

TEST REPORT FROM RFI GLOBAL SERVICES LTD

Test of: SoftBank 832P

To: OET Bulletin 65 Supplement C: (2001-01)

Test Report Serial No: RFI/SAR2/RP74674JD01A

Supersedes Test Report Serial No: RFI/SAR1/RP74674JD01A

This Test Report Is Issued Under The Authority Of Stuart Thomas, General Manager Cellular Services:	pp Brian Watson
Checked By: Brian Watson	Report Copy No: PDF01
Issue Date: 10 March 2009	Test Dates: 15 February 2009

This report is issued in Adobe Acrobat portable document format (PDF). It is only a valid copy of the report if it is being viewed in PDF format with the following security options not allowed: Changing the document, Selecting text and graphics, Adding or changing notes and form fields.

This report may be copied in full. The results in this report apply only to the sample(s) tested.

Test Report

Serial No: RFI/SAR2/RP74674JD01A

Page: 2 of 57

Issue Date: 10 March 2009

Test of: SoftBank 832P

To: OET Bulletin 65 Supplement C: (2001-01)

This page has been left intentionally blank.

Test Report

Serial No: RFI/SAR2/RP74674JD01A

Page: 3 of 57

Issue Date: 10 March 2009

Test of: SoftBank 832P

To: OET Bulletin 65 Supplement C: (2001-01)

Table of Contents

4. Customen Information	4
1. Customer Information	4
2. Equipment Under Test (EUT)	5
3. Test Specification, Methods and Procedures	8
4. Deviations from the Test Specification	9
5. Operation and Configuration of the EUT during Testing	10
6. Summary of Test Results	12
7. Measurements, Examinations and Derived Results	13
8. Measurement Uncertainty	18
Appendix 1. Test Equipment Used	21
Appendix 2. Measurement Methods	24
Appendix 3. SAR Distribution Scans	26
Appendix 4. Photographs	37
Appendix 5. Validation of System	53
Appendix 6. Simulated Tissues	54
Appendix 7. DASY4 System Details	55

Test Report

Serial No: RFI/SAR2/RP74674JD01A

Page: 4 of 57

Issue Date: 10 March 2009

Test of: SoftBank 832P

To: OET Bulletin 65 Supplement C: (2001-01)

1. Customer Information

Company Name:	Panasonic Mobile Comms Dev of Europe Ltd
Address:	Panasonic House
	Willoughby Road
	Bracknell
	Berkshire
	RG12 8FP

Test Report

Serial No: RFI/SAR2/RP74674JD01A

Page: 5 of 57

Issue Date: 10 March 2009

Test of: SoftBank 832P

To: OET Bulletin 65 Supplement C: (2001-01)

2. Equipment Under Test (EUT)

2.1. Identification of Equipment Under Test (EUT)

Description:	Mobile Handset
Brand Name:	SoftBank
Model Name or Number:	EB-VS86JZA
Serial Number:	None Stated
IMEI Number:	004401220707604
Hardware Version Number:	Rev B
Software Version Number:	832PVA04
Hardware Revision of GSM Module:	Not Applicable
Software Revision of GSM Module:	Not Applicable
FCC ID Number:	UCE209016A
Country of Manufacture:	None Stated
Date of Receipt:	15 February 2009

2.2. Description of EUT

The equipment under test is a dual mode (W-CDMA FDDI/GSM900/DCS1800/PCS1900MHz) cellular mobile telephone with RFID. The EUT operated at PCS1900 and GPRS1900.

2.3. Modifications Incorporated in the EUT

There were no modifications incorporated during the duration of the test.

Test Report

Serial No: RFI/SAR2/RP74674JD01A

Page: 6 of 57

Issue Date: 10 March 2009

Test of: SoftBank 832P

To: OET Bulletin 65 Supplement C: (2001-01)

2.4. Accessories

The following accessories were supplied with the EUT during testing:

Description:	Personal Hands-free Kit
Brand Name:	SoftBank
Model Name or Number:	ZTCK01
Serial Number:	None Stated
Cable Length and Type:	~1.8m Multi-core Audio Cable
Country of Manufacture:	None Stated
Connected to Port	Port Unique to Manufacturer

Description:	Personal Hands-free Converter
Brand Name:	None Stated
Model Name or Number:	PMLAJ1
Serial Number:	None Stated
Cable Length and Type:	95mm Multi-core Audio Cable
Country of Manufacture:	None Stated
Connected to Port	Port Unique to Manufacturer

2.5. Support Equipment

The following support equipment was used to exercise the EUT during testing:

Description:	Radio Communication Test Set
Brand Name:	R&S
Model Name or Number:	CMU200
Serial Number:	835687/011
Cable Length and Type:	1.5m Utiflex Cable
Connected to Port:	RF Input/Output (Air Link)

Test Report

Serial No: RFI/SAR2/RP74674JD01A

Page: 7 of 57

Issue Date: 10 March 2009

Test of: SoftBank 832P

To: OET Bulletin 65 Supplement C: (2001-01)

2.6. Additional Information Related to Testing

Equipment Category	PCS1900 / GPRS190	00	
Type of Unit	Portable Transceiver		
Intended Operating Environment:	Within GSM coverage		
Transmitter Maximum Output Power Characteristics:	PCS1900	30dBm	
Transmitter Frequency Range:	PCS1900	(1850.0 to 1910) MHz	
Transmitter Frequency Allocation of EUT When Under Test:	Channel Number	Channel Description	Frequency (MHz)
	512	Low	1850.2
	660	Middle	1879.8
	810	High	1909.8
Modulation(s):	GMSK:217 Hz		
Modulation Scheme (Crest Factor):	GSM: 8.3, GPRS:4		
Antenna Type:	Internal		
Antenna Length:	Unknown		
Number of Antenna Positions:	1 Fixed		
Power Supply Requirement:	3.7 V / 600 mAh		
Battery Type(s):	Li-ion		

Test Report

Serial No: RFI/SAR2/RP74674JD01A

Page: 8 of 57

Issue Date: 10 March 2009

Test of: SoftBank 832P

To: OET Bulletin 65 Supplement C: (2001-01)

3. Test Specification, Methods and Procedures

3.1. Test Specification

Reference:	OET Bulletin 65 Supplement C: (2001-01)
Title:	Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields.
Purpose of Test:	To determine whether the equipment met the basic restrictions as defined in OET Bulletin 65 Supplement C: (2001-01) using the SAR averaging method as described in the test specification above.

3.2. Methods and Procedures Reference Documentation

The methods and procedures used were as detailed in:

Federal Communications Commission, "Evaluating compliance with FCC Guidelines for human exposure to radio frequency electromagnetic fields", OET Bulletin 65 Supplement C, FCC, Washington, D.C, 20554, 2001.

Thomas Schmid, Oliver Egger and Neils Kuster, "Automated E-field scanning system for dosimetric assessments", IEEE Transaction on microwave theory and techniques, Vol. 44, pp. 105-113, January 1996.

Neils Kuster, Ralph Kastle and Thomas Schmid, "Dosimetric evaluation of mobile communications equipment with know precision", IEICE Transactions of communications, Vol. E80-B, No.5, pp. 645-652, May 1997.

KDB 447498 D01 Mobile Portable RF Exposure v03.

KDB 648474 D01 SAR Handsets Multi Xmiter and Ant v01r05.

3.3. Definition of Measurement Equipment

The measurement equipment used complied with the requirements of the standards referenced in the methods & procedures section above. Appendix 1 contains a list of the test equipment used.

Test Report

Serial No: RFI/SAR2/RP74674JD01A

Page: 9 of 57

Issue Date: 10 March 2009

Test of: SoftBank 832P

To: OET Bulletin 65 Supplement C: (2001-01)

4. Deviations from the Test Specification

Test was performed as per "KDB 447498 D01 Mobile Portable RF Exposure v03" and "KDB 648474 D01 SAR Handsets Multi Xmiter and Ant v01r05", according to the handset procedures in IEEE Std 1528-2003, OET Bulletin 65 Supplement C 01-01 and the specific FCC test procedures.

SAR test was performed in the middle channel only as the measured levels were < 50% of the SAR limit as stated in the FCC Public Notice DA 02-1438 by the SCC-34/SC-2.

Test Report

Serial No: RFI/SAR2/RP74674JD01A

Page: 10 of 57

Issue Date: 10 March 2009

Test of: SoftBank 832P

To: OET Bulletin 65 Supplement C: (2001-01)

5. Operation and Configuration of the EUT during Testing

5.1. Operating Modes

The EUT was tested in the following operating mode(s) unless otherwise stated:

- GPRS1900 Data allocated mode
- PCS1900 Call allocated mode

The reason for choosing this configuration was that it has been defined by the customer as being typical of normal use and likely to be worst case.

Test Report

Serial No: RFI/SAR2/RP74674JD01A

Page: 11 of 57

Issue Date: 10 March 2009

Test of: SoftBank 832P

To: OET Bulletin 65 Supplement C: (2001-01)

5.2. Configuration and Peripherals

The EUT was tested in the following configuration(s) unless otherwise stated:

Standalone Battery Powered

Head Configuration

- a) The handset was placed in a normal operating position with the centre of the ear-piece aligned with the ear canal on the phantom.
- b) With the ear-piece touching the phantom the centre line of the handset was aligned with an imaginary plane (X and Y axis) consisting of three lines connecting both ears and the mouth.
- c) For the cheek position the handset was gradually moved towards the cheek until any point of the mouth-piece or keypad touched the cheek.
- d) For the tilted position the EUT was positioned as for the cheek position, and then the horizontal angle was increased by fifteen degrees (the phone keypad was moved away from the cheek by fifteen degrees).
- e) SAR measurements were evaluated at maximum power and the unit was operated for an appropriate period prior to the evaluation in order to minimise the drift.
- f) The device was keyed to operate continuously in the transmit mode for the duration of the test.
- g) The location of the maximum spatial SAR distribution (hot spot) was determined relative to the handset and its antenna.
- h) The EUT was transmitting at full power throughout the duration of the test powered by a fully charged battery.

Body Configuration

- a) The EUT was placed in a normal operating position where the centre of EUT was aligned with the centre reference point on the flat section of the 'SAM' phantom.
- b) With the EUT touching the phantom at an imaginary centre line. The EUT was aligned with a marked plane (X and Y axis) consisting of two lines.
- c) For the touch-safe position the handset was gradually moved towards the flat section of the 'SAM' phantom until any point of the EUT touched the phantom.
- d) For position(s) greater then 0mm separation the EUT was positioned as per the touch-safe position, and then the vertical height was decreased/adjusted as required.
- e) SAR measurements were evaluated at maximum power and the unit was operated for an appropriate period prior to the evaluation in order to minimise the drift.
- f) The device was keyed to operate continuously in the transmit mode for the duration of the test.
- g) The location of the maximum spatial SAR distribution (hot spot) was determined relative to the handset and its antenna.
- h) The EUT was transmitting at full power throughout the duration of the test powered by a fully charged battery.

Test Report

Serial No: RFI/SAR2/RP74674JD01A

Page: 12 of 57

Issue Date: 10 March 2009

Test of: SoftBank 832P

To: OET Bulletin 65 Supplement C: (2001-01)

6. Summary of Test Results

Test Name	Specification Reference	Result
Specific Absorption Rate-PCS1900 Head Configuration 1g	OET Bulletin 65 Supplement C: 2001	Complied
Specific Absorption Rate-PCS1900 Body Configuration 1g	OET Bulletin 65 Supplement C: 2001	Complied
Specific Absorption Rate-GPRS1900 Body Configuration 1g	OET Bulletin 65 Supplement C: 2001	Complied

6.1. Location of Tests

All the measurements described in this report were performed at the premises of RFI Global Services Ltd, Pavilion A, Ashwood Park, Ashwood Way, Basingstoke, Hampshire, RG23 8BG United Kingdom

Test Report

Serial No: RFI/SAR2/RP74674JD01A

Page: 13 of 57

Issue Date: 10 March 2009

Test of: SoftBank 832P

To: OET Bulletin 65 Supplement C: (2001-01)

7. Measurements, Examinations and Derived Results

7.1. General Comments

This section contains test results only.

Measurement uncertainties are evaluated in accordance with current best practice. Our reported expanded uncertainties are based on standard uncertainties, which are multiplied by an appropriate coverage factor to provide a statistical confidence level of approximately 95%. Please refer to section 8 for details of measurement uncertainties.

Test Report

Serial No: RFI/SAR2/RP74674JD01A

Page: 14 of 57

Issue Date: 10 March 2009

Test of: SoftBank 832P

To: OET Bulletin 65 Supplement C: (2001-01)

7.2. Test Results

7.2.1.Specific Absorption Rate - PCS1900 Head Configuration 1g

Test Summary:

Tissue Volume:	1g
Maximum Level (W/kg):	0.648

Environmental Conditions:

Temperature Variation in Lab (°C):	25.0 to 25.0
Temperature Variation in Liquid (°C):	25.0 to 25.0

Results:

EUT Position	Phantom Configuration	Channel Number	Level (W/kg)	Limit (W/kg)	Margin (W/kg)	Note(s)	Result
Touch	Left	660	0.648	1.600	0.952	1	Complied
Tilt	Left	660	0.360	1.600	1.240	1	Complied
Touch	Right	660	0.474	1.600	1.126	1	Complied
Tilt	Right	660	0.274	1.600	1.326	1	Complied

Note(s):

1. SAR test was performed in the middle channel only as the measured levels were < 50% of the SAR limit as stated in the FCC Public Notice DA 02-1438 by the SCC-34/SC-2.

Test Report

Serial No: RFI/SAR2/RP74674JD01A

Page: 15 of 57

Issue Date: 10 March 2009

Test of: SoftBank 832P

To: OET Bulletin 65 Supplement C: (2001-01)

7.2.2.Specific Absorption Rate - PCS1900 Body Configuration 1g

Test Summary:

Tissue Volume:	1g
Maximum Level (W/kg):	0.306

Environmental Conditions:

Temperature Variation in Lab (°C):	25.0 to 25.0
Temperature Variation in Liquid (°C):	24.5 to 24.0

Results:

EUT Position	Phantom Configuration	Channel Number	Level (W/kg)	Limit (W/kg)	Margin (W/kg)	Note(s)	Result
Front of EUT Open Facing Phantom	Flat (SAM)	660	0.306	1.600	1.294	1, 2	Complied

Note(s):

- 1. SAR measurements were performed with the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.
- 2. SAR test was performed in the middle channel only as the measured levels were < 50% of the SAR limit as stated in the FCC Public Notice DA 02-1438 by the SCC-34/SC-2.

Test Report

Serial No: RFI/SAR2/RP74674JD01A

Page: 16 of 57

Issue Date: 10 March 2009

Test of: SoftBank 832P

To: OET Bulletin 65 Supplement C: (2001-01)

7.2.3. Specific Absorption Rate - GPRS1900 Body Configuration 1g

Test Summary:

Tissue Volume:	1g
Maximum Level (W/kg):	0.452

Environmental Conditions:

Temperature Variation in Lab (°C):	25.0 to 25.0
Temperature Variation in Liquid (°C):	24.5 to 24.0

Results:

EUT Position	Phantom Configuration	Channel Number	Level (W/kg)	Limit (W/kg)	Margin (W/kg)	Note(s)	Result
Front of EUT Open Facing Phantom	Flat (SAM)	660	0.391	1.600	1.209	1, 2	Complied
Rear of EUT Open Facing Phantom	Flat (SAM)	660	0.422	1.600	1.178	1, 2	Complied
Rear of EUT Facing Phantom With PHF	Flat (SAM)	660	0.452	1.600	1.148	1, 2	Complied

Note(s):

- 1. SAR measurements were performed with the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.
- 2. SAR test was performed in the middle channel only as the measured levels were < 50% of the SAR limit as stated in the FCC Public Notice DA 02-1438 by the SCC-34/SC-2.

Test Report

Serial No: RFI/SAR2/RP74674JD01A

Page: 17 of 57

Issue Date: 10 March 2009

Test of: SoftBank 832P

To: OET Bulletin 65 Supplement C: (2001-01)

7.2.4. EIRP/ERP Measurement

Channel Number	Channel Number Frequency (MHZ) TX Power b		Note
512	1850.2	32.2	EIRP – GSM Peak
660	1879.8	32.8	EIRP – GSM Peak
810	1909.8	30.4	EIRP – GSM Peak
512	1850.2	30.8	EIRP – GPRS Peak
660	1879.8	31.5	EIRP – GPRS Peak
810	1909.8	29.0	EIRP – GPRS Peak

Test Report

Serial No: RFI/SAR2/RP74674JD01A

Page: 18 of 57

Issue Date: 10 March 2009

Test of: SoftBank 832P

To: OET Bulletin 65 Supplement C: (2001-01)

8. Measurement Uncertainty

No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently, the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

The uncertainty of the result may need to be taken into account when interpreting the measurement results.

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor, such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

Test Name	Confidence Level	Calculated Uncertainty
Specific Absorption Rate-PCS1900 Head Configuration 1g	95%	18.44%
Specific Absorption Rate- PCS1900 Body Configuration 1g	95%	18.30%

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty, the published guidance of the appropriate accreditation body is followed.

Test Report

Serial No: RFI/SAR2/RP74674JD01A

Page: 19 of 57

Issue Date: 10 March 2009

Test of: SoftBank 832P

To: OET Bulletin 65 Supplement C: (2001-01)

Measurement Uncertainty (continued)

8.1. Specific Absorption Rate Uncertainty at 1900 MHz Head 1g, PCS Modulation Scheme calculated in accordance with IEC 62209-1 & IEEE 1528

Туре	Source of uncertainty	+	-	Probability	Divisor	C _{i (10g)}	Standard Uncertainty		ບ _i or
Туре	Source of uncertainty		Value	Distribution	DIVISOR	CI (10g)	+ u (%)	- u (%)	Veff
В	Probe calibration	11.000	11.000	normal (k=2)	2.0000	1.0000	5.500	5.500	∞
В	Axial Isotropy	0.500	0.500	normal (k=2)	2.0000	1.0000	0.250	0.250	8
В	Hemispherical Isotropy	2.600	2.600	normal (k=2)	2.0000	1.0000	1.300	1.300	8
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	8
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	8
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	8
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞
В	Readout Electronics	0.560	0.560	normal (k=2)	2.0000	1.0000	0.280	0.280	∞
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	8
В	Integration Time	1.730	1.730	Rectangular	1.7321	1.0000	0.999	0.999	8
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	8
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	8
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	8
В	Extrapolation and integration/ Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
Α	Test Sample Positioning	0.584	0.584	normal (k=1)	1.0000	1.0000	0.584	0.584	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	8
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
Α	Liquid Conductivity (measured value)	4.370	4.370	normal (k=1)	1.0000	0.6400	2.797	2.797	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
Α	Liquid Permittivity (measured value)	4.450	4.450	normal (k=1)	1.0000	0.6000	2.670	2.670	5
	Combined standard uncertainty			t-distribution			9.41	9.41	>300
	Expanded uncertainty			k = 1.96			18.44	18.44	>300

Test Report

Serial No: RFI/SAR2/RP74674JD01A

Page: 20 of 57

Issue Date: 10 March 2009

Test of: SoftBank 832P

To: OET Bulletin 65 Supplement C: (2001-01)

Measurement Uncertainty (continued)

8.2. Specific Absorption Rate Uncertainty at 1900 MHz Body 1g, PCS Modulation Scheme calculated in accordance with IEC 62209-1 & IEEE 1528

Туре	Source of uncertainty	+	-	Probability	Divisor	0	Standard Uncertainty		ບ _i or
туре	Source of uncertainty		Value	Distribution	DIVISOI	Ci (10g)	+ u (%)	- u (%)	Veff
В	Probe calibration	11.000	11.000	normal (k=2)	2.0000	1.0000	5.500	5.500	8
В	Axial Isotropy	0.500	0.500	normal (k=2)	2.0000	1.0000	0.250	0.250	8
В	Hemispherical Isotropy	2.600	2.600	normal (k=2)	2.0000	1.0000	1.300	1.300	∞
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	8
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞
В	Readout Electronics	0.560	0.560	normal (k=2)	2.0000	1.0000	0.280	0.280	∞
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
В	Integration Time	1.730	1.730	Rectangular	1.7321	1.0000	0.999	0.999	∞
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	8
В	Extrapolation and integration/ Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	× ×
Α	Test Sample Positioning	0.584	0.584	normal (k=1)	1.0000	1.0000	0.584	0.584	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
Α	Liquid Conductivity (measured value)	4.170	4.170	normal (k=1)	1.0000	0.6400	2.669	2.669	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
Α	Liquid Permittivity (measured value)	4.230	4.230	normal (k=1)	1.0000	0.6000	2.538	2.538	5
	Combined standard uncertainty			t-distribution			9.34	9.34	>500
	Expanded uncertainty			k = 1.96			18.30	18.30	>500

Test Report

Serial No: RFI/SAR2/RP74674JD01A

Page: 21 of 57

Issue Date: 10 March 2009

Test of: SoftBank 832P

To: OET Bulletin 65 Supplement C: (2001-01)

Appendix 1. Test Equipment Used

RFI No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
A034	Narda 20W Termination	Narda	374BNM	8706	Calibrated as part of system	-
A1094	Digital Camera	Sony	MVC - FD81	125805	-	-
A1097	SMA Directional Coupler	MiDISCO	MDC6223- 30	None	Calibrated as part of system	-
A1137	3dB Attenuator	Narda	779	04690	Calibrated as part of system	-
A1174	Dielectric Probe Kit	Agilent Technologies	85070C	Us99360072	Calibrated before use	-
A1328	Handset Positioner	Schmid & Partner Engineering AG	Modification	SD 000 H01 DA	-	-
A1182	Handset Positioner	Schmid & Partner Engineering AG	V3.0	None	-	-
A1184	Data Acquisition Electronics	Schmid & Partner Engineering AG	DAE3	394	25 June 2008	12
A1378	Probe	Schmid & Partner Engineering AG	EX3 DV3	3508	24 June 2008	12
A1238	SAM Phantom	Schmid & Partner Engineering AG	SAM b	001	Calibrated before use	-
A1566	SAM Phantom	Schmid & Partner Engineering AG	SAM a	002	Calibrated before use	-
A1237	1900 MHz Dipole Kit	Schmid & Partner Engineering AG	D1900V2	540	11 June 2007	24
A1497	Amplifier	Mini-Circuits	zhl-42w (sma)	e020105	Calibrated as part of system	-
A215	20 dB Attenuator	Narda	766-20	9402	Calibrated as part of system	-
C1144	Cable	Rosenberger MICRO-COAX	FA147AF00 1503030	41842-1	Calibrated as part of system	-
C1145	Cable	Rosenberger MICRO-COAX	FA147AF00 3003030	41843-1	Calibrated as part of system	-
C1146	Cable	Rosenberger MICRO-COAX	FA147AF03 0003030	41752-1	Calibrated as part of system	-
G0528	Robot Power Supply	Schmid & Partner Engineering AG	DASY	None	Calibrated before use	-

Test Report

Serial No: RFI/SAR2/RP74674JD01A

Page: 22 of 57

Issue Date: 10 March 2009

Test of: SoftBank 832P

To: OET Bulletin 65 Supplement C: (2001-01)

RFI No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
G087	PSU	Thurlby Thandar	CPX200	100701	Calibrated before use	-
M010	NRV Power Meter	Rohde & Schwarz	NRV	882 317/065	08 May 2008	12
M1015	Network Analyser	Agilent Technologies	8753ES	US39172406	16 September 2008	12
M1047	Robot Arm	Staubli	RX908 L	F00/SD89A1/A/0 1	Calibrated before use	-
M1069	Diode Power Sensor	Rohde & Schwarz	NRV-Z2	838824/010	08 May 2008	12
M1129	Power Sensor	Rohde & Schwarz	URY-Z2	890242/16	12 June 2008	12
M1159	Digital Modulation Signal Generator	Agilent Technologies	E8241A	US42110332	Internal calibration / Calibrated as part of system	-
A1287	Power head	Rohde & Schwarz	URY-Z4	880 174/12	02 Jan 2008 Calibrated as part of system	-
M1270	Temperature/ Humidity/Pressure Meter	RS Components	None	None	June 2008 (Internal Calibration)	12
A1516	GSM Test Set	Rohde & Schwarz	CMU200	835687/011	Communication use only	12
A1531	Antenna	AARONIA AG	7025	02458	-	-
S256	SAR Lab	RFI	Site 56	Site 56	Calibrated before use	-

NB In accordance with UKAS requirements, all the measurement equipment is on a calibration schedule.

Test Report

Serial No: RFI/SAR2/RP74674JD01A

Page: 23 of 57

Issue Date: 10 March 2009

Test of: SoftBank 832P

To: OET Bulletin 65 Supplement C: (2001-01)

A.1.1. Calibration Certificates

This section contains the calibration certificates and data for the Probe(s) and Dipole(s) used, which are not included in the total number of pages for this report.

A1378 Checked by /4

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RF

Certificate No: EX3-3508 Jun08

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object EX3DV3 - SN:3508

Calibration procedure(s) QA CAL-01.v6, QA CAL-12.v5 and QA CAL-23.v3

Calibration procedure for dosimetric E-field probes

Calibration date: June 24, 2008

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	1-Apr-08 (No. 217-00788)	Apr-09
Power sensor E4412A	MY41495277	1-Apr-08 (No. 217-00788)	Apr-09
Power sensor E4412A	MY41498087	1-Apr-08 (No. 217-00788)	Apr-09
Reference 3 dB Attenuator	SN: S5054 (3c)	8-Aug-07 (No. 217-00719)	Aug-08
Reference 20 dB Attenuator	SN: S5086 (20b)	31-Mar-08 (No. 217-00787)	Apr-09
Reference 30 dB Attenuator	SN: S5129 (30b)	8-Aug-07 (No. 217-00720)	Aug-08
Reference Probe ES3DV2	SN: 3013	2-Jan-08 (No. ES3-3013_Jan08)	Jan-09
DAE4	SN: 660	3-Sep-07 (No. DAE4-660_Sep07)	Sep-08
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-07)	In house check: Oct-08
	Name	Function	Signature
Calibrated by:	Katja Pokovic	Technical Manager	Re-16
Approved by:	Niels Kuster	Quality Manager	11
			V.MON

Issued: June 24, 2008

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3508_Jun08

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

Polarization ϕ ϕ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe EX3DV3

SN:3508

Manufactured: December 19, 2003

Last calibrated: April 20, 2007 Recalibrated: June 24, 2008

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3508_Jun08 Page 3 of 9

DASY - Parameters of Probe: EX3DV3 SN:3508

Sensitivity in Free Space Diode Compression	Sensitivity in Free Space ^A	Diode Compression ^B
---	--	--------------------------------

NormX	0.77 ± 10.1%	μV/(V/m) ²	DCP X	94 mV
NormY	0.64 ± 10.1%	μ V/(V/m) ²	DCP Y	93 mV
NormZ	0.61 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	92 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL 900 MHz Typical SAR gradient: 5 % per mm

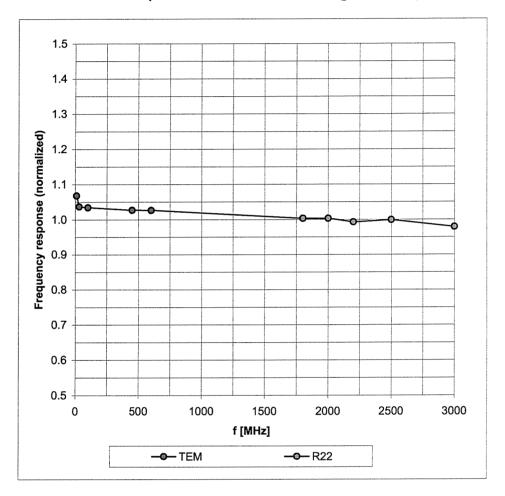
Sensor Center to	o Phantom Surface Distance	2.0 mm	3.0 mm
SAR _{be} [%]	Without Correction Algorithm	8.7	5.0
SAR _{be} [%]	With Correction Algorithm	0.4	0.2

TSL 1750 MHz Typical SAR gradient: 10 % per mm

Sensor Center t	o Phantom Surface Distance	2.0 mm	3.0 mm
SAR _{be} [%]	Without Correction Algorithm	7.4	4.0
SAR _{be} [%]	With Correction Algorithm	0.6	0.2

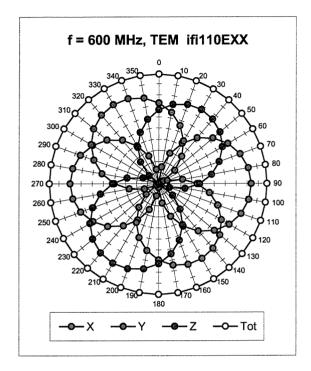
Sensor Offset

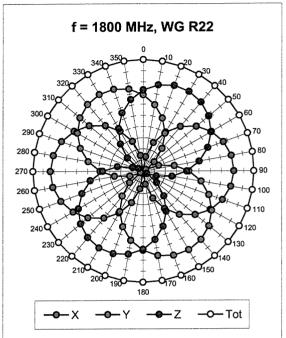
Probe Tip to Sensor Center 1.0 mm

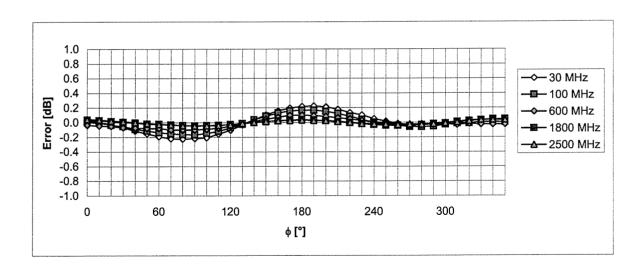

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

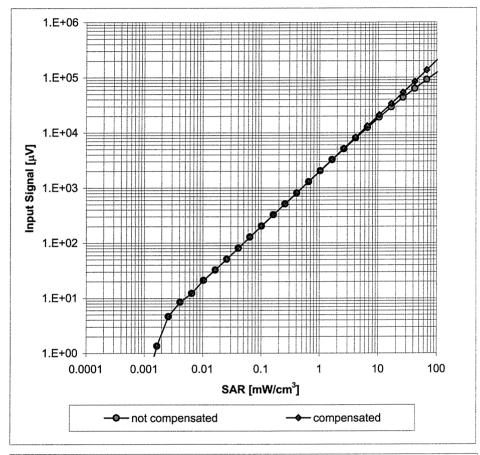

Frequency Response of E-Field

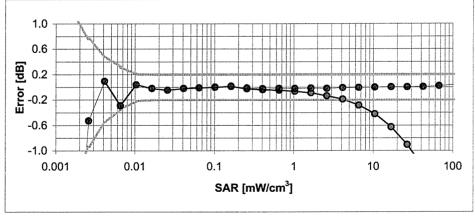

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

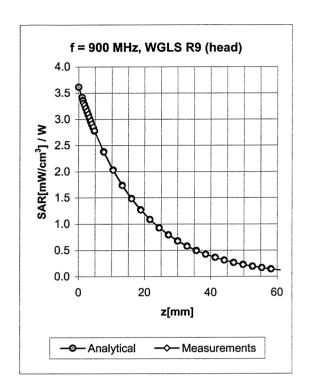
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

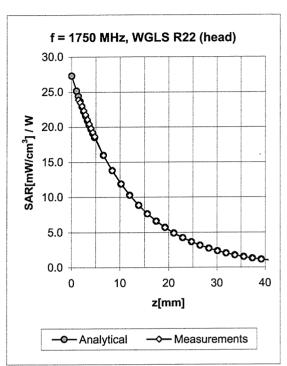



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3508_Jun08 Page 6 of 9

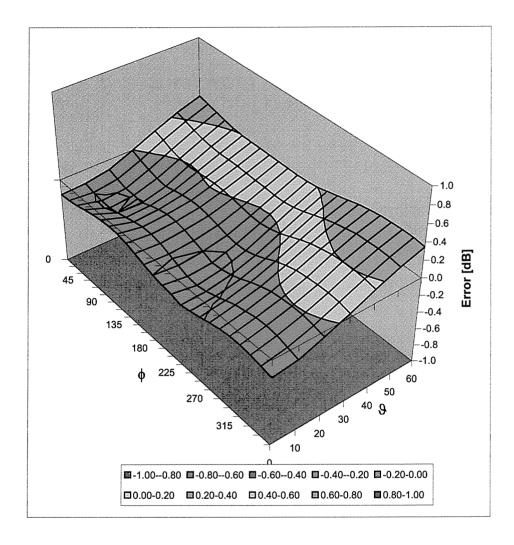
Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF l	Jncertainty
450	± 50 / ± 100	Head	43.5 ± 5%	0.87 ± 5%	0.37	0.78	10.89	± 13.3% (k=2)
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.68	0.67	10.14	± 11.0% (k=2)
1750	± 50 / ± 100	Head	40.1 ± 5%	1.37 ± 5%	0.76	0.58	9.08	± 11.0% (k=2)
1900	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.66	0.58	8.83	± 11.0% (k=2)
2150	± 50 / ± 101	Head	39.7 ± 5%	1.53 ± 5%	0.71	0.56	8.61	± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.58	0.63	8.02	± 11.0% (k=2)
450	± 50 / ± 100	Body	56.7 ± 5%	0.94 ± 5%	0.64	0.41	11.73	± 13.3% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.85	0.61	10.21	± 11.0% (k=2)
1750	± 50 / ± 100	Body	53.4 ± 5%	1.49 ± 5%	0.58	0.70	8.80	± 11.0% (k=2)
1900	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.62	0.68	8.29	± 11.0% (k=2)
2150	± 50 / ± 100	Body	53.0 ± 5%	1.75 ± 5%	0.51	0.78	8.14	± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.53	0.76	7.68	± 11.0% (k=2)

 $^{^{\}rm c}$ The validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

A1237

20/06/07

NM

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client

RF

Certificate No: D1900V2-540 Jun07

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

D1900V2 - SN: 540

Calibration procedure(s)

QA CAL-05.v7

Calibration procedure for dipole validation kits

Calibration date:

June 11, 2007

Condition of the calibrated item

In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	03-Oct-06 (METAS, No. 217-00608)	Oct-07
Power sensor HP 8481A	US37292783	03-Oct-06 (METAS, No. 217-00608)	Oct-07
Reference 20 dB Attenuator	SN: 5086 (20g)	10-Aug-06 (METAS, No 217-00591)	Aug-07
Reference 10 dB Attenuator	SN: 5047.2 (10r)	10-Aug-06 (METAS, No 217-00591)	Aug-07
Reference Probe ET3DV6	SN: 1507	19-Oct-06 (SPEAG, No. ET3-1507_Oct06)	Oct-07
Reference Probe ES3DV3	SN: 3025	19-Oct-06 (SPEAG, No. ES3-3025_Oct06)	Oct-07
DAE4	SN 601	30-Jan-07 (SPEAG, No. DAE4-601_Jan07)	Jan-08
		-	
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (SPEAG, in house check Oct-05)	In house check: Oct-07
RF generator Agilent E4421B	MY41000675	11-May-05 (SPEAG, in house check Nov-05)	In house check: Nov-07
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (SPEAG, in house check Oct-06)	In house check: Oct-07
	Name	Function	Signature
Calibrated by:	Claudio Leubler	Laboratory Technician	

Katja Pokovic

Technical Manager

Issued: June 14, 2007

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-540_Jun07

Approved by:

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.7 ± 6 %	1.46 mho/m ± 6 %
Head TSL temperature during test	(21.5 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	9.25 mW / g
SAR normalized	normalized to 1W	37.0 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	36.1 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	4.89 mW / g
SAR normalized	normalized to 1W	19.6 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	19.3 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-540_Jun07

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.8 ± 6 %	1.58 mho/m ± 6 %
Body TSL temperature during test	(21.2 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.52 mW / g
SAR normalized	normalized to 1W	38.1 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	38.0 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	-
SAR measured	250 mW input power	5.14 mW / g
SAR normalized	normalized to 1W	20.6 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	20.7 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-540_Jun07

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.9 Ω + 5.1 jΩ
Return Loss	- 25.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.7 Ω + 4.8 jΩ
Return Loss	- 25.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.197 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 26, 2001

Certificate No: D1900V2-540_Jun07

DASY4 Validation Report for Head TSL

Date/Time: 11.06.2007 10:40:22

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:540

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB;

Medium parameters used: f = 1900 MHz; $\sigma = 1.46$ mho/m; $\varepsilon_r = 39.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ET3DV6 - SN1507 (HF); ConvF(4.97, 4.97, 4.97); Calibrated: 19.10.2006

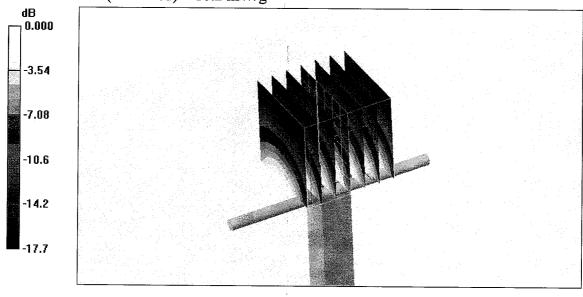
• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.01.2007

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA;;

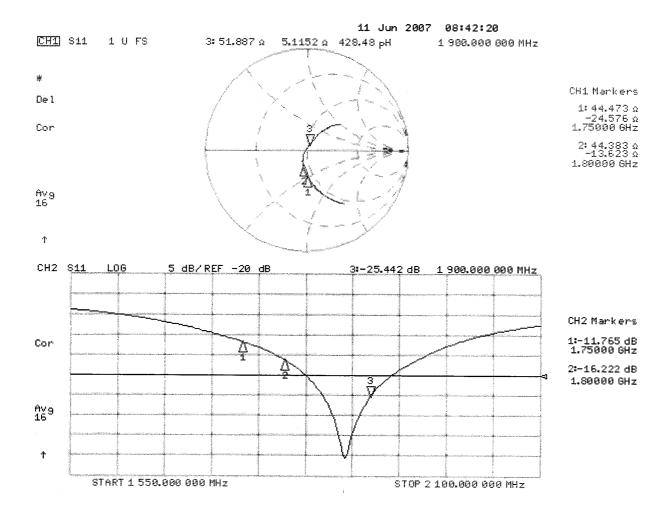
Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.9 V/m; Power Drift = 0.054 dB

Peak SAR (extrapolated) = 15.7 W/kg


SAR(1 g) = 9.25 mW/g; SAR(10 g) = 4.89 mW/g

Maximum value of SAR (measured) = 10.2 mW/g

0 dB = 10.2 mW/g

Impedance Measurement Plot for Head TSL

DASY4 Validation Report for Body TSL

Date/Time: 11.06.2007 11:24:00

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:540

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB;

Medium parameters used: f = 1900 MHz; $\sigma = 1.59$ mho/m; $\varepsilon_r = 55.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ET3DV6 - SN1507 (HF); ConvF(4.43, 4.43, 4.43); Calibrated: 19.10.2006

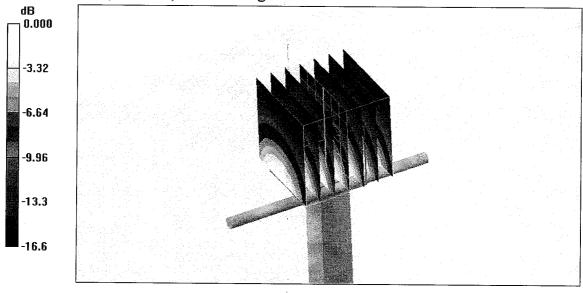
• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 30.01.2007

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA;;

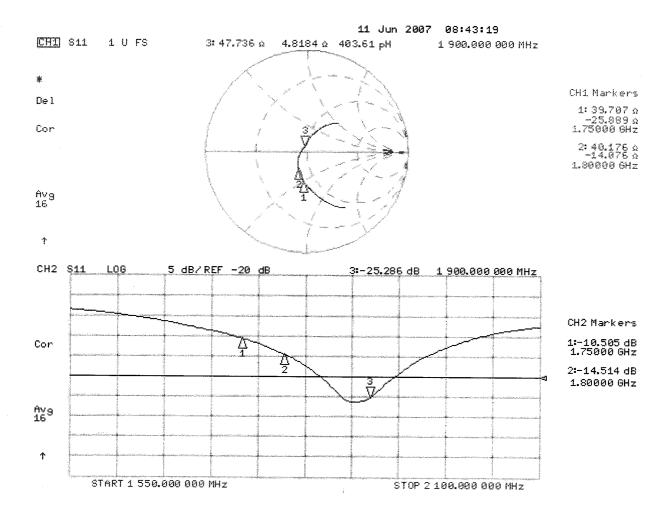
Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.9 V/m; Power Drift = 0.027 dB

Peak SAR (extrapolated) = 15.8 W/kg


SAR(1 g) = 9.52 mW/g; SAR(10 g) = 5.14 mW/g

Maximum value of SAR (measured) = 10.6 mW/g

0 dB = 10.6 mW/g

Impedance Measurement Plot for Body TSL

Test Report

Serial No: RFI/SAR2/RP74674JD01A

Page: 24 of 57

Issue Date: 10 March 2009

Test of: SoftBank 832P

To: OET Bulletin 65 Supplement C: (2001-01)

Appendix 2. Measurement Methods

A.2.1. Evaluation Procedure

The Specific Absorption Rate (SAR) evaluation was performed in the following manner:

- a) (i) The evaluation was performed in an applicable area of the phantom depending on the type of device being tested. For devices worn about the ear during normal operation, both the left and right ear positions were evaluated at the centre frequency of the band at maximum power. The side, which produced the greatest SAR, determined which side of the phantom would be used for the entire evaluation. The positioning of the head worn device relative to the phantom was dictated by the test specification identified in section 3.1 of this report.
 - (ii) For body worn devices or devices which can be operated within 20 cm of the body, the flat section of the SAM phantom was used were the size of the device(s) is normal. for bigger devices and base station the 2mm Oval phantom is used for evaluation. The type of device being evaluated dictated the distance of the EUT to the outer surface of the phantom flat section.
- b) The SAR was determined by a pre-defined procedure within the DASY4 software. The exposed region of the phantom was scanned near the inner surface with a grid spacing of 20mm x 20mm or appropriate resolution.
- c) A 5x5x7 matrix was performed around the greatest spatial SAR distribution found during the area scan of the applicable exposed region. SAR values were then calculated using a 3-D spline interpolation algorithm and averaged over spatial volumes of 1 and 10 grams.
- d) If the EUT had any appreciable drift over the course of the evaluation, then the EUT was re-evaluated. Any unusual anomalies over the course of the test also warranted a re-evaluation.

Test Report

Serial No: RFI/SAR2/RP74674JD01A

Page: 25 of 57

Issue Date: 10 March 2009

Test of: SoftBank 832P

To: OET Bulletin 65 Supplement C: (2001-01)

A.2.2. Specific Absorption Rate (SAR) Measurements to OET Bulletin 65 Supplement C: (2001-01)

Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields

SAR measurements were performed in accordance with Appendix D of the standard FCC OET Bulletin 65 Supplement C: 2001, against appropriate limits for each measurement position in accordance with the standard.

The test was performed in a shielded enclosure with the temperature controlled to remain between $+18.0^{\circ}$ C and $+25.0^{\circ}$ C. The tissue equivalent material fluid temperature was controlled to give a maximum variation of $\pm 2.0^{\circ}$ C

Prior to any SAR measurements on the EUT, system validation and material dielectric property measurements were conducted. In the absence of a detailed procedure within the specification, system validation and material dielectric property measurements were performed in accordance with Appendix C and Appendix D of FCC OET Bulletin 65 Supplement C: 2001.

Following the successful system validation and material dielectric property measurements, a SAR versus time sweep shall be performed within 10 mm of the phantom inner surface. If the EUT power output is stable after three minutes then the measurement probe will perform a coarse surface level scan at each test position in order to ascertain the location of the maximum local SAR level. Once this area had been established, a 5x5x7 cube of 175 points (5 mm spacing in each axis $\approx 27g$) will be centred at the area of concern. Extrapolation and interpolation will then be carried out on the 27g of tissue and the highest averaged SAR over a 10g cube determined.

Once the maximum interpolated SAR measurement is complete; the coarse scan is visually assessed to check for secondary peaks within 50% of the maximum SAR level. If there are any further SAR measurements required, extra 5x5x7 cubes shall be centred on each of these extra local SAR maxima.

At the end of each position test case a second time sweep shall be performed to check whether the EUT has remained stable throughout the test.