

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd.

Report No.: SHEM200600506003 Page: 1 of 140

TEST REPORT

Application No.:	SHEM2006005060CR
FCC ID:	UCZ-AX62TR-Z
IC:	8575A-AX62TRZ
Applicant:	LOREX Technology Inc.
Address of Applicant:	250 Royal Crest Court, Markham, ON L3R 3S1 Canada
Manufacturer:	LOREX Technology Inc.
Address of Manufacturer:	250 Royal crest Court, Markham, L3R 3S1 Canada
Equipment Under Test (EU	Т):
EUT Name:	Home Center Extender
Model No.:	AX62TR-Z
Trade mark:	LOREX
Standard(s) :	47 CFR Part 15, Subpart E 15.407
	RSS-247 Issue 2, February 2017
	RSS-Gen Issue 5, March 2019 Amendment 1
Date of Receipt:	2020-06-30
Date of Test:	2020-06-30 to 2020-07-20
Date of Issue:	2020-07-23
Test Result:	

* In the configuration tested, the EUT complied with the standards specified above.

parlan share

Parlam Zhan E&E Section Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed
overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents,
subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx.
Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is
advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of
Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a
transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced
except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or
appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the
results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.
Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

or email: <u>CN.Doccheck@sgs.com</u> Co.Ld NO.588 West Jindu Road,Songjiang District,Shanghai,China 201612 中国・上海・松江区金都西路588号 邮编: 201612

t(86-21) 61915666 f(86-21) 61915678 www.sgsgroup.com.cn t(86-21) 61915666 f(86-21) 61915678 e sgs.china@sgs.com

Report No.: SHEM200600506003 Page: 2 of 140

Revision Record			
Version	Description	Date	Remark
00	Original	2020-07-23	/
			1

Authorized for issue by:			
	pichal Nil		
	Micheal Niu / Project Engineer	-	
	parlam zhan		
	Parlam Zhan / Reviewer	-	

Report No.: SHEM200600506003 Page: 3 of 140

2 Test Summary

Radio Spectrum Technical Requirement

ltem	FCC Requirement	IC Requirement	Method	Result
Antenna Requirement	47 CFR Part 15, Subpart C 15.203	RSS-Gen Clause 6.8	N/A	Pass
Transmission in the Absence of Data	47 CFR Part 15, Subpart C 15.407 (c)	RSS-247 Section 6.4(a)	N/A	Pass

N/A: Not applicable

Radio Spectrum Matter Part				
Item	FCC Requirement	IC Requirement	Method	Result
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.207 & 15.407 b(6)	RSS-Gen Section 8.8	ANSI C63.10 (2013) Section 6.2	Pass
99% Bandwidth	N/A	RSS-Gen Section 6.7	KDB 789033 II D	Pass
26dB Emission bandwidth	47 CFR Part 15, Subpart C 15.407 (a)	RSS-247 Section 6.2.1(1)	KDB 789033 D02 II C 1	Pass
Minimum 6 dB bandwidth (5.725- 5.85 GHz band)	47 CFR Part 15, Subpart C 15.407 (e)	RSS-247 Section 6.2.4	KDB 789033 D02 II C 2	Pass
Maximum Conducted output power	47 CFR Part 15, Subpart C 15.407 (a)	RSS-247 Section 6.2.1&6.2.2&6.2.3&6.2 .4	KDB 789033 D02 II E	Pass
Peak Power spectrum density	47 CFR Part 15, Subpart C 15.407 (a)	RSS-247 Section 6.2.1&6.2.2&6.2.3& 6.2.4	KDB 789033 D02 II F	Pass
Radiated Emissions	47 CFR Part 15, Subpart C 15.209 & 15.407(b)	RSS-247 Section 3.3 & RSS-Gen Section 8.9	KDB 789033 D02 II G	Pass
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.209 & 15.407(b)	RSS-247 Section 3.3 & RSS-Gen Section 8.9	KDB 789033 D02 II G	Pass
Frequency Stability	47 CFR Part 15, Subpart C 15.407 (g)	RSS-Gen Section 8.11	ANSI C63.10 (2013) Section 6.8& RSS-Gen Section 6.11	Pass

Report No.: SHEM200600506003 Page: 4 of 140

3 Contents

			Page
1	CO	VER PAGE	1
2	TE	ST SUMMARY	3
3	CO	NTENTS	4
4	GE	NERAL INFORMATION	5
	4.1	DETAILS OF E.U.T	5
	4.2	Power level setting using in test:	
	4.3	DESCRIPTION OF SUPPORT UNITS	
	4.4	Measurement Uncertainty	7
	4.5	TEST LOCATION	
	4.6	TEST FACILITY	
	4.7	DEVIATION FROM STANDARDS	
	4.8	ABNORMALITIES FROM STANDARD CONDITIONS	
5	EQ	JIPMENT LIST	9
6	RA	DIO SPECTRUM TECHNICAL REQUIREMENT	10
	6.1	ANTENNA REQUIREMENT	10
	6.2	TRANSMISSION IN THE ABSENCE OF DATA	11
7	RA	DIO SPECTRUM MATTER TEST RESULTS	12
	7.1	CONDUCTED EMISSIONS AT AC POWER LINE (150KHz-30MHz)	12
	7.2	99% Bandwidth	
	7.3	26DB EMISSION BANDWIDTH.	
	7.4	MINIMUM 6 DB BANDWIDTH (5.725-5.85 GHz BAND)	
	7.5 7.6	MAXIMUM CONDUCTED OUTPUT POWER PEAK POWER SPECTRUM DENSITY	
	7.0	RADIATED EMISSIONS	
	7.8	RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	
	7.9	FREQUENCY STABILITY.	-
	7.10	99% Bandwidth	139
8	TES	ST SETUP PHOTOGRAPHS	140
9	EU.	CONSTRUCTIONAL DETAILS	

Report No.: SHEM200600506003 Page: 5 of 140

4 General Information

4.1 Details of E.U.T.

Power supply:	DC 5V by Adapter Adapter:
	Model: NBS10B050200VUU
	INPUT: AC 100~240 50/60Hz
	OUTPUT: DC 5V/2A
Serial Number:	ND012006033966
Firmware Version:	V1.000.0000001.4
Test voltage:	AC 120V/60Hz
Cable:	DC Cable 200cm
DFS Function:	Slave without Radar detection
TPC Function:	Not Support
EUT type:	indoor access point

Operation Frequency:	Band	Mode	Frequency Range(MHz)	Number of channels
	Band 1	802.11a/n(HT20)/ac(HT20)	5180-5240	4
		802.11n(HT40)/ac(HT40)	5190-5230	2
		802.11ac(HT80)	5210	1
	Band 4	802.11a/n(HT20)/ac(HT20)	5745-5825	5
		802.11n(HT40)/ac(HT40)	5755-5795	2
		802.11ac(HT80)	5775	1
Modulation Type:	802.11a: OFDM	(64QAM, 16QAM, QPSK, BPSK	()	
	802.11n: OFDM	(BPSK, QPSK, 16QAM, 64QAN	I)	
	802.11ac: OFDN	I (BPSK, QPSK, 16QAM, 64QAI	M, 256QAM)	
Channel Spacing:	802.11a/n(HT20)/ac(HT20): 20MHz			
	802.11n(HT40)/ac(HT40): 40MHz			
	802.11ac(HT80): 80MHz			
Data Rate:	802.11a: 6/9/12/18/24/36/48/54Mbps			
	802.11n: MCS0-7			
	802.11ac: MCS0-9			
Antenna Gain:	Antenna 1: 3.8dBi;			
	Antenna 2: 3.8dBi			
	Directional gain: 3.8dBi for conducted power test			
		6.81dBi for conducted PSD test	:	
Antenna Type:	Antenna 1: PIFA	Antenna		
	Antenna 2: PIFA	Antenna		

Report No.: SHEM200600506003 Page: 6 of 140

Channel	802.11a	802.11n(HT20)	802.11ac(VHT20)
36	76	76	76
40	76	76	76
48	76	76	76
149	110	110	110
157	110	110	110
165	110	110	110
Channel	802.11n(HT40)	802.11ac(VHT40)	
38	65	65	
46	65	65	
151	110	110	
159	110	110	
Channel	802.11ac(VHT80)		-
42	60		
155	110		

Power level setting using in test:

4.2 Description of Support Units

Description	Manufacturer	Model No.	Serial No.
Laptop	Lenovo	ThinkPad X100e	/

Report No.: SHEM200600506003 Page: 7 of 140

4.3 Measurement Uncertainty

No.	ltem	Measurement Uncertainty
1	Radio Frequency	8.4 x 10-8
2	Timeout	2s
3	Duty Cycle	0.4%
4	Occupied Bandwidth	3%
5	RF Conducted Power	0.6dB
6	RF Power Density	2.9dB
7	Conducted Spurious Emissions	0.75dB
8		5.1dB (Below 1GHz)
0	RF Radiated Power	5.9dB (Above 1GHz)
		4.2dB (Below 30MHz)
9	Redicted Sourious Emission Test	4.5dB (30MHz-1GHz)
9	Radiated Spurious Emission Test	5.1dB (1GHz-6GHz)
		5.4dB (6GHz-18GHz)
10	Temperature Test	1°C
11	Humidity Test	3%
12	Supply Voltages	1.5%
13	Time	3%

Note: The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: SHEM200600506003 Page: 8 of 140

4.4 Test Location

All tests were performed at:

Compliance Certification Services (Kunshan) Inc.

No.10 Weiye Rd, Innovation park, Eco&Tec, Development Zone, Kunshan City, Jiangsu, China. Tel: +86 512 5735 5888 Fax: +86 512 5737 0818

No tests were sub-contracted.

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L4354)

CNAS has accredited Compliance Certification Services (Kunshan) Inc. to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• A2LA (Certificate No. 2541.01)

Compliance Certification Services (Kunshan) Inc. is accredited by the American Association for Laboratory Accreditation (A2LA). Certificate No. 2541.01.

• FCC (Designation Number: CN1172)

Compliance Certification Services Inc. has been recognized as an accredited testing laboratory. Designation Number: CN1172.

• ISED (CAB identifier: CN0072)

Compliance Certification Services (Kunshan) Inc. has been recognized by Innovation, Science and Economic Development Canada (ISED) as an accredited testing laboratory.

CAB Identifier: CN0072.

• VCCI (Member No.: 1938)

The 3m and 10m Semi-anechoic chamber and Shielded Room of Compliance Certification Services (Kunshan) Inc. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-1600, C-1707, T-1499, G-10216 respectively.

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions

None

Report No.: SHEM200600506003 Page: 9 of 140

5 Equipment List

ltem	Equipment	Manufacturer	Model	Serial Number	Cal Date	Cal. Due Date
	nducted Emission at Mains Term					
1	EMI Test Receive	R&S	ESCI	100781	02/24/2020	02/23/2021
2	LISN	R&S	ENV216	101604	10/24/2019	10/23/2020
3	LISN	Schwarzbeck	NNLK 8129	8129-143	10/24/2019	10/23/2020
4	Pulse Limiter	R&S	ESH3-Z2	100609	02/24/2020	02/23/2021
5	CE test Cable	Thermax	/	14	02/24/2020	02/23/2021
RF	F Conducted Test	•	•	•		
1	Spectrum Analyzer	Agilent	E4446A	MY44020154	04/22/2020	04/21/2021
2	Spectrum Analyzer	Keysight	N9020A	MY55370209	12/19/2019	12/18/2020
3	Signal Generator	Agilent	E8257C	MY43321570	10/24/2019	10/23/2020
4	Vector Signal Generator	R&S	SMU 200A	102744	02/24/2020	02/23/2021
5	Universal Radio Communication Tester	R&S	CMU200	109525	12/19/2019	12/18/2020
6	Universal Radio Communication Tester	R&S	CMW500	159275	12/19/2019	12/18/2020
7	Power Meter	Anritsu	ML2495A	1445010	04/21/2020	04/20/2021
8	Switcher	CCSRF	FY562	KS301219	12/20/2019	12/19/2020
9	AC Power Source	EXTECH	6605	1570106	N.C.R	N.C.R
10	DC Power Supply	Aglient	E3632A	MY50340053	N.C.R	N.C.R
11	6dB Attenuator	Mini-Circuits	NAT-6-2W	15542-1	N.C.R	N.C.R
12	Power Divider	AISI	IOWOPE2068	PE2068	N.C.R	N.C.R
13	Filter	MICRO-TRONICS	BRM50701	5	N.C.R	N.C.R
14	Conducted test cable	/	RF01-RF04	/	04/21/2020	04/22/2021
15	Temp. / Humidity Chamber	TERCHY	MHK-120AK	X30109	04/21/2020	04/20/2021
RF R	Radiated Test			•		
1	Spectrum Analyzer	R&S	FSV40	101493	01/08/2020	01/07/2021
2	Signal Generator	Agilent	E8257C	MY43321570	10/24/2019	10/23/2020
3	Loop Antenna	Schwarzbeck	HXYZ9170	9170-108	02/24/2020	02/23/2021
4	Bilog Antenna	TESEQ	CBL 6112D	35403	06/22/2019	06/21/2021
5	Bilog Antenna	SCHWARZBECK	VULB9160	9160-3342	04/29/2019	04/28/2021
6	Horn-antenna(1-18GHz)	Schwarzbeck	BBHA9120D	267	11/04/2018	11/03/2020
7	Horn-antenna(1-18GHz)	ETS-LINDGREN	3117	00143290	02/25/2019	02/24/2021
8	Horn Antenna(18-40GHz)	Schwarzbeck	BBHA9170	BBHA9170171	02/27/2018	02/26/2021
9	Pre-Amplifier(30MHz~18GHz)	CCSRF	AMP1277	1	12/19/2019	12/18/2020
10	Pre-Amplifier(0.1~26.5GHz)	EMCI	EMC012645	980060	04/21/2020	04/20/2021
11	Low Pass Filter	MICRO-TRONICS	VLFX-950	RV142900829	N.C.R	N.C.R
12	High Pass Filter	Mini-Circuits	VHF-1200	15542	N.C.R	N.C.R
13	Filter (5450MHz~5770 MHz)	MICRO-TRONICS	BRC50704-01	2	N.C.R	N.C.R
14	Filter (5690 MHz~5930 MHz)	MICRO-TRONICS	BRC50705-01	4	N.C.R	N.C.R
15	Filter (5150 MHz~5350 MHz)	MICRO-TRONICS	BRC50703-01	2	N.C.R	N.C.R
16	Filter (885 MHz~915 MHz)	MICRO-TRONICS	BRM14698	1	N.C.R	N.C.R
17	Filter (815 MHz~860 MHz)	MICRO-TRONICS	BRM14697	1	N.C.R	N.C.R
10	Filter (1745 MHz \sim 1910 MHz)	MICRO-TRONICS	BRM14700	1	N.C.R	N.C.R
18		MICRO-TRONICS	BRM50715	1	N.C.R	N.C.R
18 19	Filter (1922 MHz \sim 1977 MHz)					
				5	N.C.R	N.C.R
19	Filter (2550 MHz)	MICRO-TRONICS	HPM13362	5 1	N.C.R N.C.R	N.C.R N.C.R
19 20					N.C.R N.C.R N.C.R	N.C.R N.C.R N.C.R

NO.588	West Ji	ndu Road,Songjiang District,Sha	inghai,China	20161
中国・	上海·	松江区金都西路588号	邮编:	20161

t(86-21) 61915666 f(86-21)61915678 www.sgsgroup.com.cn t(86-21) 61915666 f(86-21)61915678 e sgs.china@sgs.com

Report No.: SHEM200600506003 10 of 140 Page:

Radio Spectrum Technical Requirement 6

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203

6.1.2 Conclusion

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna 1 and antenna 2 is PIFA Antenna, and all on the main PCB and no consideration of replacement. The best case gain of the antenna 1 and antenna 2 is 3.8dBi.

Antenna location: Refer to Appendix (Internal Photos)

Report No.: SHEM200600506003 Page: 11 of 140

6.2 Transmission in the Absence of Data

6.2.1 Test Requirement:

47 CFR Part 15, Subpart C 15.407 (c)

6.2.2 Conclusion

Standard Requirement:

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signalling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals.

Applicants shall include in their application for equipment authorization a description of how this requirement is met.

EUT Details:

WIFI chip (RTL8812FR) support automatically discontinue transmission in case of either absence of information to transmit or operational failure, if the chip detect absence of information to transmit or operational failure, it will be automatically shut off.

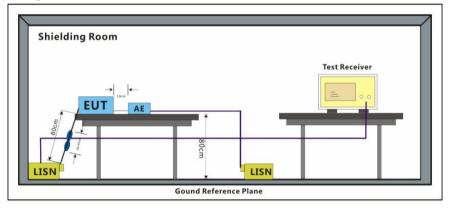
Report No.: SHEM200600506003 Page: 12 of 140

7 Radio Spectrum Matter Test Results

7.1 Conducted Emissions at AC Power Line (150kHz-30MHz)

Test Requirement Test Method: Limit: 47 CFR Part 15, Subpart C 15.207 & 15.407 b(6) ANSI C63.10 (2013) Section 6.2

Eroqueney of omission/MUT	Conducted	limit(dBµV)		
Frequency of emission(MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		
*Decreases with the logarithm of the frequency.				


Report No.: SHEM200600506003 Page: 13 of 140

7.1.1 E.U.T. Operation

Operating Environment:

Temperature:24 °CHumidity:48 % RHAtmospheric Pressure:1010 mbarThe final test
mode:c:TX mode (Band 1)_Keep the EUT in continuously transmitting mode with all
modulation types. All data rates for each modulation type have been tested and
found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @
MCS0 is the worst case of IEEE 802.11n(HT20); data rate @ MCS0 is the worst
case of IEEE 802.11n(HT40); data rate @ MCS0 is the worst case of IEEE
802.11ac(VHT20); data rate @ MCS0 is the worst case of IEEE
802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE
802.11ac(VHT80). Only the data of worst case is recorded in the report.

7.1.2 Test Setup Diagram

7.1.3 Measurement Procedure and Data

1) The mains terminal disturbance voltage test was conducted in a shielded room.

2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50 μ H + 50hm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,

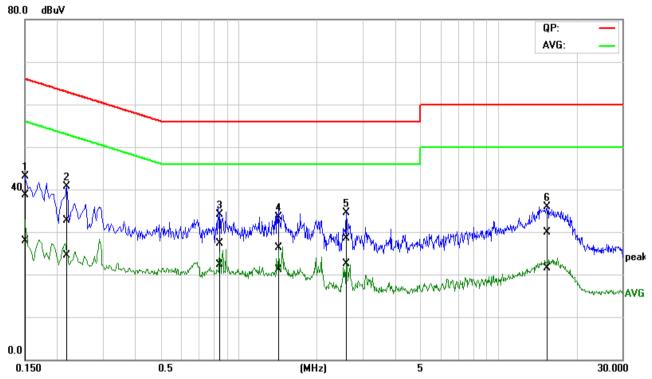
4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark:

1.LISN=Read Level+ Cable Loss+ LISN Factor

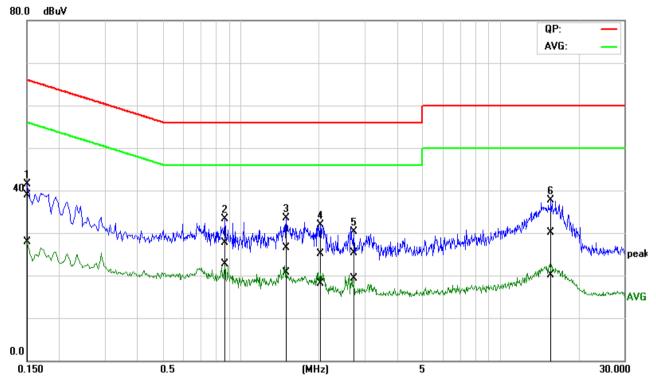
2. This test item was investigated while operating in each channel mode, however, it was determined that channel 36 operation for a modulation produced the worst conducted emissions. So the conducted emissions produced from other operation are not report.


NO.588 West	Jindu Road, Songjiang District, Shar	nghai,China	201612	
中国・上海	・松江区金都西路588号	邮编:	201612	

t(86-21) 61915666 f(86-21) 61915678 www.sgsgroup.com.cn t(86-21) 61915666 f(86-21) 61915678 e sgs.china@sgs.com

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd.

Report No.: SHEM200600506003 Page: 14 of 140


Mode:c;	Line:Live	Line
---------	-----------	------

No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1516	19.37	8.45	19.40	38.77	27.85	65.91	55.91	-27.14	-28.06	Pass
2	0.2155	13.41	5.17	19.39	32.80	24.56	62.99	52.99	-30.19	-28.43	Pass
3	0.8496	7.88	2.85	19.51	27.39	22.36	56.00	46.00	-28.61	-23.64	Pass
4	1.4331	6.69	1.56	19.59	26.28	21.15	56.00	46.00	-29.72	-24.85	Pass
5*	2.6101	8.75	2.81	19.68	28.43	22.49	56.00	46.00	-27.57	-23.51	Pass
6	15.4523	9.81	1.43	20.12	29.93	21.55	60.00	50.00	-30.07	-28.45	Pass

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd.

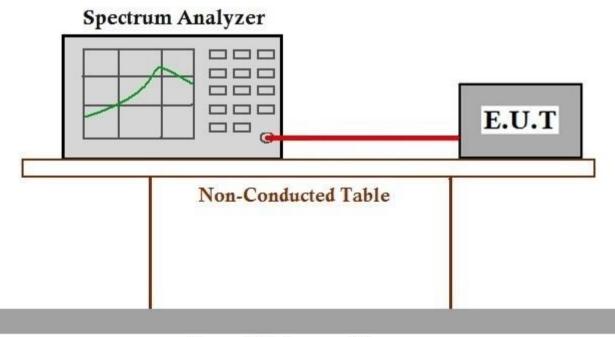
Report No.: SHEM200600506003 Page: 15 of 140

Mode:c; Line:Neutral Line

No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1504	19.50	8.44	19.45	38.95	27.89	65.98	55.98	-27.03	-28.09	Pass
2*	0.8699	8.08	3.08	19.54	27.62	22.62	56.00	46.00	-28.38	-23.38	Pass
3	1.4997	6.96	1.14	19.62	26.58	20.76	56.00	46.00	-29.42	-25.24	Pass
4	2.0134	5.45	-1.66	19.67	25.12	18.01	56.00	46.00	-30.88	-27.99	Pass
5	2.6840	5.59	-0.52	19.73	25.32	19.21	56.00	46.00	-30.68	-26.79	Pass
6	15.6581	10.02	-0.07	20.18	30.20	20.11	60.00	50.00	-29.80	-29.89	Pass

Report No.: SHEM200600506003 Page: 16 of 140

7.2 99% Bandwidth


Test Requirement	RSS-Gen Section 6.7
Test Method:	KDB 789033 II D

7.2.1 E.U.T. Operation

Operating Environment:

Temperature:	22 °C Humidity: 50 % RH Atmospheric Pressure: 1002 mbar
The final test mode:	c:TX mode (Band 1)_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n(HT20); data rate @ MCS0 is the worst case of IEEE 802.11n(HT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT20); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT80). Only the data of worst case is recorded in the report.
	d:TX mode (Band 3)_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n(HT20); data rate @ MCS0 is the worst case of IEEE 802.11n(HT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT20); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT80). Only the data of worst case is recorded in the report.

7.2.2 Test Setup Diagram

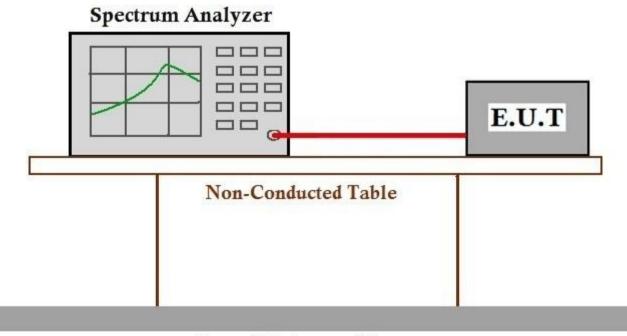
Ground Reference Plane

7.2.3 Measurement Procedure and Data

NO.588 West Jir	ndu Road, Songjiang District, Sh	anghai,China	201612	
中国・上海・	松江区金都西路588号	邮编:	201612	

Report No.: SHEM200600506003 Page: 17 of 140

7.3 26dB Emission bandwidth


Test Requirement47 CFR Part 15, Subpart C 15.407 (a)Test Method:KDB 789033 D02 II C 1

7.3.1 E.U.T. Operation

Operating Environment:

Temperature:22 °CHumidity:50 % RHAtmospheric Pressure:1002 mbarTest modec:TX mode (Band 1)_Keep the EUT in continuously transmitting mode with all
modulation types. All data rates for each modulation type have been tested and
found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @
MCS0 is the worst case of IEEE 802.11n(HT20); data rate @ MCS0 is the worst
case of IEEE 802.11n(HT40); data rate @ MCS0 is the worst case of IEEE
802.11ac(VHT20); data rate @ MCS0 is the worst case of IEEE
802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE
802.11ac(VHT80). Only the data of worst case is recorded in the report.

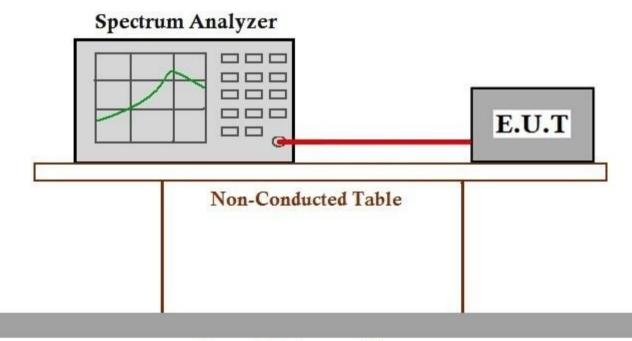
7.3.2 Test Setup Diagram

Ground Reference Plane

7.3.3 Measurement Procedure and Data

Report No.: SHEM200600506003 Page: 18 of 140

7.4 Minimum 6 dB bandwidth (5.725-5.85 GHz band)


Test Requirement	47 CFR Part 15, Subpart C 15.407 (e)
Test Method:	KDB 789033 D02 II C 2
Limit:	≥500 kHz

7.4.1 E.U.T. Operation

Operating Environment:

Temperature:22 °CHumidity:50 % RHAtmospheric Pressure:1002 mbarTest moded:TX mode (Band 3)_Keep the EUT in continuously transmitting mode with all
modulation types. All data rates for each modulation type have been tested and
found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @
MCS0 is the worst case of IEEE 802.11n(HT20); data rate @ MCS0 is the worst
case of IEEE 802.11n(HT40); data rate @ MCS0 is the worst case of IEEE
802.11ac(VHT20); data rate @ MCS0 is the worst case of IEEE
802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE
802.11ac(VHT80). Only the data of worst case is recorded in the report.

7.4.2 Test Setup Diagram

Ground Reference Plane

7.4.3 Measurement Procedure and Data

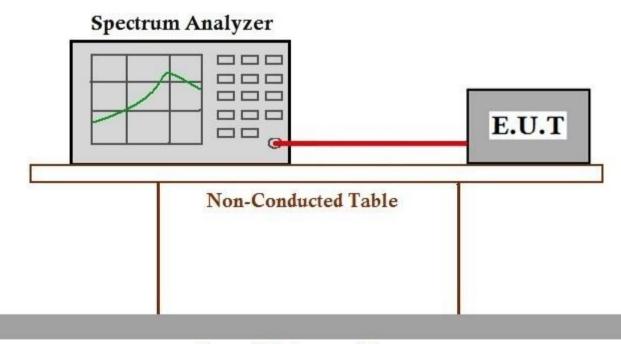
Report No.: SHEM200600506003 Page: 19 of 140

7.5 Maximum Conducted output power

Test Requirement	
Test Method:	
Limit:	

47 CFR Part 15, Subpart C 15.407 (a) KDB 789033 D02 II E

Frequency band(MHz)	Limit						
	≤1W(30dBm) for master device						
5150-5250	≤250mW(24dBm) for client device						
5250-5350	≤250mW(24dBm) for client device or 11dBm+10logB*						
5470-5725	≤250mW(24dBm) for client device or 11dBm+10logB*						
5725-5850	≤1W(30dBm)						
	* Where B is the 26dB emission bandwidth in MHz.						
Remark:	The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage.						
	For IC 5150MHz to 5250MHz limit is EIRP≤200mW(23dBm)						
	For IC 5725MHz to 5850MHz limit is EIRP≤1W(30dBm)						


Report No.: SHEM200600506003 Page: 20 of 140

7.5.1 E.U.T. Operation

Operating Environment:

Temperature:	22 °C Humidity: 50 % RH Atmospheric Pressure: 1002 mbai	•
The final test mode:	c:TX mode (Band 1)_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n(HT20); data rate @ MCS0 is the worst case of IEEE 802.11n(HT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT20); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT80). Only the data of worst case is recorded in the report.	
	d:TX mode (Band 3)_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n(HT20); data rate @ MCS0 is the worst case of IEEE 802.11n(HT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT20); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT80). Only the data of worst case is recorded in the report.	

7.5.2 Test Setup Diagram

Ground Reference Plane

7.5.3 Measurement Procedure and Data

Report No.: SHEM200600506003 Page: 21 of 140

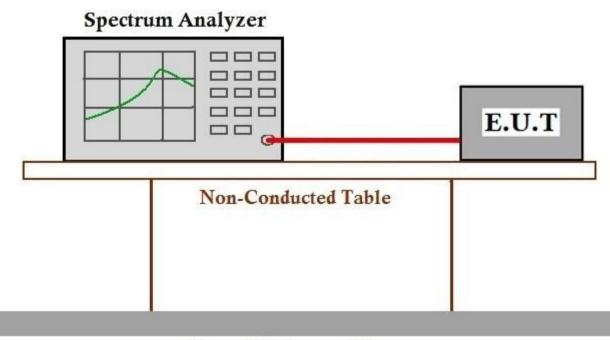
7.6 Peak Power spectrum density

Test Requirement	47
Test Method:	KD
Limit:	

47 CFR Part 15, Subpart C 15.407 (a) KDB 789033 D02 II F

Frequency band(MHz)	Limit				
E1E0 E2E0	≤17dBm in 1MHz for master device				
5150-5250	≤11dBm in 1MHz for client device				
5250-5350	≤11dBm in 1MHz for client device				
5470-5725	≤11dBm in 1MHz for client device				
5725-5850	≤30dBm in 500 kHz				
	The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test.				
	For IC 5150MHz to 5250MHz limit is EIRP PSD≤10dBm/MHz				
	For IC 5725MHz to 5850MHz limit is PSD≤30dBm/500KHz				
Remark:	For MIMO function, two antennas are correlated, the Directional gain is 6.81dBi, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.				
	So, the limit for 5150-5250MHz: 16.19dBm/MHz for FCC, 10 dBm/MHz for IC for 5725-5850MHz: 29.19 dBm/500KHz				

7.6.1 E.U.T. Operation


Operating Environment:

Temperature:	22 °C Humidity: 50 % RH Atmospheric Pressure: 1002 mbar
The final test mode:	c:TX mode (Band 1)_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n(HT20); data rate @ MCS0 is the worst case of IEEE 802.11n(HT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT20); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT80). Only the data of worst case is recorded in the report.
	d:TX mode (Band 3)_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n(HT20); data rate @ MCS0 is the worst case of IEEE 802.11n(HT20); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT20); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT80). Only the data of worst case is recorded in the report.

Report No.: SHEM200600506003 Page: 22 of 140

7.6.2 Test Setup Diagram

Ground Reference Plane

7.6.3 Measurement Procedure and Data

Report No.: SHEM200600506003 Page: 23 of 140

7.7 Radiated Emissions

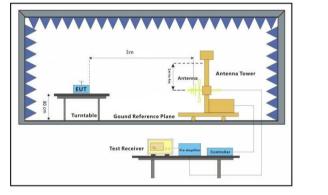
Test Requirement47 CFR Part 15, Subpart C 15.209 & 15.407(b)Test Method:KDB 789033 D02 II GLimit:KDB 789033 D02 II G

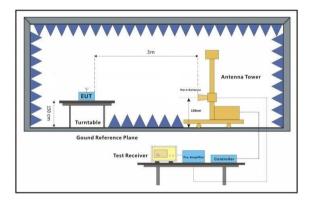
Limit:

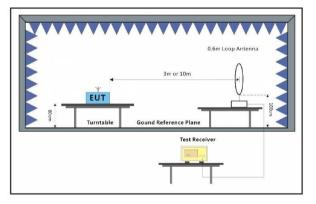
For transmitters operating in the 5.15-5.25 GHz band:	All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz (68.2dBuV/m).
For transmitters operating in the 5.25-5.35 GHz band:	All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz (68.2dBuV/m).
For transmitters operating in the 5.47-5.725 GHz band:	All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz (68.2dBuV/m).
For transmitters operating in the 5.725-5.85 GHz band:	(i) All emissions shall be limited to a level of -27 dBm/MHz (68.2dBuV/m) at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz (105.2dBuV/m) at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz (110.8dBuV/m) at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz

(122.2dBuV/m) at the band edge.

Report No.: SHEM200600506003 Page: 24 of 140


7.7.1 E.U.T. Operation


Operating Environment:


Temperature:22 °CHumidity:50 % RHAtmospheric Pressure:1002 mbarThe final test
mode:c:TX mode (Band 1)_Keep the EUT in continuously transmitting mode with all
modulation types. All data rates for each modulation type have been tested and
found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @
MCS0 is the worst case of IEEE 802.11n(HT20); data rate @ MCS0 is the worst
case of IEEE 802.11n(HT40); data rate @ MCS0 is the worst case of IEEE
802.11ac(VHT20); data rate @ MCS0 is the worst case of IEEE
802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE
802.11ac(VHT80). Only the data of worst case is recorded in the report.

d:TX mode (Band 3)_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n(HT20); data rate @ MCS0 is the worst case of IEEE 802.11n(HT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT20); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT80). Only the data of worst case is recorded in the report.

7.7.2 Test Setup Diagram

Report No.: SHEM200600506003 Page: 25 of 140

7.7.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

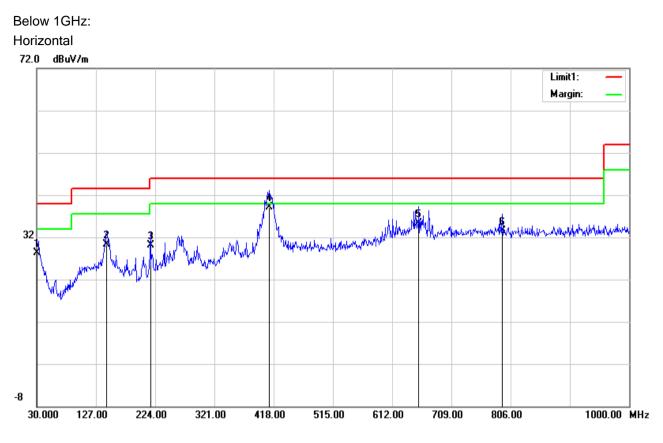
j. Repeat above procedures until all frequencies measured was complete.

Remark:

1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

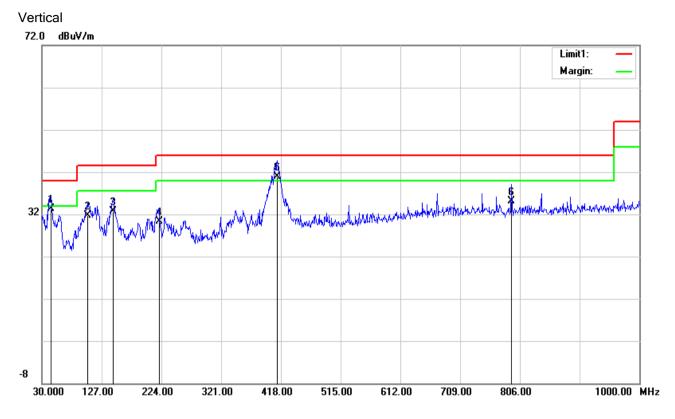
2. For emission below 1GHz, through the pre-scan found the worst case is the lowest channel of 802.11a. Only the worst case is recorded in the report.

3. Scan from 9kHz to 40GHz, the disturbance above 18GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

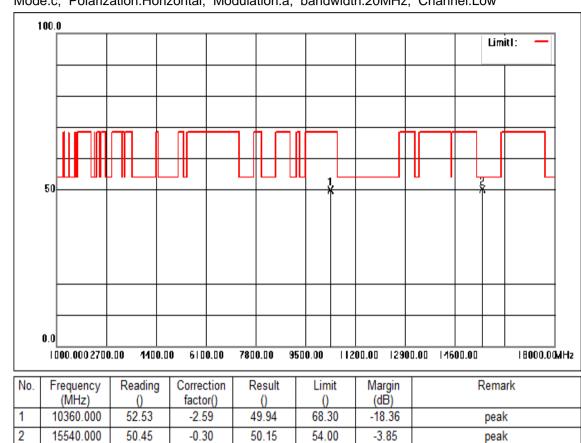

4. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

5. This test item was investigated while operating in SISO and MIMO mode, however, it was determined that SISO antenna 1 operation for a modulation and MIMO antenna operation for n /ac modulation produced the worst emissions. So the emissions produced from other operation are not recorded in report.

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd.

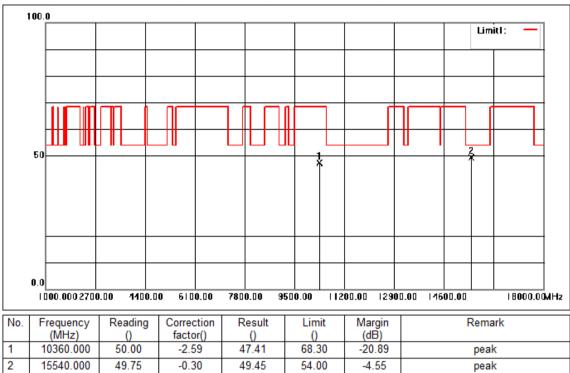

Report No.: SHEM200600506003 Page: 26 of 140

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	30.9700	2.85	25.50	28.35	40.00	-11.65	400	0	QP
2	144.4600	10.24	20.03	30.27	43.50	-13.23	300	332	QP
3	216.2400	12.73	17.36	30.09	46.00	-15.91	200	38	QP
4	411.2100	15.12	23.98	39.10	46.00	-6.90	300	246	QP
5	655.6500	8.13	27.20	35.33	46.00	-10.67	100	17	QP
6	792.4200	5.32	28.15	33.47	46.00	-12.53	400	193	QP


Report No.: SHEM200600506003 Page: 27 of 140

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	44.5500	15.60	17.63	33.23	40.00	-6.77	400	162	QP
2	103.7200	13.03	18.75	31.78	43.50	-11.72	200	360	QP
3	145.4300	12.73	20.06	32.79	43.50	-10.71	100	312	QP
4	220.1200	12.71	17.60	30.31	46.00	-15.69	100	273	QP
5	412.6600	16.88	24.00	40.88	46.00	-5.12	300	298	QP
6	792.4200	6.86	28.15	35.01	46.00	-10.99	400	162	QP

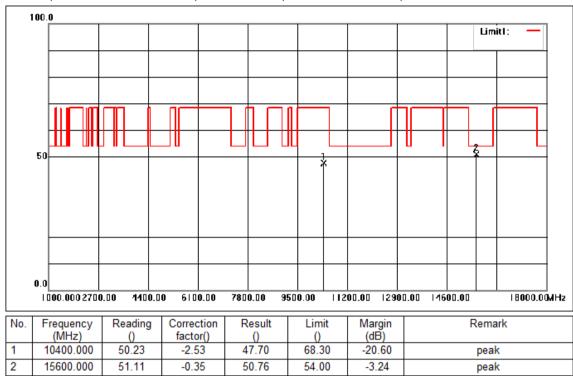
Report No.: SHEM200600506003 Page: 28 of 140



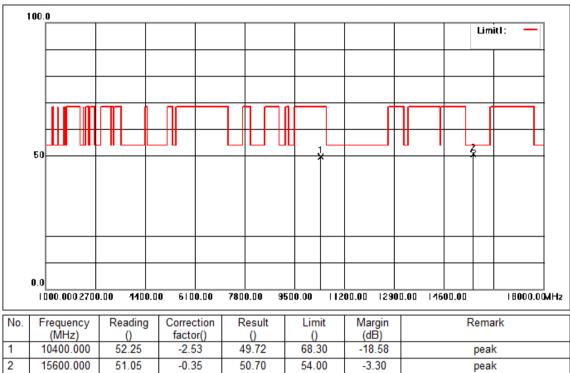
Above 1GHz:

Mode:c; Polarization:Horizontal; Modulation:a; bandwidth:20MHz; Channel:Low

Report No.: SHEM200600506003 Page: 29 of 140

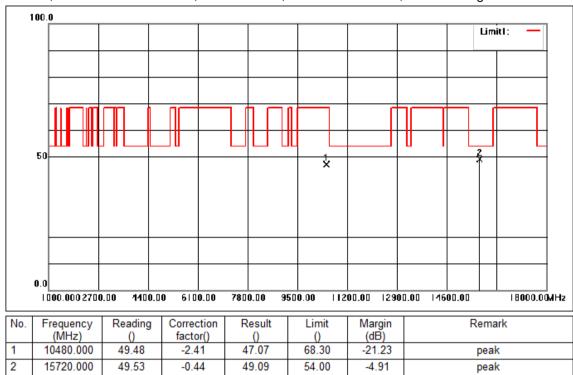


Mode:c; Polarization:Vertical; Modulation:a; bandwidth:20MHz; Channel:Low


Report No.: SHEM200600506003 Page: 30 of 140

Mode:c; Polarization:Horizontal; Modulation:a; bandwidth:20MHz; Channel:middle

Report No.: SHEM200600506003 Page: 31 of 140

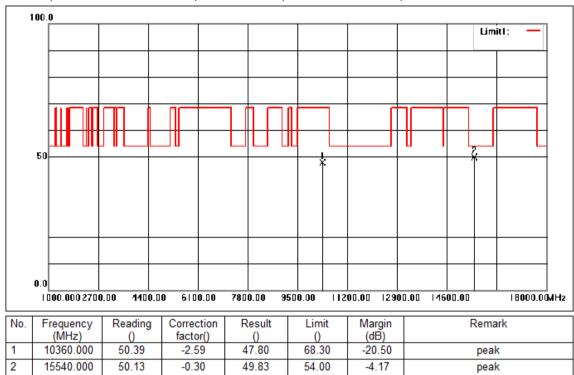


Mode:c; Polarization:Vertical; Modulation:a; bandwidth:20MHz; Channel:middle

Report No.: SHEM200600506003 Page: 32 of 140

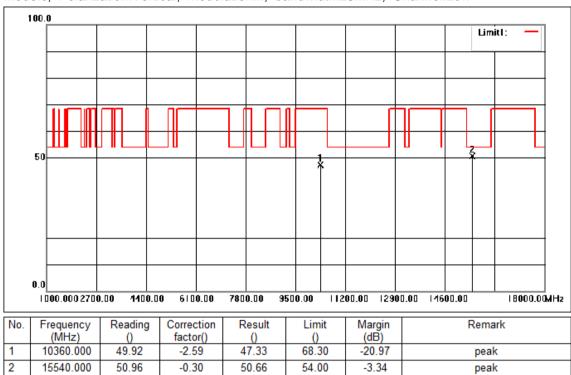
Mode:c; Polarization:Horizontal; Modulation:a; bandwidth:20MHz; Channel:High

Report No.: SHEM200600506003 Page: 33 of 140



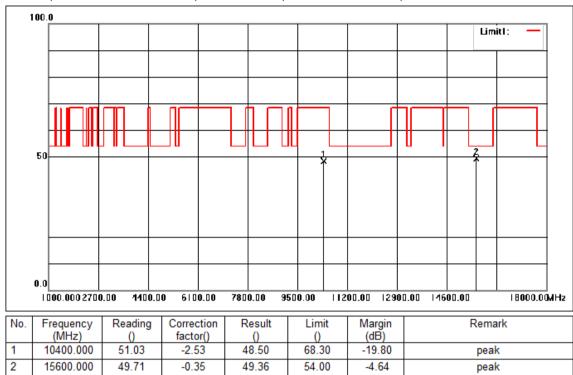
Mode:c; Polarization:Vertical; Modulation:a; bandwidth:20MHz; Channel:High

Report No.: SHEM200600506003 Page: 34 of 140



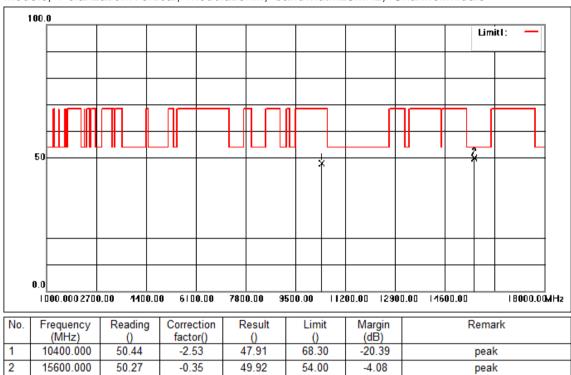
Mode:c; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:Low

Report No.: SHEM200600506003 Page: 35 of 140



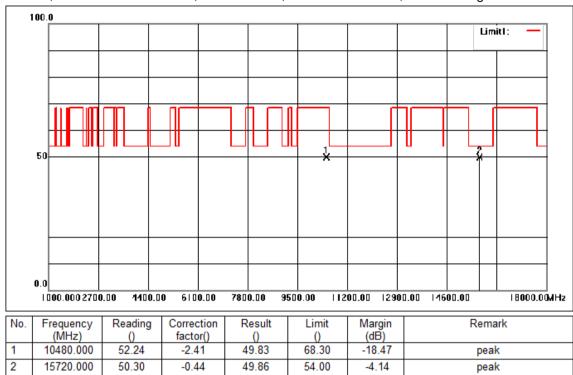
Mode:c; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:Low

Report No.: SHEM200600506003 Page: 36 of 140



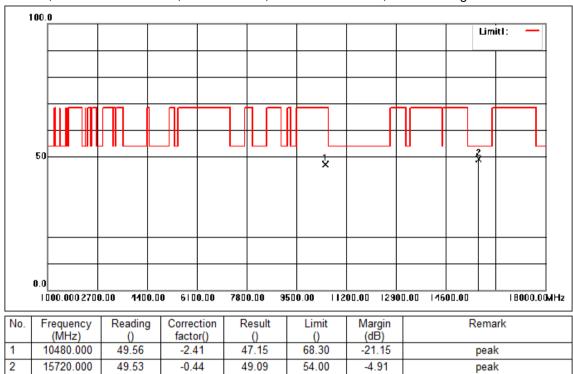
Mode:c; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:middle

Report No.: SHEM200600506003 Page: 37 of 140



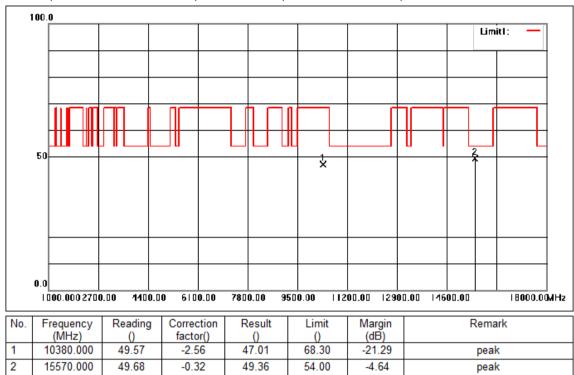
Mode:c; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:middle

Report No.: SHEM200600506003 Page: 38 of 140

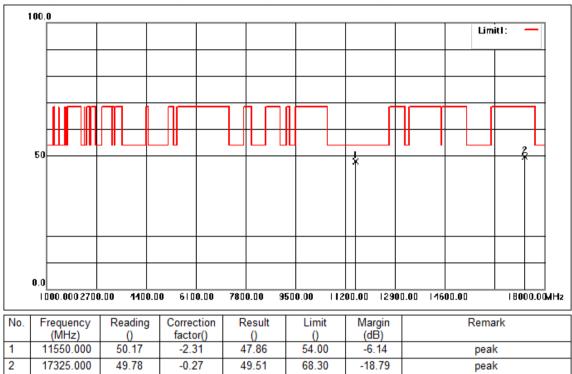


Mode:c; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:High

Report No.: SHEM200600506003 Page: 39 of 140

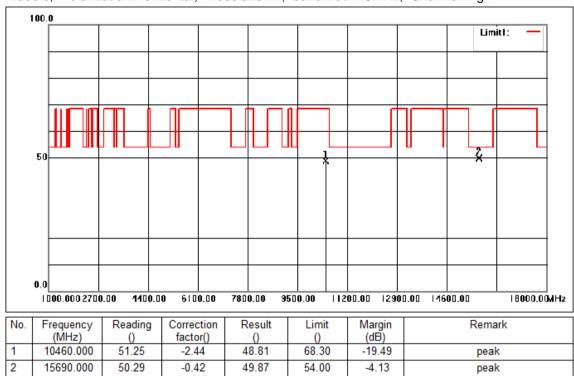


Mode:c; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:High

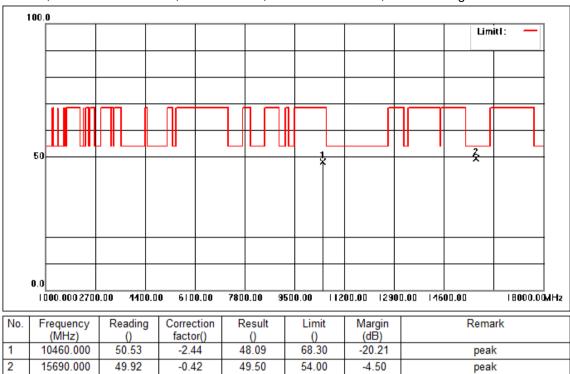

Report No.: SHEM200600506003 Page: 40 of 140

Mode:c; Polarization:Horizontal; Modulation:n; bandwidth:40MHz; Channel:Low

Report No.: SHEM200600506003 Page: 41 of 140

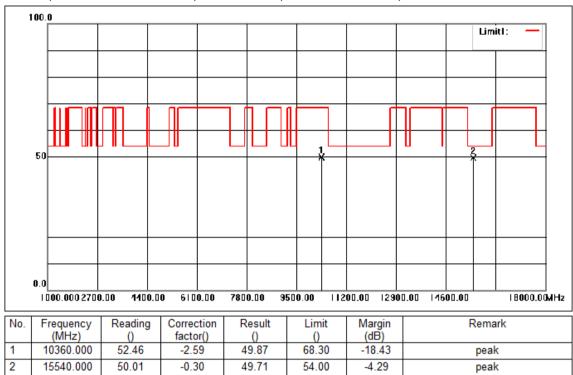


Mode:c; Polarization:Vertical; Modulation:n; bandwidth:40MHz; Channel:Low

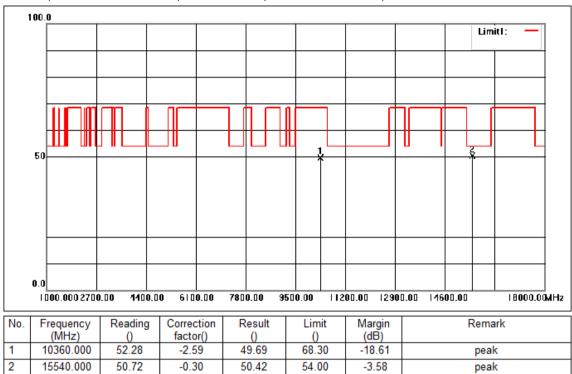

Report No.: SHEM200600506003 Page: 42 of 140

Mode:c; Polarization:Horizontal; Modulation:n; bandwidth:40MHz; Channel:High

Report No.: SHEM200600506003 Page: 43 of 140

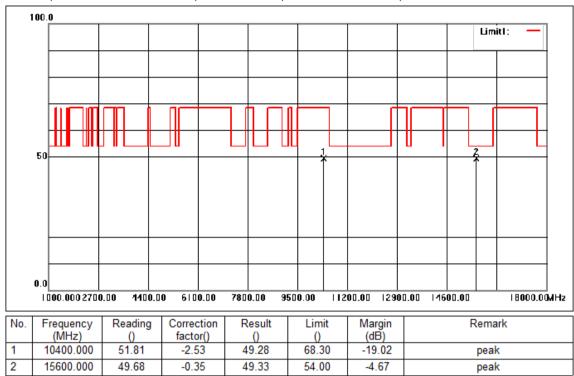


Mode:c; Polarization:Vertical; Modulation:n; bandwidth:40MHz; Channel:High

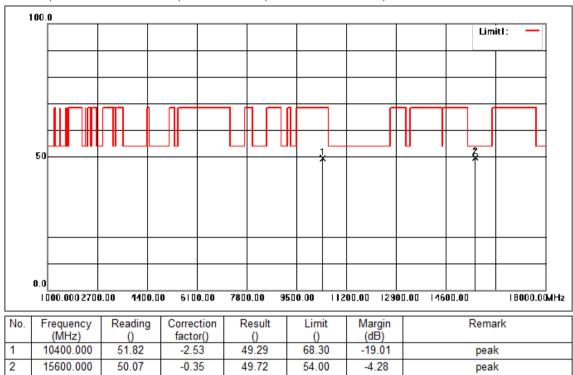

Report No.: SHEM200600506003 Page: 44 of 140

Mode:c; Polarization:Horizontal; Modulation:c; bandwidth:20MHz; Channel:Low

Report No.: SHEM200600506003 Page: 45 of 140

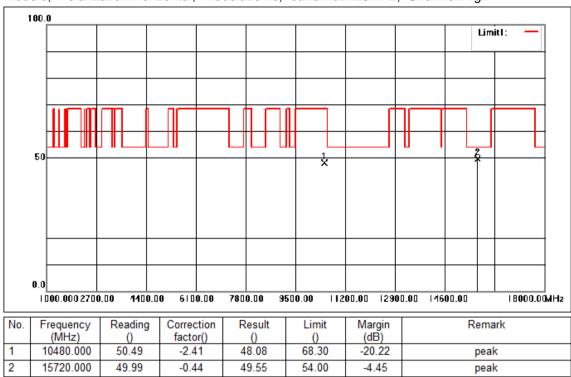


Mode:c; Polarization:Vertical; Modulation:c; bandwidth:20MHz; Channel:Low

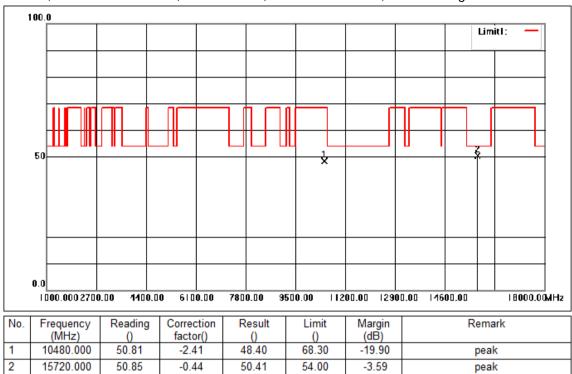

Report No.: SHEM200600506003 Page: 46 of 140

Mode:c; Polarization:Horizontal; Modulation:c; bandwidth:20MHz; Channel:middle

Report No.: SHEM200600506003 Page: 47 of 140

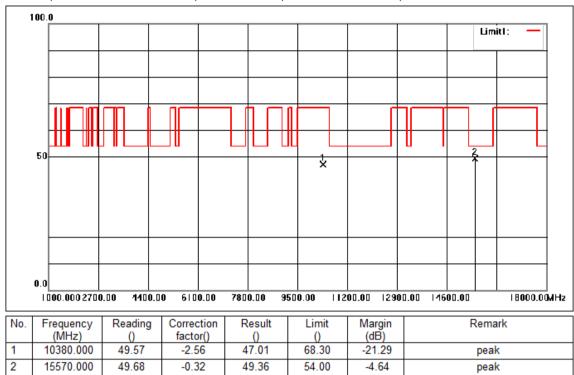


Mode:c; Polarization:Vertical; Modulation:c; bandwidth:20MHz; Channel:middle

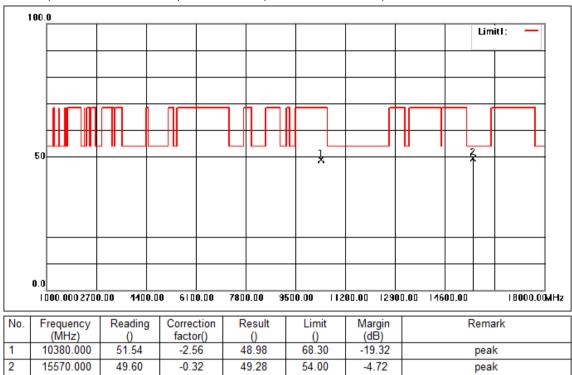

Report No.: SHEM200600506003 Page: 48 of 140

Mode:c; Polarization:Horizontal; Modulation:c; bandwidth:20MHz; Channel:High

Report No.: SHEM200600506003 Page: 49 of 140

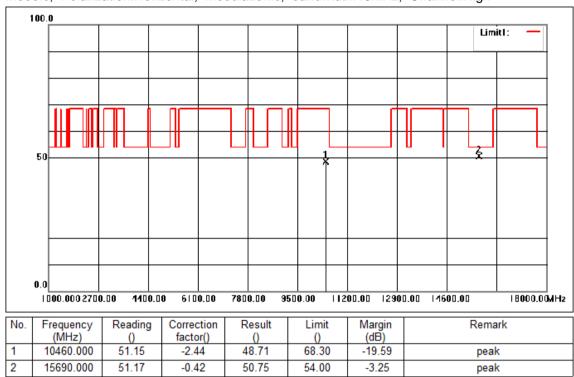


Mode:c; Polarization:Vertical; Modulation:c; bandwidth:20MHz; Channel:High

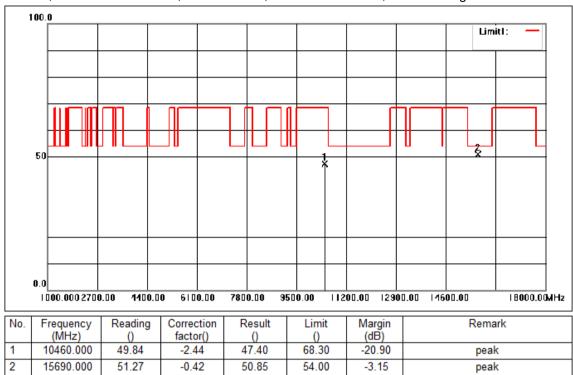

Report No.: SHEM200600506003 Page: 50 of 140

Mode:c; Polarization:Horizontal; Modulation:c; bandwidth:40MHz; Channel:Low

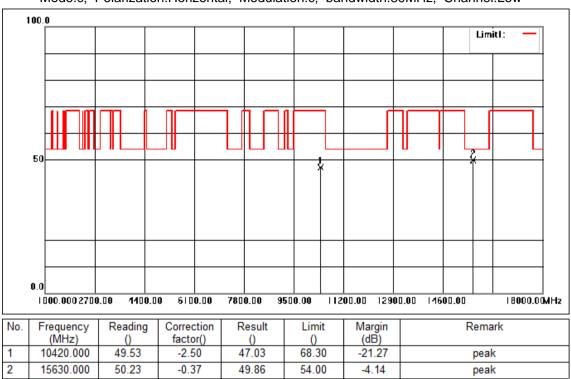
Report No.: SHEM200600506003 Page: 51 of 140



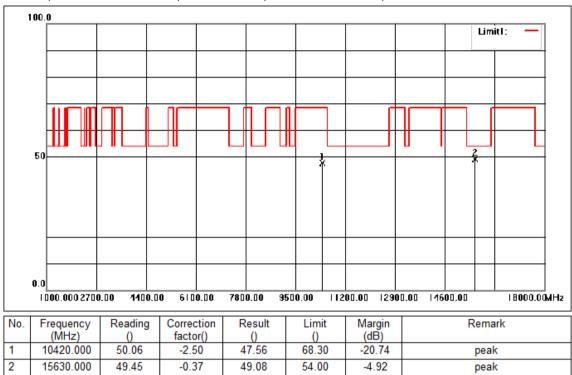
Mode:c; Polarization:Vertical; Modulation:c; bandwidth:40MHz; Channel:Low


Report No.: SHEM200600506003 Page: 52 of 140

Mode:c; Polarization:Horizontal; Modulation:c; bandwidth:40MHz; Channel:High

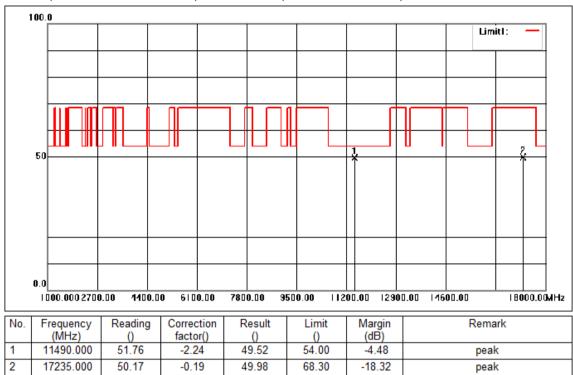

Report No.: SHEM200600506003 Page: 53 of 140

Mode:c; Polarization:Vertical; Modulation:c; bandwidth:40MHz; Channel:High


Report No.: SHEM200600506003 Page: 54 of 140

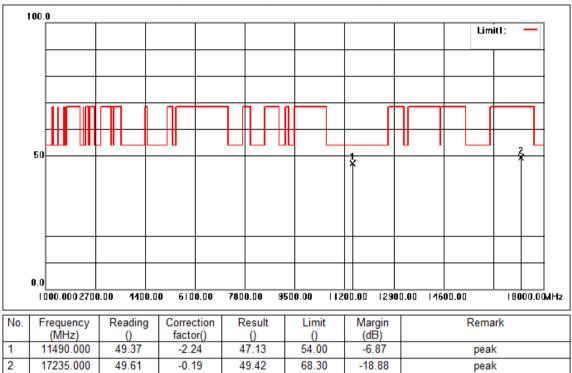
Mode:c; Polarization:Horizontal; Modulation:c; bandwidth:80MHz; Channel:Low

Report No.: SHEM200600506003 Page: 55 of 140



Mode:c; Polarization:Vertical; Modulation:c; bandwidth:80MHz; Channel:Low

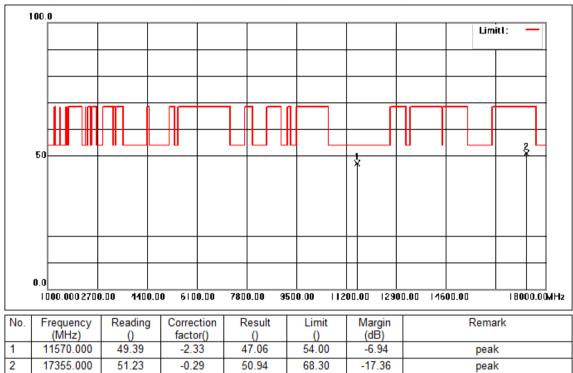
Report No.: SHEM200600506003 Page: 56 of 140



Mode:d; Polarization:Horizontal; Modulation:a; bandwidth:20MHz; Channel:Low

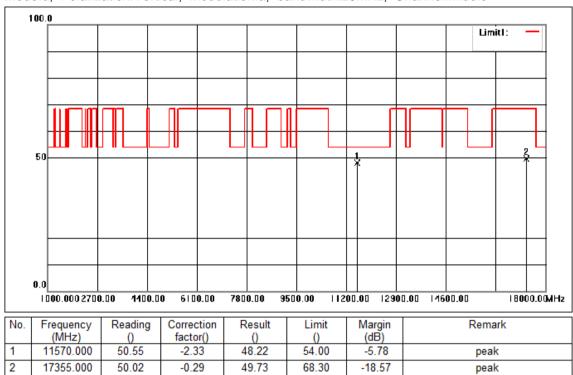
SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd.

Report No.: SHEM200600506003 Page: 57 of 140



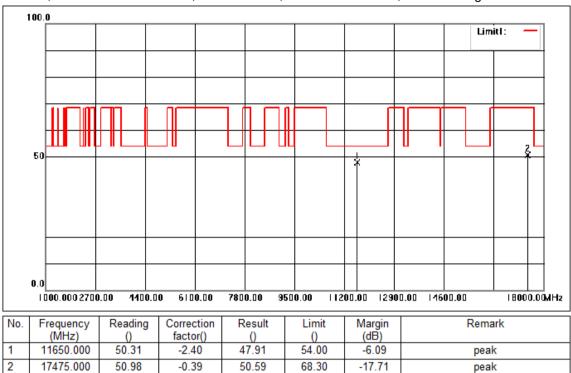
Mode:d; Polarization:Vertical; Modulation:a; bandwidth:20MHz; Channel:Low

Report No.: SHEM200600506003 Page: 58 of 140

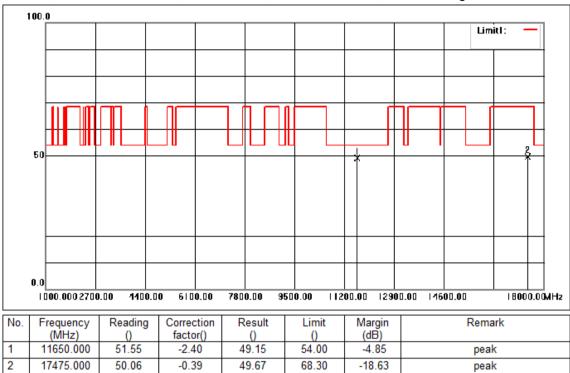


Mode:d; Polarization:Horizontal; Modulation:a; bandwidth:20MHz; Channel:middle

Report No.: SHEM200600506003 Page: 59 of 140

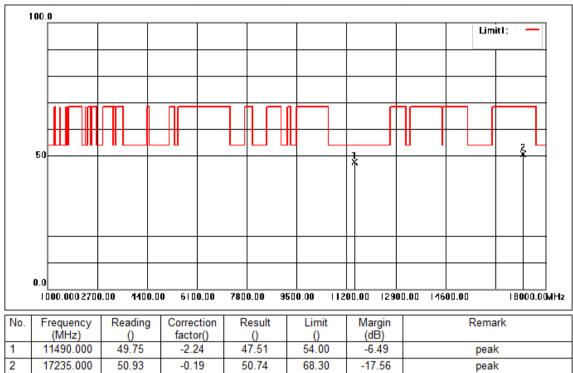


Mode:d; Polarization:Vertical; Modulation:a; bandwidth:20MHz; Channel:middle


Report No.: SHEM200600506003 Page: 60 of 140

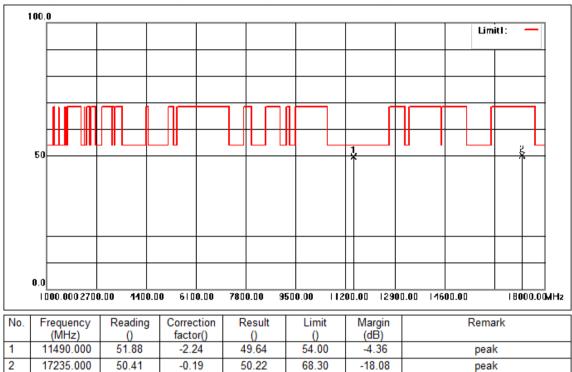
Mode:d; Polarization:Horizontal; Modulation:a; bandwidth:20MHz; Channel:High

Report No.: SHEM200600506003 Page: 61 of 140



Mode:d; Polarization:Vertical; Modulation:a; bandwidth:20MHz; Channel:High

Report No.: SHEM200600506003 Page: 62 of 140


Mode:d; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:Low

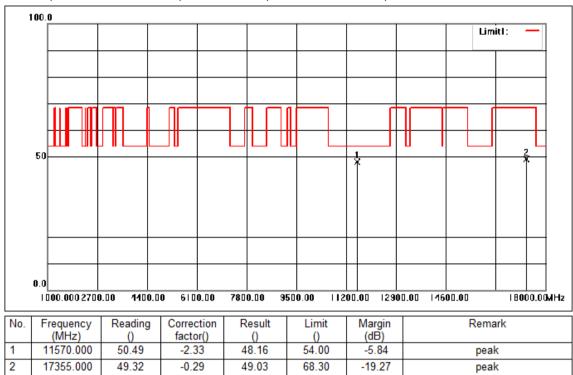
 Report No.:
 SHEM200600506003

 Page:
 63 of 140



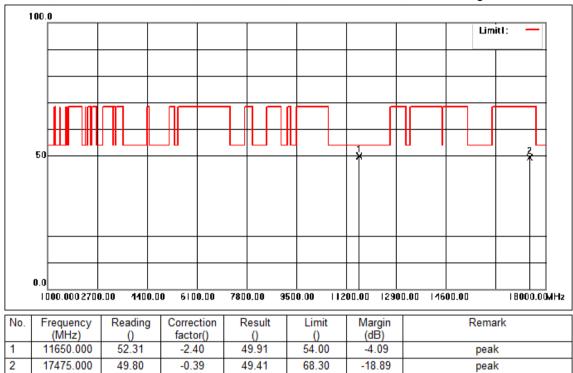
Mode:d; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:Low

Report No.: SHEM200600506003 Page: 64 of 140



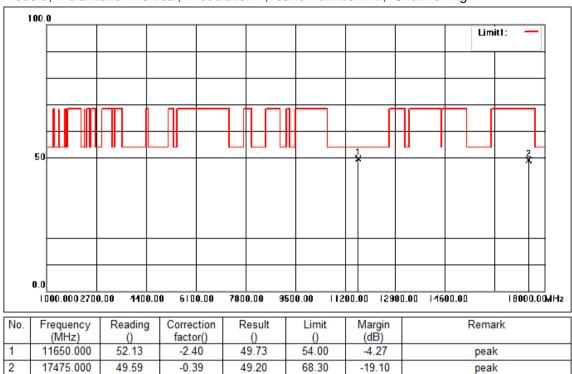
Mode:d; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:middle

Report No.: SHEM200600506003 Page: 65 of 140



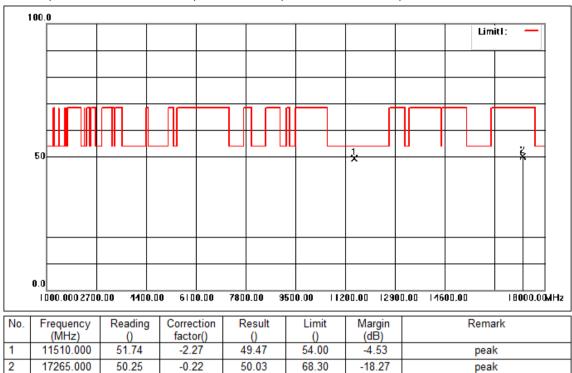
Mode:d; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:middle

Report No.: SHEM200600506003 Page: 66 of 140



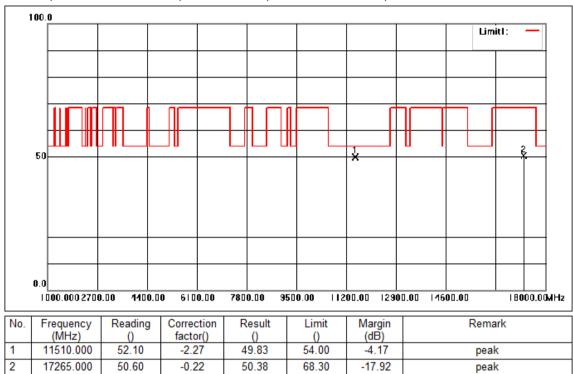
Mode:d; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:High

Report No.: SHEM200600506003 Page: 67 of 140



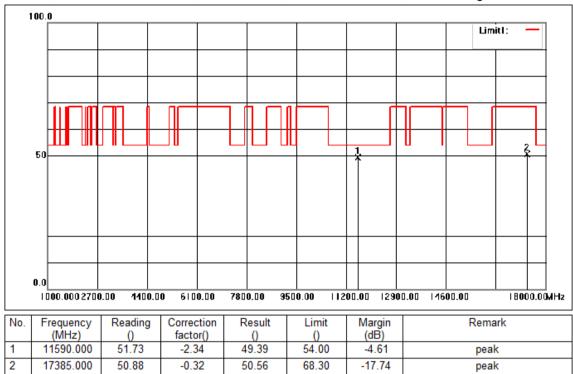
Mode:d; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:High

Report No.: SHEM200600506003 Page: 68 of 140

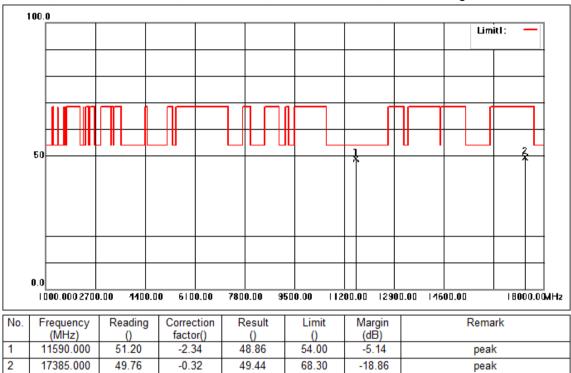


Mode:d; Polarization:Horizontal; Modulation:n; bandwidth:40MHz; Channel:Low

Report No.: SHEM200600506003 Page: 69 of 140

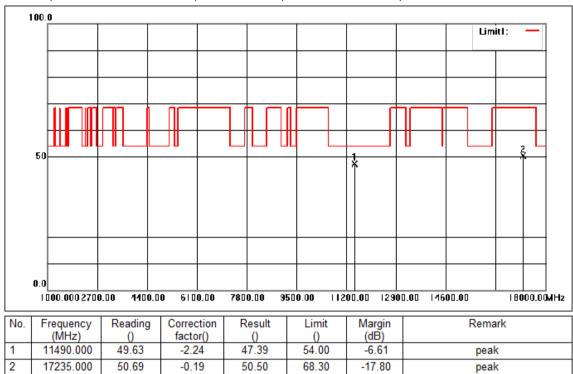


Mode:d; Polarization:Vertical; Modulation:n; bandwidth:40MHz; Channel:Low


Report No.: SHEM200600506003 Page: 70 of 140

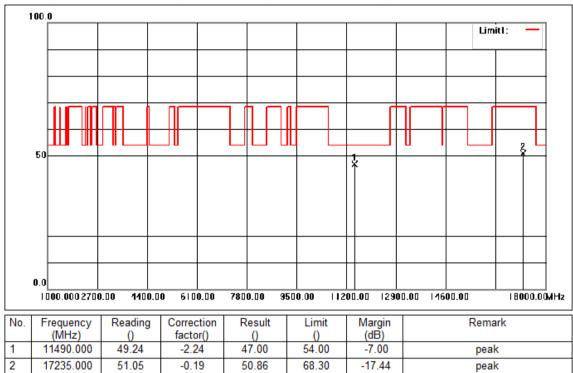
Mode:d; Polarization:Horizontal; Modulation:n; bandwidth:40MHz; Channel:High

Report No.: SHEM200600506003 Page: 71 of 140



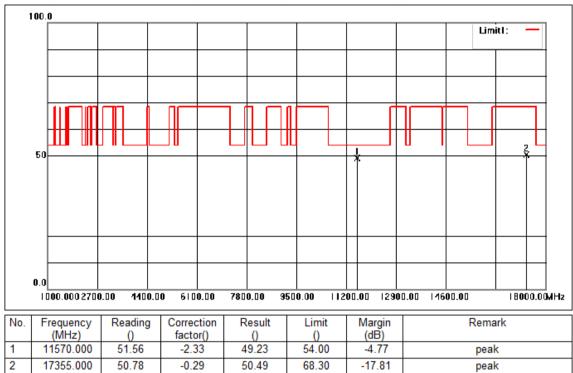
Mode:d; Polarization:Vertical; Modulation:n; bandwidth:40MHz; Channel:High

Report No.: SHEM200600506003 Page: 72 of 140



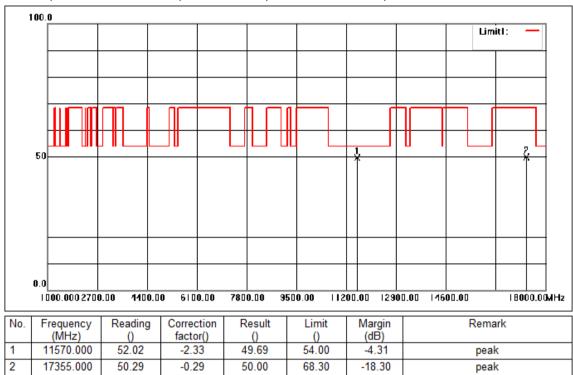
Mode:d; Polarization:Horizontal; Modulation:c; bandwidth:20MHz; Channel:Low

Report No.: SHEM200600506003 Page: 73 of 140



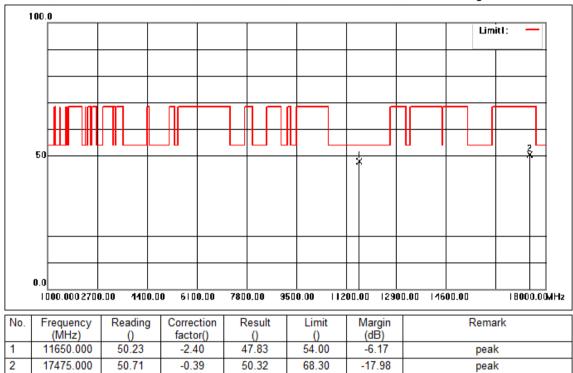
Mode:d; Polarization:Vertical; Modulation:c; bandwidth:20MHz; Channel:Low

Report No.: SHEM200600506003 Page: 74 of 140



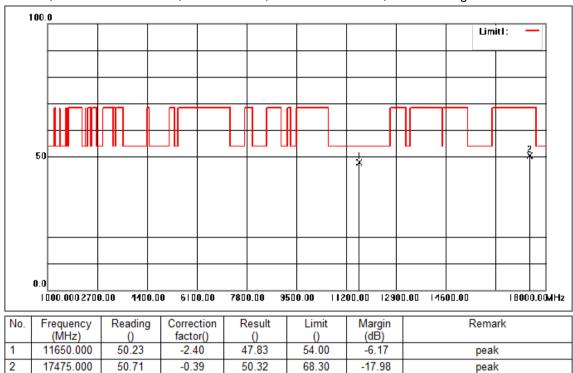
Mode:d; Polarization:Horizontal; Modulation:c; bandwidth:20MHz; Channel:middle

Report No.: SHEM200600506003 Page: 75 of 140



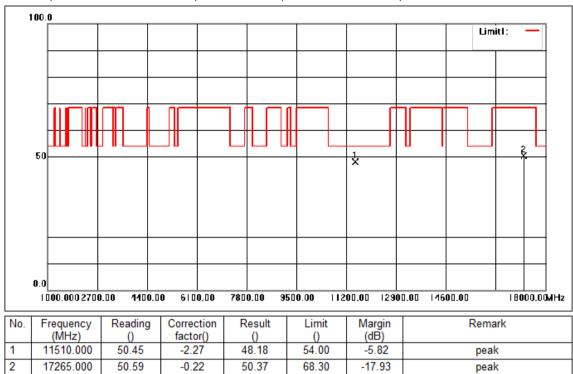
Mode:d; Polarization:Vertical; Modulation:c; bandwidth:20MHz; Channel:middle

Report No.: SHEM200600506003 Page: 76 of 140



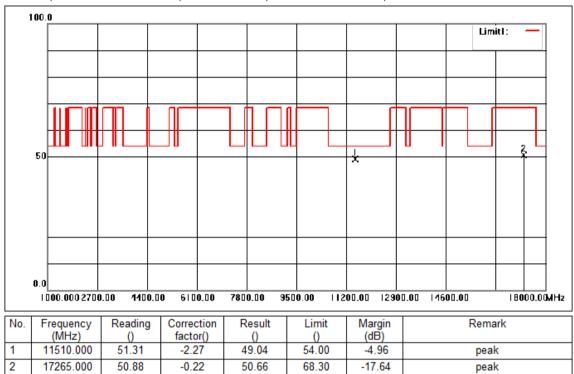
Mode:d; Polarization:Horizontal; Modulation:c; bandwidth:20MHz; Channel:High

Report No.: SHEM200600506003 Page: 77 of 140



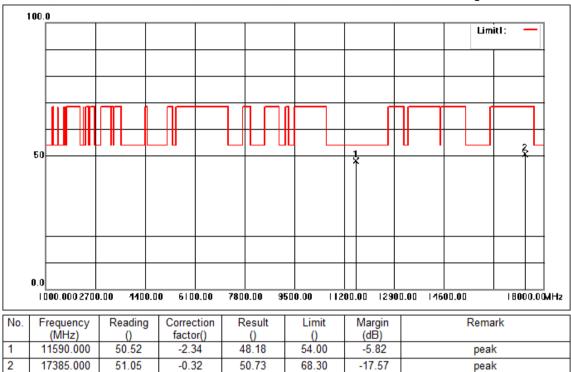
Mode:d; Polarization:Vertical; Modulation:c; bandwidth:20MHz; Channel:High

Report No.: SHEM200600506003 Page: 78 of 140



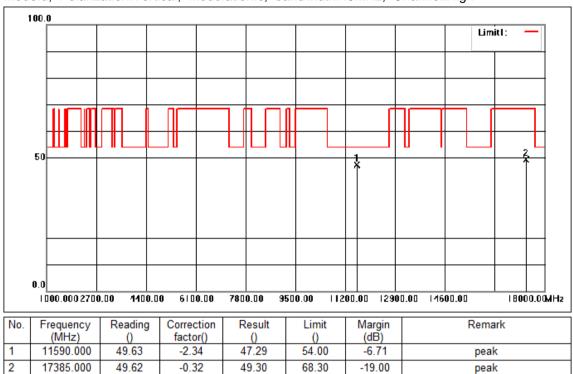
Mode:d; Polarization:Horizontal; Modulation:c; bandwidth:40MHz; Channel:Low

Report No.: SHEM200600506003 Page: 79 of 140



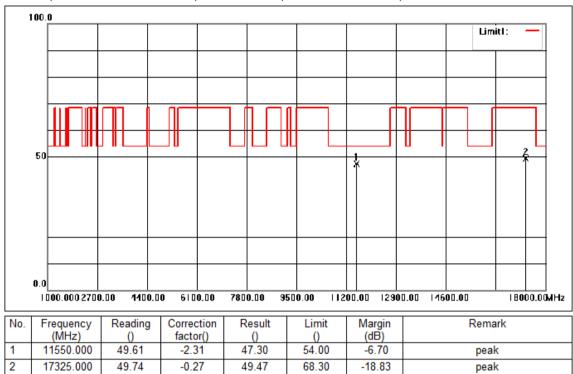
Mode:d; Polarization:Vertical; Modulation:c; bandwidth:40MHz; Channel:Low

Report No.: SHEM200600506003 Page: 80 of 140



Mode:d; Polarization:Horizontal; Modulation:c; bandwidth:40MHz; Channel:High

Report No.: SHEM200600506003 Page: 81 of 140



Mode:d; Polarization:Vertical; Modulation:c; bandwidth:40MHz; Channel:High

Report No.: SHEM200600506003 Page: 82 of 140

Mode:d; Polarization:Horizontal; Modulation:c; bandwidth:80MHz; Channel:Low

Report No.: SHEM200600506003 Page: 83 of 140

1	00.0	D								
										Limitl: —
					_					
	50									
	0.0									
	ı	00.000270	0.00 1100	.00 6100.00	7800	0.00 95	0.00 112	00.00 1290	0.00 14600.00	18000.00M
).	F	requency (MHz)	Reading	Correctior factor()	n R	esult	Limit	Margin (dB)		Remark
	1	1550.000	50.17	-2.31	4	7.86	54.00	-6.14		peak
+	1	7325.000	49.78	-0.27	4	9.51	68.30	-18.79		peak

Mode:d; Polarization:Vertical; Modulation:c; bandwidth:80MHz; Channel:Low

Report No.: SHEM200600506003 Page: 84 of 140

7.8 Radiated Emissions which fall in the restricted bands

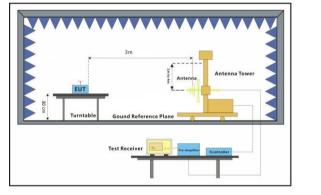
Test Requirement	47 CFR Part 15, Subpart C 15.209 & 15.407(b)
Test Method:	KDB 789033 D02 II G
Limit:	

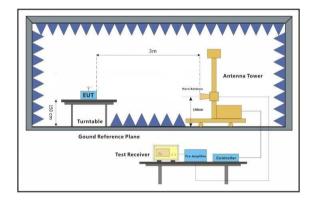
Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

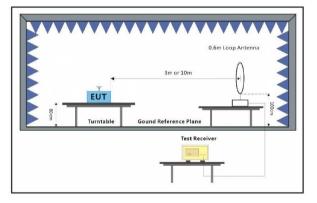
Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Report No.: SHEM200600506003 Page: 85 of 140

7.8.1 E.U.T. Operation


Operating Environment:


 Temperature:
 22 °C
 Humidity: 50 % RH
 Atmospheric Pressure: 1002 mbar


 The final test mode:
 c:TX mode (Band 1)_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n; data rate @ MCS0 is the worst case of IEEE 802.11n(HT20); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT20); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT80). Only the data of worst case is recorded in the report.

d:TX mode (Band 3)_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n(HT20); data rate @ MCS0 is the worst case of IEEE 802.11n(HT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT20); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT20); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT80). Only the data of worst case is recorded in the report.

7.8.2 Test Setup Diagram

Report No.: SHEM200600506003 Page: 86 of 140

7.8.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

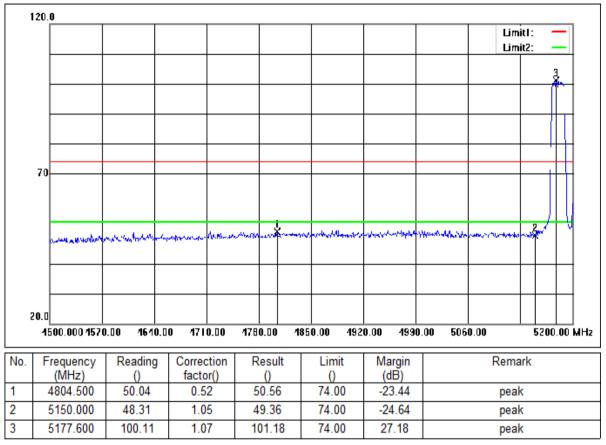
h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

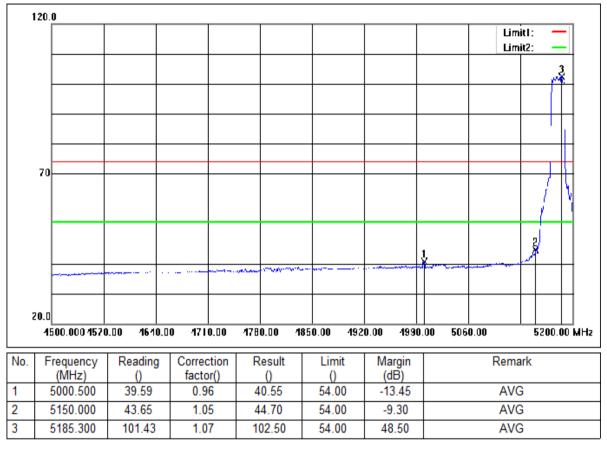

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Remark 3: This test item was investigated while operating in SISO and MIMO mode, however, it was determined that SISO antenna 1 operation for a modulation and MIMO antenna operation for n /ac modulation produced the worst emissions. So the emissions produced from other operation are not recorded in report.

Report No.: SHEM200600506003 Page: 87 of 140

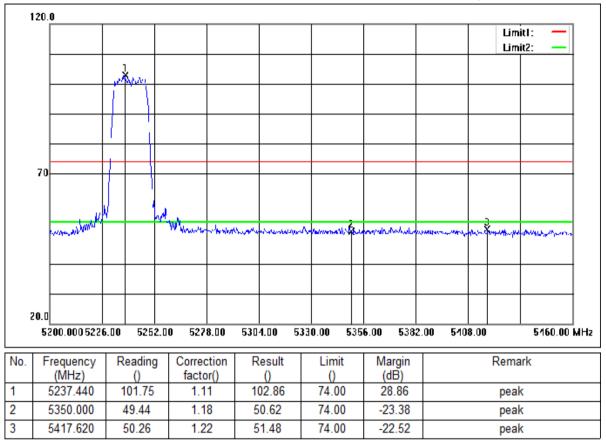
Mode:c; Polarization:Horizontal; Modulation:a; bandwidth:20MHz; Channel:Low

Report No.: SHEM200600506003 Page: 88 of 140


1	20.0							
								nitl: — nit2: —
	70							
								×
	dadhaladha	A Samparation of	ale providence of the second	unative and some	Mr. + Mary when the	water and the second	adar the and a start of the second	~
2	20.0							
	1500.000 15	70.00 1610.	00 1710.00	4780.00 /	1850.00 492	20.00 4990	.00 5060.00	5200.00 MH
D.	Frequency	Reading	Correction	Result	Limit	Margin	Rem	nark
~	(MHz) 4903.900	50.87	factor() 0.74	0 51.61	() 74.00	(dB) -22.39	pea	ak
	4303.300	1						
_	5150.000	58.85	1.05	59.90	74.00	-14.10	pea	ak

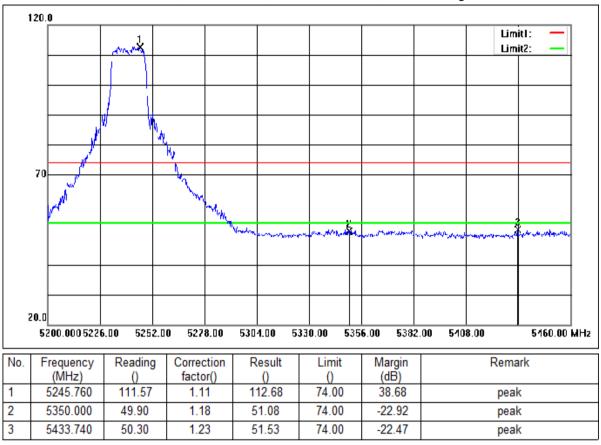
Mode:c; Polarization:Vertical; Modulation:a; bandwidth:20MHz; Channel:Low

Report No.: SHEM200600506003 Page: 89 of 140



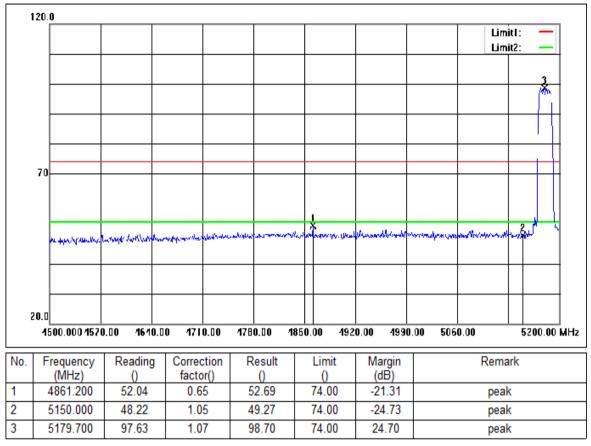
Mode:c; Polarization:Vertical; Modulation:a; bandwidth:20MHz; Channel:Low

Report No.: SHEM200600506003 Page: 90 of 140



Mode:c; Polarization:Horizontal; Modulation:a; bandwidth:20MHz; Channel:High

Report No.: SHEM200600506003 Page: 91 of 140



Mode:c; Polarization:Vertical; Modulation:a; bandwidth:20MHz; Channel:High

Report No.: SHEM200600506003 Page: 92 of 140

Mode:c; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:Low

Report No.: SHEM200600506003 Page: 93 of 140

												imitl:	_	•
	ļ										L	imit2:		Ц.
													1	
	70											3		
												- I 🕅	I	
		alaaha haa mila haadha ah a	a <mark>hadan</mark> direktor barr	aranarar katar	مرجعانين		weren werstelebe	velles en lasta	rahan Ma hi	ning Allan yara	h-m-addre	war th		
		dada, ang sa	alateritation and	h-angla-yanar	yya taraya		weren ever sedebeh	un franzisca	e-16-18 44	neng Alisan pentar	h-m-mhAley	week 19 ⁴⁴		
2			alannanan an	aranararan kata kata kata kata kata kata kata ka	gester-net		weren werstellen	ve(V ^a en/ha ^a n	r Abron State	na na sur an	le-ge-serveddage			
2	0.0				рачалия 0.00	1780.00		1920.00	1990		6-m		200.00	
	0.0 15	100.000 1570		0.00 171 g Corret	0.00		1850.00	4920.00	1930 argin		50.00		200.00	
	0.0 15	i00.000 15 7	0.00 161	0.00 171	0.00 ction pr()	1780.00	1850.00	1920.00 M	4990		50.00 Rei	52	200.04	
2	0.0 15 Fr	100.000 1570 requency (MHz)	0.00 161 Reading ()	0.00 171 g Correc facto	0.00 ction pr() i2	1780.00 Result ()	1850.00	1920.00 	4990 argin (dB)		50.00 Rei	52 mark	200.00	

Mode:c; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:Low

Report No.: SHEM200600506003 Page: 94 of 140

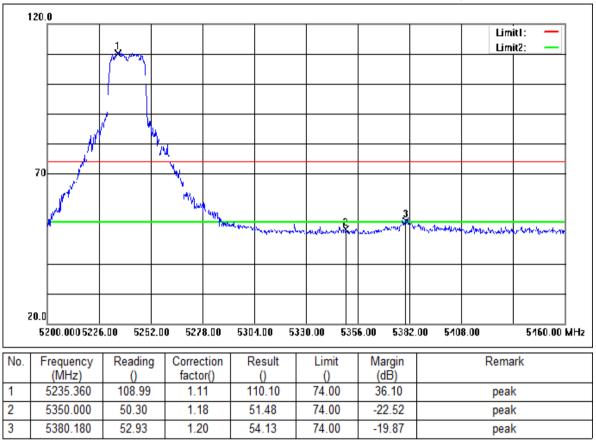
1	20.0							
								Limit1: — Limit2: —
								3
	70							
					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
2	0.0							
	1500.000 1570	0.00 1610.0	10 1710.00	1780.00 1	850.00 492	0.00 4990.	00 5060.00	5200.00 MH
<b>)</b> .	Frequency	Reading	Correction	Result	Limit	Margin	F	Remark
+	(MHz) 5000.500	39.25	factor() 0.96	40.21	54.00	(dB) -13.79		AVG
+	5150.000	43.95	1.05	45.00	54.00	-9.00		AVG
+	5174.800	99.42	1.07	100.49	54.00	46.49		AVG

Mode:c; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:Low





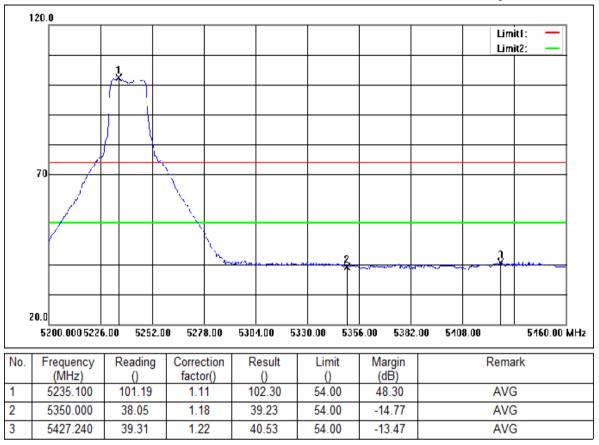
Report No.: SHEM200600506003 Page: 95 of 140


	120.											imitl: imit2:	_
			( Marine )										_
			$\frac{1}{1}$										_
	70												
	70												
		d _{e son a} n an angel		Marine	at man have	ntro-seetana	mhorinau	الرجار	and an anna an a	in marine and	n virmandes reger	n Managalijan Nagara	www.tw
									1	1 1	1		
													_
;	20.0 52	200.000 5226	.00 525	2.00 527	8.00	5304.00	5330.00	535	6.00 538	32.00 54	08.00	51	50.00 MH
	52	200.000 5226	.00 525 Reading ()	g Correc	tion	5304.00 Result	5330.00		6.00 538 Margin (dB)	32.00 51		510 mark	50.00 MH
lo.	52 F	200.000 5226			ction or()			t	Margin	12.00 54	Rer		50.00 MH
	52 F	requency (MHz)	Reading ()	g Correct facto	ction or() 1	Result	Limi 0	t O	Margin (dB)		Rer	mark	50.00 MH

Mode:c; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:High






Report No.: SHEM200600506003 Page: 96 of 140



Mode:c; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:High



Report No.: SHEM200600506003 Page: 97 of 140



Mode:c; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:High





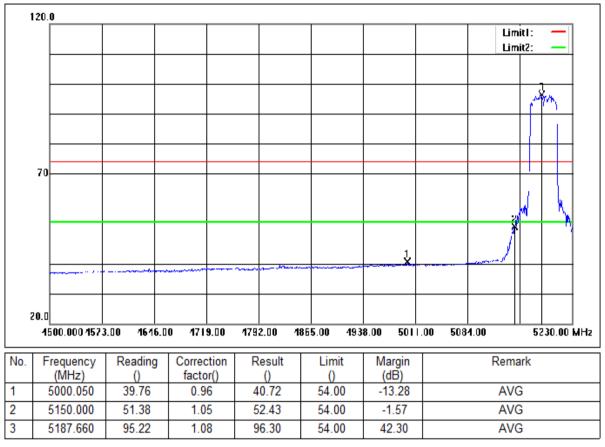
Report No.: SHEM200600506003 Page: 98 of 140

									mit1: — mit2: —
									Å
	70								
		la sylvet og sindstæd	арайныларттанд	the second warman	9.444-10-10-10-10-10-10-10-10-10-10-10-10-10-	All properties and a second second	and Wood at a start of the	n tol, more more a	
2	20.0								
	45	500.000 <b>157</b> 3	.00 <b>1616</b> .0	10 1719.00	4792.00 4	855.00 493	8.00 5011.	.00 5084.00	5230.00 MH
0.	F	requency (MHz)	Reading ()	Correction factor()	Result	Limit	Margin (dB)	Ren	nark
	!	5038.010	50.75	0.98	51.73	74.00	-22.27	ре	ak
	(	5150.000	48.34	1.05	49.39	74.00	-24.61	pe	ak
		5192.770							

Mode:c; Polarization:Horizontal; Modulation:n; bandwidth:40MHz; Channel:Low



Report No.: SHEM200600506003 Page: 99 of 140

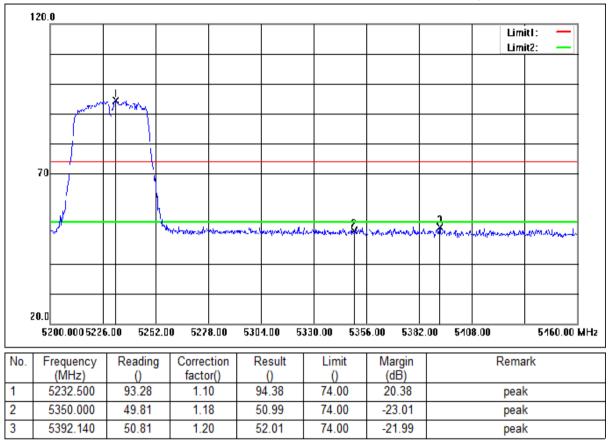

												nitl: nit2:	_
												ر الم	<u>}_</u>
												Ņ	
	70							+			3	(	-14
											1		
		haline and a state of the second state of the	manderhand	Margan way Anna Sama	uman	Manham	-	window a	webles	مەلەر مەرەپ مەرەپ مەرەپ مەروپ مەروپ مەروپ	noneran		
2	20.0												
2					9.00	4792.00		4938.			81.00	523	30.00 Mł
	1	500.000 157		6.00 171 g Correc	9.00 ction			4938.	00 501				30.00 MH
	٩ F	500.000 157.	3.00 161 Reading ()	6.00 171 g Correc facto	9.00 ction pr()	1792.00 Result ()	1855.00	4938.	00 501 Margin (dB)		81.00 Rem	ark	30.00 MH
2 D.	٩ F	500.000 157	3.00 161	6.00 171 g Correc	9.00 ction or() i2	1792.00	1865.00	4938.	00 501		81.00	ark k	80.00 MH

Mode:c; Polarization:Vertical; Modulation:n; bandwidth:40MHz; Channel:Low





Report No.: SHEM200600506003 Page: 100 of 140

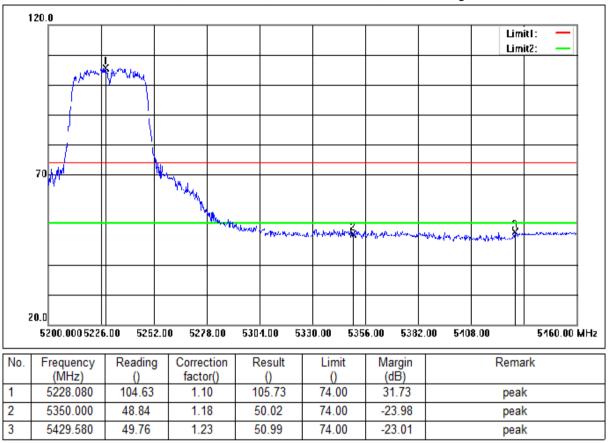



Mode:c; Polarization:Vertical; Modulation:n; bandwidth:40MHz; Channel:Low





Report No.: SHEM200600506003 Page: 101 of 140




Mode:c; Polarization:Horizontal; Modulation:n; bandwidth:40MHz; Channel:High



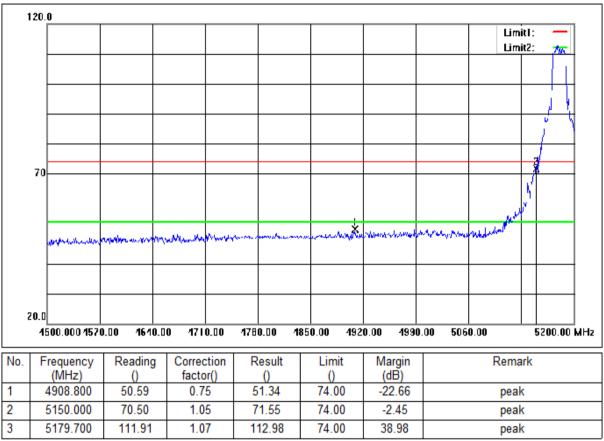


Report No.: SHEM200600506003 Page: 102 of 140



Mode:c; Polarization:Vertical; Modulation:n; bandwidth:40MHz; Channel:High



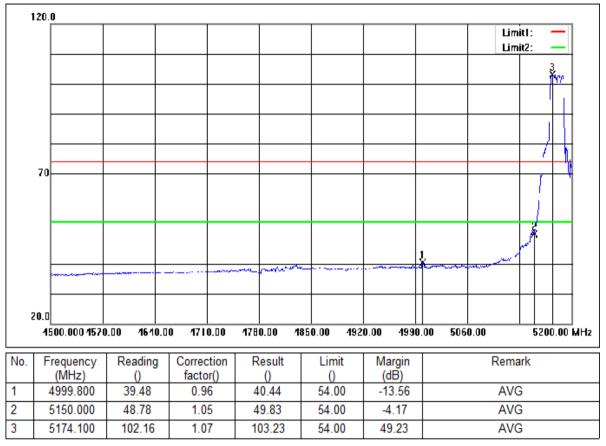

Report No.: SHEM200600506003 Page: 103 of 140

									Limitl: — Limit2: —
	70								
		h h for the second second	neral addational and an	holes the property	-ne core served and t		and the spectral and she	wheelow where Anone	week with
2	0.0								
-		i00.000 <b>1570</b>	.00 1610.0	0 1710.00	1780.00	1850.00 192	0.00 1990.	00 5060.00	5200.00 MH
D.	F	requency (MHz)	Reading	Correction factor()	Result	Limit	Margin (dB)	F	Remark
	ţ	5070.500	50.10	1.00	51.10	74.00	-22.90		peak
-	ł	5150.000	48.36	1.05	49.41	74.00	-24.59		peak

Mode:c; Polarization:Horizontal; Modulation:c; bandwidth:20MHz; Channel:Low



Report No.: SHEM200600506003 Page: 104 of 140




Mode:c; Polarization:Vertical; Modulation:c; bandwidth:20MHz; Channel:Low





Report No.: SHEM200600506003 Page: 105 of 140

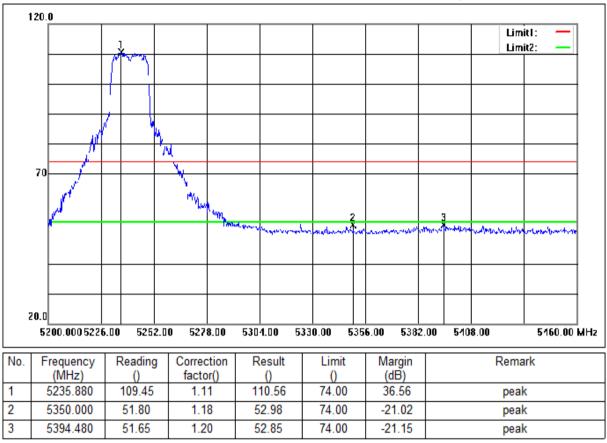


Mode:c; Polarization:Vertical; Modulation:c; bandwidth:20MHz; Channel:Low





Report No.: SHEM200600506003 Page: 106 of 140


1	20.0	0																
																imitl:		
	ł															imit2:	_	
			1	.														
			ſ															
			$\top$															
	70																	
		And the second for			What was we	Ale alarante	and and more	Def Th Marada	administration of the	6		el ha i	000000		3 8			
									1	1								
	ł									+						+		
2	0.0																	
-		00.0005226	.00	5252	2.00 527	8.00	5304.00	) 533	10.00	<b>5</b> 35	6.00	5382	.00	5408.	00	5	160.00 k	ЛН
).	F	requency	Re	eading			Rest	ılt	Limit			rgin			Rer	nark		_
		(MHz)		0	facto		()	_	()			B)						
		5238.220		8.48	1.1		99.5		74.00			.59	<u> </u>			ak		
		5350.000		9.13	1.1		50.3		74.00			3.69				ak		
- 1		5413.200	5	0.50	1.2	2	51.7	2	74.00		-22	2.28	1		pe	ak		

Mode:c; Polarization:Horizontal; Modulation:c; bandwidth:20MHz; Channel:High



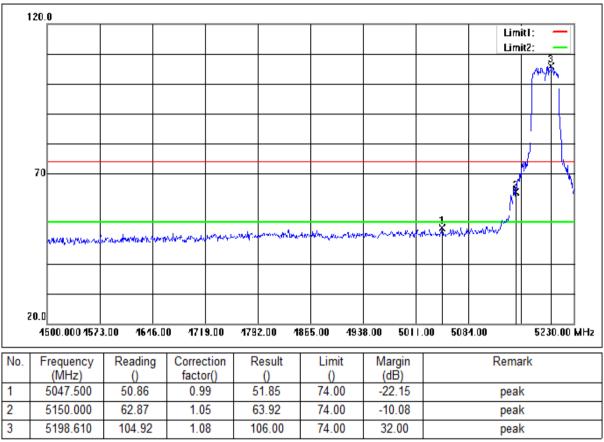


Report No.: SHEM200600506003 Page: 107 of 140



Mode:c; Polarization:Vertical; Modulation:c; bandwidth:20MHz; Channel:High

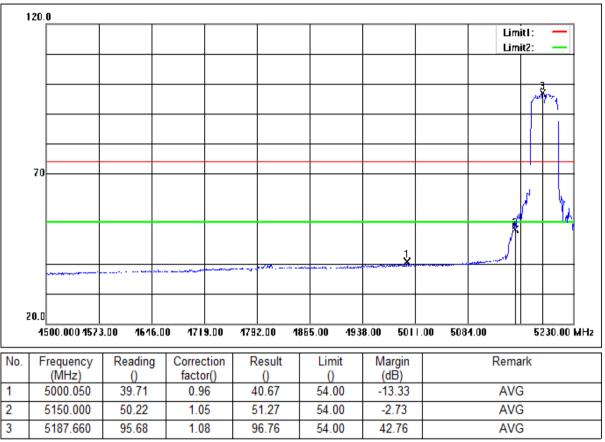



Report No.: SHEM200600506003 Page: 108 of 140

1	20.0	)										
	-										Limi Limi	
	-											profen.
	70-											
		n Vincena Land	de la des des desse		and the second second	anan mammada			May 1. Ser 10 10 10 10 10 10	marina		
	-	le verenne en	ander and more an									
-	0.0	00.000 4573	.00 1616	.00 1719	0	1792.00	1855.00	4938.00	5011.0	00 5084		5230.00 MH
2		00.000 131 3				11 32.00	1003.00	1000.00	3011.0	50 500		3230.00 MI
											_	
		equency (MHz)	Reading			Result	Limit		1argin (dB)		Rema	rk
	Fr	requency (MHz) 5075.240	Reading () 50.19	Correc facto 1.0*	r()	Result () 51.20	Limit () 74.00		1argin (dB) 22.80		Rema peak	
0.	Fr 5	(MHz)	0	facto	r() 1	0	0	) -	(dB)			:

Mode:c; Polarization:Horizontal; Modulation:c; bandwidth:40MHz; Channel:Low



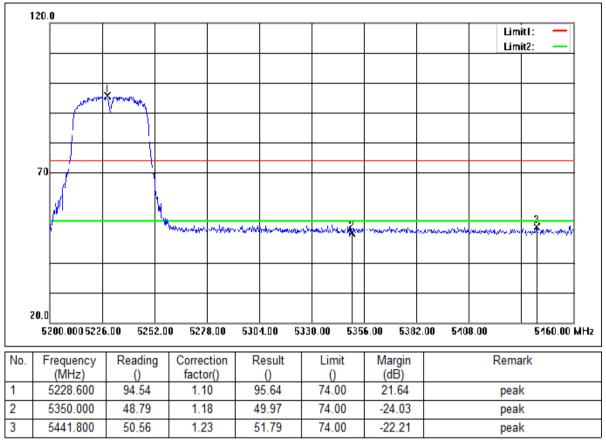

Report No.: SHEM200600506003 Page: 109 of 140



Mode:c; Polarization:Vertical; Modulation:c; bandwidth:40MHz; Channel:Low



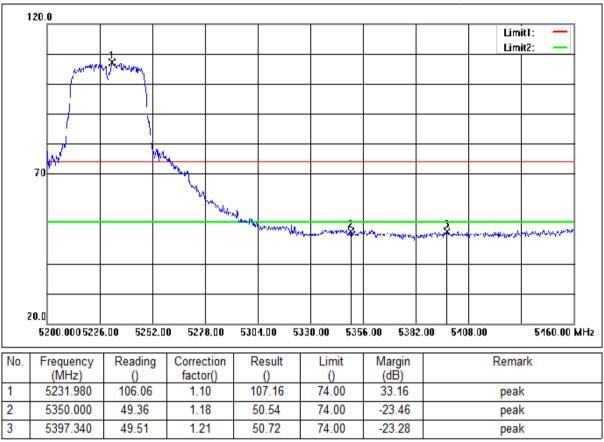
Report No.: SHEM200600506003 Page: 110 of 140




Mode:c; Polarization:Vertical; Modulation:c; bandwidth:40MHz; Channel:Low






Report No.: SHEM200600506003 Page: 111 of 140



Mode:c; Polarization:Horizontal; Modulation:c; bandwidth:40MHz; Channel:High

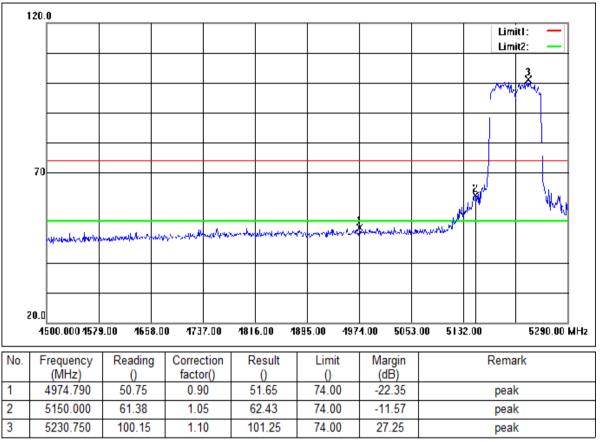


Report No.: SHEM200600506003 Page: 112 of 140



Mode:c; Polarization:Vertical; Modulation:c; bandwidth:40MHz; Channel:High

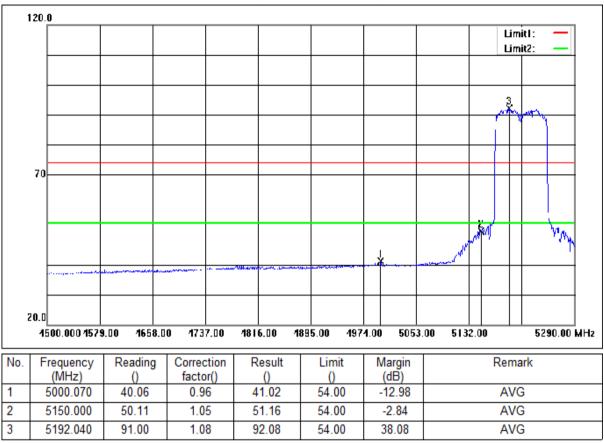



Report No.: SHEM200600506003 Page: 113 of 140

	120.									Limit1: — Limit2: —
										man
	70									
		male and	waterner	manuterre	والمريدة المعر ليؤين ال	y many states and a	human	and the state	homandurante	. Law
2	20.0	00 000 4E 30			<b>DO 40</b> 1	C 10 44	PRE 00 407	4.00 505	00 5122.00	
2		500.000 <b>15</b> 79	).00 1658	.00 1737.	.00 181	6.00 14	895.00 497	4.00 5053	3.00 5132.00	5290.00 MH
	15	requency	0.00 1658 Reading	Correct	ion F	6.00 11 Result	395.00 197 Limit	Margin		5290.00 MH Remark
	19 F				ion F ()			-		
lo.	fe F	requency (MHz)	Reading ()	Correct factor	ion F ()	Result ()	Limit ()	Margin (dB)		Remark

Mode:c; Polarization:Horizontal; Modulation:c; bandwidth:80MHz; Channel:Low



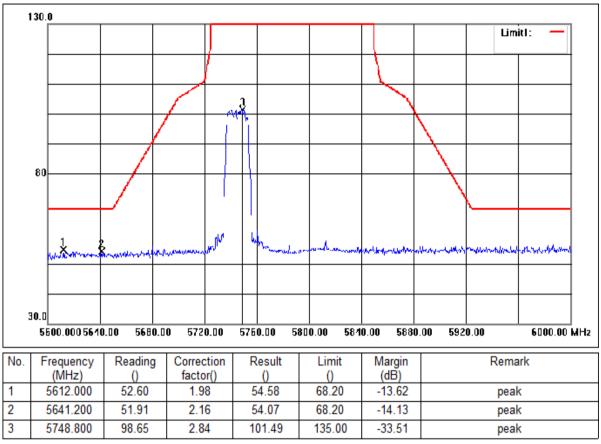

Report No.: SHEM200600506003 Page: 114 of 140



Mode:c; Polarization:Vertical; Modulation:c; bandwidth:80MHz; Channel:Low



Report No.: SHEM200600506003 Page: 115 of 140

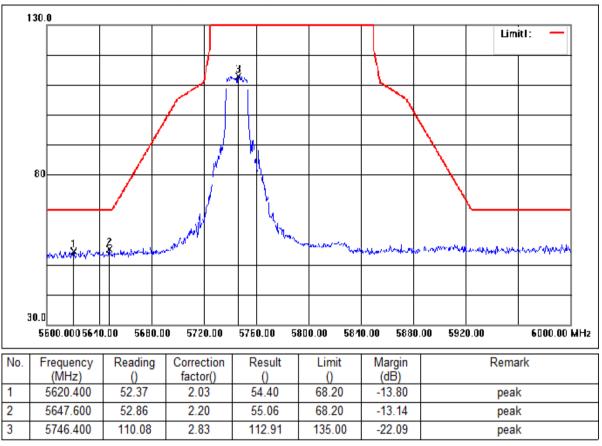



Mode:c; Polarization:Vertical; Modulation:c; bandwidth:80MHz; Channel:Low





Report No.: SHEM200600506003 Page: 116 of 140

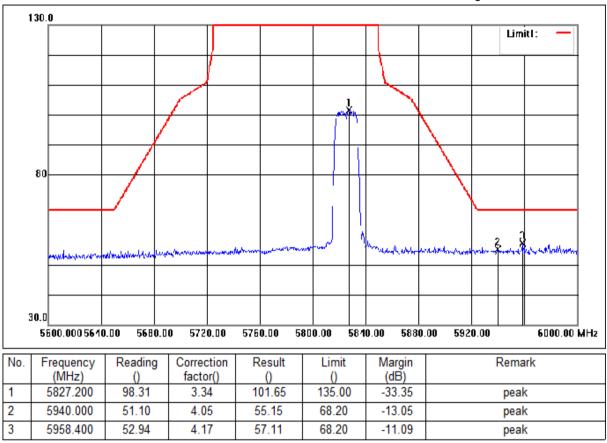



Mode:d; Polarization:Horizontal; Modulation:a; bandwidth:20MHz; Channel:Low

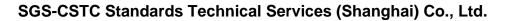




Report No.: SHEM200600506003 Page: 117 of 140

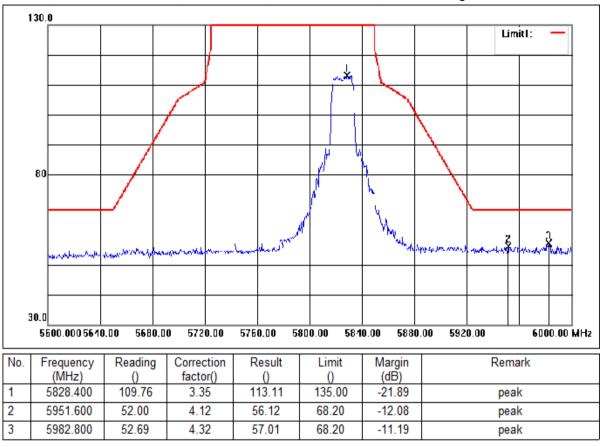



Mode:d; Polarization:Vertical; Modulation:a; bandwidth:20MHz; Channel:Low






Report No.: SHEM200600506003 Page: 118 of 140

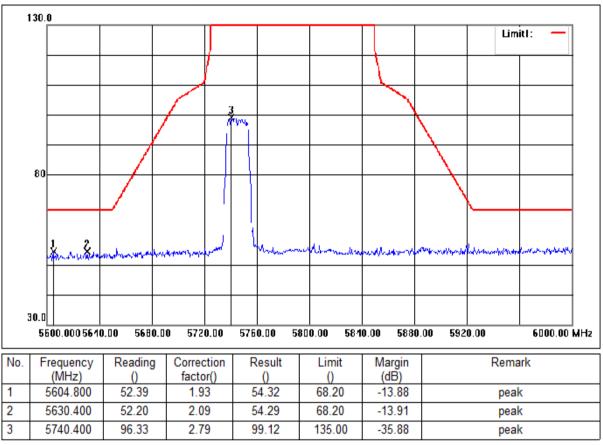



Mode:d; Polarization:Horizontal; Modulation:a; bandwidth:20MHz; Channel:High





Report No.: SHEM200600506003 Page: 119 of 140

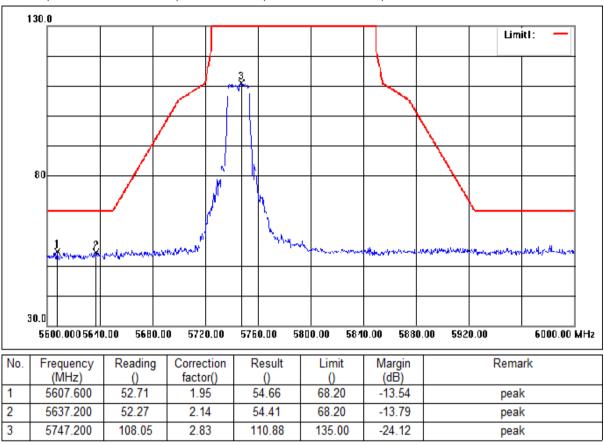



Mode:d; Polarization:Vertical; Modulation:a; bandwidth:20MHz; Channel:High





Report No.: SHEM200600506003 Page: 120 of 140

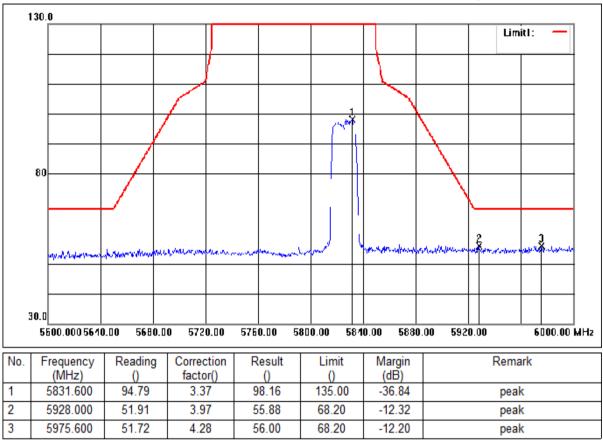



Mode:d; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:Low





Report No.: SHEM200600506003 Page: 121 of 140

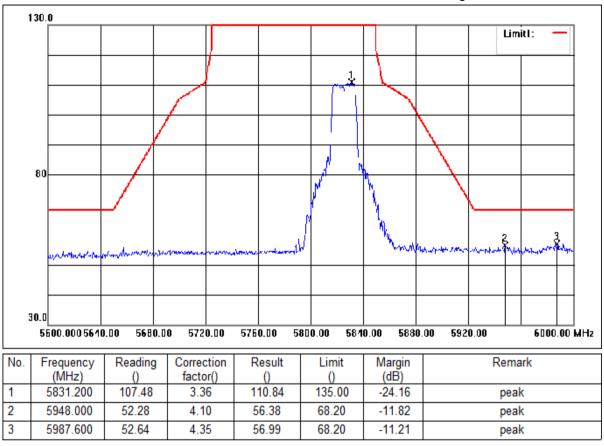



Mode:d; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:Low





Report No.: SHEM200600506003 Page: 122 of 140

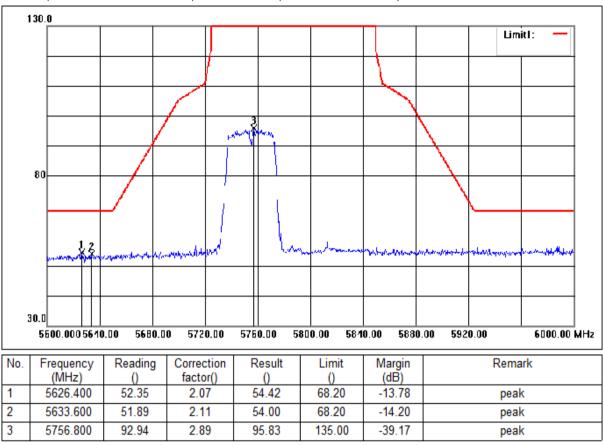



Mode:d; Polarization:Horizontal; Modulation:n; bandwidth:20MHz; Channel:High





Report No.: SHEM200600506003 Page: 123 of 140

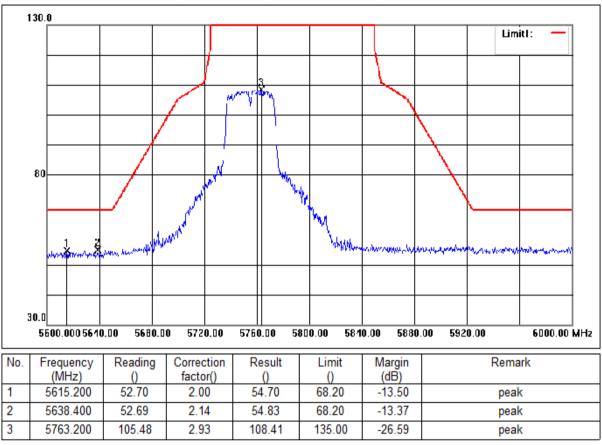



Mode:d; Polarization:Vertical; Modulation:n; bandwidth:20MHz; Channel:High





Report No.: SHEM200600506003 Page: 124 of 140

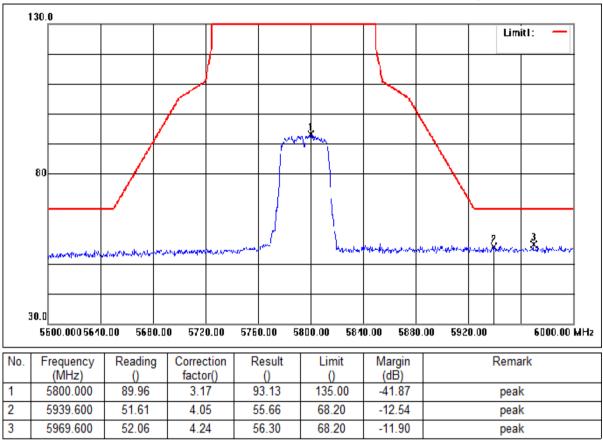



Mode:d; Polarization:Horizontal; Modulation:n; bandwidth:40MHz; Channel:Low





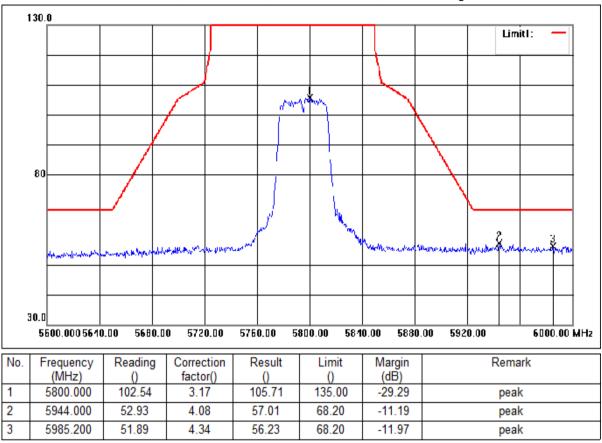
Report No.: SHEM200600506003 Page: 125 of 140




Mode:d; Polarization:Vertical; Modulation:n; bandwidth:40MHz; Channel:Low





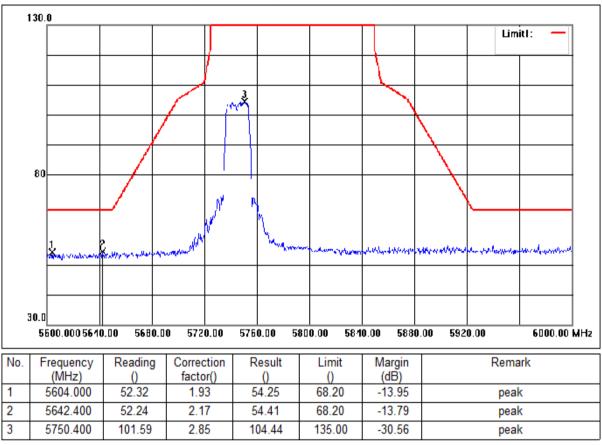

Report No.: SHEM200600506003 Page: 126 of 140



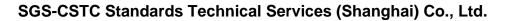
Mode:d; Polarization:Horizontal; Modulation:n; bandwidth:40MHz; Channel:High



Report No.: SHEM200600506003 Page: 127 of 140

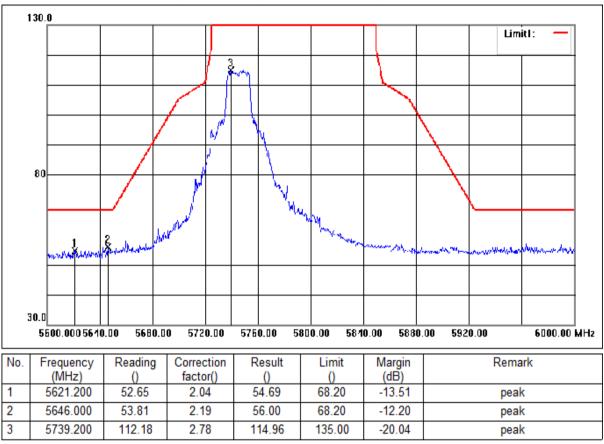



Mode:d; Polarization:Vertical; Modulation:n; bandwidth:40MHz; Channel:High






Report No.: SHEM200600506003 Page: 128 of 140

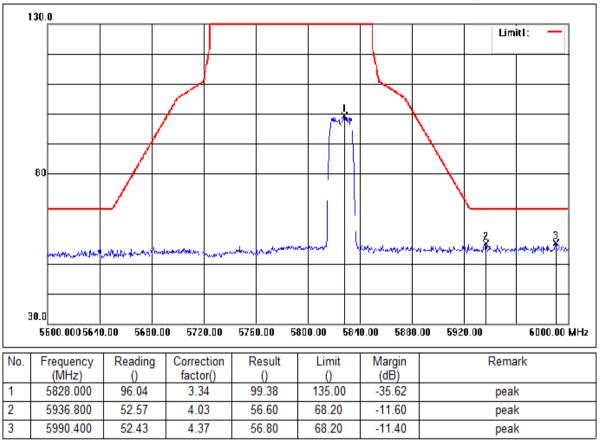



Mode:d; Polarization:Horizontal; Modulation:c; bandwidth:20MHz; Channel:Low





Report No.: SHEM200600506003 Page: 129 of 140




Mode:d; Polarization:Vertical; Modulation:c; bandwidth:20MHz; Channel:Low





Report No.: SHEM200600506003 Page: 130 of 140

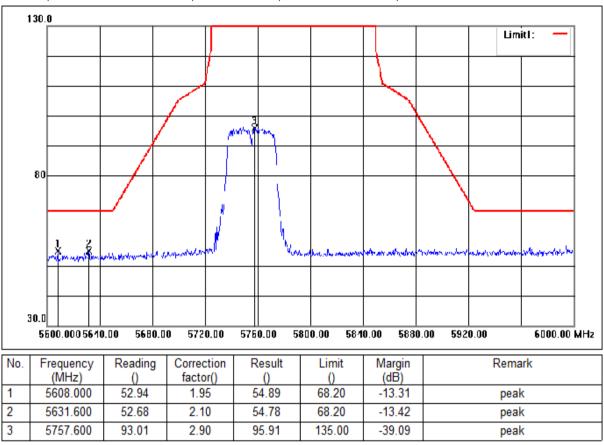



Mode:d; Polarization:Horizontal; Modulation:c; bandwidth:20MHz; Channel:High





Report No.: SHEM200600506003 Page: 131 of 140

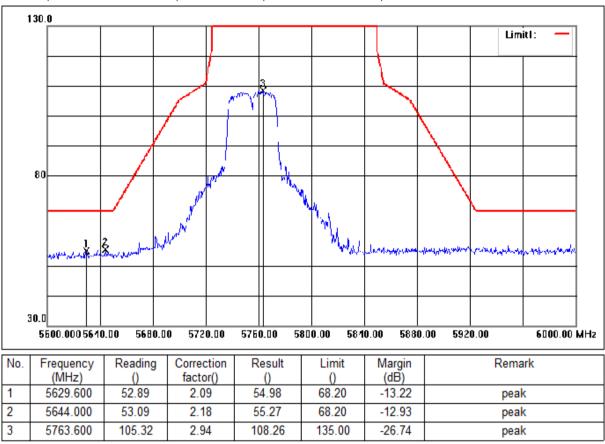



Mode:d; Polarization:Vertical; Modulation:c; bandwidth:20MHz; Channel:High





Report No.: SHEM200600506003 Page: 132 of 140

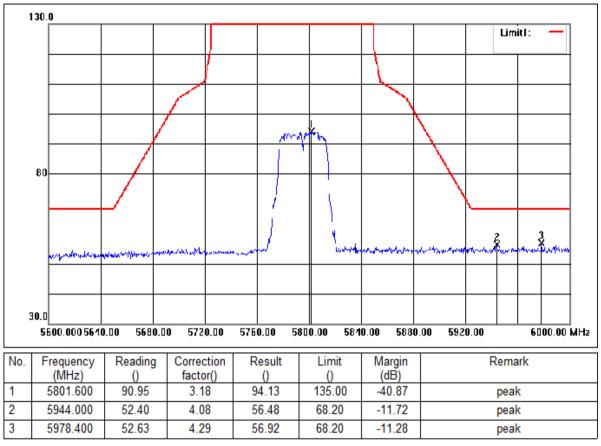



Mode:d; Polarization:Horizontal; Modulation:c; bandwidth:40MHz; Channel:Low





Report No.: SHEM200600506003 Page: 133 of 140

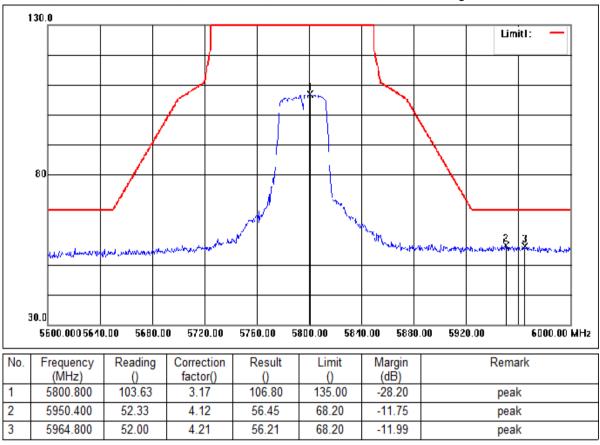



Mode:d; Polarization:Vertical; Modulation:c; bandwidth:40MHz; Channel:Low





Report No.: SHEM200600506003 Page: 134 of 140

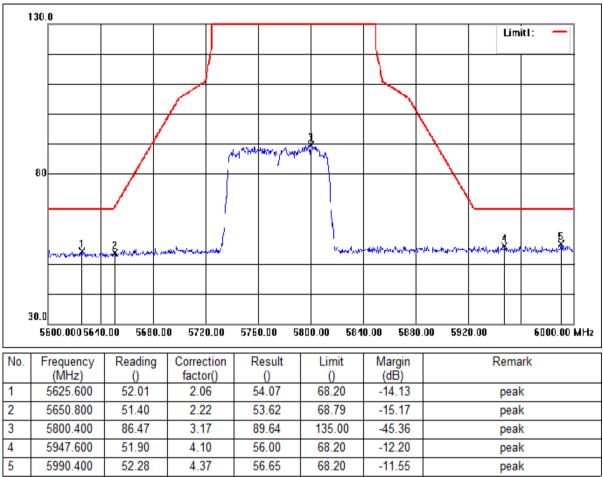



Mode:d; Polarization:Horizontal; Modulation:c; bandwidth:40MHz; Channel:High





Report No.: SHEM200600506003 Page: 135 of 140

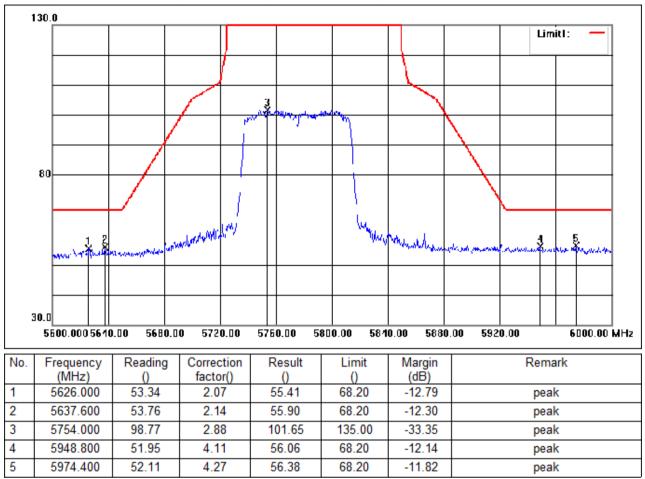



Mode:d; Polarization:Vertical; Modulation:c; bandwidth:40MHz; Channel:High





Report No.: SHEM200600506003 Page: 136 of 140




Mode:d; Polarization:Horizontal; Modulation:c; bandwidth:80MHz; Channel:Low



## SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd.

Report No.: SHEM200600506003 Page: 137 of 140

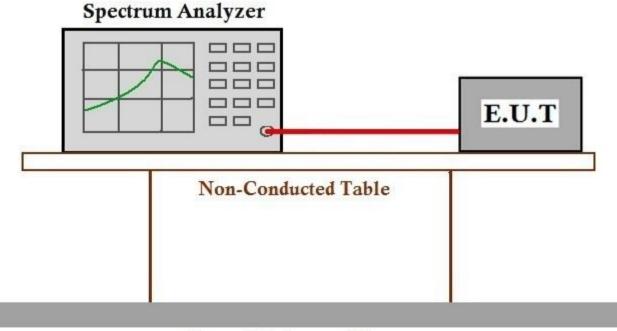


#### Mode:d; Polarization:Vertical; Modulation:c; bandwidth:80MHz; Channel:Low



Report No.: SHEM200600506003 Page: 138 of 140

## 7.9 Frequency Stability


Test Requirement	47 CFR Part 15, Subpart C 15.407 (g)
Test Method:	ANSI C63.10 (2013) Section 6.8
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 35 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

#### 7.9.1 E.U.T. Operation

**Operating Environment:** 

Temperature:	22 °C Humidity: 50 % RH Atmospheric Pressure: 1002 mbar								
The final test mode:	c:TX mode (Band 1)_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n(HT20); data rate @ MCS0 is the worst case of IEEE 802.11n(HT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT20); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT80). Only the data of worst case is recorded in the report.								
	d:TX mode (Band 3)_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n(HT20); data rate @ MCS0 is the worst case of IEEE 802.11n(HT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT20); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT80). Only the data of worst case is recorded in the report.								

#### 7.9.2 Test Setup Diagram



## **Ground Reference Plane**

#### 7.9.3 Measurement Procedure and Data

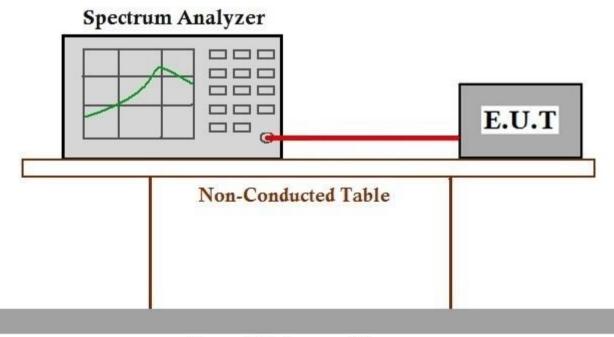
The detailed test data see: Appendix C for SHEM200600506003



Report No.: SHEM200600506003 Page: 139 of 140

## 7.10 99% Bandwidth

Fest Requirement	
Fest Method:	


RSS-Gen Section 6.7 ANSI C63.10 Section 6.9.3

## 7.10.1 E.U.T. Operation

**Operating Environment:** 

Temperature:	22 °C Humidity: 50 % RH Atmospheric Pressure: 1002 mbar								
The final test mode:	c:TX mode (Band 1)_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n(HT20); data rate @ MCS0 is the worst case of IEEE 802.11n(HT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT20); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT20); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT80). Only the data of worst case is recorded in the report.								
	d:TX mode (Band 3)_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 6Mbps is the worst case of IEEE 802.11a; data rate @ MCS0 is the worst case of IEEE 802.11n(HT20); data rate @ MCS0 is the worst case of IEEE 802.11n(HT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT20); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT40); data rate @ MCS0 is the worst case of IEEE 802.11ac(VHT80). Only the data of worst case is recorded in the report.								

#### 7.10.2 Test Setup Diagram



## **Ground Reference Plane**

#### 7.10.3 Measurement Procedure and Data

The detailed test data see: Appendix C for SHEM200600506003

NO.588 West Jindu Road, Songjiang District, Shanghai, Ch	ina	201612
中国・上海・松江区金都西路588号 邮	编:	201612



Report No.: SHEM200600506003 Page: 140 of 140

# 8 Test Setup Photographs

Refer to the < Test Setup photos-FCC>.

# 9 EUT Constructional Details

Refer to the < External Photos > & < Internal Photos >.

- End of the Report -