

Report No.: SHEM200500369001 Page: 1 of 34

TEST REPORT

Application No.:	SHEM2005003690CR
FCC ID:	UCZ-AM41TK-Z
IC:	8575A-AM41TKZ
Applicant:	LOREX Technology Inc.
Address of Applicant:	250 Royal Crest Court, Markham, ON L3R 3S1 Canada
Manufacturer:	LOREX Technology Inc.
Address of Manufacturer:	250 Royal Crest Court, Markham, ON L3R 3S1 Canada
Equipment Under Test (EU	Т):
EUT Name:	Motion Sensor
Model No.:	AM41TK-Z
Standard(s) :	47 CFR Part 15, Subpart C 15.247
	RSS-247 Issue 2, February 2017
	RSS-Gen Issue 5, March 2019 Amendment 1
Date of Receipt:	2020-05-18
Date of Test:	2020-05-21 to 2020-05-29
Date of Issue:	2020-06-02
Test Result:	Pass*

* In the configuration tested, the EUT complied with the standards specified above.

parlan share

Parlam Zhan E&E Section Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed
overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents,
subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx.
Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is
advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of
Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a
transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced
except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or
appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the
results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.
Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443.

or email: <u>CN.Doccheck@sgs.com</u> Co.Ld NO.588 West Jindu Road,Songjiang District,Shanghai,China 201612 中国・上海・松江区金都西路588号 邮编: 201612

t(86-21)61915666 f(86-21)61915678 www.sgsgroup.com.cn t(86-21)61915666 f(86-21)61915678 e sgs.china@sgs.com

Report No.: SHEM200500369001 Page: 2 of 34

Revision Record			
Version	Description	Date	Remark
00	Original	2020-06-02	/

Authorized for issue by:		
	pichal Nil	
	Micheal Niu / Project Engineer	
	parlam zhan	
	Parlam Zhan / Reviewer	

Report No.: SHEM200500369001 Page: 3 of 34

2 Test Summary

Radio Spectrum	Tecl	nnical	Requirement	

Item	Standard	Method	Requirement	Result
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(b)(4)	Pass

Radio Spectrum Matter Part					
Item	Standard	Method	Requirement	Result	
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.8.1	47 CFR Part 15, Subpart C 15.247a(2)	Pass	
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.9.1	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass	
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.10.2	47 CFR Part 15, Subpart C 15.247(e)	Pass	
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.13.3.2	47 CFR Part 15, Subpart C 15.247(d)	Pass	
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass	
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass	
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass	
99% Bandwidth	RSS-247 Issue 2, February 2017	ANSI C63.10 Section 6.9.3	RSS-Gen Section 6.7	Pass	

Report No.: SHEM200500369001 Page: 4 of 34

3 Contents

		Page
1	COVER PAGE	1
2	TEST SUMMARY	3
3	CONTENTS	4
4	GENERAL INFORMATION	5
	4.1 DETAILS OF E.U.T.	5
	4.2 Power Level Setting USING IN TEST	
	4.3 DESCRIPTION OF SUPPORT UNITS	
4	4.4 MEASUREMENT UNCERTAINTY	
4	4.5 TEST LOCATION	
	4.6 TEST FACILITY	
	4.7 DEVIATION FROM STANDARDS	
4	4.8 ABNORMALITIES FROM STANDARD CONDITIONS	
5	EQUIPMENT LIST	8
6	RADIO SPECTRUM TECHNICAL REQUIREMENT	9
(6.1 ANTENNA REQUIREMENT	9
7	RADIO SPECTRUM MATTER TEST RESULTS	10
-	7.1 MINIMUM 6DB BANDWIDTH	
-	7.2 CONDUCTED PEAK OUTPUT POWER	
-	7.3 POWER SPECTRUM DENSITY	
	7.4 CONDUCTED BAND EDGES MEASUREMENT	
	7.5 CONDUCTED SPURIOUS EMISSIONS	
	7.6 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	
	7.7 RADIATED SPURIOUS EMISSIONS7.8 99% BANDWIDTH	
8	IEST SETUP PHOTOGRAPHS	
9	EUT CONSTRUCTIONAL DETAILS	34

Report No.: SHEM200500369001 Page: 5 of 34

4 General Information

4.1 Details of E.U.T.

Power supply:	DC 3.0V By Button battery
Test voltage:	DC 3.0V
Serial Number:	ND012005076515
Firmware Version:	V1.000.0000000
Antenna Gain:	2.43 dBi
Antenna Type:	integral Antenna
Bluetooth Version:	V5.0 BLE
Data Rate:	1Mbps
Channel Spacing:	2MHz
Modulation Type:	GFSK
Number of Channels:	40
Operation Frequency:	2402MHz to 2480MHz

4.2 Power level setting using in test

Channel	BLE
0	3.9
19	3.9
39	3.9

4.3 Description of Support Units

Description	Manufacturer	Model No.	Serial No.
Note Book	Acer	ZQT	NXM0QCN01031403EE876

Report No.: SHEM200500369001 Page: 6 of 34

4.4 Measurement Uncertainty

Item	Measurement Uncertainty
Radio Frequency	±8.4 x 10 ⁻⁸
Timeout	±2s
Duty cycle	±0.37%
Occupied Bandwidth	±3%
RF conducted power	±0.6dB
RF power density	±2.84dB
Conducted Spurious emissions	±0.75dB
DE Dedicted server	±4.6dB (Below 1GHz)
RF Radiated power	±4.1dB (Above 1GHz)
	±4.2dB (Below 30MHz)
Dedicted Spurious optionian test	±4.4dB (30MHz-1GHz)
Radiated Spundus emission test	±4.8dB (1GHz-18GHz)
	±5.2dB (Above 18GHz)
Temperature test	±1°C
Humidity test	±3%
Supply voltages	±1.5%
Time	±3%
	Radio Frequency Timeout Duty cycle Occupied Bandwidth RF conducted power RF power density Conducted Spurious emissions RF Radiated power RF Radiated power Radiated Spurious emission test Temperature test Humidity test Supply voltages

Note: The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: SHEM200500369001 Page: 7 of 34

4.5 Test Location

All tests were performed at:

Compliance Certification Services (Kunshan) Inc.

No.10 Weiye Rd, Innovation park, Eco&Tec, Development Zone, Kunshan City, Jiangsu, China. Tel: +86 512 5735 5888 Fax: +86 512 5737 0818

No tests were sub-contracted.

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L4354)

CNAS has accredited Compliance Certification Services (Kunshan) Inc. to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• A2LA (Certificate No. 2541.01)

Compliance Certification Services (Kunshan) Inc. is accredited by the American Association for Laboratory Accreditation (A2LA). Certificate No. 2541.01.

• FCC (Designation Number: CN1172)

Compliance Certification Services Inc. has been recognized as an accredited testing laboratory. Designation Number: CN1172.

• ISED (CAB identifier: CN0072)

Compliance Certification Services (Kunshan) Inc. has been recognized by Innovation, Science and Economic Development Canada (ISED) as an accredited testing laboratory.

CAB Identifier: CN0072.

• VCCI (Member No.: 1938)

The 3m and 10m Semi-anechoic chamber and Shielded Room of Compliance Certification Services (Kunshan) Inc. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-1600, C-1707, T-1499, G-10216 respectively.

4.7 Deviation from Standards

None

4.8 Abnormalities from Standard Conditions

None

Report No.: SHEM200500369001 Page: 8 of 34

5 Equipment List

Item	Equipment	Manufacturer	Model	Serial Number	Cal Date	Cal. Due Date
Co	nducted Emission at Mains Term	inals (150kHz-30M	lHz)			
1	EMI Test Receive	R&S	ESCI	100781	02/24/2020	02/23/2021
2	LISN	R&S	ENV216	101604	10/24/2019	10/23/2020
3	LISN	Schwarzbeck	NNLK 8129	8129-143	10/24/2019	10/23/2020
4	Pulse Limiter	R&S	ESH3-Z2	100609	02/24/2020	02/23/2021
5	CE test Cable	Thermax	/	14	02/24/2020	02/23/2021
RI	F Conducted Test					
1	Spectrum Analyzer	Agilent	E4446A	MY44020154	07/03/2019	07/02/2020
2	Spectrum Analyzer	Keysight	N9020A	MY55370209	12/19/2019	12/18/2020
3	Signal Generator	Agilent	E8257C	MY43321570	10/24/2019	10/23/2020
4	Vector Signal Generator	R&S	SMU 200A	102744	02/24/2020	02/23/2021
5	Universal Radio Communication Tester	R&S	CMU200	109525	12/19/2019	12/18/2020
6	Universal Radio Communication Tester	R&S	CMW500	159275	12/19/2019	12/18/2020
7	Power Meter	Anritsu	ML2495A	1445010	04/21/2020	04/20/2021
8	Switcher	CCSRF	FY562	KS301219	12/20/2019	12/19/2020
9	AC Power Source	EXTECH	6605	1570106	N.C.R	N.C.R
10	DC Power Supply	Aglient	E3632A	MY50340053	N.C.R	N.C.R
11	6dB Attenuator	Mini-Circuits	NAT-6-2W	15542-1	N.C.R	N.C.R
12	Power Divider	AISI	IOWOPE2068	PE2068	N.C.R	N.C.R
13	Filter	MICRO-TRONICS	BRM50701	5	N.C.R	N.C.R
14	Conducted test cable	/	RF01-RF04	/	04/21/2020	04/22/2021
15	Temp. / Humidity Chamber	TERCHY	MHK-120AK	X30109	04/21/2020	04/20/2021
RFF	Radiated Test					
1	Spectrum Analyzer	R&S	FSV40	101493	01/08/2020	01/07/2021
2	Signal Generator	Agilent	E8257C	MY43321570	10/24/2019	10/23/2020
3	Loop Antenna	Schwarzbeck	HXYZ9170	9170-108	02/24/2020	02/23/2021
4	Bilog Antenna	TESEQ	CBL 6112D	35403	06/22/2019	06/21/2020
5	Bilog Antenna	SCHWARZBECK	VULB9160	9160-3342	04/29/2019	04/28/2021
6	Horn-antenna(1-18GHz)	Schwarzbeck	BBHA9120D	267	11/04/2018	11/03/2020
7	Horn-antenna(1-18GHz)	ETS-LINDGREN	3117	00143290	02/25/2019	02/24/2021
8	Horn Antenna(18-40GHz)	Schwarzbeck	BBHA9170	BBHA9170171	02/27/2018	02/26/2021
9	Pre-Amplifier(30MHz~18GHz)	CCSRF	AMP1277	1	12/19/2019	12/18/2020
10	Pre-Amplifier(0.1~26.5GHz)	EMCI	EMC012645	980060	07/03/2019	07/02/2020
11	Low Pass Filter	MICRO-TRONICS	VLFX-950	RV142900829	N.C.R	N.C.R
12	High Pass Filter	Mini-Circuits	VHF-1200	15542	N.C.R	N.C.R
13	Filter (5450MHz \sim 5770 MHz)	MICRO-TRONICS	BRC50704-01	2	N.C.R	N.C.R
14	Filter (5690 MHz~5930 MHz)	MICRO-TRONICS	BRC50705-01	4	N.C.R	N.C.R
15	Filter (5150 MHz~5350 MHz)	MICRO-TRONICS	BRC50703-01	2	N.C.R	N.C.R
16	Filter (885 MHz~915 MHz)	MICRO-TRONICS	BRM14698	1	N.C.R	N.C.R
17	Filter (815 MHz~860 MHz)	MICRO-TRONICS	BRM14697	1	N.C.R	N.C.R
18	Filter (1745 MHz \sim 1910 MHz)	MICRO-TRONICS	BRM14700	1	N.C.R	N.C.R
19	Filter (1922 MHz \sim 1977 MHz)	MICRO-TRONICS	BRM50715	1	N.C.R	N.C.R
20	Filter (2550 MHz)	MICRO-TRONICS	HPM13362	5	N.C.R	N.C.R
21	Filter (1532 MHz \sim 1845 MHz)	MICRO-TRONICS	BRM50713	1	N.C.R	N.C.R
22	Filter (2.4GHz)	MICRO-TRONICS	BRM50701	5	N.C.R	N.C.R
23	RE test cable	/	RE01-RE04	/	04/21/2020	04/22/2021

中国	1.35	- 4		+7.40	0040
甲菌 •	上泄	• 4	公江区金都西路588号	邮编:	2010

t(86-21) 61915666 f(86-21) 61915678 www.sgsgroup.com.cn t(86-21) 61915666 f(86-21) 61915678 e sgs.china@sgs.com

Report No.: SHEM200500369001 Page: 9 of 34

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203 & 15.247(b)(4)

6.1.2 Conclusion

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

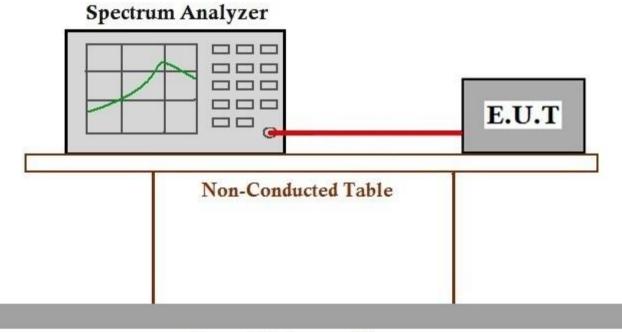
The antenna is integral antenna and no consideration of replacement. The best case gain of the antenna is 2.43dBi.

Antenna location: Refer to Appendix (Internal Photos)

Report No.: SHEM200500369001 Page: 10 of 34

7 Radio Spectrum Matter Test Results

7.1 Minimum 6dB Bandwidth


Test Requirement	47 CFR Part 15, Subpart C 15.247a(2)
Test Method:	ANSI C63.10 (2013) Section 11.8.1
Limit:	≥500 kHz

7.1.1 E.U.T. Operation

Operating Environment:

Temperature:	22 °C	Humidity:	50 % RH	Atmospheric Pressure: 1002	mbar
Test mode	a:TX mode_ modulation	Keep the EUT i	n continuou	sly transmitting mode with GFSK	

7.1.2 Test Setup Diagram

Ground Reference Plane

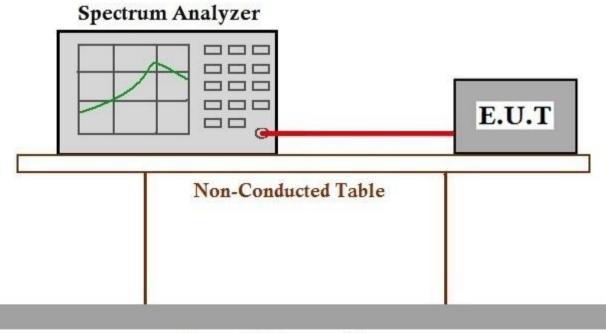
7.1.3 Measurement Procedure and Data

The detailed test data see: Appendix A for SHEM200500369001

Report No.: SHEM200500369001 Page: 11 of 34

7.2 Conducted Peak Output Power

Test Requirement	47 CFR Part 15, Subpart C 15.247(b)(3)
Test Method:	ANSI C63.10 (2013) Section 11.9.1
Limit:	


Frequency range(MHz)	Output power of the intentional radiator(watt)
	1 for ≥50 hopping channels
902-928	0.25 for 25≤ hopping channels <50
	1 for digital modulation
	1 for ≥75 non-overlapping hopping channels
2400-2483.5	0.125 for all other frequency hopping systems
	1 for digital modulation
5725-5850	1 for frequency hopping systems and digital modulation

7.2.1 E.U.T. Operation

Operating Environment:

Temperature:22 °CHumidity:50 % RHAtmospheric Pressure:1002 mbarTest modea:TX mode_Keep the EUT in continuously transmitting mode with GFSK
modulation

7.2.2 Test Setup Diagram

Ground Reference Plane

7.2.3 Measurement Procedure and Data

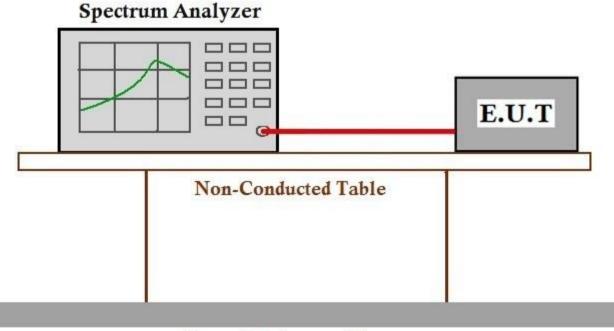
The detailed test data see: Appendix A for SHEM200500369001

NO.588 West Jindu Road, Songjiang District, Shanghai, Chin	a	201612
中国・上海・松江区金都西路588号 邮编	1:	201612

t(86-21) 61915666 f(86-21)61915678 www.sgsgroup.com.cn t(86-21) 61915666 f(86-21)61915678 e sgs.china@sgs.com

Report No.: SHEM200500369001 Page: 12 of 34

7.3 Power Spectrum Density


Test Requirement	47 CFR Part 15, Subpart C 15.247(e)
Test Method:	ANSI C63.10 (2013) Section 11.10.2
Limit:	\leq 8dBm in any 3 kHz band during any time interval of continuous
	transmission

7.3.1 E.U.T. Operation

Operating Environment:

Temperature:22 °CHumidity:50 % RHAtmospheric Pressure:1002 mbarTest modea:TX mode_Keep the EUT in continuously transmitting mode with GFSK
modulation

7.3.2 Test Setup Diagram

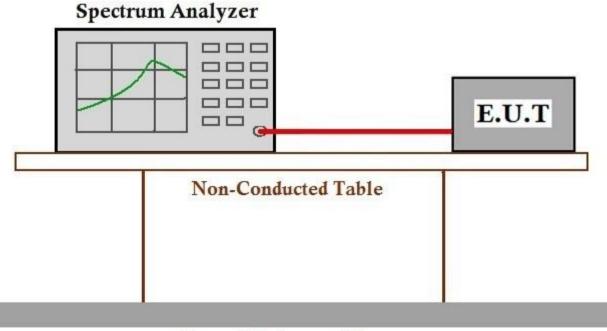
Ground Reference Plane

7.3.3 Measurement Procedure and Data

The detailed test data see: Appendix A for SHEM200500369001

Report No.: SHEM200500369001 Page: 13 of 34

7.4 Conducted Band Edges Measurement


Test Requirement 47 CFR Part 15, Subpart C 15.247(d) **Test Method:** ANSI C63.10 (2013) Section 11.13.3.2 Limit: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)

7.4.1 E.U.T. Operation

Operating Environment:

Temperature:	22 °C	Humidity:	50	% RH	Atmospheric Pressure:	1002	mbar
Test mode	a:TX mode_K modulation	eep the EUT	in coi	ntinuously tr	ansmitting mode with GFS	SK	

7.4.2 Test Setup Diagram

Ground Reference Plane

7.4.3 Measurement Procedure and Data

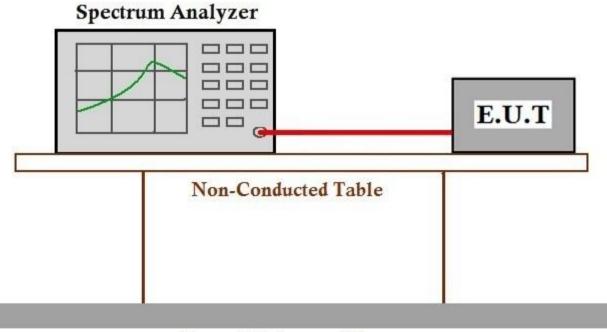
The detailed test data see: Appendix A for SHEM200500369001

NO.588 West Jindu Ro	ad,Songjiang District,Shang	hai,China	201612	
中国・上海・松江	区金都西路588号	邮编:	201612	

t(86-21) 61915666 f(86-21)61915678 www.sgsgroup.com.cn t(86-21) 61915666 f(86-21)61915678 e sgs.china@sgs.com

Report No.: SHEM200500369001 Page: 14 of 34

7.5 Conducted Spurious Emissions


Test Requirement Test Method: Limit:	47 CFR Part 15, Subpart C 15.247(d) ANSI C63.10 (2013) Section 11.11 In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in \$15.205(a) must also comply with the radiated emission limits specified in

7.5.1 E.U.T. Operation

Operating Environment:

Temperature:	22	°C	Humidity:	50	% RH	Atmospheric Pressure:	1002	mbar
Test mode		K mode_Ke	eep the EUT	in coi	ntinuously tr	ansmitting mode with GF	SK	

7.5.2 Test Setup Diagram

Ground Reference Plane

7.5.3 Measurement Procedure and Data

The detailed test data see: Appendix A for SHEM200500369001

NO.588 West Jindu Ro	ad,Songjiang District,Shang	hai,China	201612	
中国・上海・松江	区金都西路588号	邮编:	201612	

t(86-21) 61915666 f(86-21)61915678 www.sgsgroup.com.cn t(86-21) 61915666 f(86-21)61915678 e sgs.china@sgs.com

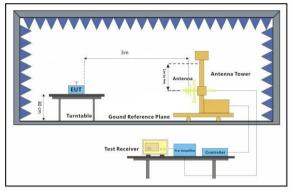
Report No.: SHEM200500369001 Page: 15 of 34

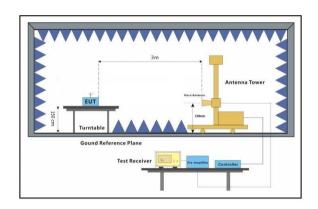
7.6 Radiated Emissions which fall in the restricted bands

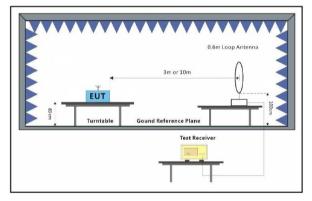
Test Requirement	47 CFR Part 15, Subpart C 15.205 & 15.209
Test Method:	ANSI C63.10 (2013) Section 6.10.5
Limit:	

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.


Report No.: SHEM200500369001 Page: 16 of 34


7.6.1 E.U.T. Operation


Operating Environment:

Temperature:22 °CHumidity:50 % RHAtmospheric Pressure:1002 mbarTest modea:TX mode_Keep the EUT in continuously transmitting mode with GFSK
modulation

7.6.2 Test Setup Diagram

Report No.: SHEM200500369001 Page: 17 of 34

7.6.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Report No.: SHEM200500369001 Page: 18 of 34

	ſ										Limitl: Limit2:	
	ŀ											
	┝											-2
												11
	ŀ				1							+
	70											
												1 1
												- II
					4							
		a Hardward Ana	and the second states	and the second states	Kara	. has an algorithmy and	the are being a section of the	an a	der tegent		to mark a ser	ul I
		- Hard and the	entra an taine the	aan ing sandariyad M		. kur er skriteringen	teran bagenateran ter	(general data sedara)	dan daga sa	-,	gt, erren de se se se	
	•	n, Yearlang Madel Scan	galitan sa kulongangang	aanaliy, sanakayad bo	n Kardana	a kut i ta akas ta ata ay an	te a co <mark>base cano an cano d</mark> a	(generalise andreas)	don i bay no de	-,		l
2		n Hantan Kan	entrine autom	eelin liiga araabagaal ki	×		than bein air air an thair air an thair air air air air air air air air air	(proventier options)		-,	n Norman har search	
2	0.0	10.000 2319			8.50					2386.00		2105.00 M
_	0 .0 23	10.0002319	9.50 232	9.00 233	38.50	2318.00	2357.50 23	67.00 237		2336.00		
_	0.0 23	10.000 2319 requency	9.50 232 Reading	9.00 233	18.50 ction	2318.00 Result	2357.50 23	67.00 237 Margin		2336.00		
_	0.0 23	10.0002319	9.50 232	9.00 233	18.50 ction dB/m)	2318.00 Result	2357.50 23	67.00 237 Margin		2336.00		
2	0.0 23 Fr	10.0002319 requency (MHz)	9.50 232: Reading (dBuV)	9.00 233 9.00 Corre	18.50 ction dB/m) 37	2318.00 Result (dBuV/m)	2357.50 23	67.00 237 Margin (dB)		2336.00	Remark	

Mode:a; Polarization:Horizontal; Modulation:GFSK; ; Channel:Low

Report No.: SHEM200500369001 Page: 19 of 34

1	20.0	0 dBu∀/m																	
																	nitl: nit2:	_	
								+										À	
	70																	<u>j</u>	
	70							+											
					Ļ										2	- 1 - 1-			
		مراميورد ورماره	angan ang pangapangan	and the first for the form	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ويعيده	ylen Mar, ry	r*~~44	yaan da	لايملين ا	مهبراسان	1.046-05-05	~~ ~~	provide at	tsV	Sen Indelitik	(Notion)		
								+										+	
2	20.0 23	310.0002319).50 2329.	.00 2338	.50	231	8.00 a	2357.	.50	236	7.00	237	5.50	238	6.00		21	05.00] MHz
۱o.	F	requency (MHz)	Reading (dBuV)	Correct factor(d			esult BuV/m)		Limi IBuV/			rgin B)				Rem	ark		
	2	2342.633	55.09	-4.3			0.72	_	74.0	_		3.28				pea	ık		
	2	2390.000	53.90	-4.2	4	4	9.66		74.0	0	-24	1.34				pea	ık		
}	2	2402.340	99.44	-4.2	1	9	5.23		74.0	0	21	.23				pea	ık		

Mode:a; Polarization:Vertical; Modulation:GFSK; ; Channel:Low

Report No.: SHEM200500369001 Page: 20 of 34

	120.0																	Limit Limit		
	70			2				workerstande			the state of the s			uviture blave	********					-
2	20.0 24		000	248	7.50	250	0.00) 251	2.50	252	5.00 2	537.50	255	 0.00 2	562.	50 2	5 75 .00		2500.00	MHz
No.	F	req (M	uen Hz)	су	R	eadin dBuV	g	Correct factor(c			esult 3uV/m)		mit ıV/m)	Marg (dB)	in		I	Remar	k	
1	2	247				99.72	_	-4.0		_	5.71		.00	21.7				peak		
-	1	248	3.5	00		52.85		-4.0)0	4	8.85	74	.00	-25.1	5			peak		
2																				
2 3	2	249 250				54.76 53.37		-3.9		5	0.78		.00	-23.2 -24.5				, peak peak		

Mode:a; Polarization:Horizontal; Modulation:GFSK; ; Channel:High

Report No.: SHEM200500369001 Page: 21 of 34

-	20.0																		Limitl Limit2		-
			-																		
	70																				
	- 1	. 1		I																	
	-	~~	3		3 Marine	~~~ ~~	in de se	wacala.	- como andi	herr	an basa da	antin tanaw	unstation	weters.	••••	-	v))+	. Martin		uternation	*~~
Z	20.0	175.0				250			2.50			537.50			2562.		2575.0			2500.0	
	21 21	175.0	00 2 enc	2487	7.50 Re	2500 eading).00 j (251 Correc	2.50	252 R	5.00 2 esult		255 iit	0.00 a	2562. jin			00	emark	2500.0	
No.	21 21 Ft	175.00 reque (MH 2479	00 2 enc 1z)	2487 2487 29	7.50 Re (d 9	2500 ading BuV) 7.63).00 j (251 Correc ctor(c -4.(2.50 ction dB/m)	252 R (dE 9	5.00 2 Sesult BuV/m) 03.62	537.50 Lin (dBu\ 74.1	255 iit //m) 20	0.00 Marg (dB	2562. jin)			DO Re F	emark	2500.0	
۹o.	21 21 Fr 22	175.00 reque	00 2 enc 1z) .75	2487 :y 0 0	7.50 Re (d 9 5	2500 ading BuV)).00 j (251 Corrector(c	2.50 ction dB/m) 01	252 R (dE 9	5.00 2 Result BuV/m)	537.50	255 iit //m) 00	0.00 Marg (dB	2562. jin) 52 57			DO Re F	emark	2500.0	

Mode:a; Polarization:Vertical; Modulation:GFSK; ; Channel:High

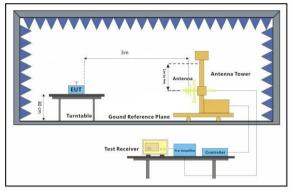
Report No.: SHEM200500369001 Page: 22 of 34

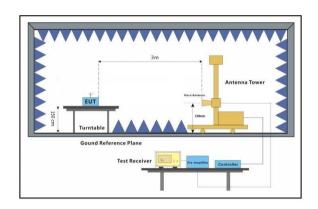
7.7 Radiated Spurious Emissions

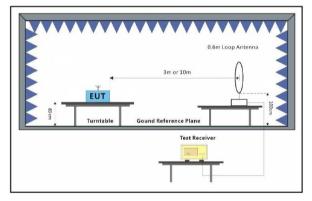
Test Requirement	47 CFR Part 15, Subpart C 15.205 & 15.209
Test Method:	ANSI C63.10 (2013) Section 6.4,6.5,6.6
Limit:	

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.


Report No.: SHEM200500369001 Page: 23 of 34


7.7.1 E.U.T. Operation


Operating Environment:

Temperature:22 °CHumidity:50 % RHAtmospheric Pressure:1002 mbarTest modea:TX mode_Keep the EUT in continuously transmitting mode with GFSK
modulation

7.7.2 Test Setup Diagram

Report No.: SHEM200500369001 Page: 24 of 34

7.7.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

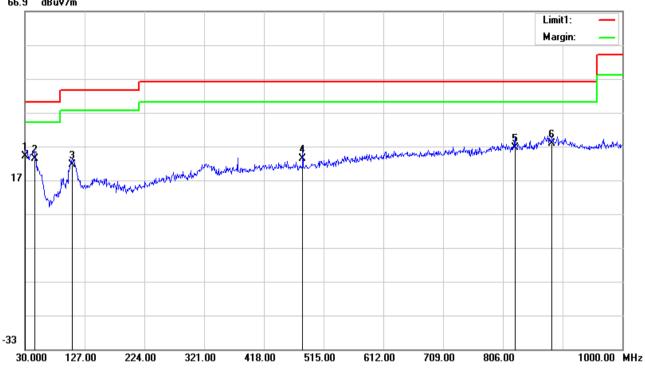
j. Repeat above procedures until all frequencies measured was complete.

Remark:

1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

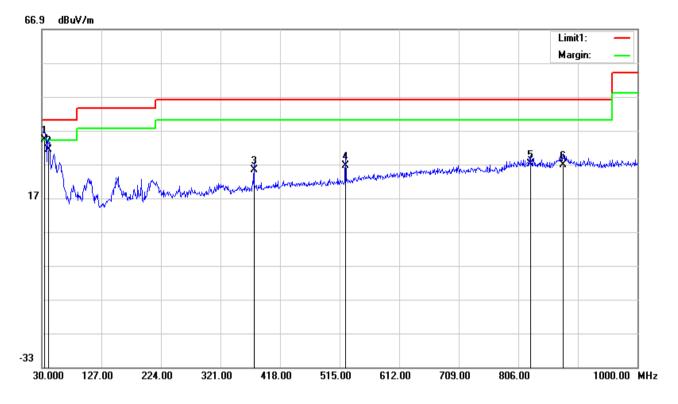
Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor


3) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Report No.: SHEM200500369001 Page: 25 of 34

Below 1GHz: Mode:a; Polarization:Horizontal 66.9 dBuV/m



No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	30.9700	-0.99	25.10	24.11	40.00	-15.89	200	21	QP
2	45.5200	4.37	18.88	23.25	40.00	-16.75	200	0	QP
3	106.6300	7.14	14.27	21.41	43.50	-22.09	400	360	QP
4	481.0500	2.01	21.23	23.24	46.00	-22.76	100	346	QP
5	825.4000	1.36	25.19	26.55	46.00	-19.45	100	12	QP
6	885.5400	2.23	25.61	27.84	46.00	-18.16	300	0	QP

Report No.: SHEM200500369001 Page: 26 of 34

Mode:a; Polarization:Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	34.8500	10.74	23.51	34.25	40.00	-5.75	200	1	QP
2	40.6700	10.15	21.09	31.24	40.00	-8.76	200	124	QP
3	375.3200	5.48	19.84	25.32	46.00	-20.68	300	189	QP
4	524.7000	4.54	22.01	26.55	46.00	-19.45	100	60	QP
5	825.4000	1.82	25.19	27.01	46.00	-18.99	400	360	QP
6	878.7500	1.30	25.57	26.87	46.00	-19.13	100	339	QP

Report No.: SHEM200500369001 Page: 27 of 34

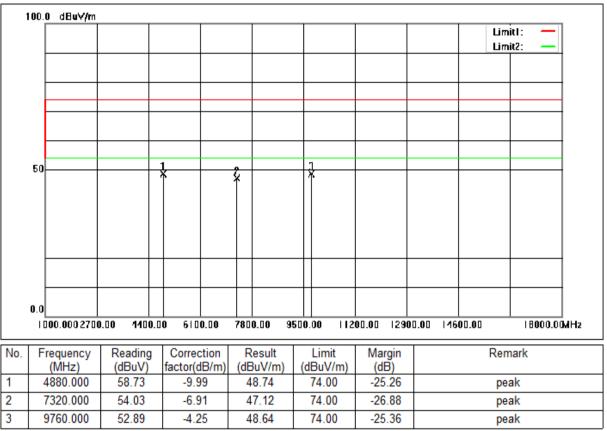
1	00.0 dBu∀/m							
								Limitl: —
								Limit2: —
								<u> </u>
	50			2	3			
	50	2	k	Ŷ				
	0.0							
	1000.0002700).00 1100.0	0 6100.00	7800.00 9	500.00 12	00.00 1290	0.00 1600.00	18000.00MHz
).	Frequency	Reading	Correction	Result	Limit	Margin	R	lemark
_	(MHz)	(dBuV)	factor(dB/m)		(dBuV/m)	(dB)		
	4804.000	58.40	-10.28	48.12	74.00	-25.88		peak
	7206.000	55.15	-7.10	48.05	74.00	-25.95		peak
	9608.000	56.17	-4.96	51.21	74.00	-22.79		peak

Mode:a; Polarization:Horizontal; Modulation:GFSK; ; Channel:Low

Report No.: SHEM200500369001 Page: 28 of 34

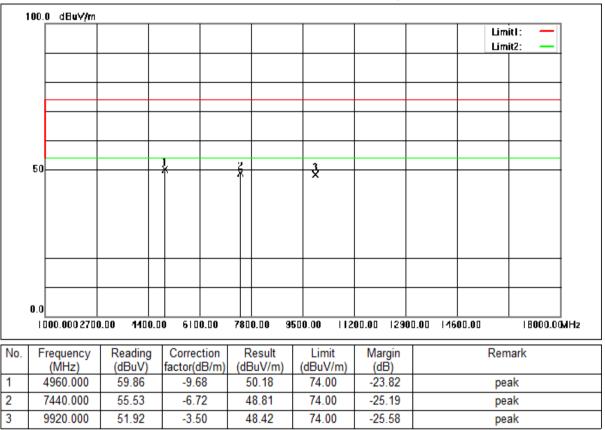
1	00 .	0 dBu∀/m													
								Τ					Limi Limi		•
								+							4
								_							4
								+							-
								1							1
								+							-
	50					2		-	3						_
				X		\$			~						
						+		+							-
						<u> </u>									4
	0.0														
	I	100.000 2700	.00 1100.	.00 610	0.00	780	0.00 9	500	0.00 12	00.00 129	00.00 14	600.00		18000.	00MHz
lo.	Frequency		Reading	ing Correction			Result		Limit	Margin		Remark			
		(MHz) (dBuV) factor(dB/m)				(dBuV/m)		(dB)							
		4804.000	56.27		-10.28		45.99		74.00	-28.01		peak			
		7206.000 54.95 -7.10			47.85			74.00	-26.15		peak				
		9608.000 53.04 -4.96		6	4	8.08		74.00	-25.92			pea	ak		

Mode:a; Polarization:Vertical; Modulation:GFSK; ; Channel:Low


Report No.: SHEM200500369001 Page: 29 of 34

1	00.0 d⊟u∀/m									
								_imit1: — _imit2: —		
			1	2	3					
	50		*	*						
	0.0									
	1000.0002700).00 1100.0	0 6100.00	7800.00 9	500.00 12	00.00 1290	0.00 1600.00	18000.00MHz		
	Frequency	requency Reading Correction		Result	Limit	Margin	R	Remark		
	(MHz)	(dBuV)	factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)				
	4880.000	59.27	-9.99	49.28	74.00	-24.72		peak		
	7320.000	55.54	-6.91	48.63	74.00	-25.37		peak		
Τ	9760.000	55.45	-4.25	51.20	74.00	-22.80		peak		

Mode:a; Polarization:Horizontal; Modulation:GFSK; ; Channel:middle


Report No.: SHEM200500369001 Page: 30 of 34

Mode:a; Polarization:Vertical; Modulation:GFSK; ; Channel:middle

Report No.: SHEM200500369001 Page: 31 of 34

Mode:a; Polarization:Horizontal; Modulation:GFSK; ; Channel:High

SGS

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd.

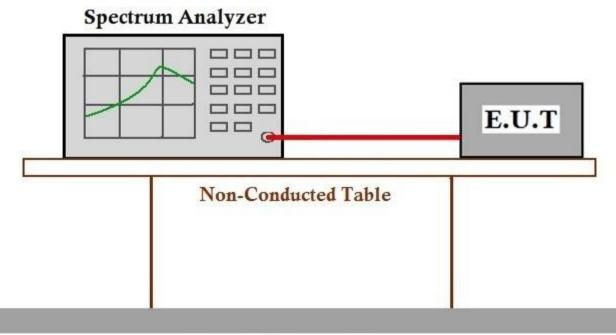
Report No.: SHEM200500369001 Page: 32 of 34

	Γ	dBuV/m										Lim		
	⊢								_			Lim	it2: —	
	50								3					
	50			:	ĸ		\$		- ×					
	⊢						+							
	0.0													
		0.0002700	.00 1100	D.00) 610	0.00	780	0.00 9!	500.00 12	00.00 1290	0.00 146	00.00	18000.00	MHz
).	Fre	quency	Reading	,	Correc			lesult	Limit	Margin		Ren	nark	
(MHz)		MHz)	(dBuV)		factor(dB/m)		(dBuV/m)		(dBuV/m)	(dB)	ļ			
		4960.000 56.27 -9.68			46.59		74.00 -27.4			peak				
	7440.000 53.50 -		-6.7		46.78		74.00		-27.22 peak		ak			
	99	20.000	52.92		-3.5	0	4	9.42	74.00	-24.58		pe	ak	

Mode:a; Polarization:Vertical; Modulation:GFSK; ; Channel:High

Report No.: SHEM200500369001 Page: 33 of 34

7.8 99% Bandwidth


Test Requirement	RSS-Gen Section 6.7
Test Method:	ANSI C63.10 Section 6.9.3

7.8.1 E.U.T. Operation

Operating Environment:

Temperature:22 °CHumidity:50 % RHAtmospheric Pressure:1002 mbarTest modea:TX mode_Keep the EUT in continuously transmitting mode with GFSK
modulation

7.8.2 Test Setup Diagram

Ground Reference Plane

7.8.3 Measurement Procedure and Data

The detailed test data see: Appendix A for SHEM200500369001

Report No.: SHEM200500369001 Page: 34 of 34

8 Test Setup Photographs

Refer to the < Test Setup photos-FCC>.

9 EUT Constructional Details

Refer to the < External Photos > & < Internal Photos >.

- End of the Report -