

TEST REPORT FROM RFI GLOBAL SERVICES LTD

Test of: NTT docomo P-05C

To: OET Bulletin 65 Supplement C: (2001-01)

Test Report Serial No: RFI/SAR/RP81001JD16A V3.0

Version 3.0 supersedes all previous versions

This Test Report Is Issued Under The Authority Of Chris Guy, Head of Global Approvals:

(APPROVED SIGNATORY)

pp

Checked By: Richelieu Quoi

Hamõ

(APPROVED SIGNATORY)
24 March 2011

Test Dates:

Issue Date:

15 March to 24 March 2011

This report is issued in portable document format (PDF). It is only a valid copy of the report if it is being viewed in PDF format with the following security options not allowed: Changing the document, Selecting text and graphics, Adding or changing notes and form fields.

This report may not be reproduced other than in full, except with the prior written approval of RFI Global Services Ltd. The results in this report apply only to the sample(s) tested.

RFI Global Services Ltd, Pavilion A, Ashwood Park, Ashwood Way, Basingstoke, Hampshire, RG23 8BG, UK Tel. +44 (0) 1256 312000 Fax +44 (0) 1256 312001 web: www.rfi-global.com email: contactus@rfi-global.com

This page has been left intentionally blank.

TABLE OF CONTENTS

1. Customer Information	4
2. Equipment Under Test (EUT)	5
3. Test Specification, Methods and Procedures	9
4. Deviations from the Test Specification	.10
5. Operation and Configuration of the EUT during Testing	.11
6. Summary of Test Results	.13
7. Measurements, Examinations and Derived Results	.14
8. Measurement Uncertainty	.29
Appendix 1. Test Equipment Used	.35
Appendix 2. Measurement Methods	.38
Appendix 3. SAR Distribution Scans	.40
Appendix 4. Photographs1	14
Appendix 5. Validation of System1	64
Appendix 6. Simulated Tissues1	66
Appendix 7. DASY4 System Details1	67

1. Customer Information	on
Company Name:	Panasonic Mobile Comms Dev of Europe Ltd
Address:	Panasonic House Willoughby Road Bracknell Berkshire RG12 8FP United Kingdom

2. Equipment Under Test (EUT)				
2.1. Identification of Equipment Under Test (EUT)				
Description:	Mobile Handset			
Brand Name:	NTT docomo			
Model Name or Number:	P-05C			
Serial Number:	None Stated (Customer Label: Sample C4)			
IMEI Number:	355320040013420			
Hardware Version Number:	Rev C			
Software Version Number:	B-D11SL1-00.01.037 D11SL1_Cv58091405			
Hardware Revision of GSM Module:	Not Applicable			
Software Revision of GSM Module:	Not Applicable			
FCC ID Number:	UCE211039A			
Country of Manufacture:	Japan			
Date of Receipt:	14 March 2011			
2.2 Decoription of EUT				

2.2. Description of EUT

The equipment under test was a Dual mode mobile handset operating in the UMTS FDD V, PCS1900 band, WiFi 2450 band Bluetooth band and RFID. The EUT operates on UMTS Release 5 HSDPA 850 MHz Band, GPRS class 10, 802.11b/g/n and Bluetooth 2400 MHz Band.

2.3. Modifications Incorporated in the EUT

There were no modifications incorporated in the EUT.

2.4. Accessories	
The following accessories were supp	blied with the EUT during testing:
Description:	Battery
Brand Name:	NTT
Model Name or Number:	P20*
Serial Number:	None Stated
Cable Length and Type:	Not Applicable
Country of Manufacture:	None Stated
Connected to Port	3 point contact
Description:	Personal Hands-Free
Brand Name:	NTT docomo
Model Name or Number:	Stereo Earphone Set 01
Serial Number:	None Stated
Cable Length and Type:	~1.8m / multi-core
Country of Manufacture:	None Stated
Connected to Port	AV Out Port Unique to Manufacturer
Description:	Micro-SD Memory Card
Brand Name:	Generic
Model Name or Number:	None Stated
Serial Number:	None Stated
Cable Length and Type:	Not applicable
Country of Manufacture:	None Stated
Connected to Port	Dedicated micro-SD card port

2.5. Support Equipment	
The following support equipment wa	s used to exercise the EUT during testing:
Description:	Wireless Communication Test Set
Brand Name:	Agilent
Model Name or Number:	8960 Series 10
Serial Number:	GB46311280
Cable Length and Type:	~4.0m Utiflex Cable
Connected to Port:	RF (Input / Output) Air Link
Description:	Wireless Communication Test Set
Brand Name:	Rohde & Schwarz
Model Name or Number:	CMU200
Serial Number:	111379
Cable Length and Type:	~4.0m Utiflex Cable
Connected to Port:	RF (Input / Output) Air Link
Description:	Communication Test Set
Brand Name:	Will'tek
Model Name or Number:	4202S
Serial Number:	0513018
Cable Length and Type:	~4.0m Utiflex Cable
Connected to Port:	RF (Input / Output) Air Link

2.6. Additional Information Related	to Testing		
Equipment Category	UMTS FDD V / PCS1900/GPRS1900 /Bluetooth / WiFi802.11b/g/n /RFID		
Type of Unit	Portable Transceive	er	
Intended Operating Environment:	Within UMTS FDD	V, GSM and WiFi Co	overage
Transmitter Maximum Output Power Characteristics:	UMTS Band V	Communication Te configured to allow transmit at a maxin 24dBm.	
	PCS1900	Communication Te configured to allow transmit at a maxin 30dBm.	
	WiFi802.11b/g/n	EUT setup in test r EUT to transmit at of up to 15dBm.	
	Bluetooth	~2dBm	
Transmitter Frequency Range:	UMTS Band V	(826 to 847) MHz	
	PCS1900	(1850 to 1910) MH	Z
	WiFi802.11b/g/n	(2412 to 2462) MH	Z
Transmitter Frequency Allocation of EUT When Under Test:	Channel Number	Channel Description	Frequency (MHz)
	4132	Low	826.4
	4183	Middle	836.6
	4233	High	846.6
	512	Low	1850.2
	660	Middle	1879.8
	810	High	1909.8
	1	Low	2412
	6	Middle	2437
Modulation(s):	QPSK (UMTS / HS GMSK (GSM / GPF DBPSK, CCK (WiF	RS): 217 HZ	
Modulation Scheme (Crest Factor):	QPSK (UMTS FDD GMSK (GSM): 8.3 GMSK (GPRS): 4 DBPSK, CCK (WiFi	,	
Antenna Type:	Internal		
Antenna Length:	Unknown		
Number of Antenna Positions:	2 fixed (GSM and V With TV extendable	Vi-Fi) and retractable ant	enna
	0.7)/		
Power Supply Requirement:	3.7V		

Issue Date: 24 March 2011

3. Test Specificati	on, Methods and Procedures		
3.1. Test Specification			
Reference:	OET Bulletin 65 Supplement C: (2001-01)		
Title:	Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields.		
Purpose of Test:	To determine whether the equipment met the basic restrictions as defined in OET Bulletin 65 Supplement C: (2001-01) using the SAR averaging method as described in the test specification above.		
3.2. Methods and	Procedures Reference Documentation		

The methods and procedures used were as detailed in:

Federal Communications Commission, "Evaluating compliance with FCC Guidelines for human exposure to radio frequency electromagnetic fields", OET Bulletin 65 Supplement C, FCC, Washington, D.C, 20554, 2001.

Thomas Schmid, Oliver Egger and Neils Kuster, "Automated E-field scanning system for dosimetric assessments", IEEE Transaction on microwave theory and techniques, Vol. 44, pp. 105-113, January 1996.

Neils Kuster, Ralph Kastle and Thomas Schmid, "Dosimetric evaluation of mobile communications equipment with know precision", IEICE Transactions of communications, Vol. E80-B, No.5, pp. 645-652, May 1997.

KDB 447498 D01 Mobile Portable RF Exposure v04

KDB 648474 D01 SAR Handsets Multi Xmiter and Ant v01r05

KDB 941225 D01 SAR test for 3G devices v02

KDB 248227 D01 SAR measurement Procedure for 802 11 a/b/g Transmitters v01r02

3.3. Definition of Measurement Equipment

The measurement equipment used complied with the requirements of the standards referenced in the methods & procedures section above. Appendix 1 contains a list of the test equipment used.

4. Deviations from the Test Specification

Test was performed as per "KDB 447498 D01 Mobile Portable RF Exposure v04", "KDB 648474 D01 SAR Handsets Multi Xmiter and Ant v01r05", according to the handset procedures in IEEE Std 1528-2003, OET Bulletin 65 Supplement C 01-01 and the specific FCC test procedures.

3G Body SAR test was performed in the middle channel as the measured SAR levels were < 0.8 W/kg, where the transmission band corresponding to all channels were \leq 100 MHz. Testing for the other channels were not required as stated in KDB 447498 D01.

SAR test was performed in the highest output channel for WLAN as the measured SAR levels were < 0.8 W/kg, where the transmission band corresponding to all channels were ≤ 100 MHz. Testing for the other channels were not required as stated in KDB 447498 D01.

Simultaneous transmission was not evaluated as the sum of the individual SAR for WWAN and WLAN was < 0.8 W/kg and the antenna-to-antenna distance was greater than 5 cm.

5. Operation and Configuration of the EUT during Testing

5.1. Operating Modes

The EUT was tested in the following operating mode(s) unless otherwise stated:

- PCS1900 Call allocated mode with Communication Test Set configured to allow the EUT to transmit at a maximum power of up to 30 dBm.
- GPRS1900 Data allocated mode with Communication Test Set configured to allow the EUT to transmit at a maximum power of up to 30 dBm.
- UMTS Band V 12.2kbps with test loop mode 1 and TPC bits configured to all "1's" and Communication Test Set configured to allow the EUT to transmit at a maximum power of up to 24 dBm.
- UMTS FDD V RMC 12.2kbps + HSDPA With Test loop mode 1 and TPC bits configured to all "1's", Sub-test 1and Communication Test Set configured to allow the EUT to transmit at a maximum power of up to 24 dBm.
- WiFi802.11 b/g/n Data allocated test mode using manufacturer customised software "OMTN2 Ver 1.0.6". It was setup in test mode to allow the EUT to transmit at a maximum power of up to 15dBm.
- WLAN SAR test was performed on the middle channel as the measured values were < 50% of the SAR limit as stated in the FCC Public Notice DA 02-1438 by the SCC-34/SC-2. The overall worst case configuration on the middle channel using 1 Mbps for 802.11b was also evaluated on middle channel using 6 Mbps for 802,11g and 6.5 Mbps for 802.11n.

5.2. Configuration and Peripherals

The EUT was tested in the following configuration(s) unless otherwise stated:

- Standalone Battery Powered
- EUT tested in Head and Body-worn configuration. The applied configurations for body-worn orientations where the corresponding edge(s) is closest to the user with the most conservative exposure condition

Head Configuration

- a) The EUT was placed in a normal operating position with the centre of the ear-piece aligned with the ear canal on the phantom.
- b) With the ear-piece touching the phantom the centre line of the EUT was aligned with an imaginary plane (X and Y axis) consisting of three lines connecting both ears and the mouth.
- c) For the cheek position the EUT was gradually moved towards the cheek until any point of the mouth-piece or keypad touched the cheek.
- d) For the tilted position the EUT was positioned as for the cheek position, and then the horizontal angle was increased by fifteen degrees (the phone keypad was moved away from the cheek by fifteen degrees).
- e) SAR measurements were evaluated at maximum power and the unit was operated for an appropriate period prior to the evaluation in order to minimise the drift.
- f) The device was keyed to operate continuously in the transmit mode for the duration of the test.
- g) The location of the maximum spatial SAR distribution (hot spot) was determined relative to the EUT and its antenna.
- h) The EUT was transmitting at full power throughout the duration of the test powered by a fully charged battery.

Body Configuration

- a) The EUT was placed in a normal operating position where the centre of EUT was aligned with the centre reference point on the flat section of the 'SAM' phantom.
- b) With the EUT touching the phantom at an imaginary centre line. The EUT was aligned with a marked plane (X and Y axis) consisting of two lines.
- c) For the touch-safe position the EUT was gradually moved towards the flat section of the 'SAM' phantom until any point of the EUT touched the phantom.
- d) For position(s) greater then 0mm separation the EUT was positioned as per the touch-safe position, and then the vertical height was decreased/adjusted as required.
- e) SAR measurements were evaluated at maximum power and the unit was operated for an appropriate period prior to the evaluation in order to minimise the drift.
- f) The device was keyed to operate continuously in the transmit mode for the duration of the test.
- g) The location of the maximum spatial SAR distribution (hot spot) was determined relative to the EUT and its antenna.
- h) The EUT was transmitting at full power throughout the duration of the test powered by a fully charged battery.

6. Summary of Test Results		
Test Name	Specification Reference	Result
Specific Absorption Rate-UMTS-FDD V Head Configuration 1g	OET Bulletin 65 Supplement C: (2001-01)	Complied
Specific Absorption Rate-UMTS-FDD V Body Configuration 1g	OET Bulletin 65 Supplement C: (2001-01)	Complied
Specific Absorption Rate-UMTS-FDD V + HSDPA Body Configuration 1g	OET Bulletin 65 Supplement C: (2001-01)	Complied
Specific Absorption Rate-PCS 1900 Head Configuration 1g	OET Bulletin 65 Supplement C: (2001-01)	Complied
Specific Absorption Rate-GPRS 1900 Body Configuration 1g	OET Bulletin 65 Supplement C: (2001-01)	Complied
Specific Absorption Rate-PCS 1900 Body Configuration 1g	OET Bulletin 65 Supplement C: (2001-01)	Complied
Specific Absorption Rate-Wi-Fi 802.11b/g/n Body Configuration 1g	OET Bulletin 65 Supplement C: (2001-01)	Complied

SAR Individual Transmitter Evaluation

device, mode	Frequency, (MHz)	P _x (mW)	P _{REF} (mW)	single SAR, W/kg	Remarks
WWAN, UMTS	FDD V	186.2	67	0.547	Routine Evaluation
WWAN, GSM	1900	524.8	32	1.010	Routine Evaluation
WLAN, WiFi802.11b/g/n	2450	30.9	12	0.064	Routine Evaluation
BT, Bluetooth	2410	~ 2	12	:=0	$\begin{aligned} \{P_{BT} \leq 2P_{REF}\} \\ \{d_{WWAN, BT} > 5cm\} \end{aligned}$

SAR Simultaneous Transmitter Evaluation

(x,y)	D(x,y) cm	L(x,y) cm	$SPLSR_{xy}$	Sim-Tx SAR	Remarks
(WWAN _{GSM} , BT)	>5	n/a	n/a	n/a	{no stand-alone SAR for BT}
(WWAN _{GSM} , Wi-Fi)	>5	n/a	n/a	n/a	
Nata (a)					

Note(s):

- 1. Simultaneous transmission evaluation was not required as the output power for *Bluetooth* was < (60/f) and the Sum of all antenna < 1.6w/kg.
- 2. *Bluetooth* transmitter thresholds output power " P_{Ref} = 12 as listed in KDB 648474.
- 3. Px: power level measured by RFI.
- 4. Single SAR value was measured by RFI.
- 5. The "Antenna-to-Antenna distance and Antenna-to-User distance were provided by the customer.

6.1. Location of Tests

All the measurements described in this report were performed at the premises of RFI Global Services Ltd, Pavilion A, Ashwood Park, Ashwood Way, Basingstoke, Hampshire, RG23 8BG United Kingdom

7. Measurements, Examinations and Derived Results

7.1. General Comments

This section contains test results only.

Measurement uncertainties are evaluated in accordance with current best practice. Our reported expanded uncertainties are based on standard uncertainties, which are multiplied by an appropriate coverage factor to provide a statistical confidence level of approximately 95%. Please refer to section 8 for details of measurement uncertainties.

Issue Date: 24 March 20

7.2. Test Res	ults								
7.2.1.Specific Test Summar	Absorption Ra	ate - UN	ITS	-FDD V H	ead Config	guration 1	g		
Tissue Volume			1g	1g					
Maximum Leve	Maximum Level (W/kg):			547					
Environment	al Conditions:								
Temperature Variation in Lab (°C):			23	.0 to 23.0					
Temperature Variation in Liquid (°C):			23	.7 to 23.7					
Results:									
EUT Position	Phantom Configuration	Chann Numbe	-	Level (W/kg)	Limit (W/kg)	Margin (W/kg)	Note(s)	Result	
Touch Slide Closed Antenna Retracted	Left	4183		0.274	1.600	1.326	1, 2	Complied	
Touch Slide Closed Antenna Extended	Left	4183		0.547	1.600	1.053	1, 2	Complied	
Touch Slide Open Antenna Retracted	Left	4183		0.296	1.600	1.304	1, 2	Complied	
Touch Slide Open Antenna Extended	Left	4183		0.456	1.600	1.144	1, 2	Complied	
Tilt Slide Closed Antenna Retracted	Left	4183		0.233	1.600	1.367	1, 2	Complied	
Tilt Slide Closed Antenna Extended	Left	4183		0.356	1.600	1.244	1, 2	Complied	
Tilt Slide Open Antenna Retracted	Left	4183		0.118	1.600	1.482	1, 2	Complied	
Tilt Slide Open Antenna Extended	Left	4183		0.227	1.600	1.373	1, 2	Complied	

Specific Abso	orption Rate - L	JMTS-FDD	V Head C	onfigurati	on 1g (Co	ontinued)	
EUT Position	Phantom Configuration	Channel Number	Level (W/kg)	Limit (W/kg)	Margin (W/kg)	Note(s)	Result
Touch Slide Closed Antenna Retracted	Right	4183	0.293	1.600	1.307	1, 2	Complied
Touch Slide Closed Antenna Extended	Right	4183	0.506	1.600	1.094	1, 2	Complied
Touch Slide Open Antenna Retracted	Right	4183	0.275	1.600	1.325	1, 2	Complied
Touch Slide Open Antenna Extended	Right	4183	0.459	1.600	1.141	1, 2	Complied
Tilt Slide Closed Antenna Retracted	Right	4183	0.245	1.600	1.355	1, 2	Complied
Tilt Slide Closed Antenna Extended	Right	4183	0.364	1.600	1.236	1, 2	Complied
Tilt Slide Open Antenna Retracted	Right	4183	0.131	1.600	1.469	1, 2	Complied
Tilt Slide Open Antenna Extended	Right	4183	0.247	1.600	1.353	1, 2	Complied
Note(s):							

1. SAR test was performed in the middle channel only as the measured levels were < 50% of the SAR limit as stated in the FCC Public Notice DA 02-1438 by the SCC-34/SC-2.

2. 12.2 kbps RMC with TPC bits configured to all "1's".

7.2.2.Specific Absorption Rate - UMTS-FDD V Body Configuration 1g Test Summary:

Tissue Volume););		1g					
Maximum Leve	el (W/ka):		0.412					
	al Conditions:							
	ariation in Lab (°C):	23.0 to 2	23.0				
-	Temperature Variation in Liquid (°C):							
Results:			21.2 to 2					
EUT Position	el Lev er (W/		Limit (W/kg)	Margin (W/kg)	Note(s)	Result		
Front of EUT Facing Phantom with Slide Closed Antenna Retracted	Flat (SAM)	4183	0.2	89	1.600	1.311	1, 2, 3	Complied
Front of EUT Facing Phantom with Slide Closed Antenna Extended	Flat (SAM)	4183	0.2	98	1.600	1.302	1, 2, 3	Complied
Front of EUT Facing Phantom with Slide Open Antenna Retracted	Flat (SAM)	4183	0.2	90	1.600	1.310	1, 2, 3	Complied
Front of EUT Facing Phantom with Slide Open Antenna Extended	Flat (SAM)	4183	0.3	46	1.600	1.254	1, 2, 3	Complied

Specific Abso	orption Rate - L	JMTS-FDD	V Body C	onfigurati	on 1g (Co	ntinued)	
EUT Position	Phantom Configuration	Channel Number	Level (W/kg)	Limit (W/kg)	Margin (W/kg)	Note(s)	Result
Rear of EUT Facing Phantom with Slide Closed Antenna Retracted	Flat (SAM)	4183	0.412	1.600	1.188	1, 2, 3	Complied
Rear of EUT Facing Phantom with Slide Closed Antenna Extended	Flat (SAM)	4183	0.256	1.600	1.344	1, 2, 3	Complied
Rear of EUT Facing Phantom with Slide Open Antenna Retracted	Flat (SAM)	4183	0.330	1.600	1.270	1, 2, 3	Complied
Rear of EUT Facing Phantom with Slide Open Antenna Extended	Flat (SAM)	4183	0.289	1.600	1.311	1, 2, 3	Complied
Rear of EUT Facing Phantom with Slide Closed Antenna Retracted with PHF	Flat (SAM)	4183	0.275	1.600	1.325	1, 2, 3	Complied
Note(s):							

1. SAR measurements were performed with the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.

2. SAR test was performed in the middle channel only as the measured levels were < 50% of the SAR limit as stated in the FCC Public Notice DA 02-1438 by the SCC-34/SC-2.

3. 12.2 kbps RMC with TPC bits configured to all "1's".

7.2.3.Specific Absorption Rate - UMTS-FDD V + HSDPA Body Configuration 1g Test Summary:

	-						
Tissue Volume):		1g				
Maximum Level (W/kg):			0.391				
Environment	al Conditions:						
Temperature Variation in Lab (°C):			23.0 to 23.0				
Temperature Variation in Liquid (°C):			21.2 to 21.2				
Results:							
EUT Position	Phantom Configuration	Channe Numbe		Limit (W/kg)	Margin (W/kg)	Note(s)	Result
Rear of EUT							
Facing Phantom with Slide Closed Antenna Retracted	Flat (SAM)	4183	0.391	1.600	1.209	1, 2, 3	Complied

1. SAR measurements were performed with the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.

- 2. SAR test was performed in the middle channel only as the measured levels were < 50% of the SAR limit as stated in the FCC Public Notice DA 02-1438 by the SCC-34/SC-2.
- 3. RMC+ HSDPA Enabled using FRC with H-Set 1, Test loop mode 1 and TPC bits configured to all "1's", Sub-test 1.

7.2.4.Specific Absorption Rate - PCS 1900 Head Configuration 1g Test Summary:

· · · · · · · · · · · · · · · · · · ·	
Tissue Volume:	1g
Maximum Level (W/kg):	1.010
Environmental Conditions:	
Temperature Variation in Lab (°C):	23.0 to 23.0
Temperature Variation in Liquid (°C):	23.5 to 23.5
Results:	

EUT Position	Phantom Configuration	Channel Number	Level (W/kg)	Limit (W/kg)	Margin (W/kg)	Note(s)	Result
Touch Slide Closed Antenna Retracted	Left	660	0.401	1.600	1.199	-	Complied
Touch Slide Closed Antenna Extended	Left	660	0.407	1.600	1.193	-	Complied
Touch Slide Open Antenna Retracted	Left	660	0.118	1.600	1.482	-	Complied
Touch Slide Open Antenna Extended	Left	660	0.400	1.600	1.200	-	Complied
Tilt Slide Closed Antenna Retracted	Left	660	0.565	1.600	1.035	-	Complied
Tilt Slide Closed Antenna Extended	Left	660	0.572	1.600	1.028	-	Complied
Tilt Slide Open Antenna Retracted	Left	660	0.101	1.600	1.499	-	Complied
Tilt Slide Open Antenna Extended	Left	660	0.887	1.600	0.713	-	Complied
Tilt Slide Open Antenna Extended	Left	512	0.761	1.600	0.839	-	Complied
Tilt Slide Open Antenna Extended	Left	810	1.010	1.600	0.590	-	Complied

Specific Abs	orption Rate - F	PCS 1900 H	lead Conf	iguration	1g (Contin	ued)	
EUT Position	Phantom Configuration	Channel Number	Level (W/kg)	Limit (W/kg)	Margin (W/kg)	Note(s)	Result
Touch Slide Closed Antenna Retracted	Right	660	0.499	1.600	1.101	-	Complied
Touch Slide Closed Antenna Extended	Right	660	0.511	1.600	1.089	-	Complied
Touch Slide Open Antenna Retracted	Right	660	0.097	1.600	1.503	-	Complied
Touch Slide Open Antenna Extended	Right	660	0.265	1.600	1.335	-	Complied
Tilt Slide Closed Antenna Retracted	Right	660	0.552	1.600	1.048	-	Complied
Tilt Slide Closed Antenna Extended	Right	660	0.556	1.600	1.044	-	Complied
Tilt Slide Open Antenna Retracted	Right	660	0.083	1.600	1.517	-	Complied
Tilt Slide Open Antenna Extended	Right	660	0.535	1.600	1.065	-	Complied

Page: 21 of 169

7.2.5.Specific Absorption Rate - GPRS 1900 Body Configuration 1g Test Summary:

rest Summary.					
Tissue Volume:	1g				
Maximum Level (W/kg):	0.207				
Environmental Conditions:					
Temperature Variation in Lab (°C):	23.0 to 23.0				
Temperature Variation in Liquid (°C):	23.2 to 23.2				
Results:					

EUT Position	Phantom Configuration	Channel Number	Level (W/kg)	Limit (W/kg)	Margin (W/kg)	Note(s)	Result
Front of EUT Facing Phantom with Slide Closed Antenna Retracted	Flat (SAM)	660	0.159	1.600	1.441	1, 2	Complied
Front of EUT Facing Phantom with Slide Closed Antenna Extended	Flat (SAM)	660	0.192	1.600	1.408	1, 2	Complied
Front of EUT Facing Phantom with Slide Open Antenna Retracted	Flat (SAM)	660	0.116	1.600	1.484	1, 2	Complied
Front of EUT Facing Phantom with Slide Open Antenna Extended	Flat (SAM)	660	0.207	1.600	1.393	1, 2	Complied

Specific Abso	orption Rate - O	SPRS 1900	Body Co	nfiguratio	n 1g (Cont	inued)	
EUT Position	Phantom Configuration	Channel Number	Level (W/kg)	Limit (W/kg)	Margin (W/kg)	Note(s)	Result
Rear of EUT Facing Phantom with Slide Closed Antenna Retracted	Flat (SAM)	660	0.164	1.600	1.436	1, 2	Complied
Rear of EUT Facing Phantom with Slide Closed Antenna Extended	Flat (SAM)	660	0.180	1.600	1.420	1, 2	Complied
Rear of EUT Facing Phantom with Slide Open Antenna Retracted	Flat (SAM)	660	0.120	1.600	1.480	1, 2	Complied
Rear of EUT Facing Phantom with Slide Open Antenna Extended	Flat (SAM)	660	0.112	1.600	1.488	1, 2	Complied
Front of EUT Facing Phantom with Slide Open Antenna Extended With PHF	Flat (SAM)	660	0.177	1.600	1.423	1, 2	Complied
Note(s):							

1. SAR measurements were performed with the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.

2. SAR test was performed in the middle channel only as the measured levels were < 50% of the SAR limit as stated in the FCC Public Notice DA 02-1438 by the SCC-34/SC-2.

* GPRS mode configured with 2 Uplink slot active.

7.2.6.Specific Absorption Rate - PCS 1900 Body Configuration 1g

Test Summar	r y :							
Tissue Volume	e :		1g					
Maximum Level (W/kg):			0.150					
Environment	al Conditions:							
Temperature Variation in Lab (°C):			23.0 to 23.0					
Temperature Variation in Liquid (°C):			23.2 to 23.2					
Results:								
EUT Position	Phantom Configuration	Channe Number		Limit (W/kg)	Margin (W/kg)	Note(s)	Result	
Front of EUT Facing Phantom with Slide Open	Flat (SAM)	660	0.150	1.600	1.450	1, 2	Complied	
Antenna Extended								

1. SAR measurements were performed with the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.

2. SAR test was performed in the middle channel only as the measured levels were < 50% of the SAR limit as stated in the FCC Public Notice DA 02-1438 by the SCC-34/SC-2.

7.2.7.Specific Absorption Rate - WLAN 802.11b/g/n Body Configuration 1g Test Summary:

Tissue Volume):		1g								
Maximum Leve	el (W/kg):		0.064								
Environment	al Conditions:										
Temperature V	/ariation in Lab (°C):	23.0 to 23.0								
Temperature V	ariation in Liqui	d (°C):	21.9 to 21.9								
Results:											
EUT Position	Phantom Configuration	Chann Numbe		Limit (W/kg)	Margin (W/kg)	Note(s)	Result				
Front of EUT Facing Phantom with Slide Closed Antenna Retracted	Flat (SAM)	6	0.047	1.600	1.553	1, 2, 3	Complied				
Front of EUT Facing Phantom with Slide Closed Antenna Extended	Flat (SAM)	6	0.046	1.600	1.554	1, 2, 3	Complied				
Front of EUT Facing Phantom with Slide Open Antenna Retracted	Flat (SAM)	6	0.022	1.600	1.578	1, 2, 3	Complied				
Front of EUT Facing Phantom with Slide Open Antenna Extended	Flat (SAM)	6	0.020	1.600	1.580	1, 2, 3	Complied				

Specific Abso	orption Rate – V	WLAN 802	.11b/g/n B	ody Confi	guration 1	g (Contin	ued)
EUT Position	Phantom Configuration	Channel Number	Level (W/kg)	Limit (W/kg)	Margin (W/kg)	Note(s)	Result
Rear of EUT Facing Phantom with Slide Closed Antenna Retracted	Flat (SAM)	6	0.064	1.600	1.536	1, 2, 3	Complied
Rear of EUT Facing Phantom with Slide Closed Antenna Extended	Flat (SAM)	6	0.062	1.600	1.538	1, 2, 3	Complied
Rear of EUT Facing Phantom with Slide Open Antenna Retracted	Flat (SAM)	6	0.043	1.600	1.557	1, 2, 3	Complied
Rear of EUT Facing Phantom with Slide Open Antenna Extended	Flat (SAM)	6	0.044	1.600	1.556	1, 2, 3	Complied
Rear of EUT Facing Phantom with Slide Closed Antenna Retracted With PHF	Flat (SAM)	6	0.061	1.600	1.539	1, 2, 3	Complied
Rear of EUT Facing Phantom with Slide Closed Antenna Retracted	Flat (SAM)	6	0.047	1.600	1.553	1, 2, 4	Complied
Rear of EUT Facing Phantom with Slide Closed Antenna Retracted	Flat (SAM)	6	0.031	1.600	1.569	1, 2, 5	Complied
Note(s):							

1. SAR measurements were performed with the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.

- 2. SAR test was performed in the middle channel only as the measured levels were < 50% of the SAR limit as stated in the FCC Public Notice DA 02-1438 by the SCC-34/SC-2.
- 3. WLAN 802.11b at 1 Mbps
- 4. WLAN 802.11g at 6 Mbps
- 5. WLAN 802.11n at 6.5 Mbps

Page: 26 of 169

7.2.8. Cor UMTS FD		verage Powe	r Measureme	ent		
Мос	des		WCDMA			
Se	ts	1	2	Voice / RMC12.2kbps		
Band	Channel	Power (dBm) Avg.	Power (dBm) Avg.	Power (dBm) Avg.	Power (dBm) Avg.	Power (dBm) Avg.
	4132	22.7	20.0	18.7	18.7	22.7
850	4183	22.7	19.8	18.5	18.5	22.7
	4233	22.5	19.7	18.3	18.3	22.5
ß	с	2	12	15	15	
ßı	ßd		15	8	4	
ΔΑϹΚ, ΔΝΑ	ACK, ∆CQI	8	8	8	8	

Sub-test 1 Setup for Release 5 HSDPA

Sub-test	β _c	β _d	B _d <i>(SF)</i>	$\beta_{c/} \beta_{d}$	${\beta_{hs}}^{(1)}$	SM (dB) ⁽²⁾
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15 ⁽³⁾	15/15 ⁽³⁾	64	12/15 ⁽³⁾	24/15	1.0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

Note 1: $\Delta_{ACK, \Delta_{NACK}}$ and Δ_{CQI} = 8 \Leftrightarrow A_{hs} = β_{hs}/β_c = 30/15 \Leftrightarrow β_{hs} = 30/15 * β_c

Note 2: CM = 1 for $\beta_{c'} \beta_d$ = 12/15, B_{hs}/β_c = 24/15

Note 3: For subtest 2 the $\beta_{c'}$ β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 11/15$ and $\beta_d = 15/15$

PCS/GPRS 1900 Average Power Measurements

Channel Number	Frequency (MHZ)	GSM – TX Power before Test (dBm)	GPRS – TX Power before Test (dBm)	Note
512	1850.2	27.2	25.3	Conducted
660	1879.8	26.0	24.4	Conducted
810	1909.8	23.9	22.5	Conducted

Conducted Average P WLAN 802.11b/g/n	ower Measurement (C	Continued)	
Channel Number	Frequency (GHZ)	TX Power before Test (dBm)	Note
1	2.412	14.9	
6	2.437	14.8	2.4GHz 802.11b (1Mbps)
11	2.462	14.6	(
1	2.412	14.6	
6	2.437	14.3	2.4GHz 802.11b (11Mbps)
11	2.462	14.3	(**********
1	2.412	14.8	
6	2.437	14.6	2.4GHz 802.11g (6Mbps)
11	2.462	14.6	(
1	2.412	14.3	
6	2.437	13.9	2.4GHz 802.11g (54Mbps)
11	2.462	13.9	(2
1	2.412	13.3	
6	2.437	13.0	2.4GHz 802.11n (6.5Mbps)
11	2.462	12.6	(0.0
1	2.412	12.5	
6	2.437	12.2	2.4GHz 802.11n (65Mbps)
11	2.462	11.8	(

8. Measurement Uncertainty

No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently, the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

The uncertainty of the result may need to be taken into account when interpreting the measurement results.

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor, such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

Test Name	Confidence Level	Calculated Uncertainty
Specific Absorption Rate-UMTS-FDD V Head Configuration 1g	95%	19.38
Specific Absorption Rate-UMTS-FDD V Body Configuration 1g	95%	19.51
Specific Absorption Rate-PCS 1900 Head Configuration 1g	95%	20.18
Specific Absorption Rate-GPRS/PCS 1900 Body Configuration 1g	95%	19.44
Specific Absorption Rate-Wi-Fi 2450 Body Configuration 1g	95%	19.34

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty, the published guidance of the appropriate accreditation body is followed.

Test Report Version 3.0

Issue Date: 24 March 2011

Type	Source of uncertainty	+	-	Probability	Divisor	C _{i (10g)}	Stan Uncer		υ _i or
,		Value	Value	Distribution		1(109)	+ u (%)	- u (%)	Vef
В	Probe calibration	11.000	11.000	normal (k=2)	2.0000	1.0000	5.500	5.500	×
В	Axial Isotropy	0.500	0.500	normal (k=2)	2.0000	1.0000	0.250	0.250	×
В	Hemispherical Isotropy	2.600	2.600	normal (k=2)	2.0000	1.0000	1.300	1.300	×
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	×
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	×
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	x
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	×
В	Readout Electronics	0.320	0.320	normal (k=2)	2.0000	1.0000	0.160	0.160	x
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	×
В	Integration Time	1.730	1.730	Rectangular	1.7321	1.0000	0.999	0.999	×
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	×
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	×
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	×
В	Extrapolation and integration / Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	×
А	Test Sample Positioning	2.400	2.400	normal (k=1)	1.0000	1.0000	2.400	2.400	10
А	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	×
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	×
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	×
А	Liquid Conductivity (measured value)	4.920	4.920	normal (k=1)	1.0000	0.6400	3.149	3.149	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	×
А	Liquid Permittivity (measured value)	4.970	4.970	normal (k=1)	1.0000	0.6000	2.982	2.982	5
	Combined standard uncertainty			t-distribution			9.89	9.89	>20
	Expanded uncertainty			k = 1.96			19.38	19.38	>20

	Specific Absorption Rate					5	Stan	dard	υί
Туре	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	C i (10g)	Uncer + u (%)	tainty - u (%)	Or Veff
В	Probe calibration	11.000	11.000	normal (k=2)	2.0000	1.0000	5.500	5.500	- 011
В	Axial Isotropy	0.500	0.500	normal (k=2)	2.0000	1.0000	0.250	0.250	00
В	Hemispherical Isotropy	2.600	2.600	normal (k=2)	2.0000	1.0000	1.300	1.300	×
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	×
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	×
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	œ
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	×
В	Readout Electronics	0.320	0.320	normal (k=2)	2.0000	1.0000	0.160	0.160	×
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	×
В	Integration Time	1.730	1.730	Rectangular	1.7321	1.0000	0.999	0.999	×
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	×
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	×
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	×
В	Extrapolation and integration /Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	×
А	Test Sample Positioning	2.900	2.900	normal (k=1)	1.0000	1.0000	2.900	2.900	10
А	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	×
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	×
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	×
А	Liquid Conductivity (measured value)	4.690	4.690	normal (k=1)	1.0000	0.6400	3.002	3.002	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	×
А	Liquid Permittivity (measured value)	4.860	4.860	normal (k=1)	1.0000	0.6000	2.916	2.916	5
	Combined standard uncertainty			t-distribution			9.96	9.96	>250
	Expanded uncertainty			k = 1.96			19.51	19.51	>250

8.2. Specific Absorption Rate- UMTS FDD V Body Configuration 1g

8.3. 8	Specific Absorption Rate	-PCS 19	900 Hea	d Configurati	ion 1g				
Туре	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	Ci (10g)	Stan Uncer + u (%)		ບ _i Or V _{eff}
В	Probe calibration	11.000	11.000	normal (k=2)	2.0000	1.0000	5.500	5.500	00
В	Axial Isotropy	0.500	0.500	normal (k=2)	2.0000	1.0000	0.250	0.250	×
В	Hemispherical Isotropy	2.600	2.600	normal (k=2)	2.0000	1.0000	1.300	1.300	×
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	×
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	œ
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	œ
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	×
В	Readout Electronics	0.320	0.320	normal (k=2)	2.0000	1.0000	0.160	0.160	×
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	×
В	Integration Time	1.730	1.730	Rectangular	1.7321	1.0000	0.999	0.999	×
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	×
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	×
В	Probe Positioning with Regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	×
В	Extrapolation and integration / Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	×
А	Test Sample Positioning	3.800	3.800	normal (k=1)	1.0000	1.0000	3.800	3.800	10
А	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	×
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	×
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	×
А	Liquid Conductivity (measured value)	4.900	4.900	normal (k=1)	1.0000	0.6400	3.136	3.136	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	×
А	Liquid Permittivity (measured value)	4.880	4.880	normal (k=1)	1.0000	0.6000	2.928	2.928	5
	Combined standard uncertainty			t-distribution			10.30	10.30	>200
	Expanded uncertainty			k = 1.96			20.18	20.18	>200

8.3. Specific Absorption Rate-PCS 1900 Head Configuration 1g

Туре	Source of uncertainty	+		Probability	Divisor	Ci (10g)	Stan Uncer		υ _i or
,,		Value	Value	Distribution		. (+ u (%)	- u (%)	υ _{eff}
В	Probe calibration	11.000	11.000	normal (k=2)	2.0000	1.0000	5.500	5.500	×
В	Axial Isotropy	0.500	0.500	normal (k=2)	2.0000	1.0000	0.250	0.250	œ
В	Hemispherical Isotropy	2.600	2.600	normal (k=2)	2.0000	1.0000	1.300	1.300	×
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	œ
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	×
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	×
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	×
В	Readout Electronics	0.320	0.320	normal (k=2)	2.0000	1.0000	0.160	0.160	×
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	×
В	Integration Time	1.730	1.730	Rectangular	1.7321	1.0000	0.999	0.999	x
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	x
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	×
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	×
В	Extrapolation and integration / Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	×
А	Test Sample Positioning	2.500	2.500	normal (k=1)	1.0000	1.0000	2.500	2.500	10
А	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	×
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	×
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	×
А	Liquid Conductivity (measured value)	4.940	4.940	normal (k=1)	1.0000	0.6400	3.162	3.162	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	×
А	Liquid Permittivity (measured value)	4.980	4.980	normal (k=1)	1.0000	0.6000	2.988	2.988	5
	Combined standard uncertainty			t-distribution			9.92	9.92	>200
	Expanded uncertainty			k = 1.96			19.44	19.44	>200

8.4. Specific Absorption Rate-PCS / GPRS1900 Body Configuration 1g

8.5. 8	3.5. Specific Absorption Rate-Wi-Fi 2450 Body Configuration 1g											
Туре	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	Ci (10g)	Stan Uncer + u (%)		υ _i or υ _{eff}			
В	Probe calibration	11.000	11.000	normal (k=2)	2.0000	1.0000	5.500	5.500	œ			
В	Axial Isotropy	0.500	0.500	normal (k=2)	2.0000	1.0000	0.250	0.250	×			
В	Hemispherical Isotropy	2.600	2.600	normal (k=2)	2.0000	1.0000	1.300	1.300	×			
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	x			
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	×			
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	x			
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	×			
В	Readout Electronics	0.320	0.320	normal (k=2)	2.0000	1.0000	0.160	0.160	×			
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	×			
В	Integration Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	×			
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	×			
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	×			
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	×			
В	Extrapolation and integration / Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	œ			
А	Test Sample Positioning	2.570	2.570	normal (k=1)	1.0000	1.0000	2.570	2.570	10			
А	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10			
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	×			
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	×			
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	×			
А	Liquid Conductivity (measured value)	4.900	4.900	normal (k=1)	1.0000	0.6400	3.136	3.136	5			
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	×			
А	Liquid Permittivity (measured value)	4.920	4.920	normal (k=1)	1.0000	0.6000	2.952	2.952	5			
	Combined standard uncertainty			t-distribution			9.87	9.87	>200			
	Expanded uncertainty			k = 1.96			19.34	19.34	>200			

8.5. Specific Absorption Rate-Wi-Fi 2450 Body Configuration 1g

RFI No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
A034	Narda 20W Termination	Narda	374BNM	8706	Calibrated as part of system	-
A1097	SMA Directional Coupler	MiDISCO	MDC6223- 30	None	Calibrated as part of system	-
A1137	3dB Attenuator	Narda	779	04690	Calibrated as part of system	-
A1174	Dielectric Probe Kit	Agilent Technologies	85070C	Us99360072	Calibrated before use	-
A1328	Handset Positioner	Schmid & Partner Engineering AG	Modification	SD 000 H01 DA	-	-
A1182	Handset Positioner	Schmid & Partner Engineering AG	V3.0	None	-	-
A1234	Data Acquisition Electronics	Schmid & Partner Engineering AG	DAE3	450	09 Feb 2011	12
A1235	900 MHz Dipole Kit	Schmid & Partner Engineering AG	D900V2	124	09 Feb 2011	24
A1237	1900 MHz Dipole Kit	Schmid & Partner Engineering AG	D1900V2	540	08 Feb 2011	24
A1238	SAM Phantom	Schmid & Partner Engineering AG	SAM b	001	Calibrated before use	-
A1322	2450 MHz Dipole Kit	Schmid & Partner Engineering AG	D2450V2	725	08 Feb 2011	24
A1378	Probe	Schmid & Partner Engineering AG	EX3 DV3	3508	15 Feb 2011	12
A1497	Amplifier	Mini-Circuits	zhl-42w (sma)	e020105	Calibrated as part of system	-
A1566	SAM Phantom	Schmid & Partner Engineering AG	SAM a	002	Calibrated before use	-
A1990	Digital Camera	Samsung	E515	A23WC90 8A05431K	-	-
A215	20 dB Attenuator	Narda	766-20	9402	Calibrated as part of system	-
A1531	Antenna	AARONIA AG	7025	02458	-	-
C1042	Network Analyzer Cable	Agilent	8120-4779	349	-	-
C1145	Cable	Rosenberger MICRO- COAX	FA147A F003003030	41843-1	Calibrated as part of system	-
C1146	Cable	Rosenberger MICRO-COAX	FA147A F030003030	41752-1	Calibrated as part of system	-

Page: 35 of 169

RFI Global Services Ltd.

Test Report

Version 3.0

Serial No: RFI/SAR/RP81001JD16A V3.0

Issue Date: 24 March 2011

RFI No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
G0528	Robot Power Supply	Schmid & Partner Engineering AG	DASY4	None	Calibrated before use	-
G087	PSU	Thurlby Thandar	CPX200	100701	Calibrated before use	-
M1015	Network Analyser	Agilent Technologies	8753ES	US39172406	27 Sept 2010	12
M1047	Robot Arm	Staubli	RX908 L	F00/SD8 9A1/A/01	Calibrated before use	-
M1159	Signal Generator	Agilent Technologies	E8241A	US42110332	Internal Checked 15 Dec 2010	4
M1071	Spectrum Analyzer	Agilent	HP8590E	3647U00514	(Monitoring use only)	-
M1270	Temperature/ Humidity/ Pressure Meter	RS Components	None	None	Internal Checked 31 March 2010	12
M1071	Spectrum Analyzer	Agilent	HP8590E	3647U00514	(Monitoring use only)	-
M1044	Diode Power Sensor	Rohde & Schwarz	NRV-Z1	893350/019	26 May 2010	12
M265	Diode Power Sensor	Rohde & Schwarz	NRV-Z1	893350/017	26 May 2010	12
M263	Dual Channel Power Meter	Rohde & Schwarz	NRVD	826558/004	27 May 2010	12
S256	SAR Lab	RFI	Site 56	N/A	Calibrated before use	-

A.1.1. Calibration Certificates

This section contains the calibration certificates and data for the Probe(s) and Dipole(s) used, which are not included in the total number of pages for this report.

ASSET: A1235 Checked by the 102

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

2011

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Client RFI			Certificate No: DS	00V2-124_Feb11
CALIBRATION C	ERTIFICATE			
Object	D900V2 - SN: 12	4		
Calibration procedure(s)	QA CAL-05.v8 Calibration proce	dure for dipole valida	tion kits	
Calibration date:	February 09, 201	1		
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&1	rtainties with confidence p	robability are given on the foll	owing pages and are p	part of the certificate.
Primary Standards	ID #	Cal Date (Certificate No.)		Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)		Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)		Oct-11
Reference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01200)		Mar-11
Type-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162		Mar-11
Reference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205_		Apr-11
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_		Jun-11
	·	· -	- ,	
Secondary Standards	ID #	Check Date (in house)		Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check	Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check (Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check	Oct-10)	In house check: Oct-11
Calibrated by:	Name Dimce Iliev	Function Laboratory Tec	:hnician	Signature). Hitt
Approved by:	Katja Pokovic	Technical Man	ager	Chil
				lssued: February 9, 2011
This calibration certificate shall no	or de reproduced except in	ruii without written approval c	of the laboratory.	

Certificate No: D900V2-124_Feb11

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

- Schweizerischer Kalibrierdienst
- S Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole • positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. .
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna ٠ connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6
Extrapolation	Advanced Extrapolation	····
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.2 °C	41.5	0.97 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.3 ± 6 %	0.95 mho/m ± 6 %
Head TSL temperature during test	(21.5 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.72 mW / g
SAR normalized	normalized to 1W	10.9 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	11.0 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.74 mW / g
SAR normalized	normalized to 1W	6.96 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	7.01 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.0	1.05 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.6 ± 6 %	1.05 mho/m ± 6 %
Body TSL temperature during test	(21.8 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.79 mW / g
SAR normalized	normalized to 1W	11.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	11.1 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.79 mW / g
SAR normalized	normalized to 1W	7.16 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	7.14 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.9 Ω - 8.2 jΩ	
Return Loss	- 21.6 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.1 Ω - 8.6 jΩ	
Return Loss	- 20.2 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.409 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

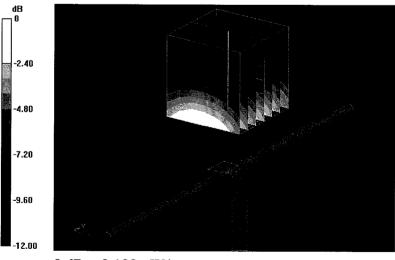
Manufactured by	SPEAG
Manufactured on	July 04, 2001

DASY5 Validation Report for Head TSL

Date/Time: 09.02.2011 11:44:15

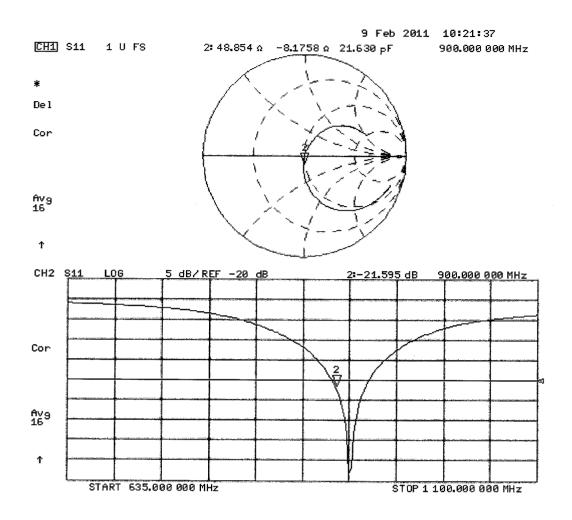
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:124


Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1 Medium: HSL900 Medium parameters used: f = 900 MHz; σ = 0.95 mho/m; ϵ_r = 40.3; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.88, 5.88, 5.88); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY52, V52.6.1 Build (408)
- Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)


Pin=250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.560 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 4.135 W/kg SAR(1 g) = 2.72 mW/g; SAR(10 g) = 1.74 mW/g Maximum value of SAR (measured) = 3.183 mW/g

 $0 \, dB = 3.180 \, mW/g$

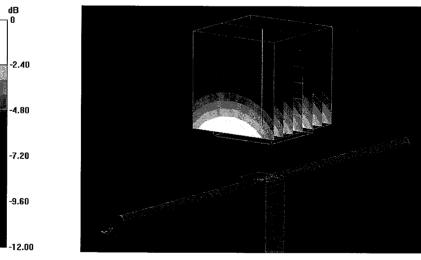
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

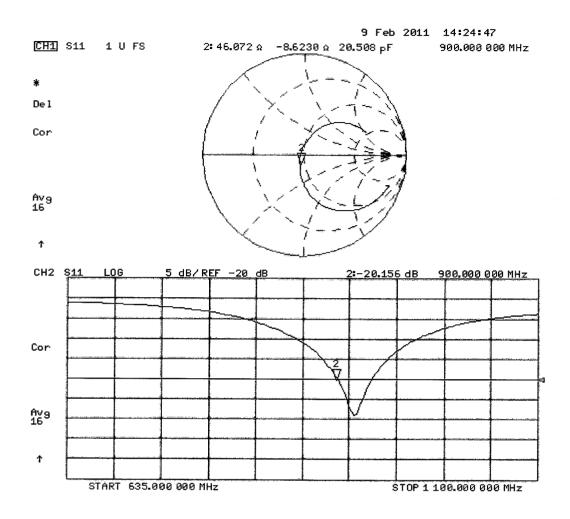
Date/Time: 09.02.2011 14:54:48

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:124


Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1 Medium: M900 Medium parameters used: f = 900 MHz; σ = 1.05 mho/m; ϵ_r = 53.6; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:


- Probe: ES3DV3 SN3205; ConvF(5.81, 5.81, 5.81); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY52, V52.6.1 Build (408)
- Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Pin=250 mW/d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.520 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 4.203 W/kg SAR(1 g) = 2.79 mW/g; SAR(10 g) = 1.79 mW/g Maximum value of SAR (measured) = 3.271 mW/g

 $0 \, dB = 3.270 \, mW/g$

ASSET: A/237 - Checked by 21

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

021

2011

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

S

С

S

Client RFI			Certificate No: D1900V2-540_Feb11
CALIBRATION	CERTIFICAT		
Object	D1900V2 - SN: 5	540	
Calibration procedure(s)	QA CAL-05.v8 Calibration proce	dure for dipole validat	ition kits
Calibration date:	February 08, 201	1	
The measurements and the unce All calibrations have been condu	ertainties with confidence p	robability are given on the follo	e the physical units of measurements (SI). lowing pages and are part of the certificate. erature (22 ± 3)°C and humidity < 70%.
Calibration Equipment used (M&	TE critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)) Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	•
Reference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	-
Type-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	-
Reference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205_/	
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_	_Jun10) Jun-11
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check	
RF generator R&S SMT-06	100005	4-Aug-99 (in house check C	
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check	
Calibrated by:	Name Dimce Iliev	Function Laboratory Tec	Signature Chnician
Approved by:	Katja Pokovic	Technical Man	nager.
This calibration certificate shall n	ot be reproduced except in	full without written approval o	lssued: February 8, 2011 of the laboratory.

Certificate No: D1900V2-540_Feb11

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage

С Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)". February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields: Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole • positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	<u>, 10</u> - 14

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.8 ± 6 %	1.41 mho/m ± 6 %
Head TSL temperature during test	(21.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 mW / g
SAR normalized	normalized to 1W	40.4 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	40.3 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.25 mW / g
SAR normalized	normalized to 1W	21.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	21.0 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.8 ± 6 %	1.55 mho/m ± 6 %
Body TSL temperature during test	(21.2 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	n nore en merele i i
SAR measured	250 mW input power	10.3 mW / g
SAR normalized	normalized to 1W	41.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	40.7 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.43 mW / g
SAR normalized	normalized to 1W	21.7 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.6 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.5 Ω + 4.2 jΩ
Return Loss	- 27.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.6 Ω + 5.0 jΩ
Return Loss	- 23.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction) 1.195 ns	
---	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

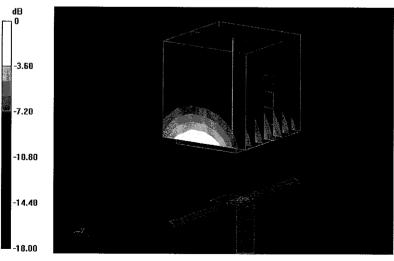
Manufactured by	SPEAG
Manufactured on	July 26, 2001

DASY5 Validation Report for Head TSL

Date/Time: 07.02.2011 15:18:47

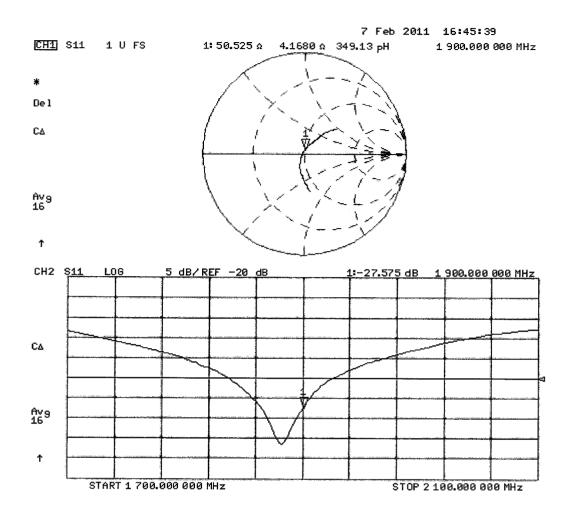
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:540


Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL U12 BB Medium parameters used: f = 1900 MHz; σ = 1.41 mho/m; ϵ_r = 39.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.09, 5.09, 5.09); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY52, V52.6.1 Build (408)
- Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)


Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.936 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 18.544 W/kg SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.25 mW/g Maximum value of SAR (measured) = 12.384 mW/g

 $0 \, dB = 12.380 \, mW/g$

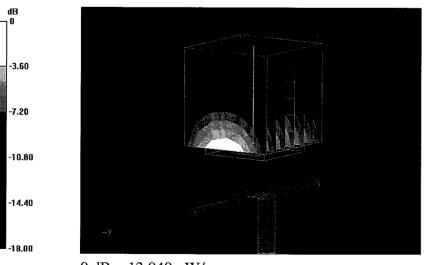
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 08.02.2011 12:04:35

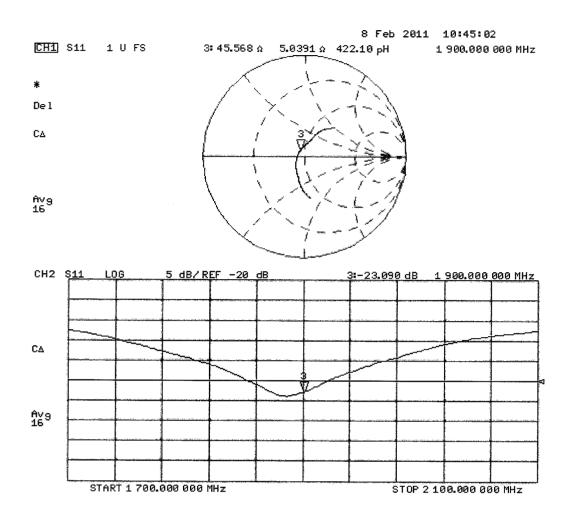
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:540


Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL U12 BB Medium parameters used: f = 1900 MHz; σ = 1.55 mho/m; ϵ_r = 52.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.59, 4.59, 4.59); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY52, V52.6.1 Build (408)
- Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)


Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.899 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 17.597 W/kg SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.43 mW/g Maximum value of SAR (measured) = 13.038 mW/g

 $0 \, dB = 13.040 \, mW/g$

Impedance Measurement Plot for Body TSL

ASSET! A 1322 - Checked by

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

'02

2011

21

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Client RFI	Li Raisi		Certificate No: D2450V2-725_Feb11
CALIBRATION (CERTIFICAT	E	
Object	D2450V2 - SN: 7	725	
Calibration procedure(s)	QA CAL-05.v8 Calibration proce	edure for dipole valida	ation kits
Calibration date:	February 08, 201	1	
The measurements and the unce	ertainties with confidence p	robability are given on the fo	the physical units of measurements (SI). Sollowing pages and are part of the certificate. erature (22 ± 3)°C and humidity < 70%.
Primary Standards	ID #		
Power meter EPM-442A	GB37480704	Cal Date (Certificate No.)	Scheduled Calibration
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266	
Reference 20 dB Attenuator	SN: 5086 (20g)	06-Oct-10 (No. 217-01266	
ype-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01158	
Reference Probe ES3DV3	SN: 3205	30-Mar-10 (No. 217-01162	
AE4	SN: 601	30-Apr-10 (No. ES3-3205 10-Jun-10 (No. DAE4-601	• •
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
ower sensor HP 8481A	MY41092317	18-Oct-02 (in house check	k Oct-09) In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check	Oct-09) In house check: Oct-11
letwork Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check	k Oct-10) In house check: Oct-11
	Name	Function	Signature
Calibrated by:	Name Dimce Iliev	Function Laboratory Te	Signature D. Yuw
Calibrated by: Approved by:	ABC 2 IN THE OWNER AND A STATE OF	Contraction of the second s	schnician D. Jiev

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage

С Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003. "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole • positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	••••••••••••••••••••••••••••••••••••••
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.1 ± 6 %	1.73 mho/m ± 6 %
Head TSL temperature during test	(21.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR normalized	normalized to 1W	52.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.9 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.13 mW / g
SAR normalized	normalized to 1W	24.5 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.7 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.2 ± 6 %	1.94 mho/m ± 6 %
Body TSL temperature during test	(21.0 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR normalized	normalized to 1W	52.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	51.9 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.04 mW / g
SAR normalized	normalized to 1W	24.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.1 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	45.6 Ω + 7.9 jΩ
Return Loss	- 20.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.5 Ω + 9.7 jΩ
Return Loss	- 20.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.152 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

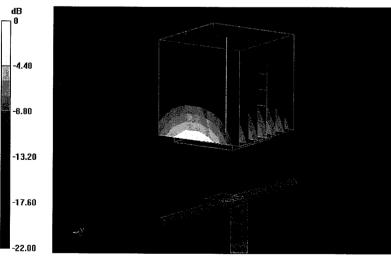
Manufactured by	SPEAG
Manufactured on	October 16, 2002

DASY5 Validation Report for Head TSL

Date/Time: 07.02.2011 14:34:55

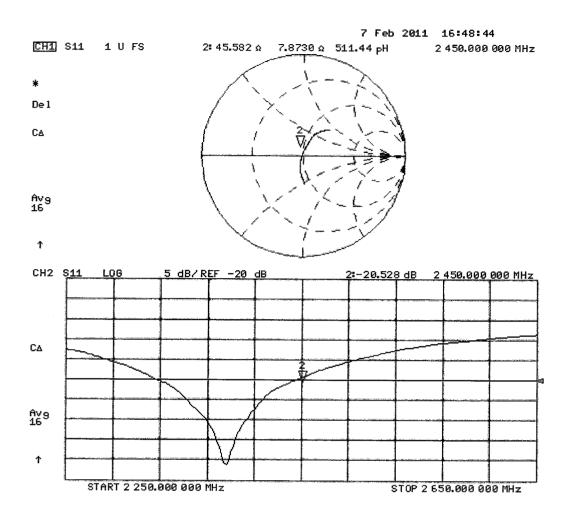
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:725


Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL U12 BB Medium parameters used: f = 2450 MHz; σ = 1.74 mho/m; ϵ_r = 39.3; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY52, V52.6.1 Build (408)
- Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)


Pin=250 mW/d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.3 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 26.701 W/kg SAR(1 g) = 13 mW/g; SAR(10 g) = 6.13 mW/g Maximum value of SAR (measured) = 16.608 mW/g

 $0 \, dB = 16.610 \, mW/g$

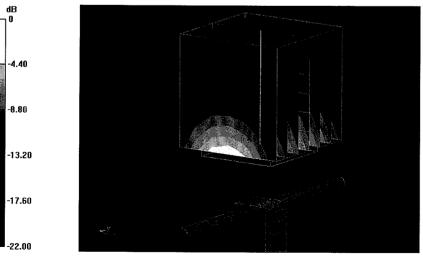
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

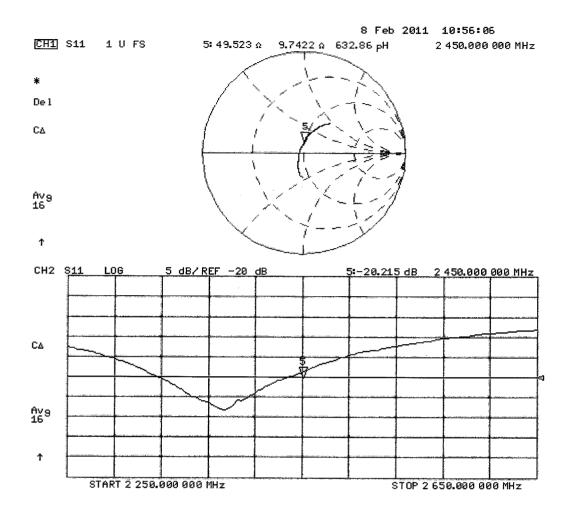
Date/Time: 08.02.2011 12:48:13

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:725


Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: MSL U12 BB Medium parameters used: f = 2450 MHz; σ = 1.95 mho/m; ϵ_r = 52.4; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:


- Probe: ES3DV3 SN3205; ConvF(4.31, 4.31, 4.31); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY52, V52.6.1 Build (408)
- Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.406 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 27.401 W/kg SAR(1 g) = 13 mW/g; SAR(10 g) = 6.04 mW/g Maximum value of SAR (measured) = 17.121 mW/g

 $0 \, dB = 17.120 \, mW/g$

ASSET :- A1378 Checked by PD 21/02/2011.

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

RE

GNIS S С S ØR¢

Accreditation No.: SCS 108

Certificate No: EX-3508 Feb11

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

SALIB R	RATION	CERTIFI	CATE

Object	EX3DV3 - SN:3508
Calibration procedure(s)	QA CAL-01.v7, QA CAL-12.v6, QA CAL-14.v3, QA CAL-23.v4, QA CAL-25.v3 Calibration procedure for dosimetric E-field probes
Calibration date:	February 15, 2011
	nts the traceability to national standards, which realize the physical units of measurements (SI). ainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration	
Power meter E4419B	GB41293874	01-Apr-10 (No. 217-01136)	Apr-11	
Power sensor E4412A	MY41495277	01-Apr-10 (No. 217-01136)	Apr-11	
Power sensor E4412A	MY41498087	01-Apr-10 (No. 217-01136)	Apr-11	
Reference 3 dB Attenuator	SN: S5054 (3c)	30-Mar-10 (No. 217-01159)	Mar-11	
Reference 20 dB Attenuator	SN: S5086 (20b)	30-Mar-10 (No. 217-01161)	Mar-11	
Reference 30 dB Attenuator	SN: S5129 (30b)	30-Mar-10 (No. 217-01160) Mar-11		
Reference Probe ES3DV2	SN: 3013	29-Dec-10 (No. ES3-3013_Dec10)	Dec-11	
DAE4 SN: 654		23-Apr-10 (No. DAE4-654_Apr10)	Apr-11	
Secondary Standards	ID	Check Date (in house)	Scheduled Check	
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11	
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-10)	In house check: Oct-11	

	Name	Function	Signature
Calibrated by:	Katja Pokovic	Technical Manager	20th
Approved by:	Niels Kuster	Quality Manager	NASS
This calibration certificate	shall not be reproduced except in ful	l without written approval of the labo	lssued: February 15, 2011 pratory.

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

С

S

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization o	ω rotation around probe axis
Polarization §	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- *NORMx*, *y*,*z*: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz; R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax, y, z; Bx, y, z; Cx, y, z are numerical linearization parameters in dB assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media.
- VR: VR is the validity range of the calibration related to the average diode voltage or DAE voltage in mV.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent *ConvF* is used in DASY version 4.4 and higher which allows extending the validity from \pm 50 MHz to \pm 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe EX3DV3

SN:3508

Manufactured: December 19, 2003 Calibrated: February 15, 2011

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: EX3DV3 - SN:3508

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.74	0.66	0.65	± 10.1 %
DCP (mV) ^B	101.8	102.3	101.3	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
10000	CW	0.00	Х	0.00	0.00	1.00	146.8	±2.2 %
			Y	0.00	0.00	1.00	139.4	
			Ζ	0.00	0.00	1.00	124.4	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

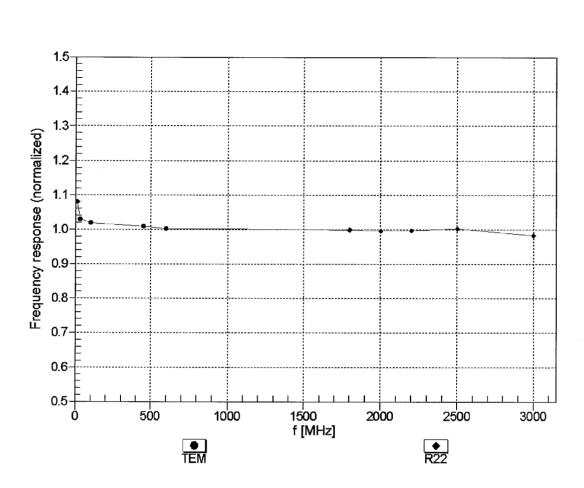
^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV3 - SN:3508

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	43.5	0.87	11.15	11.15	11.15	0.11	1.00	± 13.4 %
750	41.9	0.89	10.73	10.73	10.73	0.36	0.82	± 12.0 %
900	41.5	0.97	10.23	10.23	10.23	0.38	0.81	± 12.0 %
1750	40.1	1.37	9.15	9.15	9.15	0.66	0.56	± 12.0 %
1900	40.0	1.40	8.83	8.83	8.83	0.53	0.65	<u>± 12.0 %</u>
2450	39.2	1.80	7.88	7.88	7.88	0.29	0.91	± 12.0 %

Calibration Parameter Determined in Head Tissue Simulating Media

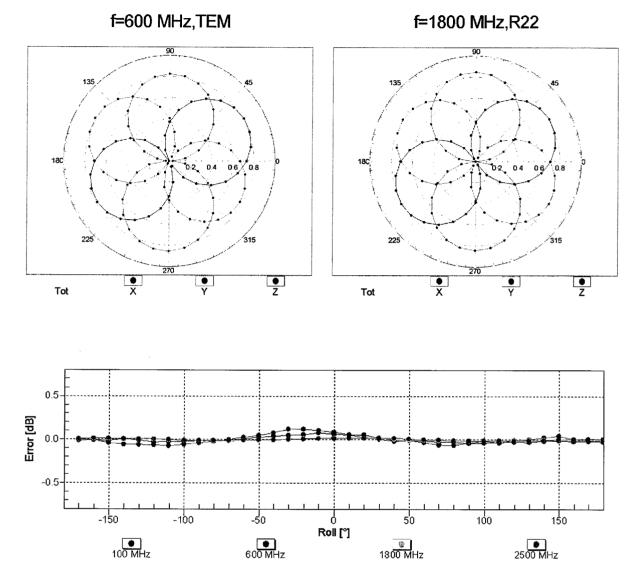
^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to


^{Γ} At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

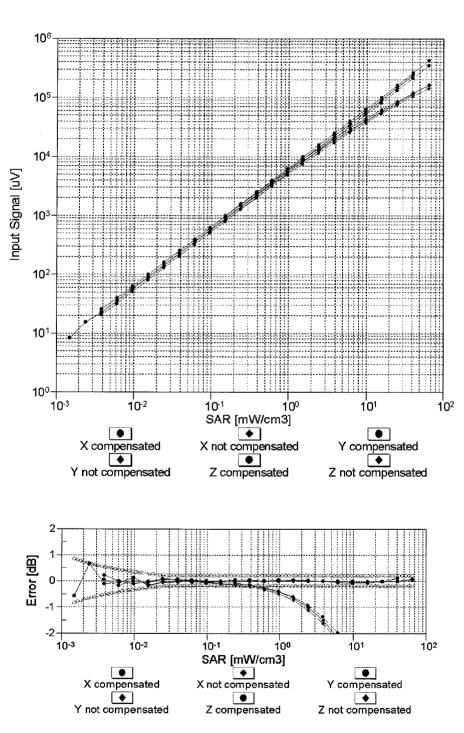
DASY/EASY - Parameters of Probe: EX3DV3- SN:3508

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	56.7	0.94	11.80	11.80	11.80	0.02	1.00	± 13.4 %
750	55.5	0.96	10.54	10.54	10.54	0.37	0.86	± 12.0 %
900	55.0	1.05	10.27	10.27	10.27	0.30	0.95	± 12.0 %
1750	53.4	1.49	9.08	9.08	9.08	0.40	0.87	± 12.0 %
1900	53.3	1.52	8.56	8.56	8.56	0.35	0.78	± 12.0 %
2150	53.1	1.66	8.51	8.51	8.51	0.18	1.30	± 12.0 %
2450	52.7	1.95	7.97	7.97	7.97	0.39	0.72	± 12.0 %
2600	52.5	2.16	7.62	7.62	7.62	0.33	0.75	± 12.0 %
3700	51.0	3.55	6.84	6.84	6.84	0.25	1.70	± 13.1 %
5200	49.0	5.30	4.19	4.19	4.19	0.50	1.95	± 13.1 %
5500	48.6	5.65	3.72	3.72	3.72	0.58	1.95	± 13.1 %
5800	48.2	6.00	3.71	3.71	3.71	0.65	1.95	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media


^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty is the relaxed to ± 5%. The uncertainty is the RSS of the ConvF uncertainty is the relaxed to ± 5%. the ConvF uncertainty for indicated target tissue parameters.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

February 15, 2011

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

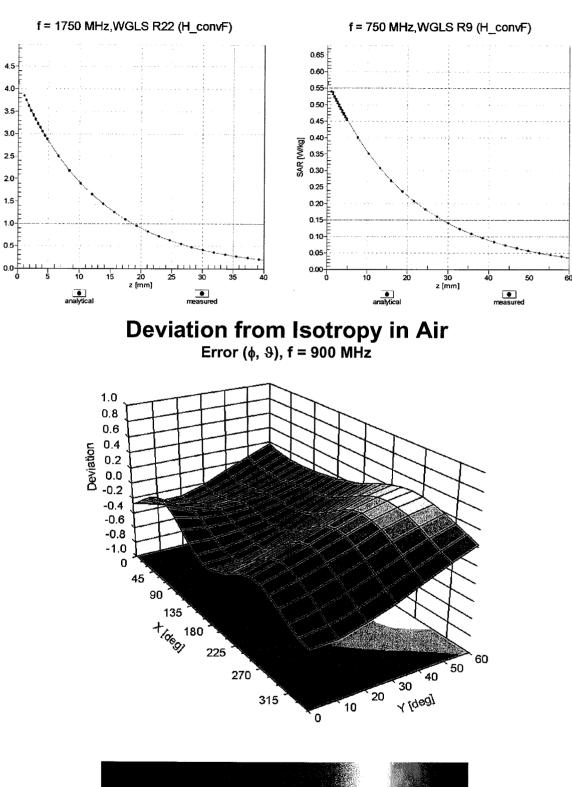
4.5

4.0

3.5

3.0

2.5


2.0

1.5

1.0-

0.5

SAR (W/kg)

Conversion Factor Assessment

-0.6 -0.4

-0.2

-1.0 -0.8

0.0

0.2

0.4

0.6

0.8

1.0

DASY/EASY - Parameters of Probe: EX3DV3 - SN:3508

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Appendix 2. Measurement Methods

A.2.1. Evaluation Procedure

The Specific Absorption Rate (SAR) evaluation was performed in the following manner:

a) (i) The evaluation was performed in an applicable area of the phantom depending on the type of device being tested. For devices worn about the ear during normal operation, both the left and right ear positions were evaluated at the centre frequency of the band at maximum power. The side, which produced the greatest SAR, determined which side of the phantom would be used for the entire evaluation. The positioning of the head worn device relative to the phantom was dictated by the test specification identified in section 3.1 of this report.

(ii) For body worn devices or devices which can be operated within 20 cm of the body, the flat section of the SAM phantom was used were the size of the device(s) is normal. for bigger devices and base station the 2mm Oval phantom is used for evaluation. The type of device being evaluated dictated the distance of the EUT to the outer surface of the phantom flat section.

- b) The SAR was determined by a pre-defined procedure within the DASY4 software. The exposed region of the phantom was scanned near the inner surface with a grid spacing of 20mm x 20mm or appropriate resolution.
- c) A 5x5x7 matrix was performed around the greatest spatial SAR distribution found during the area scan of the applicable exposed region. SAR values were then calculated using a 3-D spline interpolation algorithm and averaged over spatial volumes of 1 and 10 grams.
- d) If the EUT had any appreciable drift over the course of the evaluation, then the EUT was reevaluated. Any unusual anomalies over the course of the test also warranted a re-evaluation.

A.2.2. Specific Absorption Rate (SAR) Measurements to OET Bulletin 65 Supplement C: (2001-01)

Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields

SAR measurements were performed in accordance with Appendix D of the standard FCC OET Bulletin 65 Supplement C: 2001, IEEE 1528 and FCC KDB procedures, against appropriate limits for each measurement position in accordance with the standard. In some cases the FCC was contacted using a PBA or KDB process to ensure test is performed correctly.

The test was performed in a shielded enclosure with the temperature controlled to remain between +18.0°C and +25.0°C. The tissue equivalent material fluid temperature was controlled to give a maximum variation of ± 2.0 °C

Prior to any SAR measurements on the EUT, system validation and material dielectric property measurements were conducted. In the absence of a detailed procedure within the specification, system validation and material dielectric property measurements were performed in accordance with Appendix C and Appendix D of FCC OET Bulletin 65 Supplement C: 2001 and FCC KDB publication 450824.

Following the successful system validation and material dielectric property measurements, a SAR versus time sweep shall be performed within 10 mm of the phantom inner surface. If the EUT power output is stable after three minutes then the measurement probe will perform a coarse surface level scan at each test position in order to ascertain the location of the maximum local SAR level. Once this area had been established, a 5x5x7 cube of 343 points (5 mm spacing in each axis $\approx 27g$) will be centred at the area of concern. Extrapolation and interpolation will then be carried out on the 27g of tissue and the highest averaged SAR over a 10g cube determined.

Once the maximum interpolated SAR measurement is complete; the coarse scan is visually assessed to check for secondary peaks within 50% of the maximum SAR level. If there are any further SAR measurements required, extra 5x5x7 cubes shall be centred on each of these extra local SAR maxima.

At the end of each position test case a second time sweep shall be performed to check whether the EUT has remained stable throughout the test.