

TEST REPORT FROM RFI GLOBAL SERVICES LTD

Test of: NTT docomo P-06C

To: OET Bulletin 65 Supplement C: (2001-01)

Test Report Serial No: RFI/SAR/RP80806JD08A V2.0

Version 2.0 supersedes all previous versions

This Test Report Is Issued Under The Authority Of Chris Guy, Head of Global Approvals:		
Checked By: Richelieu Quoi	(APPROVED SIGNATORY)	
Issue Date:	04 April 2011	
Test Dates:	14 March 2011	

This report is issued in portable document format (PDF). It is only a valid copy of the report if it is being viewed in PDF format with the following security options not allowed: Changing the document, Selecting text and graphics, Adding or changing notes and form fields.

This report may not be reproduced other than in full, except with the prior written approval of RFI Global Services Ltd. The results in this report apply only to the sample(s) tested.

Test Report Version 2.0 Serial No: RFI/SAR/RP80806JD08A V2.0

Issue Date: 04 April 2011

This page has been left intentionally blank.

Page: 2 of 62 RFI Global Services Ltd.

Issue Date: 04 April 2011

TABLE OF CONTENTS

1. Customer Information	4
2. Equipment Under Test (EUT)	5
3. Test Specification, Methods and Procedures	8
4. Deviations from the Test Specification	9
5. Operation and Configuration of the EUT during Testing	10
6. Summary of Test Results	12
7. Measurements, Examinations and Derived Results	13
8. Measurement Uncertainty	18
Appendix 1. Test Equipment Used	21
Appendix 2. Measurement Methods	24
Appendix 3. SAR Distribution Scans	26
Appendix 4. Photographs	37
Appendix 5. Validation of System	58
Appendix 6. Simulated Tissues	59
Appendix 7. DASY4 System Details	60

Issue Date: 04 April 2011

1. Customer Information				
Company Name:	Panasonic Mobile Comms Dev of Europe Ltd			
Address:	Panasonic House Willoughby Road Bracknell Berkshire RG12 8FP United Kingdom			

Page: 4 of 62 RFI Global Services Ltd.

Issue Date: 04 April 2011

2. Equipment Under Test (EUT)			
2.1. Identification of Equipment Under Test (EUT)			
Description:	UMTS cellular handset with RFID		
Brand Name:	NTT docomo		
Model Name or Number:	P-06C		
Serial Number:	None stated (sample C10)		
IMEI Number:	3550 97040011329		
Hardware Version Number:	Rev C		
Software Version Number:	B-D11CS1-00.01.027 D11CS1_Cv68091405		
Hardware Revision of GSM Module:	Not applicable		
Software Revision of GSM Module:	Not applicable		
FCC ID Number:	UCE111038A		
Country of Manufacture:	None Stated		
Date of Receipt:	14 March 2011		

2.2. Description of EUT

The equipment under test was a single mode cellular mobile telephone with UMTS FDD V with UMTS Release 5 HSDPA capabilities, incorporating RFID. The Cellular Mobile Telephone also operates on RFID 13.5 MHz Band.

2.3. Modifications Incorporated in the EUT

There were no modifications incorporated in the EUT during testing.

Page: 5 of 62 RFI Global Services Ltd.

Issue Date: 04 April 2011

2.4. Accessories

The following	accessories were	supplied with	the FUT	during testing:

Description:	Battery
Brand Name:	NTT docomo
Model Name or Number:	P23
Serial Number:	None Stated
Cable Length and Type:	Not applicable
Country of Manufacture:	None Stated
Connected to Port	3 point contact

Description:	Personal Hands-Free
Brand Name:	NTT docomo
Model Name or Number:	Stereo Earphone Set 01
Serial Number:	None Stated
Cable Length and Type:	~1.8m / multi-core
Country of Manufacture:	None Stated
Connected to Port	AV Out Port Unique to Manufacturer

Description:	Micro-SD Memory Card
Brand Name:	None Stated
Model Name or Number:	None Stated
Serial Number:	None Stated
Cable Length and Type:	Not applicable
Country of Manufacture:	None Stated
Connected to Port	Dedicated micro-SD card port

2.5. Support Equipment

The following support equipment was used to exercise the EUT during testing:

Description:	Communication Test Set
Brand Name:	Rohde & Schwarz
Model Name or Number:	CMU200
Serial Number:	111379
Cable Length and Type:	~4.0 m Utiflex RF cable
Connected to Port:	RF (Input/Output) Air Link

Page: 6 of 62 RFI Global Services Ltd.

Serial No: RFI/SAR/RP80806JD08A V2.0 Issue Date: 04 April 2011

2.6. Additional Information Related	to Testing			
Equipment Category	UMTS Band V / RFID			
Type of Unit	Portable Transceiver			
Intended Operating Environment:	Within UMTS and RFID Coverage.			
Transmitter Maximum Output Power Characteristics:	UMTS Band V Communication Test Set was configured to allow the EUT to transmit at a maximum power of up 24dBm.		the EUT to	
Transmitter Frequency Range:	UMTS Band V	ITS Band V (826 to 847) MHz		
Transmitter Frequency Allocation of EUT When Under Test:	Channel Number	Channel Description	Frequency (MHz)	
	4132	Low	826.4	
	4183	Middle	836.6	
	4233	High	846.6	
Modulation(s):	QPSK(UMTS / HSDPA): 0 Hz			
Modulation Scheme (Crest Factor):	QPSK(UMTS FDD / HSDPA): 1			
Antenna Type:	Internal			
Antenna Length:	Unknown			
Number of Antenna Positions:	1 fixed			
Power Supply Requirement:	3.7v			
Battery Type(s):	Li-ion			

Page: 7 of 62 RFI Global Services Ltd.

Issue Date: 04 April 2011

3. Test Specification, Methods and Procedures			
3.1. Test Specification			
Reference:	OET Bulletin 65 Supplement C: (2001-01)		
Title:	Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields.		
Purpose of Test:	To determine whether the equipment met the basic restrictions as defined in OET Bulletin 65 Supplement C: (2001-01) using the SAR averaging method as described in the test specification above.		
3.2. Methods and Procedures Reference Documentation			

o.z. Methods and Frocedures Reference Documenta

The methods and procedures used were as detailed in:

Federal Communications Commission, "Evaluating compliance with FCC Guidelines for human exposure to radio frequency electromagnetic fields", OET Bulletin 65 Supplement C, FCC, Washington, D.C, 20554, 2001.

Thomas Schmid, Oliver Egger and Neils Kuster, "Automated E-field scanning system for dosimetric assessments", IEEE Transaction on microwave theory and techniques, Vol. 44, pp. 105-113, January 1996.

Neils Kuster, Ralph Kastle and Thomas Schmid, "Dosimetric evaluation of mobile communications equipment with know precision", IEICE Transactions of communications, Vol. E80-B, No.5, pp. 645-652, May 1997.

KDB 447498 D01 Mobile Portable RF Exposure v04

KDB 648474 D01 SAR Handsets Multi Xmiter and Ant v01r05

KDB 941225 D01 SAR test for 3G devices v02

Note: The version of DASY system used by RFI for SAR measurements is v4.7.

The SAR probe for the DASY v4.4 and higher has a validity of +/- 100 MHz from the spot frequency at which the system is calibrated.

The SAR probe was calibrated at 750 MHz (covering 650 MHz to 850 MHz) and 900 MHz (covering 800 MHz to 1000 MHz) for the Head tissue with both the 750 MHz and 900 MHz calibration parameters imported on the same data file of the DASY4 system.

For GSM850 (head SAR test) the DASY4 v4.7 system uses the conversion factor for 750 MHz calibration as this covers the frequency range of 650 MHz to 850 MHz. The SAR system uses the 900 MHz conversion factor which is valid from 800 MHz to 1000 MHz for the system validation performed at 900 MHz.

The 900 MHz validation is applicable for the 850 band as this is within 50 MHz of the of the centre frequency.

3.3. Definition of Measurement Equipment

The measurement equipment used complied with the requirements of the standards referenced in the methods & procedures section above. Appendix 1 contains a list of the test equipment used.

Page: 8 of 62 RFI Global Services Ltd.

Issue Date: 04 April 2011

4. Deviations from the Test Specification

Test was performed as per "KDB 648474 D01 SAR Handsets Multi Xmiter and Ant v01r05", according to the handset procedures in IEEE Std 1528-2003, OET Bulletin 65 Supplement C 01-01 and the specific FCC test procedures.

3G Body SAR test was performed in the middle channel as the measured SAR levels were < 0.8 W/kg, where the transmission band corresponding to all channels were ≤ 100 MHz. Testing for the other channels were not required as stated in KDB 447498 D01.

Some points in the 'Right Touch' position could not be fully evaluated therefore the zoom scan was unable to fully enclose the peak SAR location as required by IEEE 1528 and OET Bulletin 65 Supplement C. This scan is repeated in the Mouth / Jaw configuration.

Page: 9 of 62 RFI Global Services Ltd.

Issue Date: 04 April 2011

5. Operation and Configuration of the EUT during Testing

5.1. Operating Modes

The EUT was tested in the following operating mode(s) unless otherwise stated:

- UMTS Band V 12.2kbps with test loop mode 1 and TPC bits configured to all "1's" and Communication Test Set configured to allow the EUT to transmit at a maximum power of up to 24 dBm.
- UMTS FDD V RMC 12.2kbps + HSDPA With Test loop mode 1 and TPC bits configured to all "1's", Sub-test 1and Communication Test Set configured to allow the EUT to transmit at a maximum power of up to 24 dBm.
- 3G Body SAR test was performed in the middle channel as the measured SAR levels were <
 0.8 W/kg, where the transmission band corresponding to all channels were ≤ 100 MHz.
 Testing for the other channels were not required as stated in KDB 447498 D01.

Page: 10 of 62 RFI Global Services Ltd.

Issue Date: 04 April 2011

5.2. Configuration and Peripherals

The EUT was tested in the following configuration(s) unless otherwise stated:

- Standalone Battery Powered
- EUT tested in Head and Body-worn configuration were the applied configurations for bodyworn orientations had the corresponding edge(s) is closest to the user with the most conservative exposure condition was evaluated.

Head Configuration

- a) The EUT was placed in a normal operating position with the centre of the ear-piece aligned with the ear canal on the phantom.
- b) With the ear-piece touching the phantom the centre line of the EUT was aligned with an imaginary plane (X and Y axis) consisting of three lines connecting both ears and the mouth.
- c) For the cheek position the EUT was gradually moved towards the cheek until any point of the mouth-piece or keypad touched the cheek.
- d) For the tilted position the EUT was positioned as for the cheek position, and then the horizontal angle was increased by fifteen degrees (the phone keypad was moved away from the cheek by fifteen degrees).
- e) SAR measurements were evaluated at maximum power and the unit was operated for an appropriate period prior to the evaluation in order to minimise the drift.
- f) The device was keyed to operate continuously in the transmit mode for the duration of the test.
- g) The location of the maximum spatial SAR distribution (hot spot) was determined relative to the EUT and its antenna.
- h) The EUT was transmitting at full power throughout the duration of the test powered by a fully charged battery.

Body Configuration

- a) The EUT was placed in a normal operating position where the centre of EUT was aligned with the centre reference point on the flat section of the 'SAM' phantom.
- b) With the EUT touching the phantom at an imaginary centre line. The EUT was aligned with a marked plane (X and Y axis) consisting of two lines.
- c) For the touch-safe position the EUT was gradually moved towards the flat section of the 'SAM' phantom until any point of the EUT touched the phantom.
- d) For position(s) greater then 0mm separation the EUT was positioned as per the touch-safe position, and then the vertical height was decreased/adjusted as required.
- e) SAR measurements were evaluated at maximum power and the unit was operated for an appropriate period prior to the evaluation in order to minimise the drift.
- f) The device was keyed to operate continuously in the transmit mode for the duration of the test.
- g) The location of the maximum spatial SAR distribution (hot spot) was determined relative to the EUT and its antenna.
- h) The EUT was transmitting at full power throughout the duration of the test powered by a fully charged battery.

Page: 11 of 62 RFI Global Services Ltd.

6. Summary of Test Results			
Test Name	Specification Reference	Result	
Specific Absorption Rate-UMTS-FDD V Head Configuration 1g	OET Bulletin 65 Supplement C: (2001-01)	Complied	
Specific Absorption Rate-UMTS-FDD V Body Configuration 1g	OET Bulletin 65 Supplement C: (2001-01)	Complied	
Specific Absorption Rate-UMTS-FDD V + HSDPA Body Configuration 1g	OET Bulletin 65 Supplement C: (2001-01)	Complied	
6.1. Location of Tests			

All the measurements described in this report were performed at the premises of RFI Global Services Ltd, Pavilion A, Ashwood Park, Ashwood Way, Basingstoke, Hampshire, RG23 8BG United Kingdom

Page: 12 of 62 RFI Global Services Ltd.

Issue Date: 04 April 2011

7. Measurements, Examinations and Derived Results

7.1. General Comments

This section contains test results only.

Measurement uncertainties are evaluated in accordance with current best practice. Our reported expanded uncertainties are based on standard uncertainties, which are multiplied by an appropriate coverage factor to provide a statistical confidence level of approximately 95%. Please refer to section 8 for details of measurement uncertainties.

Page: 13 of 62 RFI Global Services Ltd.

Issue Date: 04 April 2011

7.2. Test Results

7.2.1.Specific Absorption Rate - UMTS-FDD V Head Configuration 1g

Test Summary:

Tissue Volume: 1g

Maximum Level (W/kg): 0.554

Environmental Conditions:

Temperature Variation in Lab (°C): 23.0 to 23.0

Temperature Variation in Liquid (°C): 22.7 to 22.7

Results:

EUT Position	Phantom Configuration	Channel Number	Level (W/kg)	Limit (W/kg)	Margin (W/kg)	Note(s)	Result
Touch	Left	4183	0.554	1.600	1.046	1	Complied
Tilt	Left	4183	0.269	1.600	1.331	1	Complied
Mouth / Jaw*	Flat (SAM)	4183	0.443	1.600	1.157	1, 2	Complied
Tilt	Right	4183	0.227	1.600	1.373	1	Complied
Note(s):							

Note(s):

- SAR test was performed in the middle channel only as the measured levels were < 50% of the SAR limit as stated in the FCC Public Notice DA 02-1438 by the SCC-34/SC-2. With 12.2 kbps RMC with Test loop mode 1 and TPC bits configured to all "1's".
- 2. The phone was positioned with the hinge against a smooth edge of the flat phantom where the upper half of the phone was unfolded and extended beyond the phantom side wall. The lower half of the phone was secured in the test device holder at a fixed distance

Page: 14 of 62 RFI Global Services Ltd.

^{*}Some points in the 'Right Touch' position could not be fully evaluated therefore the zoom scan was unable to fully enclose the peak SAR location as required by IEEE 1528 and OET Bulletin 65 Supplement C. This scan is repeated in the Mouth / Jaw configuration.

Issue Date: 04 April 2011

7.2.2. Specific Absorption Rate - UMTS-FDD V Body Configuration 1g Test Summary:

Tissue Volume: 1g

Maximum Level (W/kg): 0.378

Environmental Conditions:

Temperature Variation in Lab (°C): 23.0 to 23.0

Temperature Variation in Liquid (°C): 22.5 to 22.5

Results:

EUT Position	Phantom Configuration	Channel Number	Level (W/kg)	Limit (W/kg)	Margin (W/kg)	Note(s)	Result
Front of EUT Facing Phantom	Flat (SAM)	4183	0.359	1.600	1.241	1, 2	Complied
Rear of EUT Facing Phantom	Flat (SAM)	4183	0.344	1.600	1.256	1, 2	Complied
Front of EUT Facing Phantom With PHF	Flat (SAM)	4183	0.378	1.600	1.222	1, 2	Complied

Note(s):

- 1. SAR test was performed in the middle channel only as the measured levels were < 50% of the SAR limit as stated in the FCC Public Notice DA 02-1438 by the SCC-34/SC-2.
- 2. SAR measurements were performed with the EUT at a separation distance of 15mm from the 'SAM' phantom flat section with 12.2 kbps RMC with Test loop mode 1 and TPC bits configured to all "1's".

Page: 15 of 62 RFI Global Services Ltd.

Issue Date: 04 April 2011

7.2.3. Specific Absorption Rate - UMTS-FDD V + HSDPA Body Configuration 1g Test Summary:

Tissue Volume: 1g

Maximum Level (W/kg): 0.355

Environmental Conditions:

Temperature Variation in Lab (°C): 23.0 to 23.0

Temperature Variation in Liquid (°C): 22.5 to 22.5

Results:

EUT Position	Phantom Configuration	Channel Number	Level (W/kg)	Limit (W/kg)	Margin (W/kg)	Note(s)	Result
Front of EUT Facing Phantom	Flat (SAM)	4183	0.355	1.600	1.245	1, 2, 3	Complied

Note(s):

- 1. SAR test was performed in the middle channel only as the measured levels were < 50% of the SAR limit as stated in the FCC Public Notice DA 02-1438 by the SCC-34/SC-2.
- 2. SAR measurements were performed with the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.
- 3. 12.2 kbps RMC + HSDPA Enabled with Test loop mode 1 and TPC bits configured to all "1's", Sub-test 1.

Page: 16 of 62 RFI Global Services Ltd.

Issue Date: 04 April 2011

7.2.4. Conducted Average Power Measurement Modes **HSDPA WCDMA** Voice / Sets 2 3 4 1 RMC12.2kbps **Power Power** Power **Power** (dBm) (dBm) (dBm) (dBm) Power (dBm) Avg. Avg. Avg. Avg. Avg. **Band** Channel 4132 22.8 22.8 20.1 18.6 18.6 850 4183 22.7 19.8 18.4 18.4 22.7 4233 22.5 19.7 18.3 18.3 22.5 2 12 15 15 ßс ßd 15 15 8 4

Sub-test 1 Setup for Release 5 HSDPA

ΔACK, ΔNACK, ΔCQI

Sub-test	βc	β_d	B _d (SF)	$\beta_{c/} \beta_d$ $\beta_{hs}^{(1)}$		SM (dB) ⁽²⁾
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15 ⁽³⁾	15/15 ⁽³⁾	64	12/15 ⁽³⁾	24/15	1.0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

8

8

8

Note 1: $\Delta_{ACK, }$ Δ_{NACK} and Δ_{CQI} = 8 \Leftrightarrow A_{hs} = β_{hs}/β_c = 30/15 \Leftrightarrow β_{hs} = 30/15 * β_c

8

Note 2: CM = 1 for $\beta_{c/}$ β_{d} = 12/15, B_{hs}/β_{c} = 24/15

Note 3: For subtest 2 the $\beta_{c'}$ β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 11/15 and β_d = 15/15

Page: 17 of 62 RFI Global Services Ltd.

Issue Date: 04 April 2011

8. Measurement Uncertainty

No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently, the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

The uncertainty of the result may need to be taken into account when interpreting the measurement results.

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor, such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

Test Name	Confidence Level	Calculated Uncertainty
Specific Absorption Rate-UMTS-FDD V Head Configuration 1g	95%	±19.28
Specific Absorption Rate-UMTS-FDD V Body Configuration 1g	95%	±19.41

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty, the published guidance of the appropriate accreditation body is followed.

Page: 18 of 62 RFI Global Services Ltd.

Туре	Source of uncertainty	+	- Value	Probability	Divisor	C _{i (10a)}	Stan Uncer		ს _i or
	·	Value	Value	Distribution		. (g)	+ u (%)	- u (%)	veff
В	Probe calibration	11.000	11.000	normal (k=2)	2.0000	1.0000	5.500	5.500	× ×
В	Axial Isotropy	0.500	0.500	normal (k=2)	2.0000	1.0000	0.250	0.250	×
В	Hemispherical Isotropy	2.600	2.600	normal (k=2)	2.0000	1.0000	1.300	1.300	×
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞
В	Readout Electronics	0.320	0.320	normal (k=2)	2.0000	1.0000	0.160	0.160	∞
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
В	Integration Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	×
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
В	Extrapolation and integration / Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	œ
Α	Test Sample Positioning	2.400	2.400	normal (k=1)	1.0000	1.0000	2.400	2.400	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	œ
Α	Liquid Conductivity (measured value)	4.920	4.920	normal (k=1)	1.0000	0.6400	3.149	3.149	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	œ
Α	Liquid Permittivity (measured value)	4.970	4.970	normal (k=1)	1.0000	0.6000	2.982	2.982	5
	Combined standard uncertainty			t-distribution			9.84	9.84	>200
	Expanded uncertainty			k = 1.96			19.28	19.28	>200

Page: 19 of 62 RFI Global Services Ltd.

8.2. 5	Specific Absorption Rate	-UMTS-	FDD V I	Body Configu	ration 1g	3			
Туре	Source of uncertainty	+	- Value	Probability Distribution	Divisor	C _{i (10g)}	Stan Uncer		ა _i or
	·	Value	Value	Distribution		, G ,	+ u (%)	- u (%)	Veff
В	Probe calibration	11.000	11.000	normal (k=2)	2.0000	1.0000	5.500	5.500	oc
В	Axial Isotropy	0.500	0.500	normal (k=2)	2.0000	1.0000	0.250	0.250	∞
В	Hemispherical Isotropy	2.600	2.600	normal (k=2)	2.0000	1.0000	1.300	1.300	oc
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	oc
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	oc
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	oc
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	œ
В	Readout Electronics	0.320	0.320	normal (k=2)	2.0000	1.0000	0.160	0.160	oc
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	œ
В	Integration Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	oc
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	oc
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
В	Extrapolation and integration / Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
Α	Test Sample Positioning	2.900	2.900	normal (k=1)	1.0000	1.0000	2.900	2.900	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	×
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	œ
Α	Liquid Conductivity (measured value)	4.690	4.690	normal (k=1)	1.0000	0.6400	3.002	3.002	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
Α	Liquid Permittivity (measured value)	4.860	4.860	normal (k=1)	1.0000	0.6000	2.916	2.916	5
	Combined standard uncertainty			t-distribution			9.91	9.91	>250
	Expanded uncertainty			k = 1.96			19.41	19.41	>250

Page: 20 of 62 RFI Global Services Ltd.

DEI Na	Inctrument	Manufaaturar	Type No	Carial Na	Date Last	Cal.
RFI No.	Instrument	Manufacturer	Type No.	Serial No.	Calibrated	Interval (Months)
A034	Narda 20W Termination	Narda	374BNM	8706	Calibrated as part of system	-
A1097	SMA Directional Coupler	MiDISCO	MDC6223- 30	None	Calibrated as part of system	-
A1137	3dB Attenuator	Narda	779	04690	Calibrated as part of system	-
A1174	Dielectric Probe Kit	Agilent Technologies	85070C	Us99360072	Calibrated before use	-
A1328	Handset Positioner	Schmid & Partner Engineering AG	Modification	SD 000 H01 DA	-	-
A1182	Handset Positioner	Schmid & Partner Engineering AG	V3.0	None	-	-
A1234	Data Acquisition Electronics	Schmid & Partner Engineering AG	DAE3	450	09 Feb 2011	12
A1378	Probe	Schmid & Partner Engineering AG	EX3 DV3	3508	15 Feb 2011	12
A1235	900 MHz Dipole Kit	Schmid & Partner Engineering AG	D900V2	124	09 Feb 2011	24
A1238	SAM Phantom	Schmid & Partner Engineering AG	SAM b	001	Calibrated before use	-
A1497	Amplifier	Mini-Circuits	zhl-42w (sma)	e020105	Calibrated as part of system	-
A1566	SAM Phantom	Schmid & Partner Engineering AG	SAM a	002	Calibrated before use	-
A1990	Digital Camera	Samsung	E515	A23WC90 8A05431K	-	-
A215	20 dB Attenuator	Narda	766-20	9402	Calibrated as part of system	-
A1531	Antenna	AARONIA AG	7025	02458	-	-
C1042	Network Analyzer Cable	Agilent	8120-4779	349	-	-
C1145	Cable	Rosenberger MICRO- COAX	FA147A F003003030	41843-1	Calibrated as part of system	-
C1146	Cable	Rosenberger MICRO- COAX	FA147A F030003030	41752-1	Calibrated as part of system	-
G0528	Robot Power Supply	Schmid & Partner Engineering AG	DASY4	None	Calibrated before use	-

Page: 21 of 62 RFI Global Services Ltd.

Serial No: RFI/SAR/RP80806JD08A V2.0 Issue Date: 04 April 2011

RFI No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
G087	PSU	Thurlby Thandar	CPX200	100701	Calibrated before use	-
L1021	Universal Radio Communication Tester	Rohde & Schwarz	CMU200	111379	11 Jan 2011	12
M1015	Network Analyser	Agilent Technologies	8753ES	US39172406	27 Sept 2010	12
M1047	Robot Arm	Staubli	RX908 L	F00/SD8 9A1/A/01	Calibrated before use	-
M1159	Signal Generator	Agilent Technologies	E8241A	US42110332	Internal Checked 15 Dec 2010	4
M1071	Spectrum Analyzer	Agilent	HP8590E	3647U00514	(Monitoring use only)	-
M1270	Temperature/ Humidity/ Pressure Meter	RS Components	None	None	Internal Checked 31 March 2010	12
M1071	Spectrum Analyzer	Agilent	HP8590E	3647U00514	(Monitoring use only)	-
M1044	Diode Power Sensor	Rohde & Schwarz	NRV-Z1	893350/019	26 May 2010	12
M265	Diode Power Sensor	Rohde & Schwarz	NRV-Z1	893350/017	26 May 2010	12
M263	Dual Channel Power Meter	Rohde & Schwarz	NRVD	826558/004	27 May 2010	12
S256	SAR Lab	RFI	Site 56	N/A	Calibrated before use	-

Page: 22 of 62 RFI Global Services Ltd.

Issue Date: 04 April 2011

A.1.1. Calibration Certificates

This section contains the calibration certificates and data for the Probe(s) and Dipole(s) used, which are not included in the total number of pages for this report.

Page: 23 of 62 RFI Global Services Ltd.

ASSET: - A1378 Checked by # 21/02/2011.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RFI

Certificate No: EX-3508 Feb11

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

EX3DV3 - SN:3508

Calibration procedure(s)

QA CAL-01.v7, QA CAL-12.v6, QA CAL-14.v3, QA CAL-23.v4,

QA CAL-25.v3

Calibration procedure for dosimetric E-field probes

Calibration date:

February 15, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-10 (No. 217-01136)	Apr-11
Power sensor E4412A	MY41495277	01-Apr-10 (No. 217-01136)	Apr-11
Power sensor E4412A	MY41498087	01-Apr-10 (No. 217-01136)	Apr-11
Reference 3 dB Attenuator	SN: S5054 (3c)	30-Mar-10 (No. 217-01159)	Mar-11
Reference 20 dB Attenuator	SN: S5086 (20b)	30-Mar-10 (No. 217-01161)	Mar-11
Reference 30 dB Attenuator	SN: S5129 (30b)	30-Mar-10 (No. 217-01160)	Mar-11
Reference Probe ES3DV2	SN: 3013	29-Dec-10 (No. ES3-3013_Dec10)	Dec-11
DAE4	SN: 654	23-Apr-10 (No. DAE4-654_Apr10)	Apr-11
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-10)	In house check: Oct-11

Name Function Signature

Calibrated by: Katja Pokovic Technical Manager

Approved by: Niels Kuster Quality Manager

Issued: February 15, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF

sensitivity in TSL / NORMx.v.z

DCP

diode compression point

CF

crest factor (1/duty_cycle) of the RF signal

A, B, C

modulation dependent linearization parameters

Polarization o

o rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- *NORMx,y,z:* Assessed for E-field polarization $\vartheta = 0$ ($f \le 900$ MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax, y, z; Bx, y, z; Cx, y, z are numerical linearization parameters in dB assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media.
- VR: VR is the validity range of the calibration related to the average diode voltage or DAE voltage in mV.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX-3508 Feb11

Probe EX3DV3

SN:3508

Manufactured: December 19, 2003 Calibrated: February 15, 2011

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: EX3DV3 - SN:3508

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.74	0.66	0.65	± 10.1 %
DCP (mV) ^B	101.8	102.3	101.3	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR m/V	Unc ^E (k=2)
10000	CW	0.00	Х	0.00	0.00	1.00	146.8	±2.2 %
			Υ	0.00	0.00	1.00	139.4	
			Z	0.00	0.00	1.00	124.4	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^B Numerical linearization parameter: uncertainty not required.

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV3 - SN:3508

Calibration Parameter Determined in Head Tissue Simulating Media

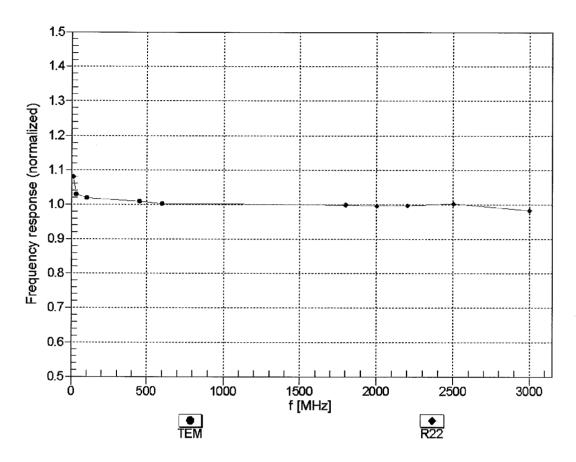
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)	
450	43.5	0.87	11.15	11.15	11.15	0.11	1.00	± 13.4 %	
750	41.9	0.89	10.73	10.73	10.73	0.36	0.82	± 12.0 %	
900	41.5	0.97	10.23	10.23	10.23	0.38	0.81	± 12.0 %	
1750	40.1	1.37	9.15	9.15	9.15	0.66	0.56	± 12.0 %	
1900	40.0	1.40	8.83	8.83	8.83	0.53	0.65	± 12.0 %	
2450	39.2	1.80	7.88	7.88	7.88	0.29	0.91	± 12.0 %	

^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

DASY/EASY - Parameters of Probe: EX3DV3- SN:3508

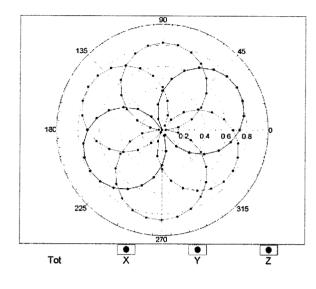

Calibration Parameter Determined in Body Tissue Simulating Media

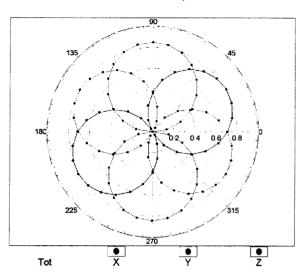
	Relative	Conductivity					Depth	Unct.
f (MHz) ^C	Permittivity ^F	(S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	(mm)	(k=2)
	-						, ,	
450	56.7	0.94	11.80	11.80	11.80	0.02	1.00	± 13.4 %
750	55.5	0.96	10.54	10.54	10.54	0.37	0.86	± 12.0 %
900	55.0	1.05	10.27	10.27	10.27	0.30	0.95	± 12.0 %
1750	53.4	1.49	9.08	9.08	9.08	0.40	0.87	± 12.0 %
1900	53.3	1.52	8.56	8.56	8.56	0.35	0.78	± 12.0 %
2150	53.1	1.66	8.51	8.51	8.51	0.18	1.30	± 12.0 %
2450	52.7	1.95	7.97	7.97	7.97	0.39	0.72	± 12.0 %
2600	52.5	2.16	7.62	7.62	7.62	0.33	0.75	± 12.0 %
3700	51.0	3.55	6.84	6.84	6.84	0.25	1.70	± 13.1 %
5200	49.0	5.30	4.19	4.19	4.19	0.50	1.95	± 13.1 %
5500	48.6	5.65	3.72	3.72	3.72	0.58	1.95	± 13.1 %
5800	48.2	6.00	3.71	3.71	3.71	0.65	1.95	± 13.1 %

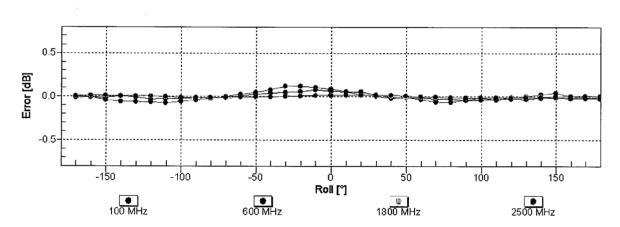
^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

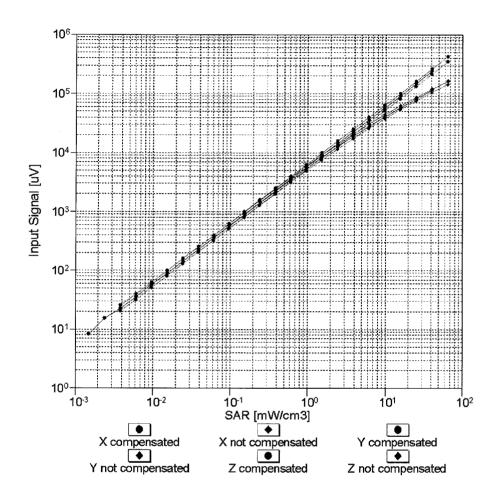


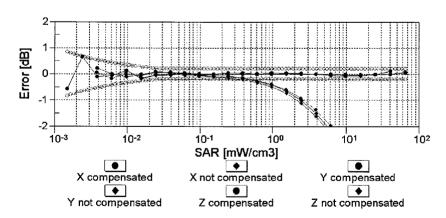

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

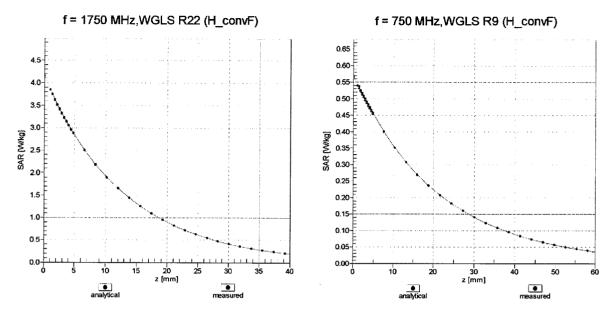
f=600 MHz,TEM

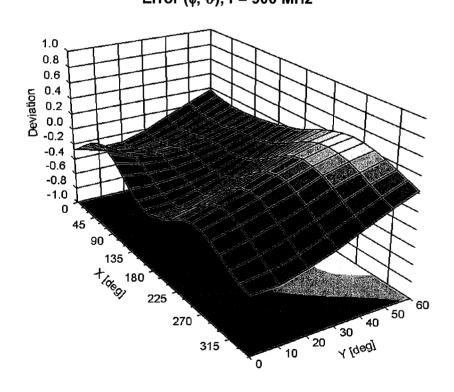
f=1800 MHz,R22

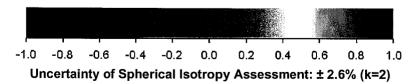




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Air Error (φ, θ), f = 900 MHz

DASY/EASY - Parameters of Probe: EX3DV3 - SN:3508

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

ASSET! A1235 Chelhed by

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Accreditation No.: SCS 108

Certificate No: D900V2-124 Feb11

Object

D900V2 - SN: 124

Calibration procedure(s)

QA CAL-05.v8

Calibration procedure for dipole validation kits

Calibration date:

February 09, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration	
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11	
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11	
Reference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11	
Type-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11	
Reference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11	
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11	
Secondary Standards	ID#	Check Date (in house)	Scheduled Check	
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11	
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11	
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11	

Calibrated by:

Function Signature

Dimce Iliev Laboratory Technician

Approved by:

Katja Pokovic Technical Manager

Issued: February 9, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Name

Certificate No: D900V2-124 Feb11

Page 1 of 9

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D900V2-124_Feb11

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.2 °C	41.5	0.97 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.3 ± 6 %	0.95 mho/m ± 6 %
Head TSL temperature during test	(21.5 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.72 mW / g
SAR normalized	normalized to 1W	10.9 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	11.0 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.74 mW / g
SAR normalized	normalized to 1W	6.96 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	7.01 mW /g ± 16.5 % (k=2)

Certificate No: D900V2-124_Feb11

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.0	1.05 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.6 ± 6 %	1.05 mho/m ± 6 %
Body TSL temperature during test	(21.8 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.79 mW / g
SAR normalized	normalized to 1W	11.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	11.1 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.79 mW / g
SAR normalized	normalized to 1W	7.16 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	7.14 mW / g ± 16.5 % (k=2)

Certificate No: D900V2-124_Feb11

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.9 Ω - 8.2 jΩ
Return Loss	- 21.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.1 Ω - 8.6 jΩ
Return Loss	- 20.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.409 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 04, 2001

Certificate No: D900V2-124_Feb11

DASY5 Validation Report for Head TSL

Date/Time: 09.02.2011 11:44:15

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:124

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: HSL900

Medium parameters used: f = 900 MHz; $\sigma = 0.95 \text{ mho/m}$; $\varepsilon_r = 40.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.88, 5.88, 5.88); Calibrated: 30.04.2010

Sensor-Surface: 3mm (Mechanical Surface Detection)

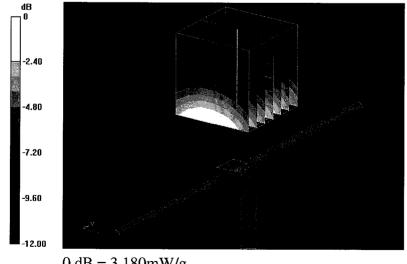
Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

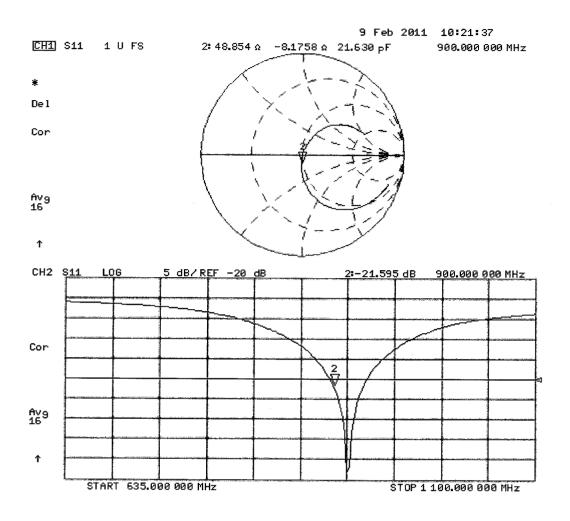
Measurement SW: DASY52, V52.6.1 Build (408)

Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Pin=250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.560 V/m; Power Drift = 0.03 dB


Peak SAR (extrapolated) = 4.135 W/kg

SAR(1 g) = 2.72 mW/g; SAR(10 g) = 1.74 mW/g

Maximum value of SAR (measured) = 3.183 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 09.02.2011 14:54:48

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:124

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: M900

Medium parameters used: f = 900 MHz; $\sigma = 1.05 \text{ mho/m}$; $\varepsilon_r = 53.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.81, 5.81, 5.81); Calibrated: 30.04.2010

• Sensor-Surface: 3mm (Mechanical Surface Detection)

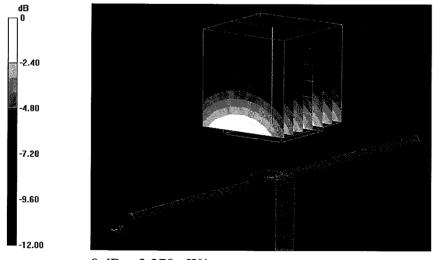
Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

Measurement SW: DASY52, V52.6.1 Build (408)

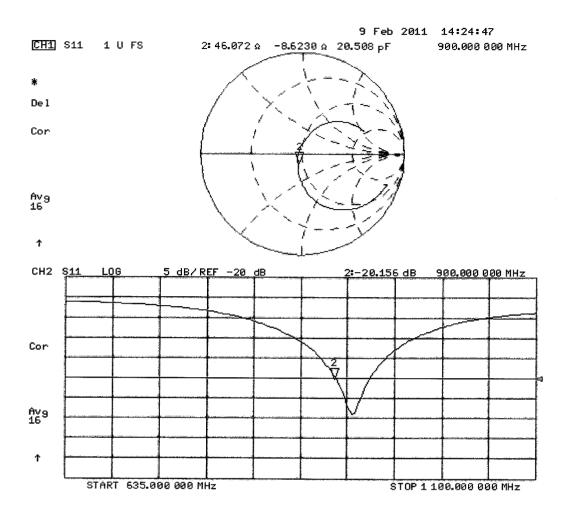
Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Pin=250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.520 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 4.203 W/kg


SAR(1 g) = 2.79 mW/g; SAR(10 g) = 1.79 mW/g

Maximum value of SAR (measured) = 3.271 mW/g

0 dB = 3.270 mW/g

Impedance Measurement Plot for Body TSL

Issue Date: 04 April 2011

Appendix 2. Measurement Methods

A.2.1. Evaluation Procedure

The Specific Absorption Rate (SAR) evaluation was performed in the following manner:

- a) (i) The evaluation was performed in an applicable area of the phantom depending on the type of device being tested. For devices worn about the ear during normal operation, both the left and right ear positions were evaluated at the centre frequency of the band at maximum power. The side, which produced the greatest SAR, determined which side of the phantom would be used for the entire evaluation. The positioning of the head worn device relative to the phantom was dictated by the test specification identified in section 3.1 of this report.
 - (ii) For body worn devices or devices which can be operated within 20 cm of the body, the flat section of the SAM phantom was used were the size of the device(s) is normal. For bigger devices and base station the 2mm Oval phantom is used for evaluation. The type of device being evaluated dictated the distance of the EUT to the outer surface of the phantom flat section.
- b) The SAR was determined by a pre-defined procedure within the DASY4 software. The exposed region of the phantom was scanned near the inner surface with a grid spacing of 20mm x 20mm or appropriate resolution.
- c) A 5x5x7 matrix was performed around the greatest spatial SAR distribution found during the area scan of the applicable exposed region. SAR values were then calculated using a 3-D spline interpolation algorithm and averaged over spatial volumes of 1 and 10 grams.
- d) If the EUT had any appreciable drift over the course of the evaluation, then the EUT was reevaluated. Any unusual anomalies over the course of the test also warranted a re-evaluation.

Page: 24 of 62 RFI Global Services Ltd.

Issue Date: 04 April 2011

A.2.2. Specific Absorption Rate (SAR) Measurements to OET Bulletin 65 Supplement C: (2001-01)

Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields

SAR measurements were performed in accordance with Appendix D of the standard FCC OET Bulletin 65 Supplement C: 2001, IEEE 1528 and FCC KDB procedures, against appropriate limits for each measurement position in accordance with the standard. In some cases the FCC was contacted using a PBA or KDB process to ensure test is performed correctly.

The test was performed in a shielded enclosure with the temperature controlled to remain between +18.0°C and +25.0°C. The tissue equivalent material fluid temperature was controlled to give a maximum variation of ± 2.0°C

Prior to any SAR measurements on the EUT, system validation and material dielectric property measurements were conducted. In the absence of a detailed procedure within the specification, system validation and material dielectric property measurements were performed in accordance with Appendix C and Appendix D of FCC OET Bulletin 65 Supplement C: 2001 and FCC KDB publication 450824.

Following the successful system validation and material dielectric property measurements, a SAR versus time sweep shall be performed within 10 mm of the phantom inner surface. If the EUT power output is stable after three minutes then the measurement probe will perform a coarse surface level scan at each test position in order to ascertain the location of the maximum local SAR level. Once this area had been established, a 5x5x7 cube of 175 points (5 mm spacing in each axis $\approx 27g$) will be centred at the area of concern. Extrapolation and interpolation will then be carried out on the 27g of tissue and the highest averaged SAR over a 10g cube determined.

Once the maximum interpolated SAR measurement is complete; the coarse scan is visually assessed to check for secondary peaks within 50% of the maximum SAR level. If there are any further SAR measurements required, extra 5x5x7 cubes shall be centred on each of these extra local SAR maxima.

At the end of each position test case a second time sweep shall be performed to check whether the EUT has remained stable throughout the test.

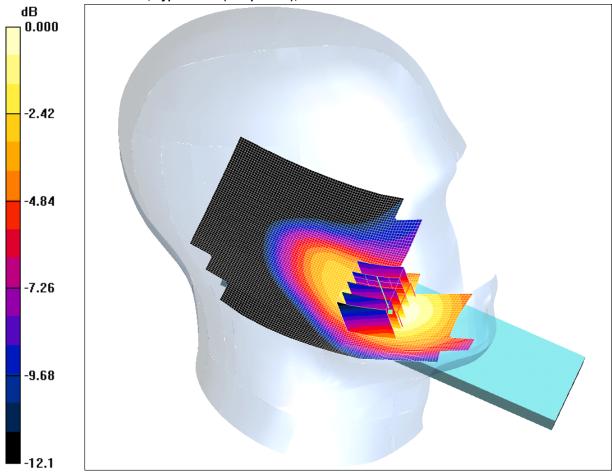
Page: 25 of 62 RFI Global Services Ltd.

Issue Date: 04 April 2011

Appendix 3. SAR Distribution Scans

This appendix contains SAR distribution scans which are not included in the total number of pages for this report.

Scan Reference Number	Title
SCN/80806JD08/001	Touch Left FDD V CH4183
SCN/80806JD08/002	Tilt Left FDD V CH4183
SCN/80806JD08/003	Touch Right Using Flat Section FDD V CH4183
SCN/80806JD08/004	Tilt Right FDD V CH4183
SCN/80806JD08/005	Front of EUT Facing Phantom FDD V CH4183
SCN/80806JD08/006	Rear of EUT Facing Phantom FDD V CH4183
SCN/80806JD08/007	Front of EUT Facing Phantom With PHF FDD V CH4183
SCN/80806JD08/008	Front of EUT Facing Phantom FDD V + HSDPA CH4183
SCN/80806JD08/009	System Performance Check 900MHz Head 14 03 11
SCN/80806JD08/010	System Performance Check 900MHz Body 14 03 11


Page: 26 of 62 RFI Global Services Ltd.

Serial No: RFI/SAR/RP80806JD08A V2.0 Version 2.0 Issue Date: 04 April 2011

SCN/80806JD08/001: Touch Left FDD V CH4183

Date 14/03/2011

DUT: Panasonic P-06C; Type: P-06C (Sample C10); Serial: 355097040011329

0 dB = 0.580 mW/g

Communication System: UMTS-FDD V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium: 900 MHz HSL Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.915 mho/m; ϵ_r = 42.3; ρ = 1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: EX3DV3 SN3508; ConvF(10.73, 10.73, 10.73); Calibrated: 15/02/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 09/02/2011
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1207
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Touch Left - Middle/Area Scan (81x161x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.585 mW/g

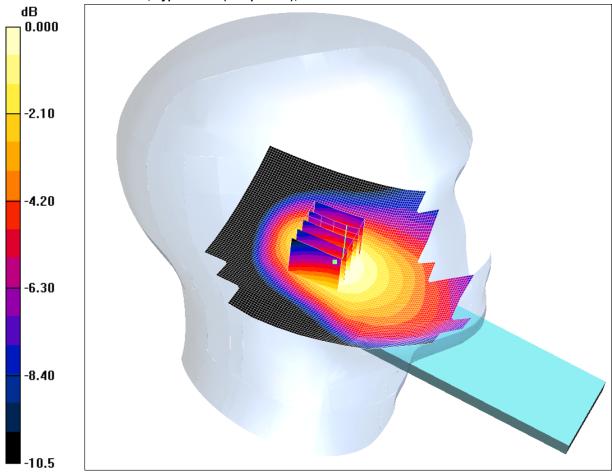
Touch Left - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.02 V/m; Power Drift = -0.353 dB

Peak SAR (extrapolated) = 0.899 W/kg

SAR(1 g) = 0.554 mW/g; SAR(10 g) = 0.355 mW/g

Maximum value of SAR (measured) = 0.580 mW/g


Page: 27 of 62 RFI Global Services Ltd.

Version 2.0 Issue Date: 04 April 2011

SCN/80806JD08/002: Tilt Left FDD V CH4183

Date 14/03/2011

DUT: Panasonic P-06C; Type: P-06C (Sample C10); Serial: 355097040011329

0 dB = 0.279 mW/g

Communication System: UMTS-FDD V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium: 900 MHz HSL Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.915 mho/m; ϵ_r = 42.3; ρ = 1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: EX3DV3 SN3508; ConvF(10.73, 10.73, 10.73); Calibrated: 15/02/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 09/02/2011
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1207
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Tilt Left - Middle/Area Scan (81x161x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.287 mW/g

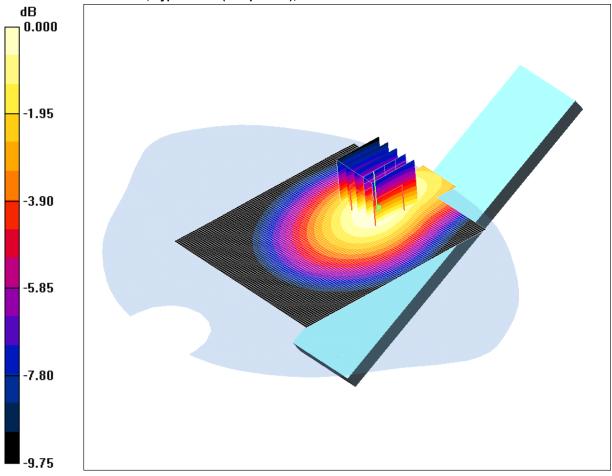
Tilt Left - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.4 V/m; Power Drift = -0.026 dB

Peak SAR (extrapolated) = 0.343 W/kg

SAR(1 g) = 0.269 mW/g; SAR(10 g) = 0.198 mW/g

Maximum value of SAR (measured) = 0.279 mW/g


RFI Global Services Ltd. Page: 28 of 62

Issue Date: 04 April 2011

SCN/80806JD08/003: Touch Right Using Flat Section FDD V CH4183

Date 14/03/2011

DUT: Panasonic P-06C; Type: P-06C (Sample C10); Serial: 355097040011329

0 dB = 0.463 mW/g

Communication System: UMTS-FDD V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium: 900 MHz HSL Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.915 mho/m; ϵ_r = 42.3; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 SN3508; ConvF(10.73, 10.73, 10.73); Calibrated: 15/02/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 09/02/2011
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1207
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Touch Right Using Flat Section - Middle/Area Scan (81x111x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.473 mW/g

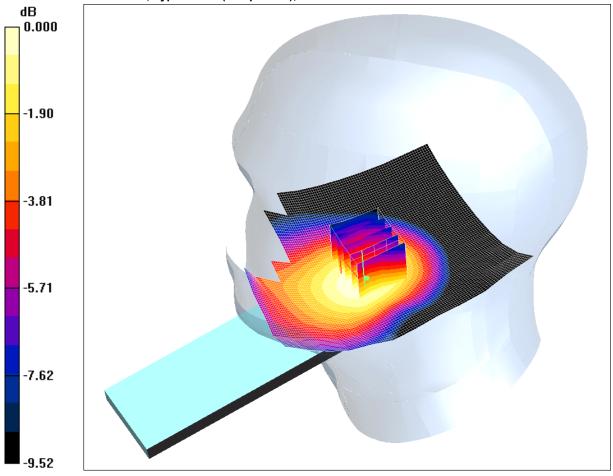
Touch Right Using Flat Section - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.5 V/m; Power Drift = -0.076 dB

Peak SAR (extrapolated) = 0.606 W/kg

SAR(1 g) = 0.443 mW/g; SAR(10 g) = 0.316 mW/gMaximum value of SAR (measured) = 0.463 mW/g

Note: Some points in the 'Right Touch' position could not be fully evaluated therefore the zoom scan was unable to fully enclose the peak SAR location as required by IEEE 1528 and OET Bulletin 65 Supplement C. This scan is repeated in the Mouth / Jaw configuration.


Page: 29 of 62 RFI Global Services Ltd. Test Report Serial No: RFI/SAR/RP80806JD08A V2.0

Issue Date: 04 April 2011

SCN/80806JD08/004: Tilt Right FDD V CH4183

Date 14/03/2011

DUT: Panasonic P-06C; Type: P-06C (Sample C10); Serial: 355097040011329

0 dB = 0.238 mW/g

Communication System: UMTS-FDD V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium: 900 MHz HSL Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.915 mho/m; ϵ_r = 42.3; ρ = 1000 kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: EX3DV3 SN3508; ConvF(10.73, 10.73, 10.73); Calibrated: 15/02/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 09/02/2011
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1207
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Tilt Right - Middle/Area Scan (81x161x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.249 mW/g

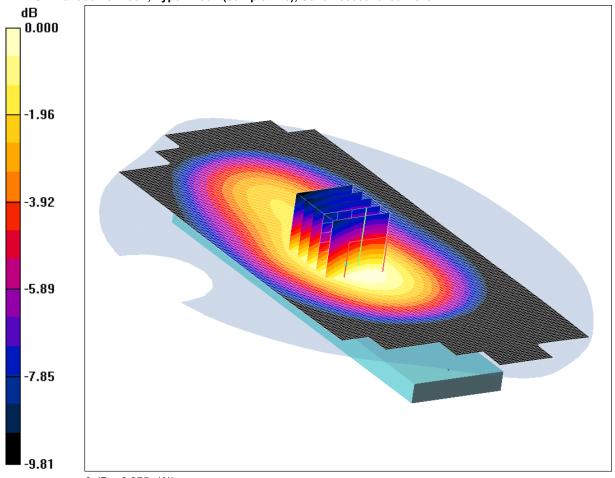
Tilt Right - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.25 V/m; Power Drift = -0.048 dB

Peak SAR (extrapolated) = 0.292 W/kg

SAR(1 g) = 0.227 mW/g; SAR(10 g) = 0.173 mW/g Maximum value of SAR (measured) = 0.238 mW/g

Page: 30 of 62 RFI Global Services Ltd.


Version 2.0 Issue Date: 04 April 2011

Serial No: RFI/SAR/RP80806JD08A V2.0

SCN/80806JD08/005: Front of EUT Facing Phantom FDD V CH4183

Date 14/03/2011

DUT: Panasonic P-06C; Type: P-06C (Sample C10); Serial: 355097040011329

0 dB = 0.375 mW/g

Communication System: UMTS-FDD V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium: 900 MHz MSL Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 1.03$ mho/m; $\epsilon_r = 53.8$; $\rho =$ 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 SN3508; ConvF(10.54, 10.54, 10.54); Calibrated: 15/02/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 09/02/2011
- Phantom: SAM 12a; Type: SAM 4.0; Serial: TP:1193
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

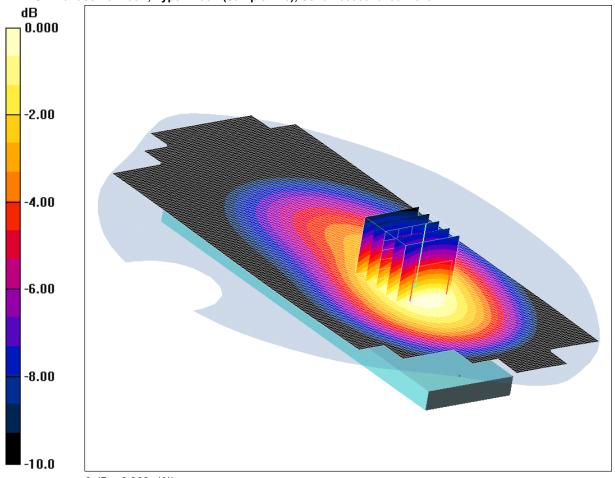
Front of EUT Facing Phantom - Middle/Area Scan (81x181x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.383 mW/g

Front of EUT Facing Phantom - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.2 V/m; Power Drift = -0.079 dB

Peak SAR (extrapolated) = 0.481 W/kg

SAR(1 g) = 0.359 mW/g; SAR(10 g) = 0.257 mW/gMaximum value of SAR (measured) = 0.375 mW/g


Page: 31 of 62 RFI Global Services Ltd. Version 2.0

Issue Date: 04 April 2011

SCN/80806JD08/006: Rear of EUT Facing Phantom FDD V CH4183

Date 14/03/2011

DUT: Panasonic P-06C; Type: P-06C (Sample C10); Serial: 355097040011329

0 dB = 0.360 mW/g

Communication System: UMTS-FDD V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium: 900 MHz MSL Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 1.03$ mho/m; $\epsilon_r = 53.8$; $\rho =$ 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

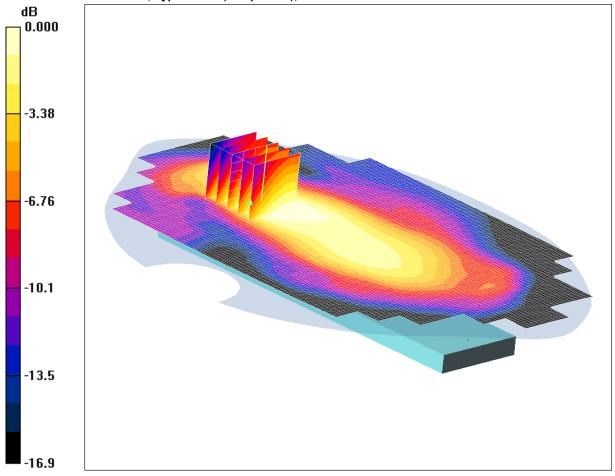
- Probe: EX3DV3 SN3508; ConvF(10.54, 10.54, 10.54); Calibrated: 15/02/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 09/02/2011
- Phantom: SAM 12a; Type: SAM 4.0; Serial: TP:1193
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Rear of EUT Facing Phantom - Middle/Area Scan (81x181x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.366 mW/g

Rear of EUT Facing Phantom - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.6 V/m; Power Drift = -0.050 dB

Peak SAR (extrapolated) = 0.472 W/kg


SAR(1 g) = 0.344 mW/g; SAR(10 g) = 0.244 mW/gMaximum value of SAR (measured) = 0.360 mW/g

Page: 32 of 62 RFI Global Services Ltd. Version 2.0 Issue Date: 04 April 2011

SCN/80806JD08/007: Front of EUT Facing Phantom With PHF FDD V CH4183

Date 14/03/2011

DUT: Panasonic P-06C; Type: P-06C (Sample C10); Serial: 355097040011329

0 dB = 0.396 mW/g

Communication System: UMTS-FDD V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium: 900 MHz MSL Medium parameters used (interpolated): f = 836.6 MHz; σ = 1.03 mho/m; ϵ_r = 53.8; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 SN3508; ConvF(10.54, 10.54, 10.54); Calibrated: 15/02/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 09/02/2011
- Phantom: SAM 12a; Type: SAM 4.0; Serial: TP:1193
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Front of EUT Facing Phantom - Middle/Area Scan (111x181x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.412 mW/g

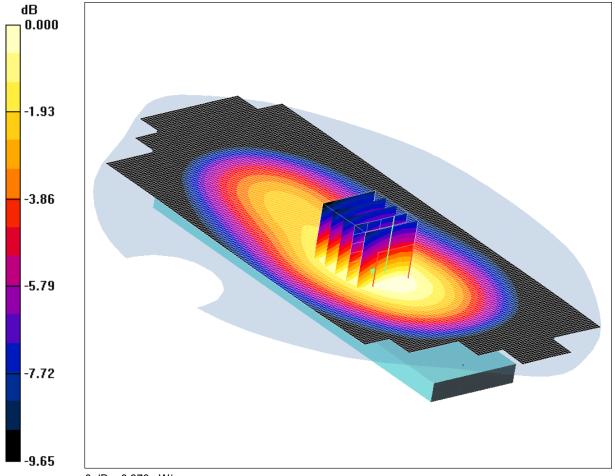
Front of EUT Facing Phantom - Middle/Zoom Scan (5x5x7) 2 (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.8 V/m; Power Drift = 0.050 dB

Peak SAR (extrapolated) = 0.465 W/kg

SAR(1 g) = 0.378 mW/g; SAR(10 g) = 0.277 mW/g Maximum value of SAR (measured) = 0.396 mW/g

Page: 33 of 62 RFI Global Services Ltd.


Test Report

Serial No: RFI/SAR/RP80806JD08A V2.0

Version 2.0 Issue Date: 04 April 2011

SCN/80806JD08/008: Front of EUT Facing Phantom FDD V + HSDPA CH4183 Date 14/03/2011

DUT: Panasonic P-06C; Type: P-06C (Sample C10); Serial: 355097040011329

0 dB = 0.370 mW/g

Communication System: UMTS-FDD V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium: 900 MHz MSL Medium parameters used (interpolated): f = 836.6 MHz; σ = 1.03 mho/m; ϵ_r = 53.8; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 SN3508; ConvF(10.54, 10.54, 10.54); Calibrated: 15/02/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 09/02/2011
- Phantom: SAM 12a; Type: SAM 4.0; Serial: TP:1193
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

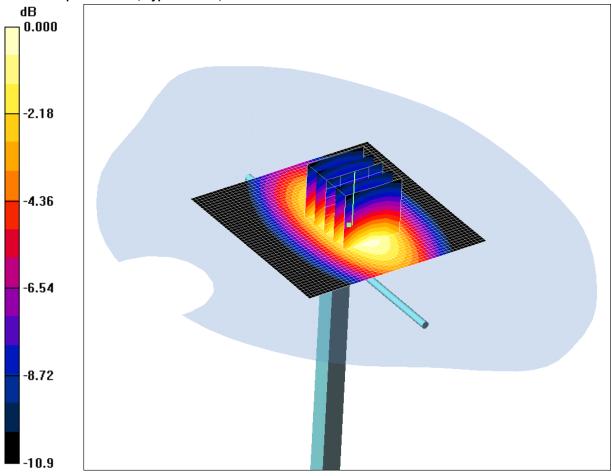
Front of EUT Facing Phantom - Middle/Area Scan (81x181x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.377 mW/g

Front of EUT Facing Phantom - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.6 V/m; Power Drift = -0.154 dB

Peak SAR (extrapolated) = 0.475 W/kg

SAR(1 g) = 0.355 mW/g; SAR(10 g) = 0.255 mW/g Maximum value of SAR (measured) = 0.370 mW/g


Page: 34 of 62 RFI Global Services Ltd.

Version 2.0 Issue Date: 04 April 2011

SCN/80806JD08/009: System Performance Check 900MHz Head 14 03 11

Date 14/03/2011

DUT: Dipole 900 MHz; Type: D900V2; Serial: SN124

0 dB = 3.00 mW/g

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: 900 MHz HSL Medium parameters used: f = 900 MHz; $\sigma = 0.959$ mho/m; $\varepsilon_r = 41.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 SN3508; ConvF(10.23, 10.23, 10.23); Calibrated: 15/02/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 09/02/2011
- Phantom: SAM 12b; Type: SAM 4.0; Serial: TP:1207
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

d=15mm, Pin=250mW /Area Scan (51x51x1): Measurement grid: dx=20mm, dy=20mm

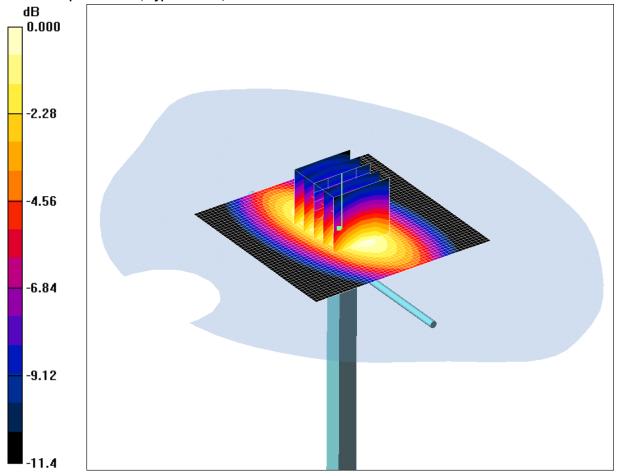
Maximum value of SAR (interpolated) = 3.02 mW/g

d=15mm, Pin=250mW /Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 54.4 V/m; Power Drift = 0.012 dB

Peak SAR (extrapolated) = 4.19 W/kg

SAR(1 g) = 2.78 mW/g; SAR(10 g) = 1.8 mW/g


Maximum value of SAR (measured) = 3.00 mW/g

Page: 35 of 62 RFI Global Services Ltd.

Version 2.0 Issue Date: 04 April 2011

SCN/80806JD08/010: System Performance Check 900MHz Body 14 03 11 Date 14/03/2011

DUT: Dipole 900 MHz; Type: D900V2; Serial: SN124

0 dB = 2.88 mW/g

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: 900 MHz MSL Medium parameters used: f = 900 MHz; $\sigma = 1.08$ mho/m; $\epsilon_r = 53.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 SN3508; ConvF(10.27, 10.27, 10.27); Calibrated: 15/02/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 09/02/2011
- Phantom: SAM 12a; Type: SAM 4.0; Serial: TP:1193
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

d=15mm, Pin=250mW/Area Scan (51x51x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 3.00 mW/g

d=15mm, Pin=250mW/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 51.8 V/m; Power Drift = -0.026 dB

Peak SAR (extrapolated) = 4.05 W/kg

SAR(1 g) = 2.67 mW/g; SAR(10 g) = 1.72 mW/g

Maximum value of SAR (measured) = 2.88 mW/g

Page: 36 of 62 RFI Global Services Ltd.