Test Report

Serial No: RFI/SAR2/RP75009JD09A

Page: 28 of 64

Issue Date: 23 April 2009

Test of: NTT docomo P-09A

To: OET Bulletin 65 Supplement C: (2001-01)

Appendix 3. SAR Distribution Scans

This appendix contains SAR distribution scans which are not included in the total number of pages for this report.

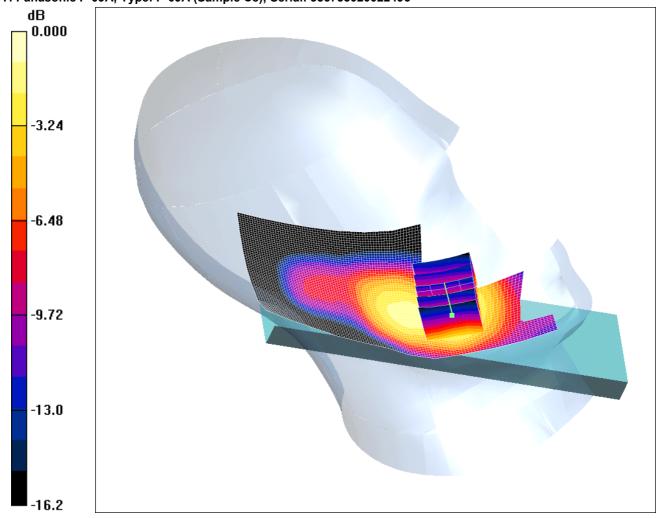
Scan Reference Number	Title	
SCN/75009JD09/001	Touch Left PCS CH660	
SCN/75009JD09/002	Tilt Left PCS CH660	
SCN/75009JD09/003	Touch Right Flat Section PCS CH660	
SCN/75009JD09/004	Touch Right PCS CH660	
SCN/75009JD09/005	Tilt Right PCS CH660	
SCN/75009JD09/006	Front of EUT Facing Phantom GPRS CH660	
SCN/75009JD09/007	Rear of EUT Facing Phantom GPRS CH660	
SCN/75009JD09/008	Rear of EUT Facing Phantom With PHF GPRS CH660	
SCN/75009JD09/009	Rear of EUT Facing Phantom PCS CH660	
SCN/75009JD09/010	System Performance Check 1900MHz Head 14 04 09	
SCN/75009JD09/011	System Performance Check 1900MHz Body 14 04 09	

Test Report

Serial No: RFI/SAR2/RP75009JD09A

Page: 29 of 64

Issue Date: 23 April 2009


Test of: NTT docomo P-09A

To: OET Bulletin 65 Supplement C: (2001-01)

SCN/75009JD09/001: Touch Left PCS CH660

Date: 14/04/2009

DUT: Panasonic P-09A; Type: P-09A (Sample C8); Serial: 356755020022496

0 dB = 0.624 mW/g

Communication System: PCS 1900; Frequency: 1879.8 MHz; Duty Cycle: 1:8.3

Medium: 1900 MHz HSL Medium parameters used (interpolated): f = 1879.8 MHz; $\sigma = 1.38$ mho/m; $\epsilon_r = 38.2$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: EX3DV3 SN3508; ConvF(8.83, 8.83, 8.83); Calibrated: 24/06/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 25/06/2008
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1207
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Touch Left - Middle/Area Scan (61x161x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.647 mW/g

Touch Left - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.00 V/m; Power Drift = -0.432 dB

Peak SAR (extrapolated) = 0.951 W/kg

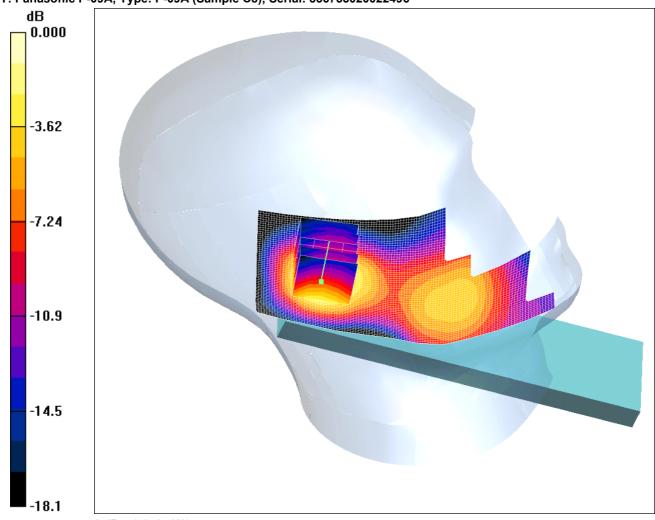
SAR(1 g) = 0.581 mW/g; SAR(10 g) = 0.335 mW/g Maximum value of SAR (measured) = 0.624 mW/g

Test Report

Serial No: RFI/SAR2/RP75009JD09A

Page: 30 of 64

Issue Date: 23 April 2009


Test of: NTT docomo P-09A

To: OET Bulletin 65 Supplement C: (2001-01)

SCN/75009JD09/002: Tilt Left PCS CH660

Date: 14/04/2009

DUT: Panasonic P-09A; Type: P-09A (Sample C8); Serial: 356755020022496

0 dB = 0.343 mW/g

Communication System: PCS 1900; Frequency: 1879.8 MHz;Duty Cycle: 1:8.3

Medium: 1900 MHz HSL Medium parameters used (interpolated): f = 1879.8 MHz; $\sigma = 1.38$ mho/m; $\varepsilon_r = 38.2$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: EX3DV3 SN3508; ConvF(8.83, 8.83, 8.83); Calibrated: 24/06/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 25/06/2008
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1207
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Touch Left - Middle/Area Scan (61x161x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.388 mW/g

Touch Left - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.7 V/m; Power Drift = 0.075 dB

Peak SAR (extrapolated) = 0.495 W/kg

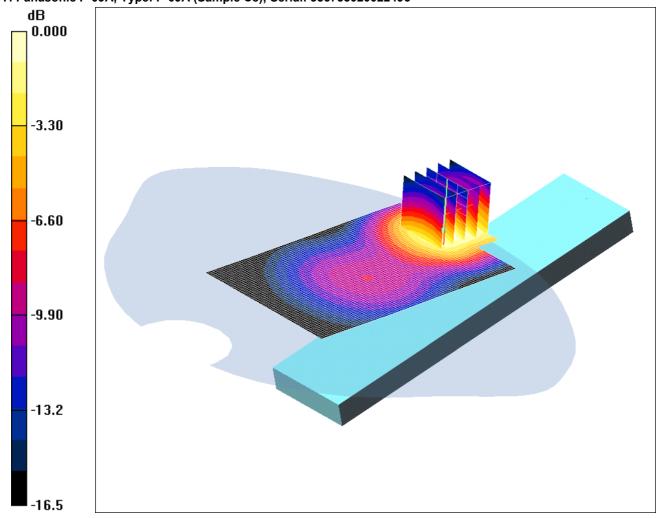
SAR(1 g) = 0.314 mW/g; SAR(10 g) = 0.184 mW/g Maximum value of SAR (measured) = 0.343 mW/g

Test Report

Serial No: RFI/SAR2/RP75009JD09A

Page: 31 of 64

Issue Date: 23 April 2009


Test of: NTT docomo P-09A

To: OET Bulletin 65 Supplement C: (2001-01)

SCN/75009JD09/003: Touch Right Flat Section PCS CH660

Date: 14/04/2009

DUT: Panasonic P-09A; Type: P-09A (Sample C8); Serial: 356755020022496

0 dB = 0.601 mW/g

Communication System: PCS 1900; Frequency: 1879.8 MHz;Duty Cycle: 1:8.3

Medium: 1900 MHz HSL Medium parameters used (interpolated): f = 1879.8 MHz; $\sigma = 1.38$ mho/m; $\varepsilon_r = 38.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 SN3508; ConvF(8.83, 8.83, 8.83); Calibrated: 24/06/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 25/06/2008
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1207
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Touch Left - Middle/Area Scan (61x111x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.614 mW/g

Touch Left - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.46 V/m; Power Drift = -0.020 dB

Peak SAR (extrapolated) = 0.919 W/kg

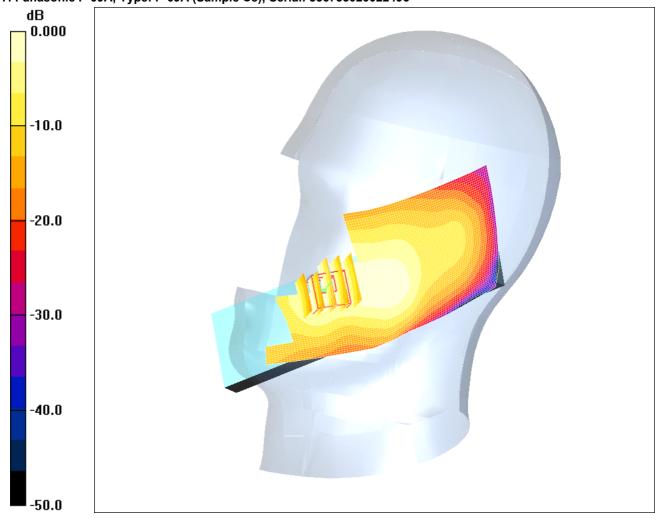
SAR(1 g) = 0.554 mW/g; SAR(10 g) = 0.324 mW/g Maximum value of SAR (measured) = 0.601 mW/g

Test Report

Serial No: RFI/SAR2/RP75009JD09A

Page: 32 of 64

Issue Date: 23 April 2009


Test of: NTT docomo P-09A

To: OET Bulletin 65 Supplement C: (2001-01)

SCN/75009JD09/004: Touch Right PCS CH660

Date: 14/04/2009

DUT: Panasonic P-09A; Type: P-09A (Sample C8); Serial: 356755020022496

0 dB = 0.547 mW/g

Communication System: PCS 1900; Frequency: 1879.8 MHz; Duty Cycle: 1:8.3

Medium: 1900 MHz HSL Medium parameters used (interpolated): f = 1879.8 MHz; $\sigma = 1.38$ mho/m; $\varepsilon_r = 38.2$; $\rho = 1000$ kg/m³ Phantom section: Right Section

DASY4 Configuration:

- Probe: EX3DV3 SN3508; ConvF(8.83, 8.83, 8.83); Calibrated: 24/06/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 25/06/2008
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1207
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Touch Left - Middle/Area Scan (61x161x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.524 mW/g

Touch Left - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.33 V/m; Power Drift = -0.183 dB

Peak SAR (extrapolated) = 0.841 W/kg

SAR(1 g) = 0.507 mW/g; SAR(10 g) = 0.264 mW/g

Warning: Missing measurement points in grid. Zoom Scan requires a completely measured grid.

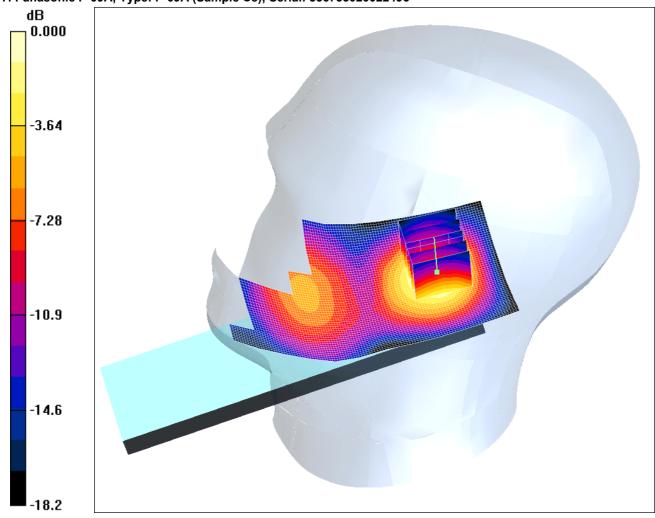
Maximum value of SAR (measured) = 0.547 mW/g

Test Report

Serial No: RFI/SAR2/RP75009JD09A

Page: 33 of 64

Issue Date: 23 April 2009


Test of: NTT docomo P-09A

To: OET Bulletin 65 Supplement C: (2001-01)

SCN/75009JD09/005: Tilt Right PCS CH660

Date: 14/04/2009

DUT: Panasonic P-09A; Type: P-09A (Sample C8); Serial: 356755020022496

0 dB = 0.304 mW/g

Communication System: PCS 1900; Frequency: 1879.8 MHz;Duty Cycle: 1:8.3

Medium: 1900 MHz HSL Medium parameters used (interpolated): f = 1879.8 MHz; σ = 1.38 mho/m; ϵ_r = 38.2; ρ = 1000 kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: EX3DV3 SN3508; ConvF(8.83, 8.83, 8.83); Calibrated: 24/06/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 25/06/2008
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1207
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Tilt Right - Middle/Area Scan (61x161x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.336 mW/g

Tilt Right - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.7 V/m; Power Drift = 0.266 dB

Peak SAR (extrapolated) = 0.467 W/kg

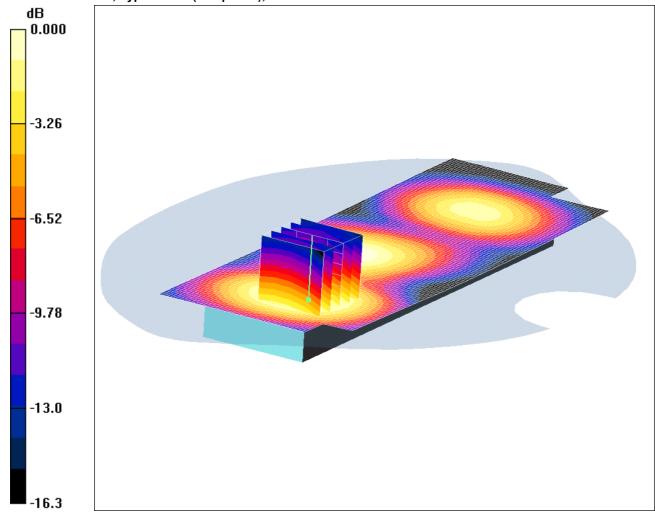
SAR(1 g) = 0.278 mW/g; SAR(10 g) = 0.157 mW/g Maximum value of SAR (measured) = 0.304 mW/g

Test Report

Serial No: RFI/SAR2/RP75009JD09A

Page: 34 of 64

Issue Date: 23 April 2009


Test of: NTT docomo P-09A

To: OET Bulletin 65 Supplement C: (2001-01)

SCN/75009JD09/006: Front of EUTFacing Phantom GPRS CH660

Date: 14/04/2009

DUT: Panasonic P-09A; Type: P-09A (Sample C8); Serial: 356755020022496

0 dB = 0.261 mW/g

Communication System: GPRS 1900; Frequency: 1879.8 MHz; Duty Cycle: 1:4

Medium: 1900 MHz HSL Medium parameters used (interpolated): f = 1879.8 MHz; $\sigma = 1.38$ mho/m; $\varepsilon_r = 38.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 SN3508; ConvF(8.83, 8.83, 8.83); Calibrated: 24/06/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 25/06/2008
- Phantom: SAM 12a; Type: SAM 4.0; Serial: TP:1193
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Front of EUT facing Phantom - Middle/Area Scan (61x161x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.270 mW/g

Front of EUT facing Phantom - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.0 V/m; Power Drift = -0.084 dB

Peak SAR (extrapolated) = 0.377 W/kg

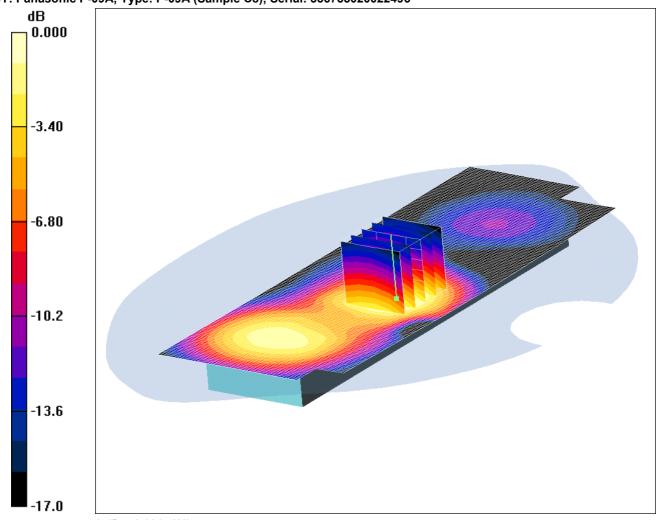
SAR(1 g) = 0.243 mW/g; SAR(10 g) = 0.152 mW/g Maximum value of SAR (measured) = 0.261 mW/g

Test Report

Serial No: RFI/SAR2/RP75009JD09A

Page: 35 of 64

Issue Date: 23 April 2009


Test of: NTT docomo P-09A

To: OET Bulletin 65 Supplement C: (2001-01)

SCN/75009JD09/007: Rear of EUTFacing Phantom GPRS CH660

Date: 14/04/2009

DUT: Panasonic P-09A; Type: P-09A (Sample C8); Serial: 356755020022496

0 dB = 0.386 mW/g

Communication System: GPRS 1900; Frequency: 1879.8 MHz; Duty Cycle: 1:4

Medium: 1900 MHz HSL Medium parameters used (interpolated): f = 1879.8 MHz; $\sigma = 1.38$ mho/m; $\varepsilon_r = 38.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 SN3508; ConvF(8.83, 8.83, 8.83); Calibrated: 24/06/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 25/06/2008
- Phantom: SAM 12a; Type: SAM 4.0; Serial: TP:1193
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Front of EUT facing Phantom - Middle/Area Scan (61x161x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.399 mW/g

Front of EUT facing Phantom - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.88 V/m; Power Drift = -0.121 dB

Peak SAR (extrapolated) = 0.604 W/kg

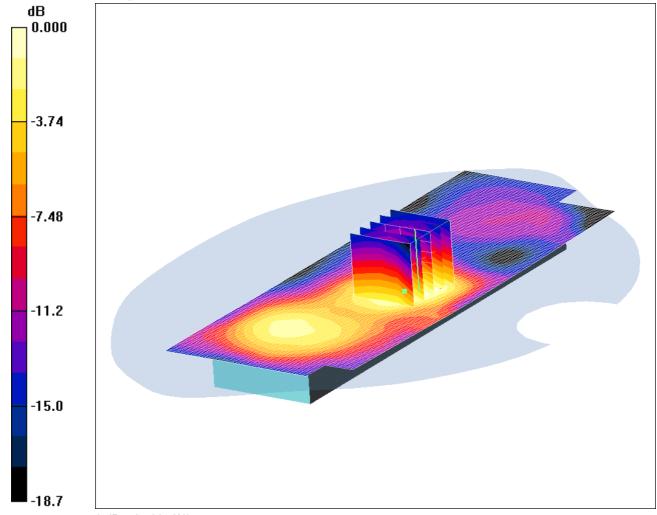
SAR(1 g) = 0.353 mW/g; SAR(10 g) = 0.202 mW/g Maximum value of SAR (measured) = 0.386 mW/g

Test Report

Serial No: RFI/SAR2/RP75009JD09A

Page: 36 of 64

Issue Date: 23 April 2009


Test of: NTT docomo P-09A

To: OET Bulletin 65 Supplement C: (2001-01)

SCN/75009JD09/008: Rear of EUTFacing Phantom With PHF GPRS CH660

Date: 14/04/2009

DUT: Panasonic P-09A; Type: P-09A (Sample C8); Serial: 356755020022496

0 dB = 0.402 mW/g

Communication System: GPRS 1900; Frequency: 1879.8 MHz; Duty Cycle: 1:4

Medium: 1900 MHz HSL Medium parameters used (interpolated): f = 1879.8 MHz; $\sigma = 1.38$ mho/m; $\varepsilon_r = 38.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 SN3508; ConvF(8.83, 8.83, 8.83); Calibrated: 24/06/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 25/06/2008
- Phantom: SAM 12a; Type: SAM 4.0; Serial: TP:1193
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Rear of EUT facing Phantom - Middle/Area Scan (61x161x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.431 mW/g

Rear of EUT facing Phantom - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.6 V/m; Power Drift = -0.102 dB

Peak SAR (extrapolated) = 0.650 W/kg

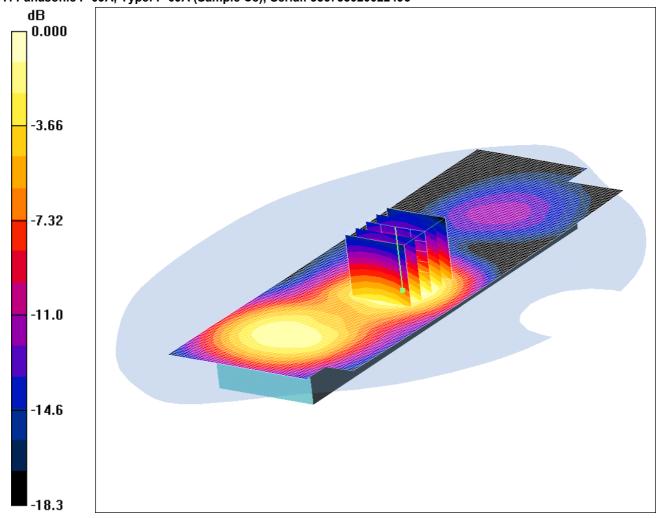
SAR(1 g) = 0.380 mW/g; SAR(10 g) = 0.218 mW/g Maximum value of SAR (measured) = 0.402 mW/g

Test Report

Serial No: RFI/SAR2/RP75009JD09A

Page: 37 of 64

Issue Date: 23 April 2009


Test of: NTT docomo P-09A

To: OET Bulletin 65 Supplement C: (2001-01)

SCN/75009JD09/009: Rear of EUTFacing Phantom PCS CH660

Date: 14/04/2009

DUT: Panasonic P-09A; Type: P-09A (Sample C8); Serial: 356755020022496

0 dB = 0.281 mW/g

Communication System: PCS 1900; Frequency: 1879.8 MHz; Duty Cycle: 1:8.3

Medium: 1900 MHz HSL Medium parameters used (interpolated): f = 1879.8 MHz; $\sigma = 1.38$ mho/m; $\varepsilon_r = 38.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 SN3508; ConvF(8.83, 8.83, 8.83); Calibrated: 24/06/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 25/06/2008
- Phantom: SAM 12a; Type: SAM 4.0; Serial: TP:1193
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Rear of EUT facing Phantom - Middle/Area Scan (61x161x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.295 mW/g

Rear of EUT facing Phantom - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.26 V/m; Power Drift = -0.047 dB

Peak SAR (extrapolated) = 0.448 W/kg

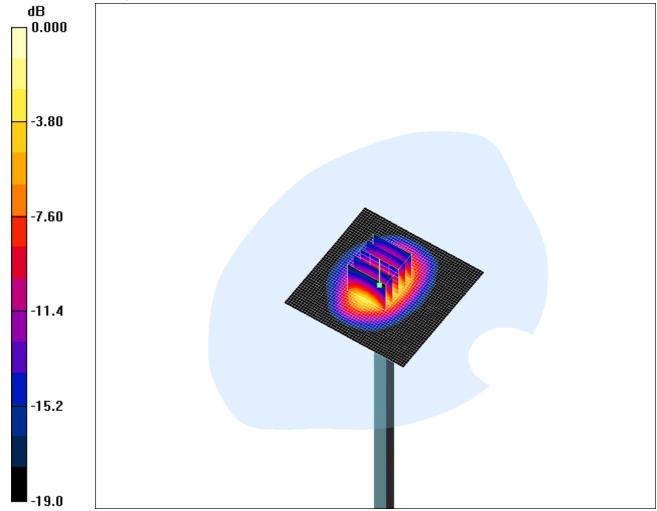
SAR(1 g) = 0.258 mW/g; SAR(10 g) = 0.147 mW/g Maximum value of SAR (measured) = 0.281 mW/g

Test Report

Serial No: RFI/SAR2/RP75009JD09A

Page: 38 of 64

Issue Date: 23 April 2009


Test of: NTT docomo P-09A

To: OET Bulletin 65 Supplement C: (2001-01)

SCN/75009JD09/010: System Performance Check 1900MHz Head 14 04 09

Date: 14/04/2009

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: SN540

0 dB = 10.2 mW/g

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: 1900 MHz HSL Medium parameters used: f = 1900 MHz; $\sigma = 1.4$ mho/m; $\epsilon_r = 38.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 SN3508; ConvF(8.83, 8.83, 8.83); Calibrated: 24/06/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 25/06/2008
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1207
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176 d=10mm, Pin=250mW 2 2/Area Scan (51x51x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 12.8 mW/g

d=10mm, Pin=250mW 2 2/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 81.3 V/m; Power Drift = 0.022 dB

Peak SAR (extrapolated) = 17.6 W/kg

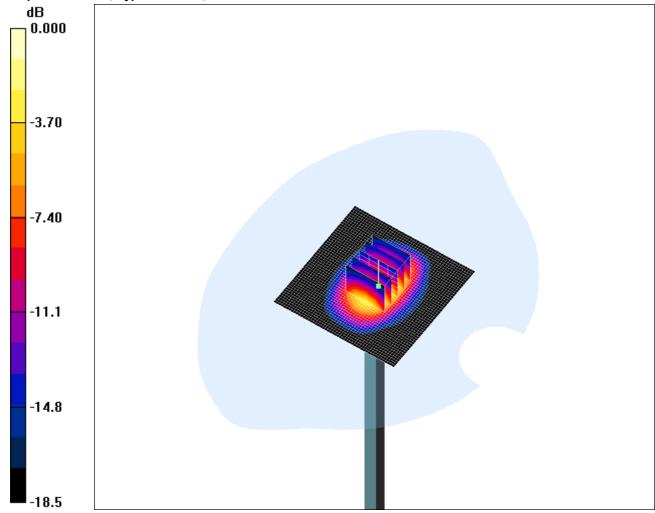
SAR(1 g) = 9.17 mW/g; SAR(10 g) = 4.67 mW/gMaximum value of SAR (measured) = 10.2 mW/g

Test Report

Serial No: RFI/SAR2/RP75009JD09A

Page: 39 of 64

Issue Date: 23 April 2009


Test of: NTT docomo P-09A

To: OET Bulletin 65 Supplement C: (2001-01)

SCN/75009JD09/011: System Performance Check 1900MHz Body 14 04 09

Date: 14/04/2009

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: SN540

0 dB = 11.1 mW/g

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: 1900 MHz MSL Medium parameters used: f = 1900 MHz; σ = 1.58 mho/m; ε_r = 51.3; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 SN3508; ConvF(8.29, 8.29, 8.29); Calibrated: 24/06/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn394; Calibrated: 25/06/2008
- Phantom: SAM 12a; Type: SAM 4.0; Serial: TP:1193
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176 d=10mm, Pin=250mW 2/Area Scan (51x51x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 13.6 mW/g

d=10mm, Pin=250mW 2/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 81.9 V/m; Power Drift = -0.021 dB

Peak SAR (extrapolated) = 18.8 W/kg

SAR(1 g) = 9.86 mW/g; SAR(10 g) = 4.98 mW/gMaximum value of SAR (measured) = 11.1 mW/g

Test Report

Serial No: RFI/SAR2/RP75009JD09A

Page: 60 of 64

Issue Date: 23 April 2009

Test of: NTT docomo P-09A

To: OET Bulletin 65 Supplement C: (2001-01)

Appendix 5. Validation of System

Prior to the assessment, the system was verified in the flat region of the phantom.

A 1900 MHz dipole was used. A forward power of 250 mW was applied to the dipole and the system was verified to a tolerance of $\pm 5\%$ for the 1900 MHz dipole. The applicable verification (normalised to 1 Watt).

Date:14/04/2009

Validation Dipole and Serial Number: D1900V2:SN:540

Simulant	Frequency (MHz)	Room Temperature	Liquid Temperature	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)
				ε _r	40.00	38.12	-4.71	5.00
Head	1900	23.0 °C	23.0 °C	σ	1.40	1.40	0.06	5.00
ricad	1300	20.0 0	20.0 0	1g SAR	36.10	36.68	1.61	5.00
				10g SAR	19.30	18.68	-3.21	5.00

Date:14/04/2009

Validation Dipole and Serial Number: D1900V2:SN:540

Simulant	Frequency (MHz)	Room Temperature	Liquid Temperature	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)										
				ε _r	53.30	51.30	-3.76	5.00										
Body	1900	23.0 °C	23.0 °C 23.5 °C	23.5 ℃	23.5 ℃	23.5 ℃	23.5 °C	23.5 °C	23.5 °C	23.5 °C	23.5 ℃	23.5 ℃	23.5 ℃	σ	1.52	1.58	3.86	5.00
Body	1000			20.0 0	20.0			1g SAR	38.00	39.44	3.79	5.00						
				10g SAR	20.70	19.92	-3.77	5.00										

Test Report

Serial No: RFI/SAR2/RP75009JD09A

Page: 61 of 64

Issue Date: 23 April 2009

Test of: NTT docomo P-09A

To: OET Bulletin 65 Supplement C: (2001-01)

Appendix 6. Simulated Tissues

The body mixture consists of water and glycol. Visual inspection is made to ensure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the tissue.

Ingredient	Frequency	
	1800/1900 MHz Body	
De-Ionised Water	69.79%	
Diglycol Butyl Ether (DGBE)	30.00%	
Salt	0.20%	

Ingredient	Frequency
	1800/1900 MHz Head
De-Ionised Water	55.41%
Diglycol Butyl Ether (DGBE)	44.51%
Salt	0.08%

Test Report

Serial No: RFI/SAR2/RP75009JD09A

Page: 62 of 64

Issue Date: 23 April 2009

Test of: NTT docomo P-09A

To: OET Bulletin 65 Supplement C: (2001-01)

Appendix 7. DASY4 System Details

A.7.1. DASY4 SAR Measurement System

RFI Global Services Ltd, SAR measurement facility utilises the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 system is comprised of the robot controller, computer, near-field probe, probe alignment sensor, and the SAM phantom containing brain or muscle equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller; teach pendant (Joystick), and remote control. This is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. The data acquisition electronics (DAE) performs signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection etc. The DAE is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card. The DAE3 utilises a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching mulitplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

Test Report

Serial No: RFI/SAR2/RP75009JD09A

Page: 63 of 64

Issue Date: 23 April 2009

Test of: NTT docomo P-09A

To: OET Bulletin 65 Supplement C: (2001-01)

A.7.2. DASY4 SAR System Specifications

Robot System

Positioner:	Stäubli Unimation Corp. Robot Model: RX90L
Repeatability:	0.025 mm
No. of Axis:	6
Serial Number:	F00/SD89A1/A/01
Reach:	1185 mm
Payload:	3.5 kg
Control Unit:	CS7
Programming Language:	V+

Data Acquisition Electronic (DAE) System

Serial Number:	DAE3 SN:394
----------------	-------------

PC Controller

PC:	Dell Precision 340
Operating System:	Windows 2000
Data Card:	DASY4 Measurement Server
Serial Number:	1080

Data Converter

Features:	Signal Amplifier, multiplexer, A/D converted and control logic.
Software:	DASY4 Software
Connecting Lines:	Optical downlink for data and status info. Optical uplink for commands and clock.

PC Interface Card

24 bit (64 MHz) DSP for real time processing Link to DAE3 16 nit A/D converter for surface detection system serial link
to robot direct emergency stop output for robot.

Test Report

Serial No: RFI/SAR2/RP75009JD09A

Page: 64 of 64

Issue Date: 23 April 2009

Test of: NTT docomo P-09A

To: OET Bulletin 65 Supplement C: (2001-01)

DASY4 SAR System Specifications (Continued)

E-Field Probe

Model:	EX3DV3
Serial No:	3508
Construction:	Triangular core
Frequency:	10 MHz to >6 GHz
Linearity:	±0.2 dB (30 MHz to 6 GHz)
Probe Length (mm):	330
Probe Diameter (mm):	12
Tip Length (mm):	20
Tip Diameter (mm):	2.5
Sensor X Offset (mm):	1
Sensor Y Offset (mm):	1
Sensor Z Offset (mm):	1

Phantom

Phantom:	SAM Phantom
Shell Material:	Fibreglass
Thickness:	2.0 ±0.1 mm