| 802.11n HT40     | 2TX, 2RX                  | Antenna 1 and Antenna2 can both be used as transmitting/receiving antenna. |  |  |
| 802.11ac HT20    | 2TX, 2RX                  | Antenna 1 and Antenna2 can both be used as transmitting/receiving antenna. |  |  |
| 802.11ac HT40    | 2TX, 2RX                  | Antenna 1 and Antenna2 can both be used as transmitting/receiving antenna. |  |  |
| 802.11ac HT80    | 2TX, 2RX                  | Antenna 1 and Antenna2 can both be used as transmitting/receiving antenna. |  |  |

Remark: For this product, it has two antennas, antenna1 and antenna2, the 802.11a is use the SISO technical, but the ant1 and ant2 can transmitter in the same time under those modes. The 802.11n and 802.11ac are both use the SISO and MIMO technical.





|            | Directional gain |                           |          |                                |                                                |  |  |  |  |
|------------|------------------|---------------------------|----------|--------------------------------|------------------------------------------------|--|--|--|--|
| Mode       | Frequency        | Max Antenna Gain<br>(dBi) |          | For power measurements         | For power spectral density (PSD)               |  |  |  |  |
|            | (MHz)            | Antenna1                  | Antenna2 | Directional gain<br>Gain (dBi) | measurements<br>Directional gain<br>Gain (dBi) |  |  |  |  |
| SISO       | 5150-5250        | 2.03                      | 4.35     | 6.28                           | 6.28                                           |  |  |  |  |
| SISO       | 5725-5825        | 2.24                      | 6.81     | 7.83                           | 7.83                                           |  |  |  |  |
| CDD<br>2TX | 5150-5250        | 2.03                      | 4.35     | 6.28                           | 6.28                                           |  |  |  |  |
| CDD<br>2TX | 5725-5825        | 2.24                      | 6.81     | 7.83                           | 7.83                                           |  |  |  |  |

#### Note:

- 1) Directional gain=  $10log [(10^{G1/20} + 10^{G2/20})^2/N_{ANT}]$
- 2) N<sub>ANT</sub>: the number of Antenna
- 3) For this product, it has two antennas, antenna1 and antenna2, the 802.11a is use the SISO technical, but the ant1 and ant2 can transmitter in the same time under those modes. The 802.11n and 802.11ac are both use the SISO and MIMO technical.
- 4) All the modes had been tested but only the worst data in the report.

## 5.2. TEST ENVIRONMENT

| <u> </u>              |                              |              |  |  |  |
|-----------------------|------------------------------|--------------|--|--|--|
| Environment Parameter | Selected Values During Tests |              |  |  |  |
| Relative Humidity     | 55 ~ 65%                     |              |  |  |  |
| Atmospheric Pressure: | 1025Pa                       |              |  |  |  |
|                       | TN                           | 23 ~ 28°C    |  |  |  |
| Temperature           | TL                           | -10°C        |  |  |  |
|                       | TH                           | 45°C         |  |  |  |
|                       | VL                           | AC108        |  |  |  |
| Voltage :             | VN                           | AC 120V/60Hz |  |  |  |
|                       | VH                           | AC132        |  |  |  |

Note: VL= Lower Extreme Test Voltage

VN= Nominal Voltage

VH= Upper Extreme Test Voltage

TN= Normal Temperature



Page 13 of 152

#### 5.1. WORST-CASE CONFIGURATIONS

| IEE Std.<br>802.11 | Modulation<br>Technology | Modulation Type           | Data Rate<br>(Mbps)   | Worst Case<br>(Mbps) |
|--------------------|--------------------------|---------------------------|-----------------------|----------------------|
| а                  | OFDM                     | BPSK,QPSK,16QAM,<br>64QAM | 54/48/36/24/18/12/9/6 | 6                    |

| IEE Std.<br>802.11 | Modulation<br>Technology | Modulation Type             | Data Rate    | Worst Case |
|--------------------|--------------------------|-----------------------------|--------------|------------|
| n HT20             | OFDM                     | BPSK, QPSK, 16QAM,<br>64QAM | (MCS0~MCS23) | MCS0       |
| n HT40             | OFDM                     | BPSK, QPSK, 16QAM,<br>64QAM | (MCS0~MCS23) | MCS0       |

| IEE Std.<br>802.11 | Modulation<br>Technology | Modulation Type             | Data Rate   | Worst Case |
|--------------------|--------------------------|-----------------------------|-------------|------------|
| ac HT20            | OFDM                     | BPSK, QPSK, 16QAM,<br>64QAM | (MCS0~MCS9) | MCS0       |
| ac HT40            | OFDM                     | BPSK, QPSK, 16QAM,<br>64QAM | (MCS0~MCS9) | MCS0       |
| ac HT80            | OFDM                     | BPSK, QPSK, 16QAM,<br>64QAM | (MCS0~MCS9) | MCS0       |

#### Remark:

- 1) For this product, it has two antennas, antenna1 and antenna2, the 802.11a is use the SISO technical, but the ant1 and ant2 can transmitter in the same time under those modes. The 802.11n and 802.11ac are both use the SISO and MIMO technical.
- 2) EUT support for SISO and CDD MIMO Transmission, only 802.11n/ac supports CDD MIMO Mode, SISO mode sets the same power level as MIMO mode, so MIMO mode is the worst case.
- 3) 11n HT20 mode set the same power level as 11ac HT20 mode, and 11n HT40 mode set the same power level as 11ac HT40 mode, besides the 11ac HT20 mode and 11ac HT40 mode were worse case, so only the 11ac HT20 mode and 11ac HT40 mode were tested in this report.



Page 14 of 152

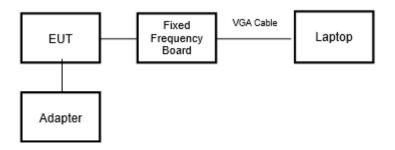
#### 5.2. **DESCRIPTION OF TEST SETUP**

#### **SUPPORT EQUIPMENT**

| Item | Equipment             | Equipment Brand Name |     | Description      |  |
|------|-----------------------|----------------------|-----|------------------|--|
| 1    | Laptop                | Laptop ThinkPad      |     | N/A              |  |
| 2    | Fixed Frequency Board | N/A                  | N/A | Supply by UL Lab |  |

#### I/O PORT

| Cable No | Port | Connector Type | Cable Type | Cable Length(m) | Remarks |
|----------|------|----------------|------------|-----------------|---------|
| 1        | N/A  | N/A            | N/A        | N/A             | N/A     |


#### **ACCESSORY**

| Item | m Accessory Brand Name |  | Model Name | Description      |
|------|------------------------|--|------------|------------------|
| 1    | 1 SD Card Kingston     |  | 32GB       | Supply by UL Lab |
| 2    | 2 VGA Cable N/A        |  | N/A        | Supply by UL Lab |

## **TEST SETUP**

The EUT can work in engineering mode with a software through a PC.

## **SETUP DIAGRAM FOR TEST**





Page 15 of 152

# 5.3. MEASURING INSTRUMENT AND SOFTWARE USED

|                         | Conducted Emissions (Instrument)           |                                        |                                                 |           |               |                    |            |            |  |  |
|-------------------------|--------------------------------------------|----------------------------------------|-------------------------------------------------|-----------|---------------|--------------------|------------|------------|--|--|
|                         |                                            | <u> </u>                               | luuct                                           | cu Lillis | linsuu        | -                  |            |            |  |  |
| Used                    | Equipment                                  | Manufacturer                           | Mod                                             | del No.   | Serial No.    | Upper Last Cal.    | Last Cal.  | Next Cal.  |  |  |
| $\overline{\checkmark}$ | EMI Test Receiver                          | R&S                                    | Е                                               | SR3       | 126700        | 2017-12-14         | 2018-12-13 | 2019-12-12 |  |  |
| $\overline{\checkmark}$ | Two-Line V-Network                         | R&S                                    | ENV216                                          |           | 126701        | 2017-12-14         | 2018-12-13 | 2019-12-12 |  |  |
|                         | Artificial Mains<br>Networks               | R&S                                    | El                                              | NY81      | 126711        | 2017-12-14         | 2018-12-13 | 2019-12-12 |  |  |
|                         |                                            |                                        |                                                 | Soft      | ware          |                    |            |            |  |  |
| Used                    | Used Description Manufacturer Name Version |                                        |                                                 |           |               |                    |            |            |  |  |
|                         | Test Software for 0                        | Conducted distur                       | bance                                           |           | R&S           | EMC32              | Ver. 9.25  |            |  |  |
|                         |                                            | Ra                                     | diate                                           | d Emiss   | ions (Instrum | ent <b>)</b>       |            |            |  |  |
| Used                    | Equipment                                  | Manufacturer                           | Мо                                              | del No.   | Serial No.    | Upper Last<br>Cal. | Last Cal.  | Next Cal.  |  |  |
| $\overline{\checkmark}$ | Spectrum Analyzer                          | Keysight                               | N9                                              | 9010B     | MY57110128    | 2018-05-30         | 2019-05-29 | 2020-05-28 |  |  |
| $\overline{\checkmark}$ | EMI test receiver                          | R&S                                    | E:                                              | SR26      | 1267603       | 2017-12-14         | 2018-12-13 | 2019-12-22 |  |  |
|                         | Receiver Antenna<br>(9kHz-30MHz)           | Schwarzbeck                            | FMZ                                             | ZB 1513   | 513-265       | 2018-06-17         | 2019-06-16 | 2020-06-15 |  |  |
| <b>V</b>                | Receiver Antenna (30MHz-1GHz)              | SunAR RF<br>Motion                     | ,                                               | JB1       | 126704        | N/A                | 2019-01-28 | 2022-01-27 |  |  |
| <b>V</b>                | Receiver Antenna<br>(1GHz-18GHz)           | R&S                                    | Н                                               | F907      | 126705        | 2018-01-27         | 2019-01-26 | 2020-01-26 |  |  |
| <b>V</b>                | Receiver Antenna<br>(18GHz-26.5GHz)        | Schwarzbeck                            | BBH                                             | HA9170    | 126706        | 2018-02-07         | 2019-02-06 | 2020-02-05 |  |  |
|                         | Receiver Antenna<br>(26.5GHz-40GHz)        | TOYO                                   | HAP                                             | 26-40W    | 00000012      | 2018-07-25         | 2019-07-23 | 2020-07-22 |  |  |
| <b>V</b>                | Pre-amplification<br>(To 1GHz)             | R&S                                    | SC                                              | U-03D     | 134666        | 2018-02-07         | 2019-02-06 | 2020-02-05 |  |  |
| <b>V</b>                | Pre-amplification<br>(To 18GHz)            | Compliance<br>Direction<br>System Inc. | PAP-                                            | 1G18-50   | 14140-13467   | N/A                | 2019-03-18 | 2020-03-17 |  |  |
| <b>V</b>                | Pre-amplification<br>(To 26.5GHz)          | R&S                                    |                                                 | U-26D     | 134668        | 2018-02-07         | 2019-02-06 | 2020-02-05 |  |  |
| <b>V</b>                | Band Reject Filter                         | Wainwright                             | WRCJV8-<br>2350-2400-<br>2483.5-2533.5-<br>40SS |           | 1             | 2018-05-30         | 2019-05-29 | 2020-05-28 |  |  |
| <b>V</b>                | Highpass Filter                            | Wainwright                             | WHKX10-<br>2700-3000-<br>18000-40SS             |           | 2             | 2018-05-30         | 2019-05-29 | 2020-05-28 |  |  |
|                         | Software                                   |                                        |                                                 |           |               |                    |            |            |  |  |
| Used                    | Descr                                      | ription                                |                                                 | Manufac   | turer         | Name               | Version    |            |  |  |
|                         | Test Software for R                        | adiated disturbar                      | nce                                             | Tonsce    | end           | JS32               | V2.5       |            |  |  |
|                         |                                            |                                        | C                                               | Other ins | truments      |                    |            |            |  |  |



Page 16 of 152

| Used | Equipment         | Manufacturer | Model No. | Serial No. | Upper Last<br>Cal. | Last Cal.  | Next Cal.  |
|------|-------------------|--------------|-----------|------------|--------------------|------------|------------|
|      | Spectrum Analyzer | Keysight     | N9010B    | MY57110128 | 2018-05-30         | 2019-05-29 | 2020-05-28 |
|      | Power Meter       | Keysight     | U2021XA   | MY57110002 | 2018-06-13         | 2019-06-12 | 2020-06-11 |

Page 17 of 152

## 6. ANTENNA PORT TEST RESULTS

#### 6.1. ON TIME AND DUTY CYCLE

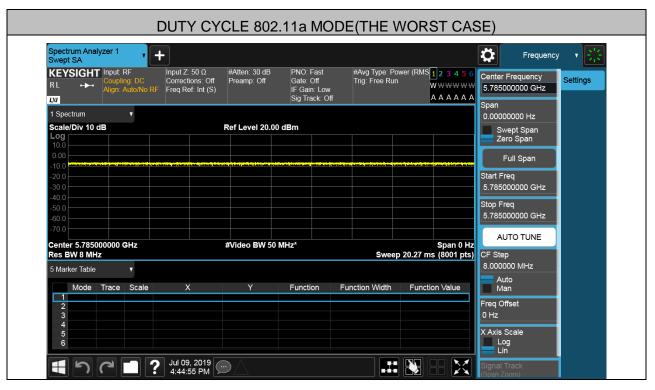
#### 6.1.1. LIMITS

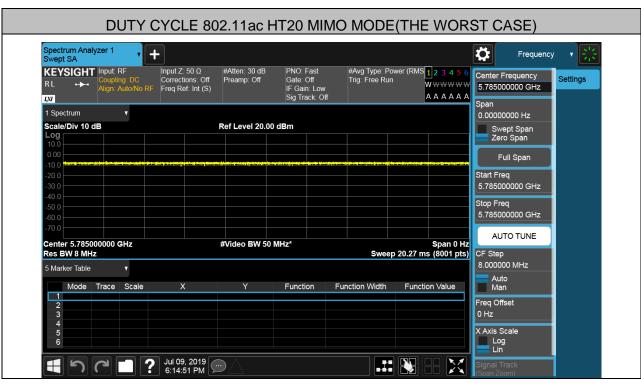
None; for reporting purposes only.

#### 6.1.2. TEST ENVIRONMENT

| Temperature         | 22°C   | Relative Humidity | 56%     |
|---------------------|--------|-------------------|---------|
| Atmosphere Pressure | 101kPa | Test Voltage      | AC 120V |

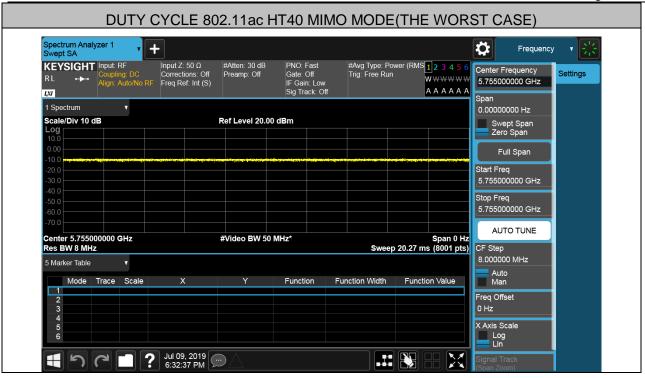
#### **6.1.3. RESULTS**

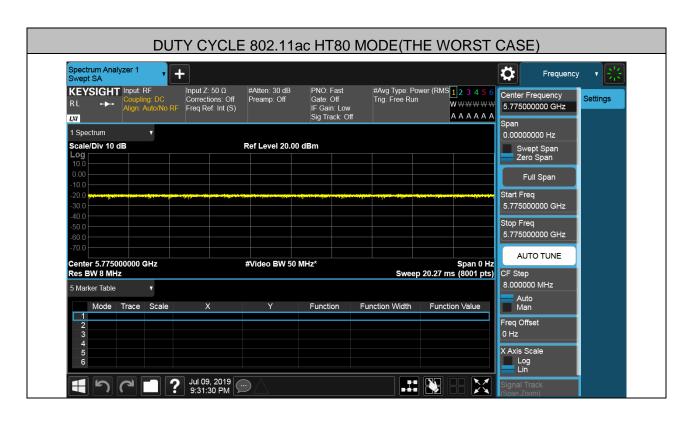

#### **UNII Band III**


| Mode              | ON<br>Time<br>(ms) | Period<br>(ms) | Duty Cycle<br>x<br>(Linear) | Duty Cycle<br>(%) | Duty Cycle<br>Correction<br>Factor<br>(dB) | 1/B<br>Minimum<br>VBW<br>(KHz) |
|-------------------|--------------------|----------------|-----------------------------|-------------------|--------------------------------------------|--------------------------------|
| 11a 1TX           | 100                | 100            | 1                           | 100%              | 0                                          | 0.01                           |
| 11ac HT20<br>MIMO | 100                | 100            | 1                           | 100%              | 0                                          | 0.01                           |
| 11ac HT40<br>MIMO | 100                | 100            | 1                           | 100%              | 0                                          | 0.01                           |
| 11ac HT80<br>MIMO | 100                | 100            | 1                           | 100%              | 0                                          | 0.01                           |

#### Remark:

- 1) Duty Cycle Correction Factor=10log(1/x).
- 2) Where: x is Duty Cycle(Linear)
- 3) UNII Band I and UNII Band III have the same duty cycle, only UNII Band III data is shown in this report.
- 4) Antenna 1 and Antenna 2 have the same duty cycle, only Antenna B data show here.
- 5) If that calculated VBW is not available on the analyzer then the next higher value should be used.
- 6) Pre-testing all test modes and channels, only the data of the worst case is shown in this report.








Page 19 of 152



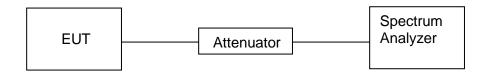




6.2. 6/26 dB BANDWIDTH

#### 6.2.1. LIMITS

| FCC Part15, Subpart E |                              |                          |  |  |  |  |
|-----------------------|------------------------------|--------------------------|--|--|--|--|
| Test Item             | Limit                        | Frequency Range<br>(MHz) |  |  |  |  |
| Donalisiath           | 26 dB Bandwidth              | 5150-5250                |  |  |  |  |
| Bandwidth             | Minimum 500kHz 6dB Bandwidth | 5725-5850                |  |  |  |  |


#### 6.2.2. TEST PROCEDUREC

Connect the UUT to the spectrum analyser and use the following settings:

| Center Frequency | The center frequency of the channel under test                                                |
|------------------|-----------------------------------------------------------------------------------------------|
| Detector         | Peak                                                                                          |
|                  | For 6dB Bandwidth: RBW=100kHz For 26dB Bandwidth: approximately 1% of the emission bandwidth. |
| IVRW             | For 6dB Bandwidth : VBW=300kHz For 26dB Bandwidth : >3RBW                                     |
| Trace            | Max hold                                                                                      |
| Sweep            | Auto couple                                                                                   |

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6/26 dB relative to the maximum level measured in the fundamental emission.

#### 6.2.3. TEST SETUP

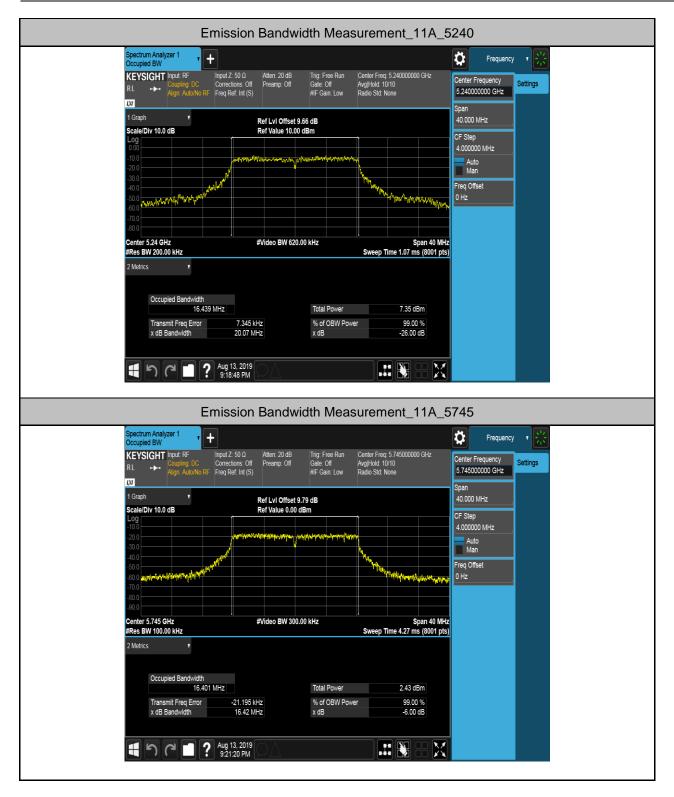


#### 6.2.4. TEST ENVIRONMENT

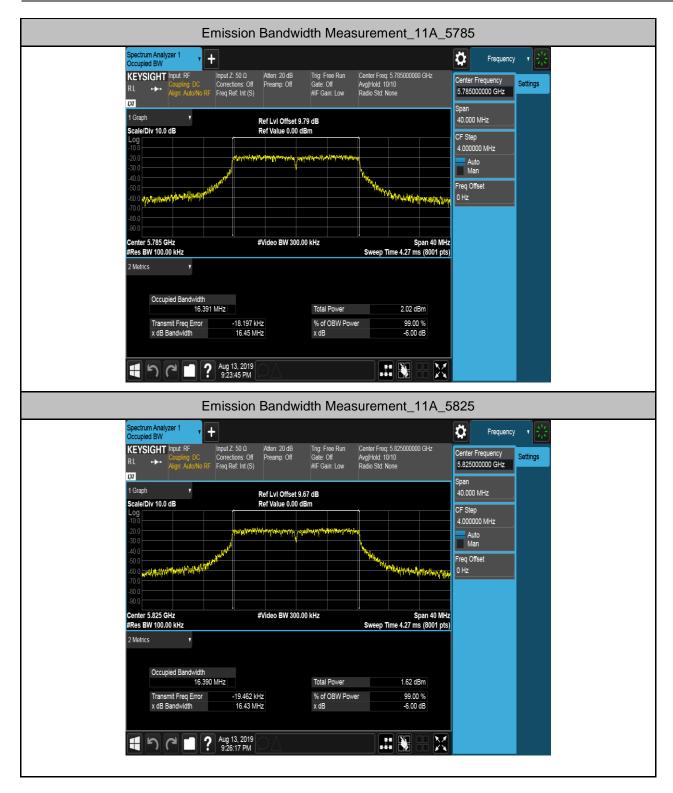
| Temperature         | 22°C   | Relative Humidity | 56%     |
|---------------------|--------|-------------------|---------|
| Atmosphere Pressure | 101kPa | Test Voltage      | AC 120V |



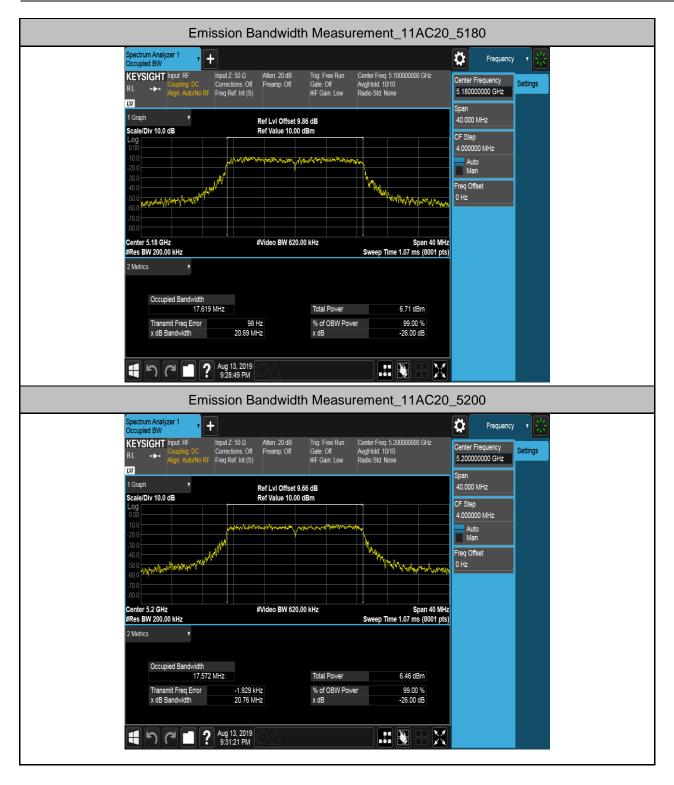
## **6.2.5. RESULTS**


| Test Mode | Test Channel | Ant  | EBW[MHz] | Limit[MHz] | Verdict |
|-----------|--------------|------|----------|------------|---------|
| 11A       | 5180         | Ant2 | 19.53    |            | PASS    |
| 11A       | 5200         | Ant2 | 20.37    |            | PASS    |
| 11A       | 5240         | Ant2 | 20.07    |            | PASS    |
| 11A       | 5745         | Ant2 | 16.42    | 0.5        | PASS    |
| 11A       | 5785         | Ant2 | 16.45    | 0.5        | PASS    |
| 11A       | 5825         | Ant2 | 16.43    | 0.5        | PASS    |
| 11AC20    | 5180         | Ant2 | 20.69    |            | PASS    |
| 11AC20    | 5200         | Ant2 | 20.76    |            | PASS    |
| 11AC20    | 5240         | Ant2 | 20.13    |            | PASS    |
| 11AC20    | 5745         | Ant2 | 17.69    | 0.5        | PASS    |
| 11AC20    | 5785         | Ant2 | 17.60    | 0.5        | PASS    |
| 11AC20    | 5825         | Ant2 | 17.76    | 0.5        | PASS    |
| 11AC40    | 5190         | Ant2 | 41.95    |            | PASS    |
| 11AC40    | 5230         | Ant2 | 41.07    |            | PASS    |
| 11AC40    | 5755         | Ant2 | 36.49    | 0.5        | PASS    |
| 11AC40    | 5795         | Ant2 | 36.35    | 0.5        | PASS    |
| 11AC80    | 5210         | Ant2 | 80.70    |            | PASS    |
| 11AC80    | 5775         | Ant2 | 75.81    | 0.5        | PASS    |

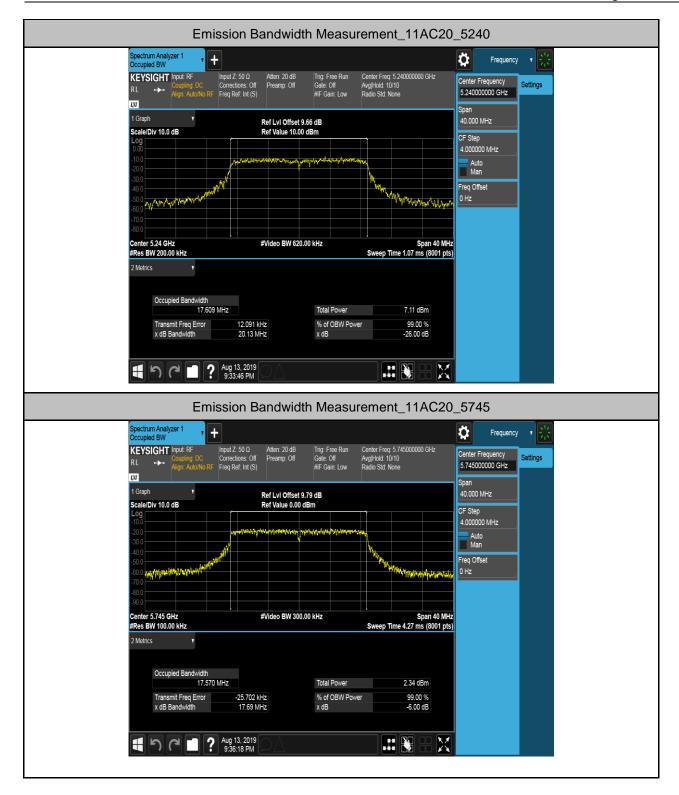
Remark: Pre-testing all test modes and both antennas, and find the Antenna 2 of MIMO mode which is the worst case, so only the data of worst case is included in this test report.





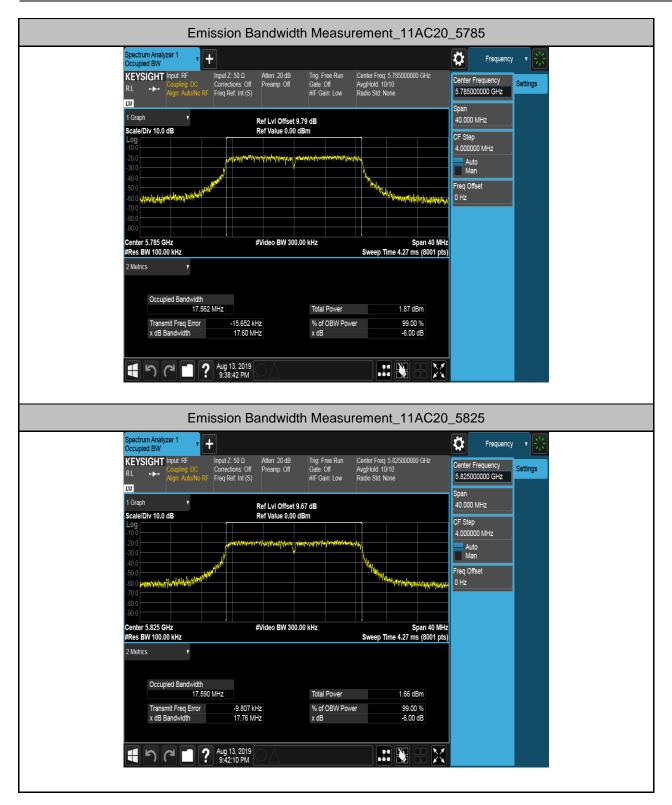







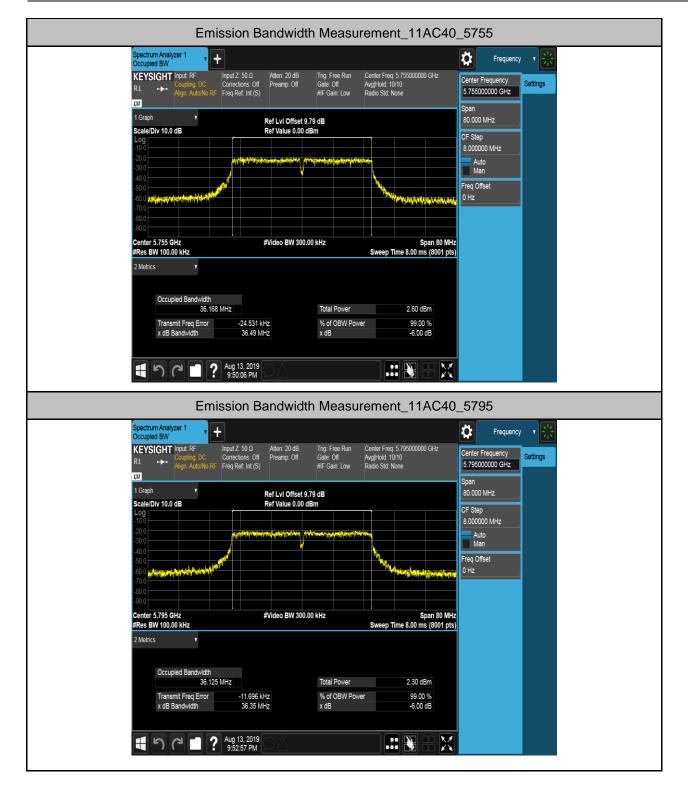


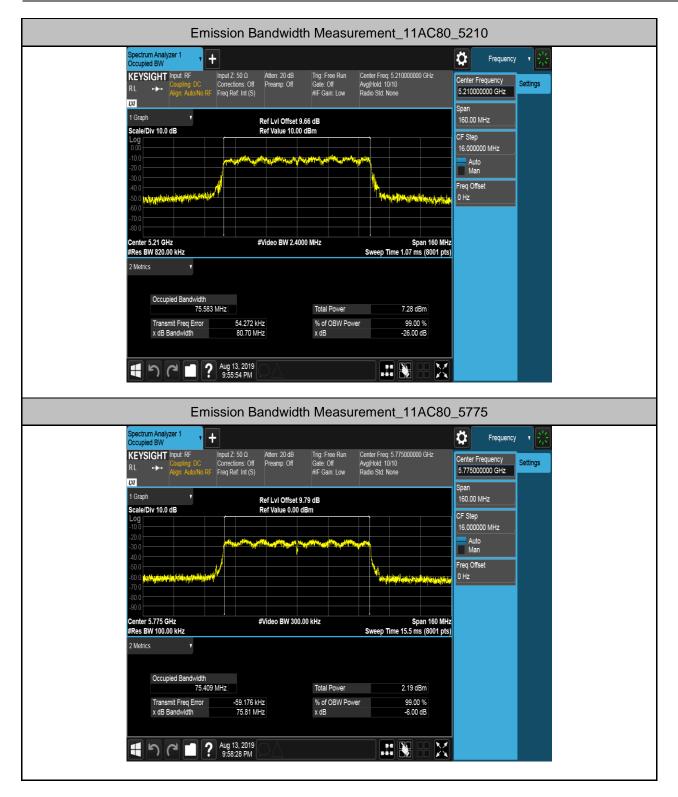








Page 27 of 152






Emission Bandwidth Measurement\_11AC40\_5190 pectrum Analyzer 1 ccupied BW ø Center Freq: 5.190000000 GHz Avg|Hold: 10/10 Radio Std: None Input Z: 50 Ω Corrections: Off Freq Ref: Int (S) Atten: 20 dB Preamp: Off KEYSIGHT Input RF Center Frequency Settings 5.190000000 GHz LXI 80.000 MHz Ref LvI Offset 9.86 dB Scale/Div 10.0 dB CF Step 8.000000 MHz Auto Man Freq Offset Center 5.19 GHz #Res BW 390.00 kHz #Video BW 1.2000 MHz Span 80 MHz Sweep Time 1.07 ms (8001 pts) 2 Metrics Occupied Bandwidth 36.239 MHz Total Power 7.37 dBm 6.749 kHz 41.95 MHz % of OBW Power 99.00 % -26.00 dB Transmit Freq Error x dB Aug 13, 2019 9:45:07 PM # ₩ Emission Bandwidth Measurement\_11AC40\_5230 pectrum Analyzer 1 ccupied BW Ö Input Z: 50 Ω Corrections: Off Freq Ref: Int (S) Trig: Free Run Gate: Off #IF Gain: Low Center Freq: 5.230000000 GHz Avg|Hold: 10/10 Radio Std: None KEYSIGHT Input RF Settings 5.230000000 GHz LXI 1 Graph 80.000 MHz Ref Lvl Offset 9.66 dB Ref Value 10.00 dBm Scale/Div 10.0 dB CF Step 8.000000 MHz Auto Man Freq Offset 0 Hz #Video BW 1.2000 MHz enter 5.23 GHz Span 80 MHz Sweep Time 1.07 ms (8001 pts) Occupied Bandwidth Total Power 7.66 dBm 10.396 kHz Transmit Freq Error % of OBW Power 99.00 % -26.00 dB 











6.3. MAXIMUM AVERAGE CONDUCTED OUTPUT POWER

#### 6.3.1. LIMITS

| FCC Part15, Subpart E     |                                       |                          |  |  |  |  |  |
|---------------------------|---------------------------------------|--------------------------|--|--|--|--|--|
| Test Item                 | Limit                                 | Frequency Range<br>(MHz) |  |  |  |  |  |
| Conducted<br>Output Power | For FCC client devices :250mW (24dBm) | 5150-5250                |  |  |  |  |  |
| Output Fower              | 1 Watt (30dBm)                        | 5725-5850                |  |  |  |  |  |

<sup>1.</sup> If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

#### 2. Limit:

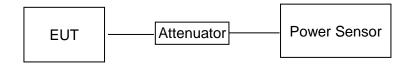
① For Band I:

Limit=24dBm – (Directional gain -6)dBi

Directional gain =  $10log [(10^{G1/20} + 10^{G2/20})^2/N_{ANT}] = 6.28 > 6dBi$ , where the NANT is the numbers of antenna. So, the power limit shall be reduced to 24 - (6.28-6) = 23.72 dBm

② For Band III:

Limit=30dBm – (Directional gain -6)dBi


Directional gain =  $10\log [(10^{G1/20} + 10^{G2/20})^2/N_{ANT}] = 7.83 > 6dBi$ , where the NANT is the numbers of antenna. So, the power limit shall be reduced to 30 - (7.83-6) = 28.17 dBm

#### 6.3.2. TEST PROCEDURE

Refer to KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Connect the EUT to the a broadband average(RMS) RF power meter, the power meter shall have a

video bandwidth that is greater than or equal to the bandwidth and shall utilize a fast-responding diode detector.

#### 6.3.3. TEST SETUP





Page 32 of 152

# **6.3.4. TEST ENVIRONMENT**

| Temperature         | 22°C   | Relative Humidity | 56%     |
|---------------------|--------|-------------------|---------|
| Atmosphere Pressure | 101kPa | Test Voltage      | AC 120V |



# **RESULTS**

| Test<br>Mode | Test<br>Channel | Ant     | Level<br>[dBm] | 10log(1/x)<br>Factor<br>[dB] | Power<br>[dBm] | EIRP<br>[dBm] | Limit<br>[dBm] | Verdict |
|--------------|-----------------|---------|----------------|------------------------------|----------------|---------------|----------------|---------|
|              |                 | Ant1    | 4.55           | 0.00                         | 4.55           | 6.58          | 24             | PASS    |
| 11A          | 5180            | Ant2    | 7.50           | 0.00                         | 7.50           | 11.85         | 24             | PASS    |
|              |                 | Ant 1+2 | 9.28           | 0.00                         | 9.28           | 15.56         | 23.72          | PASS    |
|              |                 | Ant1    | 5.03           | 0.00                         | 5.03           | 7.06          | 24             | PASS    |
| 11A          | 5200            | Ant2    | 7.28           | 0.00                         | 7.28           | 11.63         | 24             | PASS    |
|              |                 | Ant 1+2 | 9.31           | 0.00                         | 9.31           | 15.59         | 23.72          | PASS    |
|              |                 | Ant1    | 6.08           | 0.00                         | 6.08           | 8.11          | 24             | PASS    |
| 11A          | 5240            | Ant2    | 7.76           | 0.00                         | 7.76           | 12.11         | 24             | PASS    |
|              |                 | Ant 1+2 | 10.01          | 0.00                         | 10.01          | 16.29         | 23.72          | PASS    |
|              |                 | Ant1    | 8.95           | 0.00                         | 8.95           | 11.19         | 30             | PASS    |
| 11A          | 5745            | Ant2    | 3.01           | 0.00                         | 3.01           | 9.82          | 30             | PASS    |
|              |                 | Ant 1+2 | 9.94           | 0.00                         | 9.94           | 17.77         | 28.17          | PASS    |
|              |                 | Ant1    | 8.22           | 0.00                         | 8.22           | 10.46         | 30             | PASS    |
| 11A          | 5785            | Ant2    | 2.32           | 0.00                         | 2.32           | 9.13          | 30             | PASS    |
|              |                 | Ant 1+2 | 9.21           | 0.00                         | 9.21           | 17.04         | 28.17          | PASS    |
|              |                 | Ant1    | 7.22           | 0.00                         | 7.22           | 9.46          | 30             | PASS    |
| 11A          | 5825            | Ant2    | 1.98           | 0.00                         | 1.98           | 8.79          | 30             | PASS    |
|              |                 | Ant 1+2 | 8.36           | 0.00                         | 8.36           | 16.19         | 28.17          | PASS    |
|              |                 | Ant1    | 4.96           | 0.00                         | 4.96           | 6.99          | 24             | PASS    |
| 11AC20       | 5180            | Ant2    | 7.69           | 0.00                         | 7.69           | 12.04         | 24             | PASS    |
|              |                 | Ant 1+2 | 9.49           | 0.00                         | 9.49           | 15.77         | 23.72          | PASS    |
|              |                 | Ant1    | 5.42           | 0.00                         | 5.42           | 7.45          | 24             | PASS    |
| 11AC20       | 5200            | Ant2    | 7.24           | 0.00                         | 7.24           | 11.59         | 24             | PASS    |
|              |                 | Ant 1+2 | 9.43           | 0.00                         | 9.43           | 15.71         | 23.72          | PASS    |
|              |                 | Ant1    | 6.31           | 0.00                         | 6.31           | 8.34          | 24             | PASS    |
| 11AC20       | 5240            | Ant2    | 8.07           | 0.00                         | 8.07           | 12.42         | 24             | PASS    |
|              |                 | Ant 1+2 | 10.29          | 0.00                         | 10.29          | 16.57         | 23.72          | PASS    |
|              |                 | Ant1    | 9.16           | 0.00                         | 9.16           | 11.4          | 30             | PASS    |
| 11AC20       | 5745            | Ant2    | 3.08           | 0.00                         | 3.08           | 9.89          | 30             | PASS    |
|              |                 | Ant 1+2 | 10.12          | 0.00                         | 10.12          | 17.95         | 28.17          | PASS    |
| 11AC20       | 5785            | Ant1    | 8.38           | 0.00                         | 8.38           | 10.62         | 30             | PASS    |



Page 34 of 152

|        |      |         |       |      |       |       |       | 3 <del>+</del> 01 132 |
|--------|------|---------|-------|------|-------|-------|-------|-----------------------|
|        |      | Ant2    | 2.47  | 0.00 | 2.47  | 9.28  | 30    | PASS                  |
|        |      | Ant 1+2 | 9.37  | 0.00 | 9.37  | 17.2  | 28.17 | PASS                  |
|        |      | Ant1    | 7.47  | 0.00 | 7.47  | 9.71  | 30    | PASS                  |
| 11AC20 | 5825 | Ant2    | 2.20  | 0.00 | 2.20  | 9.01  | 30    | PASS                  |
|        |      | Ant 1+2 | 8.81  | 0.00 | 8.81  | 16.64 | 28.17 | PASS                  |
|        |      | Ant1    | 5.62  | 0.00 | 5.62  | 7.65  | 24    | PASS                  |
| 11AC40 | 5190 | Ant2    | 7.89  | 0.00 | 7.89  | 12.24 | 24    | PASS                  |
|        |      | Ant 1+2 | 9.91  | 0.00 | 9.91  | 16.19 | 23.72 | PASS                  |
|        |      | Ant1    | 6.54  | 0.00 | 6.54  | 8.57  | 24    | PASS                  |
| 11AC40 | 5230 | Ant2    | 7.87  | 0.00 | 7.87  | 12.22 | 24    | PASS                  |
|        |      | Ant 1+2 | 10.27 | 0.00 | 10.27 | 16.55 | 23.72 | PASS                  |
|        |      | Ant1    | 10.12 | 0.00 | 10.12 | 12.15 | 24    | PASS                  |
| 11AC40 | 5755 | Ant2    | 3.88  | 0.00 | 3.88  | 8.23  | 24    | PASS                  |
|        |      | Ant 1+2 | 11.05 | 0.00 | 11.05 | 17.33 | 23.72 | PASS                  |
|        |      | Ant1    | 9.02  | 0.00 | 9.02  | 11.26 | 30    | PASS                  |
| 11AC40 | 5795 | Ant2    | 3.31  | 0.00 | 3.31  | 10.12 | 30    | PASS                  |
|        |      | Ant 1+2 | 10.05 | 0.00 | 10.05 | 17.88 | 28.17 | PASS                  |
|        |      | Ant1    | 5.69  | 0.00 | 5.69  | 7.93  | 30    | PASS                  |
| 11AC80 | 5210 | Ant2    | 7.50  | 0.00 | 7.50  | 14.31 | 30    | PASS                  |
|        |      | Ant 1+2 | 9.70  | 0.00 | 9.70  | 17.53 | 28.17 | PASS                  |
|        |      | Ant1    | 9.15  | 0.00 | 9.15  | 11.39 | 30    | PASS                  |
| 11AC80 | 5775 | Ant2    | 3.01  | 0.00 | 3.01  | 9.82  | 30    | PASS                  |
|        |      | Ant 1+2 | 10.10 | 0.00 | 10.10 | 17.93 | 28.17 | PASS                  |

NOTE: 1.EIRP= Maximum Conducted Output Power + ANT GAIN

- 2. Maximum Conducted Output Power= Conducted Output Power+ Correction Factor
- 3. About correction Factor please refer to section 6.1
- 4. For this product, it has two antennas, antenna1 and antenna2, the 802.11a is use the SISO technical, but the ant1 and ant2 can transmitter in the same time under those modes. The 802.11n and 802.11ac are both use the SISO and MIMO technical.
- EUT support for SISO and CDD MIMO Transmission, only 802.11n/ac supports CDD MIMO Mode, SISO mode sets the same power level as MIMO mode, so MIMO mode is the worst case.
- 6. 11n HT20 mode set the same power level as 11ac HT20 mode, and 11n HT40 mode set the same power level as 11ac HT40 mode, besides the 11ac HT20 mode and 11ac HT40 mode were worse case, so only the 11ac HT20 mode and 11ac HT40 mode were tested in this report.



6.4. POWER SPECTRAL DENSITY

## 6.4.1. LIMITS

| FCC Part15, Subpart E     |                                                                                 |                          |  |  |  |  |
|---------------------------|---------------------------------------------------------------------------------|--------------------------|--|--|--|--|
| Test Item                 | Limit                                                                           | Frequency Range<br>(MHz) |  |  |  |  |
| Power Spectral<br>Density | For FCC: Other than Mobile and portable:17dBm/MHz Mobile and portable:11dBm/MHz | 5150-5250                |  |  |  |  |
|                           | 30dBm/500kHz                                                                    | 5725-5850                |  |  |  |  |

<sup>1.</sup> If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

#### 2. Limit:

1) For Band I:

Limit=24dBm - (Directional gain -6)dBi

Directional gain =  $10log [(10^{G1/20} + 10^{G2/20})^2/N_{ANT}] = 6.28 > 6dBi$ , where the NANT is the numbers of antenna. So, the power limit shall be reduced to 17 - (6.28-6) = 16.72 dBm

② For Band III:

Limit=30dBm - (Directional gain -6)dBi

Directional gain =  $10\log \left[ (10^{G1/20} + 10^{G2/20})^2 / N_{ANT} \right] = 7.83 > 6dBi$ , where the NANT is the numbers of antenna. So, the power limit shall be reduced to 30 - (7.83-6) = 28.17 dBm

#### 6.4.2. TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

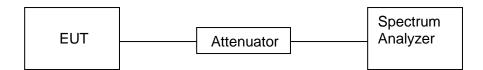
#### For U-NII-1,:

| Center Frequency | The center frequency of the channel under test               |
|------------------|--------------------------------------------------------------|
| Detector         | RMS                                                          |
| RBW              | 1MHz                                                         |
| VBW              | ≥3 × RBW                                                     |
| Span             | Encompass the entire emissions bandwidth (EBW) of the signal |
| Trace            | Max hold                                                     |
| Sweep time       | Auto                                                         |

#### For U-NII-3:



Page 36 of 152


|                  | <u> </u>                                                     |
|------------------|--------------------------------------------------------------|
| Center Frequency | The center frequency of the channel under test               |
| Detector         | RMS                                                          |
| RBW              | 300KHz                                                       |
| VBW              | ≥3 × RBW                                                     |
| Span             | Encompass the entire emissions bandwidth (EBW) of the signal |
| Trace            | Max hold                                                     |
| Sweep time       | Auto                                                         |

#### Note:

1. For UNII-3, according to KDB publication 789033 D02 General UNII Test Procedures New Rules V01, section FII.5, it is acceptable to use a RBW that is less than 500kHz. The value measured at the narrower RBW is to be corrected by 10Log(500kHz/RBW).

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

#### **6.4.3. TEST SETUP**





# **6.4.4. RESULTS**

# 6.4.4.1. UNII-I BAND

| Test<br>Mode | Test Channel | Ant    | PSD<br>[dBm/MHz] | Limit<br>[dBm/MHz] | Verdict |
|--------------|--------------|--------|------------------|--------------------|---------|
|              |              | Ant1   | -2.88            | 17                 | PASS    |
| 11A          | 5180         | Ant2   | -0.18            | 17                 | PASS    |
|              |              | Ant1+2 | 1.69             | 16.72              | PASS    |
|              |              | Ant1   | -2.59            | 17                 | PASS    |
| 11A          | 5200         | Ant2   | -0.45            | 17                 | PASS    |
|              |              | Ant1+2 | 1.62             | 16.72              | PASS    |
|              |              | Ant1   | -1.59            | 17                 | PASS    |
| 11A          | 5240         | Ant2   | 0.04             | 17                 | PASS    |
|              |              | Ant1+2 | 2.31             | 16.72              | PASS    |
|              | 5180         | Ant1   | -3.26            | 17                 | PASS    |
| 11AC20       |              | Ant2   | -0.65            | 17                 | PASS    |
|              |              | Ant1+2 | 1.25             | 16.72              | PASS    |
|              | 5200         | Ant1   | -2.78            | 17                 | PASS    |
| 11AC20       |              | Ant2   | -0.79            | 17                 | PASS    |
|              |              | Ant1+2 | 1.34             | 16.72              | PASS    |
|              |              | Ant1   | -1.88            | 17                 | PASS    |
| 11AC20       | 5240         | Ant2   | -0.27            | 17                 | PASS    |
|              |              | Ant1+2 | 2.01             | 16.72              | PASS    |
| 11AC40       |              | Ant1   | -5.50            | 17                 | PASS    |
|              | 5190         | Ant2   | -3.34            | 17                 | PASS    |
|              |              | Ant1+2 | -1.28            | 16.72              | PASS    |
|              |              | Ant1   | -4.58            | 17                 | PASS    |
| 11AC40       | 5230         | Ant2   | -2.90            | 17                 | PASS    |
|              |              | Ant1+2 | -0.65            | 16.72              | PASS    |
| 11AC80       |              | Ant1   | -7.02            | 17                 | PASS    |
|              | 5210         | Ant2   | -5.65            | 17                 | PASS    |
|              |              | Ant1+2 | -3.27            | 16.72              | PASS    |

# Remark:

1. About correction Factor please refer to section 6.1.

REPORT No.: 4789059198-3

Page 38 of 152

2. For this product, it has two antennas, antenna1 and antenna2, the 802.11a is use the SISO technical, but the ant1 and ant2 can transmitter in the same time under those modes. The 802.11n and 802.11ac are both use the SISO and MIMO technical.

- 3. EUT support for SISO and CDD MIMO Transmission, only 802.11n/ac supports CDD MIMO Mode, SISO mode sets the same power level as MIMO mode, so MIMO mode is the worst case.
- 4. 11n HT20 mode set the same power level as 11ac HT20 mode, and 11n HT40 mode set the same power level as 11ac HT40 mode, besides the 11ac HT20 mode and 11ac HT40 mode were worse case, so only the 11ac HT20 mode and 11ac HT40 mode were tested in this report.

6.4.4.2. UNII-III BAND

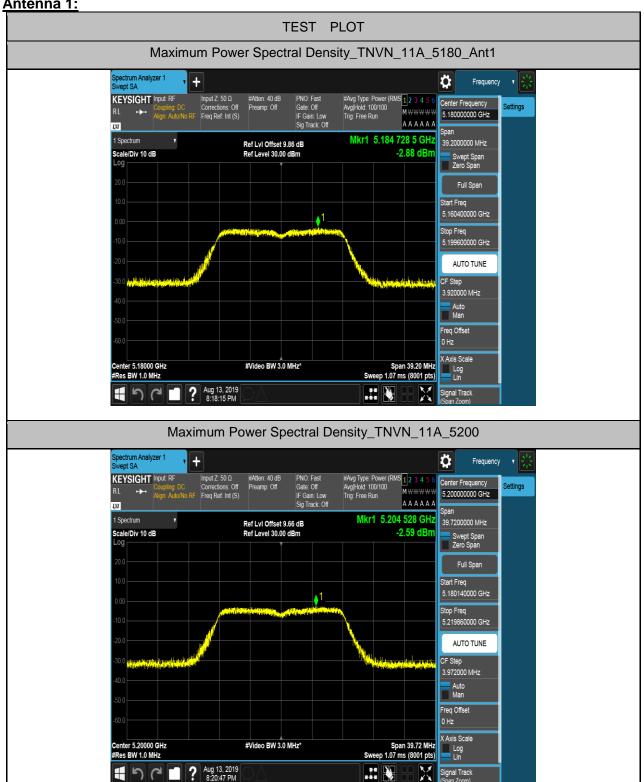
|              | 6.4.4.2. UNII-III BAND |        |                     |                          |                                      |                     |                       |         |  |
|--------------|------------------------|--------|---------------------|--------------------------|--------------------------------------|---------------------|-----------------------|---------|--|
| Test<br>Mode | Test<br>Channel        | Ant    | PSD<br>[dBm/300KHz] | 10log(1/x)<br>Factor[dB] | 10log(500kHz/<br>RBW)<br>Factor [dB] | PSD<br>[dBm/500KHz] | Limit<br>[dBm/500KHz] | Verdict |  |
|              | 5745                   | Ant1   | -4.60               | 0                        | 2.22                                 | -2.38               | 30                    | PASS    |  |
| 11A          |                        | Ant2   | -10.40              | 0                        | 2.22                                 | -8.18               | 30                    | PASS    |  |
|              |                        | Ant1+2 |                     | 0                        |                                      | -1.37               | 28.17                 | PASS    |  |
|              | 5785                   | Ant1   | -5.44               | 0                        | 2.22                                 | -3.22               | 30                    | PASS    |  |
| 11A          |                        | Ant2   | -11.04              | 0                        | 2.22                                 | -8.82               | 30                    | PASS    |  |
|              |                        | Ant1+2 |                     | 0                        |                                      | -2.16               | 28.17                 | PASS    |  |
|              | 5825                   | Ant1   | -6.40               | 0                        | 2.22                                 | -4.18               | 30                    | PASS    |  |
| 11A          |                        | Ant2   | -11.28              | 0                        | 2.22                                 | -9.06               | 30                    | PASS    |  |
|              |                        | Ant1+2 |                     | 0                        |                                      | -2.96               | 28.17                 | PASS    |  |
|              | 5745                   | Ant1   | -4.24               | 0                        | 2.22                                 | -2.02               | 30                    | PASS    |  |
| 11AC20       |                        | Ant2   | -10.11              | 0                        | 2.22                                 | -7.89               | 30                    | PASS    |  |
|              |                        | Ant1+2 |                     | 0                        |                                      | -1.02               | 28.17                 | PASS    |  |
|              | 5785                   | Ant1   | -5.30               | 0                        | 2.22                                 | -3.08               | 30                    | PASS    |  |
| 11AC20       |                        | Ant2   | -11.03              | 0                        | 2.22                                 | -8.81               | 30                    | PASS    |  |
|              |                        | Ant1+2 |                     | 0                        |                                      | -2.05               | 28.17                 | PASS    |  |
|              | 5825                   | Ant1   | -6.06               | 0                        | 2.22                                 | -3.84               | 30                    | PASS    |  |
| 11AC20       |                        | Ant2   | -11.18              | 0                        | 2.22                                 | -8.96               | 30                    | PASS    |  |
|              |                        | Ant1+2 |                     | 0                        |                                      | -2.68               | 28.17                 | PASS    |  |
|              | 5755                   | Ant1   | -6.20               | 0                        | 2.22                                 | -3.98               | 30                    | PASS    |  |
| 11AC40       |                        | Ant2   | -12.29              | 0                        | 2.22                                 | -10.07              | 30                    | PASS    |  |
|              |                        | Ant1+2 |                     | 0                        |                                      | -3.02               | 28.17                 | PASS    |  |
| 11AC40       | 5795                   | Ant1   | -7.42               | 0                        | 2.22                                 | -5.2                | 30                    | PASS    |  |
|              |                        | Ant2   | -13.08              | 0                        | 2.22                                 | -10.86              | 30                    | PASS    |  |
|              |                        | Ant1+2 |                     | 0                        |                                      | -4.16               | 28.17                 | PASS    |  |
| 11AC80       | 5775                   | Ant1   | -9.59               | 0                        | 2.22                                 | -7.37               | 30                    | PASS    |  |



REPORT No.: 4789059198-3

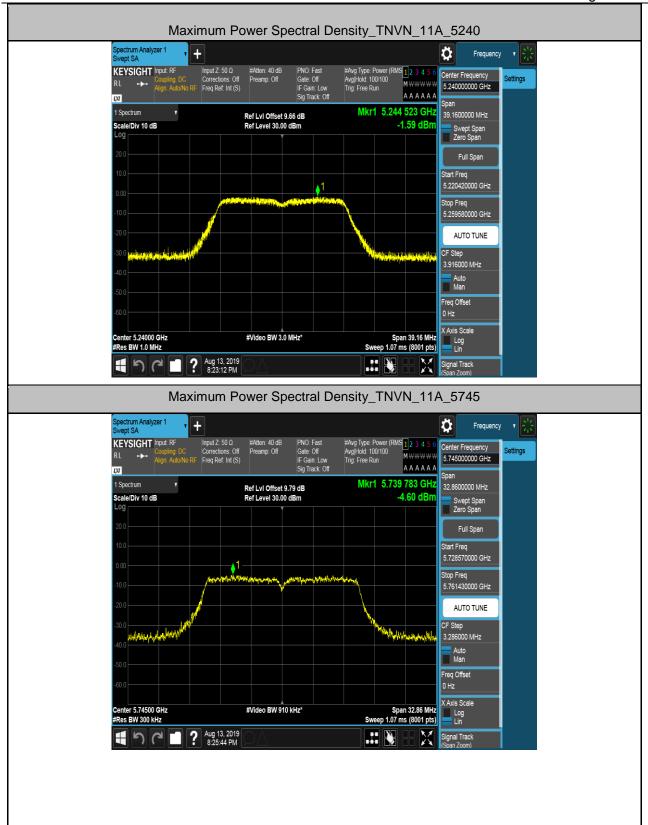
Page 39 of 152

|  | Ant2   | -16.09 | 0 | 2.22 | -13.87 | 30    | PASS |
|--|--------|--------|---|------|--------|-------|------|
|  | Ant1+2 |        | 0 |      | -6.49  | 28.17 | PASS |


### Remark:

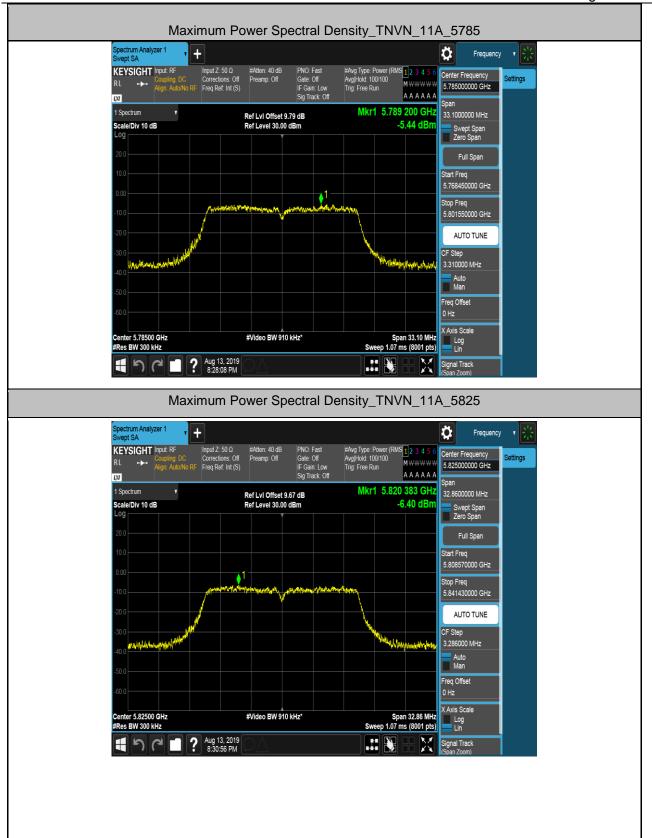
- 1.PSD=Meas. Level+ Correction Factor
- 2. About correction Factor please refer to section 6.1
- 3. For this product, it has two antennas, antenna1 and antenna2, the 802.11a is use the SISO technical, but the ant1 and ant2 can transmitter in the same time under those modes. The 802.11n and 802.11ac are both use the SISO and MIMO technical.
- 4. EUT support for SISO and CDD MIMO Transmission, only 802.11n/ac supports CDD MIMO Mode, SISO mode sets the same power level as MIMO mode, so MIMO mode is the worst case.
- 5. 11n HT20 mode set the same power level as 11ac HT20 mode, and 11n HT40 mode set the same power level as 11ac HT40 mode, besides the 11ac HT20 mode and 11ac HT40 mode were worse case, so only the 11ac HT20 mode and 11ac HT40 mode were tested in this report.

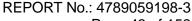



# 6.4.5. Test Graphs

### Antenna 1:

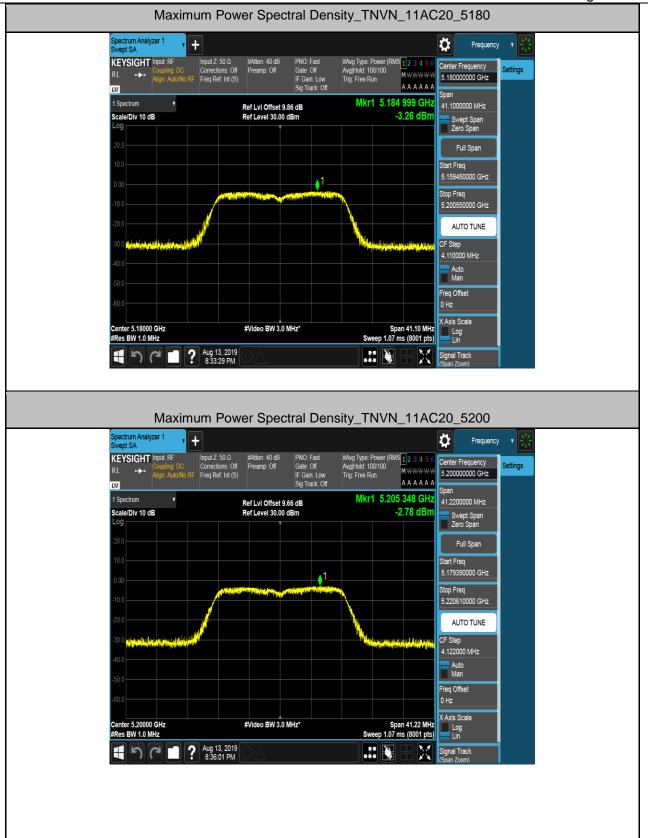


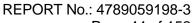




Page 41 of 152






Page 42 of 152

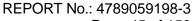








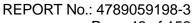
Page 43 of 152







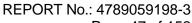

Page 44 of 152







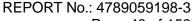

Page 45 of 152





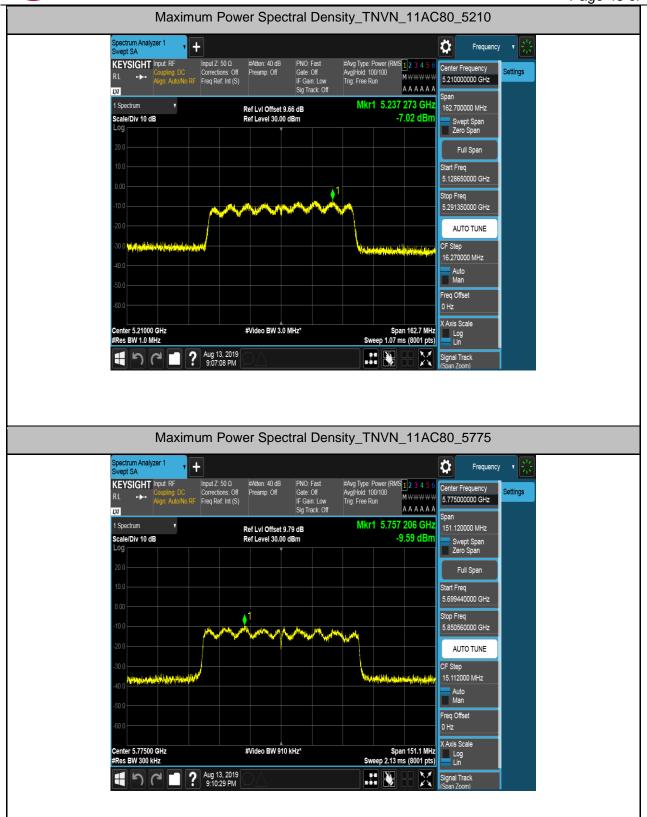



Page 46 of 152



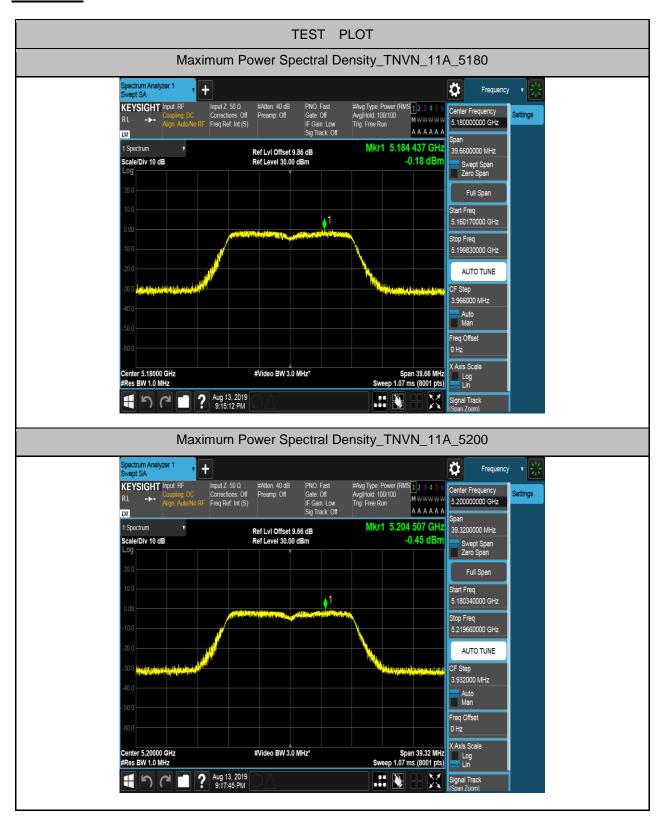






Page 47 of 152

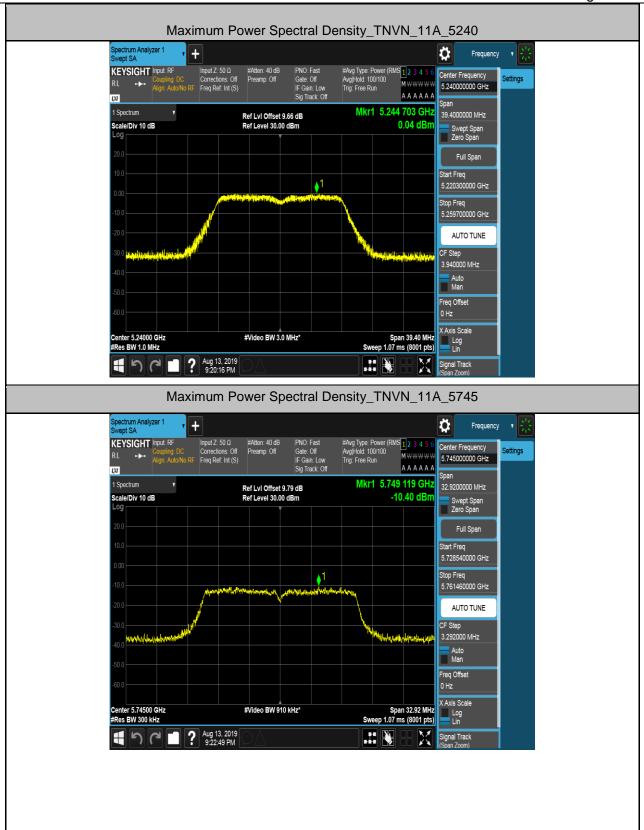







Page 48 of 152






#### Antenna2:





Page 50 of 152

